1
|
Zhang L, Jiang P, Jin H, Zhang C. Achieving Regioselectivity for Remote C-H Activation by Substructure Conformations: an Approach of Paralogous Cytochrome P450 Enzymes. Chemistry 2024; 30:e202402635. [PMID: 39194284 DOI: 10.1002/chem.202402635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 08/29/2024]
Abstract
For advanced synthetic intermediates or natural products with multiple unactivated and energetically similar C(sp3)-H bonds, controlling regioselectivity for the C-H activation is particularly challenging. The use of cytochrome P450 enzymes (CYPs) is a promising solution to the 'regioelectivity' challenge in remote C-H activation. Notably, CYPs and organic catalysts share a fundamental principle: they strive to control the distance and geometry between the metal reaction center and the target C-H site. Most structural analyses of the regioselectivity of CYPs are limited to the active pocket, particularly when explaining why regioselectivity could be altered by enzyme engineering through mutagenesis. However, the substructures responsible for forming the active pocket in CYPs are well known to display complex dynamic changes and substrate-induced plasticity. In this context, we highlight a comparative study of the recently reported paralogous CYPs, IkaD and CftA, which achieve different regioselectivity towards the same substrate ikarugamycin by distinct substructure conformations. We propose that substructural conformation-controlled regioselectivity might also be present in CYPs of other natural product biosynthesis pathways, which should be considered when engineering CYPs for regioselective modifications.
Collapse
Affiliation(s)
- Liping Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China
- University of Chinese Academy of Science, College of Marine Sciences, 19 Yuquan Road, Beijing, 100049, China
- Sanya Institute of Oceanology Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya, 572000, China
| | - Peng Jiang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China
- University of Chinese Academy of Science, College of Marine Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Hongbo Jin
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China
- University of Chinese Academy of Science, College of Marine Sciences, 19 Yuquan Road, Beijing, 100049, China
- Sanya Institute of Oceanology Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya, 572000, China
| |
Collapse
|
2
|
Bierman JJ, Walker MC. Genome sequencing and mining expand the naturalproduct repertoire of Lysobacter. RESEARCH SQUARE 2024:rs.3.rs-4939843. [PMID: 39372940 PMCID: PMC11451712 DOI: 10.21203/rs.3.rs-4939843/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Background Compounds produced by living organisms serve as an important source of inspiration for the development of pharmaceuticals. A potential source of new natural products are bacteria from a genus with species that are known to produce bioactive natural products, but are relatively understudied. Lysobacter is a genus of bacteria that have attracted attention as possible biocontrol agents and are known to produce antibiotic natural products. To further explore the biosynthetic potential of Lysobacter, we sequenced the genomes of two species and performed genome mining studies on those and publicly available genomes. Results In this study we produced draft genome sequences for Lysobacter firmicutimachus and Lysobacter yananisis. We additionally examined 113 publicly available Lysobacter genomes and found that biosynthetic potential of individual species ranges broadly, with species having between 1 and nearly 20 biosynthetic gene clusters. Filtering for more complete genome assemblies and 9 or more biosynthetic gene clusters, we performed genome mining on 24 Lysobacter genomes. Within these genomes we identified 21 unique nonribosomal peptide, 11 unique hybrid polyketide/nonribosomal peptide, 4 unique polyketide, and 27 unique lanthipeptide biosynthetic gene clusters that produce uncharacterized compounds. Additionally, we tentatively identified the biosynthetic gene cluster in L. rmicutimachus responsible for producing plusbacins, which has not been previously identified. Conclusions This study demonstrated that Lysobacter have a large repertoire of natural products that remain to be characterized. Additionally, we found that some Lysobacter species are substantially more biosynthetically gifted than others and that strains of the same species of Lysobacter have similar biosynthetic capacities.
Collapse
|
3
|
Harper CP, Day A, Tsingos M, Ding E, Zeng E, Stumpf SD, Qi Y, Robinson A, Greif J, Blodgett JAV. Critical analysis of polycyclic tetramate macrolactam biosynthetic gene cluster phylogeny and functional diversity. Appl Environ Microbiol 2024; 90:e0060024. [PMID: 38771054 PMCID: PMC11218653 DOI: 10.1128/aem.00600-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024] Open
Abstract
Polycyclic tetramate macrolactams (PTMs) are bioactive natural products commonly associated with certain actinobacterial and proteobacterial lineages. These molecules have been the subject of numerous structure-activity investigations since the 1970s. New members continue to be pursued in wild and engineered bacterial strains, and advances in PTM biosynthesis suggest their outwardly simplistic biosynthetic gene clusters (BGCs) belie unexpected product complexity. To address the origins of this complexity and understand its influence on PTM discovery, we engaged in a combination of bioinformatics to systematically classify PTM BGCs and PTM-targeted metabolomics to compare the products of select BGC types. By comparing groups of producers and BGC mutants, we exposed knowledge gaps that complicate bioinformatics-driven product predictions. In sum, we provide new insights into the evolution of PTM BGCs while systematically accounting for the PTMs discovered thus far. The combined computational and metabologenomic findings presented here should prove useful for guiding future discovery.IMPORTANCEPolycyclic tetramate macrolactam (PTM) pathways are frequently found within the genomes of biotechnologically important bacteria, including Streptomyces and Lysobacter spp. Their molecular products are typically bioactive, having substantial agricultural and therapeutic interest. Leveraging bacterial genomics for the discovery of new related molecules is thus desirable, but drawing accurate structural predictions from bioinformatics alone remains challenging. This difficulty stems from a combination of previously underappreciated biosynthetic complexity and remaining knowledge gaps, compounded by a stream of yet-uncharacterized PTM biosynthetic loci gleaned from recently sequenced bacterial genomes. We engaged in the following study to create a useful framework for cataloging historic PTM clusters, identifying new cluster variations, and tracing evolutionary paths for these molecules. Our data suggest new PTM chemistry remains discoverable in nature. However, our metabolomic and mutational analyses emphasize the practical limitations of genomics-based discovery by exposing hidden complexity.
Collapse
Affiliation(s)
| | - Anna Day
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Maya Tsingos
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Edward Ding
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Elizabeth Zeng
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Spencer D. Stumpf
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Yunci Qi
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Adam Robinson
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jennifer Greif
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | | |
Collapse
|
4
|
Jiang P, Jin H, Zhang G, Zhang W, Liu W, Zhu Y, Zhang C, Zhang L. A Mechanistic Understanding of the Distinct Regio- and Chemoselectivity of Multifunctional P450s by Structural Comparison of IkaD and CftA Complexed with Common Substrates. Angew Chem Int Ed Engl 2023; 62:e202310728. [PMID: 37917570 DOI: 10.1002/anie.202310728] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 11/04/2023]
Abstract
Regio- and chemoselective C-H activation at multi-positions of a single molecule is fascinating but chemically challenging. The homologous cytochrome P450 enzymes IkaD and CftA catalyze multiple C-H oxidations on the same polycyclic tetramate macrolactam (PoTeM) ikarugamycin, with distinct regio- and chemoselectivity. Herein we provide mechanistic understanding of their functional differences by solving crystal structures of IkaD and CftA in complex with ikarugamycin and unnatural substrates. Distinct conformations of the F/G region in IkaD and CftA are found to differentiate the orientation of PoTeM substrates, by causing different binding patterns with polar moieties to determine site selection, oxidation order, and chemoselectivity. Fine-tuning the polar subpocket altered the regioselectivity of IkaD, indicating that substrate re-orientation by mutating residues distal to the oxidation site could serve as an important method in future engineering of P450 enzymes.
Collapse
Affiliation(s)
- Peng Jiang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China
- University of Chinese Academy of Science, 19 Yuquan Road, Beijing, 100049, China
| | - Hongbo Jin
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China
| | - Guangtao Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China
| | - Wenjun Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China
- University of Chinese Academy of Science, 19 Yuquan Road, Beijing, 100049, China
- Sanya Institute of Oceanology Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya, 572000, China
| | - Wei Liu
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China
| | - Yiguang Zhu
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China
- University of Chinese Academy of Science, 19 Yuquan Road, Beijing, 100049, China
- Sanya Institute of Oceanology Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya, 572000, China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China
- University of Chinese Academy of Science, 19 Yuquan Road, Beijing, 100049, China
- Sanya Institute of Oceanology Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya, 572000, China
| | - Liping Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China
- University of Chinese Academy of Science, 19 Yuquan Road, Beijing, 100049, China
- Sanya Institute of Oceanology Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya, 572000, China
| |
Collapse
|
5
|
Zou H, Xia X, Xu Q, Wang H, Shen Y, Li Y. Discovery of Oxidized Polycyclic Tetramate Macrolactams Bearing One or Two Rings through Combinatorial Pathway Reassembly. Org Lett 2022; 24:6515-6519. [PMID: 36053065 DOI: 10.1021/acs.orglett.2c02396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The structural diversity of polycyclic tetramate macrolactams (PoTeMs) are mainly generated by the cyclases and cytochrome P450s (CYPs). The PoTeM cluster sah in Saccharopolyspora hirsuta harboring two CYP genes was combinatorially reassembled and heterologously expressed in Streptomyces. As a result, six new cytotoxic PoTeMs, sahamides A-F (1-6), were discovered, and 1-3 are the first examples of oxidized one-ring PoTeMs. Remarkably, SahE represents the first CYP performing oxidative modification on the ornithine moiety of PoTeMs.
Collapse
Affiliation(s)
- Haochen Zou
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xin Xia
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Qiushuang Xu
- State Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Haoxin Wang
- State Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yaoyao Li
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
6
|
Polyene Macrolactams from Marine and Terrestrial Sources: Structure, Production Strategies, Biosynthesis and Bioactivities. Mar Drugs 2022; 20:md20060360. [PMID: 35736163 PMCID: PMC9230918 DOI: 10.3390/md20060360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
Over the past few decades (covering 1972 to 2022), astounding progress has been made in the elucidation of structures, bioactivities and biosynthesis of polyene macrolactams (PMLs), but they have only been partially summarized. PMLs possess a wide range of biological activities, particularly distinctive fungal inhibitory abilities, which render them a promising drug candidate. Moreover, the unique biosynthetic pathways including β-amino acid initiation and pericyclic reactions were presented in PMLs, leading to more attention from inside and outside the natural products community. According to current summation, in this review, the chem- and bio-diversity of PMLs from marine and terrestrial sources are considerably rich. A systematic, critical and comprehensive overview is in great need. This review described the PMLs’ general structural features, production strategies, biosynthetic pathways and the mechanisms of bioactivities. The challenges and opportunities for the research of PMLs are also discussed.
Collapse
|
7
|
Li C, Hu Y, Wu X, Stumpf SD, Qi Y, D’Alessandro JM, Nepal KK, Sarotti AM, Cao S, Blodgett JAV. Discovery of unusual dimeric piperazyl cyclopeptides encoded by a Lentzea flaviverrucosa DSM 44664 biosynthetic supercluster. Proc Natl Acad Sci U S A 2022; 119:e2117941119. [PMID: 35439047 PMCID: PMC9169926 DOI: 10.1073/pnas.2117941119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/07/2022] [Indexed: 12/19/2022] Open
Abstract
Rare actinomycetes represent an underexploited source of new bioactive compounds. Here, we report the use of a targeted metabologenomic approach to identify piperazyl compounds in the rare actinomycete Lentzea flaviverrucosa DSM 44664. These efforts to identify molecules that incorporate piperazate building blocks resulted in the discovery and structural elucidation of two dimeric biaryl-cyclohexapeptides, petrichorins A and B. Petrichorin B is a symmetric homodimer similar to the known compound chloptosin, but petrichorin A is unique among known piperazyl cyclopeptides because it is an asymmetric heterodimer. Due to the structural complexity of petrichorin A, solving its structure required a combination of several standard chemical methods plus in silico modeling, strain mutagenesis, and solving the structure of its biosynthetic intermediate petrichorin C for confident assignment. Furthermore, we found that the piperazyl cyclopeptides comprising each half of the petrichorin A heterodimer are made via two distinct nonribosomal peptide synthetase (NRPS) assembly lines, and the responsible NRPS enzymes are encoded within a contiguous biosynthetic supercluster on the L. flaviverrucosa chromosome. Requiring promiscuous cytochrome p450 crosslinking events for asymmetric and symmetric biaryl production, petrichorins A and B exhibited potent in vitro activity against A2780 human ovarian cancer, HT1080 fibrosarcoma, PC3 human prostate cancer, and Jurkat human T lymphocyte cell lines with IC50 values at low nM levels. Cyclic piperazyl peptides and their crosslinked derivatives are interesting drug leads, and our findings highlight the potential for heterodimeric bicyclic peptides such as petrichorin A for inclusion in future pharmaceutical design and discovery programs.
Collapse
Affiliation(s)
- Chunshun Li
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI 96720
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813
| | - Yifei Hu
- Department of Biology, Washington University in St Louis, St Louis MO 63122
| | - Xiaohua Wu
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI 96720
| | - Spencer D. Stumpf
- Department of Biology, Washington University in St Louis, St Louis MO 63122
| | - Yunci Qi
- Department of Biology, Washington University in St Louis, St Louis MO 63122
| | | | - Keshav K. Nepal
- Department of Biology, Washington University in St Louis, St Louis MO 63122
| | - Ariel M. Sarotti
- Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Shugeng Cao
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI 96720
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813
| | | |
Collapse
|
8
|
Li K, Chen S, Pang X, Cai J, Zhang X, Liu Y, Zhu Y, Zhou X. Natural products from mangrove sediments-derived microbes: Structural diversity, bioactivities, biosynthesis, and total synthesis. Eur J Med Chem 2022; 230:114117. [PMID: 35063731 DOI: 10.1016/j.ejmech.2022.114117] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/28/2021] [Accepted: 01/09/2022] [Indexed: 12/25/2022]
Abstract
The mangrove forests are a complex ecosystem, and the microbial communities in mangrove sediments play a critical role in the biogeochemical cycles of mangrove ecosystems. Mangrove sediments-derived microbes (MSM), as a rich reservoir of natural product diversity, could be utilized in the exploration of new antibiotics or drugs. To understand the structural diversity and bioactivities of the metabolites of MSM, this review for the first time provides a comprehensive overview of 519 natural products isolated from MSM with their bioactivities, up to 2021. Most of the structural types of these compounds are alkaloids, lactones, xanthones, quinones, terpenoids, and steroids. Among them, 210 compounds are obtained from bacteria, most of which are from Streptomyces, while 309 compounds are from fungus, especially genus Aspergillus and Penicillium. The pharmacological mechanisms of some representative lead compounds are well studied, revealing that they have important medicinal potentials, such as piericidins with anti-renal cell cancer effects, azalomycins with anti-MRSA activities, and ophiobolins as antineoplastic agents. The biosynthetic pathways of representative natural products from MSM have also been summarized, especially ikarugamycin, piericidins, divergolides, and azalomycins. In addition, the total synthetic strategies of representative secondary metabolites from MSM are also reviewed, such as piericidin A and borrelidin. This review provides an important reference for the research status of natural products isolated from MSM and the lead compounds worthy of further development, and reveals that MSM have important medicinal values and are worthy of further development.
Collapse
Affiliation(s)
- Kunlong Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Department of Emergency Medicine, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Siqiang Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Xiaoyan Pang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Jian Cai
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xinya Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Yiguang Zhu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China.
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
9
|
Yang J, Qi Y, Blodgett JAV, Wencewicz TA. Multifunctional P450 Monooxygenase CftA Diversifies the Clifednamide Pool through Tandem C-H Bond Activations. JOURNAL OF NATURAL PRODUCTS 2022; 85:47-55. [PMID: 35086337 DOI: 10.1021/acs.jnatprod.1c00606] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polycyclic tetramate macrolactams (PTMs) are a class of structurally complex hybrid polyketide-nonribosomal peptide (PK-NRP) natural products produced by diverse bacteria. Several PTMs display pharmaceutically interesting bioactivities, and the early stages of PTM biosynthesis involving polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) enzymology are well studied. However, the timing and mechanisms of post PKS-NRPS oxidations by P450 monooxygenases encoded in PTM biosynthetic gene clusters (BGCs) remain poorly characterized. Here we demonstrate that CftA, encoded in clifednamide-type PTM BGCs, is a multifunctional P450 monooxygenase capable of converting the C29-C30 ethyl side chain of ikarugamycin to either a C29-C30 methyl ketone or a C29-C30 hydroxymethyl ketone through C-H bond activation, resulting in the formation of clifednamide A or clifednamide C, respectively. We also report the complete structure of clifednamide C solved via multidimensional NMR (COSY, HSQC, HMBC, NOESY, and TOCSY) using material purified from an engineered Streptomyces strain optimized for production. Finally, the in vitro reconstitution of recombinant CftA catalytic activity revealed the oxidation cascade for sequential conversion of ikarugamycin to clifednamide A and clifednamide C. Our findings confirm prior genetics-based predictions on the origins of clifednamide complexity via P450s encoded in PTM BGCs and place CftA into a growing group of multifunctional P450s that tailor PTM natural products through late-stage regioselective C-H bond activation.
Collapse
Affiliation(s)
- Jinping Yang
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Yunci Qi
- Department of Biology, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Joshua A V Blodgett
- Department of Biology, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Timothy A Wencewicz
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| |
Collapse
|
10
|
Stöckl Y, Fellmeth T, Bauer F, Wank B, Frey W, Claasen B, Zens A, Köhn A, Laschat S. Chasing polycyclic natural products: 5/6/5‐ or 5/6/6‐carbotricyclic scaffold construction via stereodivergent Diels‐Alder reaction of chiral hydrindanes and their boron complexes. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yannick Stöckl
- Universität Stuttgart: Universitat Stuttgart Institut für Organische Chemie GERMANY
| | - Thomas Fellmeth
- University of Stuttgart: Universitat Stuttgart Institut für Theoretische Chemie GERMANY
| | - Florian Bauer
- University of Stuttgart: Universitat Stuttgart Institut für Theoretische Chemie GERMANY
| | - Bianca Wank
- Universität Stuttgart: Universitat Stuttgart Institut für Organische Chemie GERMANY
| | - Wolfgang Frey
- Universität Stuttgart: Universitat Stuttgart Institut für Organische Chemie GERMANY
| | - Birgit Claasen
- Universität Stuttgart: Universitat Stuttgart Institut für Organische Chemie GERMANY
| | - Anna Zens
- Universität Stuttgart: Universitat Stuttgart Institut für Organische Chemie GERMANY
| | - Andreas Köhn
- Universität Stuttgart: Universitat Stuttgart Institut für Theoretische Chemie GERMANY
| | - Sabine Laschat
- Universität Stuttgart Institut für Organische Chemie Pfaffenwaldring 55 70569 Stuttgart GERMANY
| |
Collapse
|
11
|
Yan Y, Wang H, Li Y. Discovery of a New Polycyclic Tetramate Macrolactam 3-Hydroxycombamide I. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202110001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Yan Y, Wang H, Song Y, Zhu D, Shen Y, Li Y. Combinatorial Biosynthesis of Oxidized Combamides Using Cytochrome P450 Enzymes from Different Polycyclic Tetramate Macrolactam Pathways. ACS Synth Biol 2021; 10:2434-2439. [PMID: 34543003 DOI: 10.1021/acssynbio.1c00178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polycyclic tetramate macrolactams (PoTeMs) are a family of natural products containing a tetramic acid moiety and a polycyclic system. Due to the valuable biological activities of different PoTeMs and the genetic simplicity of their biosynthetic genes, it is highly desirable to manipulate the biosynthesis of PoTeMs by swapping modification genes between different pathways. Herein, by combining the cytochrome P450 (CYP) enzymes from different PoTeM pathways with the combamides' biosynthetic genes, the new combamides G (3), I (5), and J (6) along with the known combamides B (1), D (2), and H (4) were identified from the recombinant strains. Combamides G (3), H (4), and J (6) displayed cytotoxic activity against human cancer cell lines. Furthermore, our results demonstrated for the first time the substrate specificity of the PoTeM-related CYPs in vivo, which will facilitate the engineered biosynthesis of other PoTeMs in the future.
Collapse
Affiliation(s)
- Yaqian Yan
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Haoxin Wang
- State Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yuliang Song
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Deyu Zhu
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yaoyao Li
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
13
|
A comparative metabologenomic approach reveals mechanistic insights into Streptomyces antibiotic crypticity. Proc Natl Acad Sci U S A 2021; 118:2103515118. [PMID: 34326261 PMCID: PMC8346890 DOI: 10.1073/pnas.2103515118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Streptomyces genomes harbor numerous, biosynthetic gene clusters (BGCs) encoding for drug-like compounds. While some of these BGCs readily yield expected products, many do not. Biosynthetic crypticity represents a significant hurdle to drug discovery, and the biological mechanisms that underpin it remain poorly understood. Polycyclic tetramate macrolactam (PTM) antibiotic production is widespread within the Streptomyces genus, and examples of active and cryptic PTM BGCs are known. To reveal further insights into the causes of biosynthetic crypticity, we employed a PTM-targeted comparative metabologenomics approach to analyze a panel of S. griseus clade strains that included both poor and robust PTM producers. By comparing the genomes and PTM production profiles of these strains, we systematically mapped the PTM promoter architecture within the group, revealed that these promoters are directly activated via the global regulator AdpA, and discovered that small promoter insertion-deletion lesions (indels) differentiate weaker PTM producers from stronger ones. We also revealed an unexpected link between robust PTM expression and griseorhodin pigment coproduction, with weaker S. griseus-clade PTM producers being unable to produce the latter compound. This study highlights promoter indels and biosynthetic interactions as important, genetically encoded factors that impact BGC outputs, providing mechanistic insights that will undoubtedly extend to other Streptomyces BGCs. We highlight comparative metabologenomics as a powerful approach to expose genomic features that differentiate strong, antibiotic producers from weaker ones. This should prove useful for rational discovery efforts and is orthogonal to current engineering and molecular signaling approaches now standard in the field.
Collapse
|
14
|
Sinast M, Claasen B, Stöckl Y, Greulich A, Zens A, Baro A, Laschat S. Synthesis of Highly Functionalized Hydrindanes via Sequential Organocatalytic Michael/Mukaiyama Aldol Addition and Telescoped Hydrozirconation/Cross-Coupling as Key Steps: En Route to the AB System of Clifednamides. J Org Chem 2021; 86:7537-7551. [PMID: 34014095 DOI: 10.1021/acs.joc.1c00580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The AB ring systems of the clifednamide family, polycyclic tetramate macrolactames (PoTeMs), were prepared by a new, convergent approach employing an intramolecular Diels-Alder (IMDA) reaction. Key steps comprise an organocatalytic Michael addition (>90% enantiomeric excess (ee)), a Mukaiyama aldol reaction for the convergent installation of a diene moiety, and a telescoped hydrozirconation/cross-coupling grafting an enone. The following IMDA furnished a highly functionalized hydrindane (diastereomeric ratio (dr) = 91:1) with the same configuration as the clifednamide scaffold. Advantages of this route are only one required protecting group, 13% overall yield over 9 steps (reduced from previously 17 steps/1.3% overall), and the potential access to the key intermediates in the clifednamide biosynthesis.
Collapse
Affiliation(s)
- Moritz Sinast
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Birgit Claasen
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Yannick Stöckl
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Andreas Greulich
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Anna Zens
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Angelika Baro
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Sabine Laschat
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
15
|
An Antifungal Polycyclic Tetramate Macrolactam, Heat-Stable Antifungal Factor (HSAF), Is a Novel Oxidative Stress Modulator in Lysobacter enzymogenes. Appl Environ Microbiol 2021; 87:AEM.03105-20. [PMID: 33712422 DOI: 10.1128/aem.03105-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/02/2021] [Indexed: 01/19/2023] Open
Abstract
Polycyclic tetramate macrolactams (PoTeMs) are a fast-growing family of antibiotic natural products found in phylogenetically diverse microorganisms. Surprisingly, none of the PoTeMs have been investigated for potential physiological functions in their producers. Here, we used heat-stable antifungal factor (HSAF), an antifungal PoTeM from Lysobacter enzymogenes, as a model to show that PoTeMs form complexes with iron ions, with an association constant (Ka ) of 2.71 × 106 M-1 The in vivo and in vitro data showed formation of 2:1 and 3:1 complexes between HSAF and iron ions, which were confirmed by molecular mechanical and quantum mechanical calculations. HSAF protected DNA from degradation in high concentrations of iron and H2O2 or under UV radiation. HSAF mutants of L. enzymogenes barely survived under oxidative stress and exhibited markedly increased production of reactive oxygen species (ROS). Exogenous addition of HSAF into the mutants significantly prevented ROS production and restored normal growth in the mutants under the oxidative stress. The results reveal that the function of HSAF is to protect the producer microorganism from oxidative damage rather than as an iron-acquisition siderophore. The characteristic structure of PoTeMs, a 2,4-pyrrolidinedione-embedded macrolactam, may represent a new iron-chelating scaffold of microbial metabolites. The study demonstrated a previously unrecognized strategy for microorganisms to modulate oxidative damage to the cells.IMPORTANCE PoTeMs are a family of structurally distinct metabolites that have been found in a large number of bacteria. Although PoTeMs exhibit diverse therapeutic properties, the physiological function of PoTeMs in the producer microorganisms had not been investigated. HSAF from Lysobacter enzymogenes is an antifungal PoTeM that has been subjected to extensive studies for mechanisms of biosynthesis, regulation, and antifungal activity. Using HSAF as a model system, we here showed that the characteristic structure of PoTeMs, a 2,4-pyrrolidinedione-embedded macrolactam, may represent a new iron-chelating scaffold of microbial metabolites. In L. enzymogenes, HSAF functions as a small-molecule modulator for oxidative damage caused by iron, H2O2, and UV light. Together, the study demonstrated a previously unrecognized strategy for microorganisms to modulate oxidative damage to the cells. HSAF represents the first member of the fast-growing PoTeM family of microbial metabolites whose potential biological function has been studied.
Collapse
|
16
|
Specialized Metabolites from Ribosome Engineered Strains of Streptomyces clavuligerus. Metabolites 2021; 11:metabo11040239. [PMID: 33924621 PMCID: PMC8069389 DOI: 10.3390/metabo11040239] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/27/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
Bacterial specialized metabolites are of immense importance because of their medicinal, industrial, and agricultural applications. Streptomyces clavuligerus is a known producer of such compounds; however, much of its metabolic potential remains unknown, as many associated biosynthetic gene clusters are silent or expressed at low levels. The overexpression of ribosome recycling factor (frr) and ribosome engineering (induced rpsL mutations) in other Streptomyces spp. has been reported to increase the production of known specialized metabolites. Therefore, we used an overexpression strategy in combination with untargeted metabolomics, molecular networking, and in silico analysis to annotate 28 metabolites in the current study, which have not been reported previously in S. clavuligerus. Many of the newly described metabolites are commonly found in plants, further alluding to the ability of S. clavuligerus to produce such compounds under specific conditions. In addition, the manipulation of frr and rpsL led to different metabolite production profiles in most cases. Known and putative gene clusters associated with the production of the observed compounds are also discussed. This work suggests that the combination of traditional strain engineering and recently developed metabolomics technologies together can provide rapid and cost-effective strategies to further speed up the discovery of novel natural products.
Collapse
|
17
|
Armin R, Zühlke S, Mahnkopp-Dirks F, Winkelmann T, Kusari S. Evaluation of Apple Root-Associated Endophytic Streptomyces pulveraceus Strain ES16 by an OSMAC-Assisted Metabolomics Approach. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.643225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The One Strain Many Compounds approach (OSMAC) is a powerful and comprehensive method that enables the chemo-diversity evaluation of microorganisms. This is achieved by variations of physicochemical cultivation parameters and by providing biotic and abiotic triggers to mimic microorganisms' natural environment in the lab. This approach can reactivate the silent biosynthetic routes of specific metabolites typically not biosynthesized under standard laboratory conditions. In the present study, we combined the OSMAC approach with static headspace solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS), high-performance liquid chromatography-high-resolution tandem mass spectrometry (HPLC-HRMSn), and matrix-assisted laser desorption/ionization high-resolution mass spectrometry imaging (MALDI-HRMSI) to evaluate the chemoecological significance of an apple root-associated endophytic Streptomyces pulveraceus strain ES16. We employed the OSMAC approach by cultivating the endophyte in six different media conditions and performed temporal studies over 14 days. Analysis of the volatilome revealed that only under stressful conditions associated with sporulation, endophytic S. pulveraceus ES16 produces geosmin, a volatile semiochemical known to attract the soil arthropods Collembola (springtails) specifically. Subsequently, targeted metabolic profiling revealed polycyclic tetramate macrolactams (PTMs) production by the endophyte under stress, which are bioactive against various pathogens. Additionally, the endophyte produced the iron-chelating siderophore, mirubactin, under the same conditions. The structures of the compounds were evaluated using HRMSn and by comparison with literature data. Finally, MALDI-HRMSI revealed the produced compounds' spatial-temporal distribution over 14 days. The compounds were profusely secreted into the medium after production. Our results indicate that endophytic S. pulveraceus ES16 can release the signal molecule geosmin, chemical defense compounds such as the PTMs, as well as the siderophore mirubactin into the host plant apoplast or the soil for ecologically meaningful purposes, which are discussed.
Collapse
|
18
|
Jiao YJ, Liu Y, Wang HX, Zhu DY, Shen YM, Li YY. Expression of the Clifednamide Biosynthetic Pathway in Streptomyces Generates 27,28- seco-Derivatives. JOURNAL OF NATURAL PRODUCTS 2020; 83:2803-2808. [PMID: 32915576 DOI: 10.1021/acs.jnatprod.0c00900] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polycyclic tetramate macrolactams (PoTeMs) are a group of hybrid PK-NRP natural products having a variable set of carbocyclic rings, a conserved assembly pathway, and diverse bioactivities. We report here the identification of seven new PoTeMs, clifednamides D-J (3-9), along with the known clifednamides A (1) and B (2) through rational pathway refactoring and heterologous expression. Remarkably, clifednamides D (3), G (6), and H (7) feature an unprecedented 27,28-seco skeleton. The cytotoxic activities of compounds 1-9 indicated that the hydroxy group of C-25, the methyl group of C-30, the inner five-membered ring, and the intact macrocycle are all critical for the activities. Meanwhile, the cytochrome P450 enzyme CftS023A and the hydroxylase CftS023E involved in oxidative tailoring of clifednamides were found to decorate the fused 5-6 bicyclic intermediates. Accordingly, the biosynthetic pathway for clifednamides was proposed.
Collapse
Affiliation(s)
- Yu-Jie Jiao
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yan Liu
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Hao-Xin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - De-Yu Zhu
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yue-Mao Shen
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yao-Yao Li
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
19
|
Artificial control of the multistep oxidation reactions catalyzed by the cytochrome P450 enzyme RosC. Appl Microbiol Biotechnol 2020; 104:3403-3415. [PMID: 32103316 DOI: 10.1007/s00253-020-10481-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 12/16/2019] [Accepted: 02/18/2020] [Indexed: 01/26/2023]
Abstract
The cytochrome P450 monooxygenase RosC catalyzes the three-step oxidation reactions, which leads to the formation of a hydroxy, formyl, and carboxy group at C-20 during rosamicin biosynthesis in Micromonospora rosaria IFO13697. To determine if amino acid substitutions in RosC could allow for the control of the multistep oxidation reactions, we screened RosC random mutants. The RosC mutant RM30, with five amino acid substitutions (P107S, L176Q, S254N, V277A, and I319N), catalyzed only the first step of the oxidation reaction. Whole-cell assays using Escherichia coli cells expressing RosC mutants with single and double amino acid substitutions derived from RM30 indicated that P107S/L176Q, P107S/V277A, P107S/I319N, L176Q/V277A, L176Q/I319N, and S254N/V277A significantly reduced the catalytic activity of the second reaction, which is alcohol oxidation. Of the previously mentioned mutants, double mutants containing L176Q, which was presumed to occur in the FG loop region, lost the total catalytic activity of the third reaction (aldehyde oxidation). Additionally, an engineered M. rosaria strain with rosC disruption, which introduced the gene encoding the RosC mutants P107S/L176Q and P107S/V277A preferentially produced 20-dihydrorosamicin, which is formed after the first oxidation reaction of RosC.
Collapse
|
20
|
Three transcriptional regulators positively regulate the biosynthesis of polycyclic tetramate macrolactams in Streptomyces xiamenensis 318. Appl Microbiol Biotechnol 2019; 104:701-711. [DOI: 10.1007/s00253-019-10269-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/13/2019] [Accepted: 11/22/2019] [Indexed: 12/24/2022]
|
21
|
Wencewicz TA. Crossroads of Antibiotic Resistance and Biosynthesis. J Mol Biol 2019; 431:3370-3399. [PMID: 31288031 DOI: 10.1016/j.jmb.2019.06.033] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/20/2019] [Accepted: 06/27/2019] [Indexed: 12/14/2022]
Abstract
The biosynthesis of antibiotics and self-protection mechanisms employed by antibiotic producers are an integral part of the growing antibiotic resistance threat. The origins of clinically relevant antibiotic resistance genes found in human pathogens have been traced to ancient microbial producers of antibiotics in natural environments. Widespread and frequent antibiotic use amplifies environmental pools of antibiotic resistance genes and increases the likelihood for the selection of a resistance event in human pathogens. This perspective will provide an overview of the origins of antibiotic resistance to highlight the crossroads of antibiotic biosynthesis and producer self-protection that result in clinically relevant resistance mechanisms. Some case studies of synergistic antibiotic combinations, adjuvants, and hybrid antibiotics will also be presented to show how native antibiotic producers manage the emergence of antibiotic resistance.
Collapse
Affiliation(s)
- Timothy A Wencewicz
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA.
| |
Collapse
|
22
|
Li X, Wang H, Li Y, Du L. Construction of a hybrid gene cluster to reveal coupled ring formation-hydroxylation in the biosynthesis of HSAF and analogues from Lysobacter enzymogenes. MEDCHEMCOMM 2019; 10:907-912. [PMID: 31303988 DOI: 10.1039/c9md00154a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/19/2019] [Indexed: 12/21/2022]
Abstract
HSAF and analogues are polycyclic tetramate macrolactams (PoTeMs) isolated from Lysobacter enzymogenes. Due to their antifungal activity, distinct chemical structure and new mode of action, PoTeMs have been the subject of several studies for their biosynthetic mechanism. However, polycycle formation is still not well understood. HSAF and several analogues (alteramides) carry a C20-hydroxyl, which is absent in most known PoTeMs such as combamides and pactamides. Previous studies indicated that two genes encoding NAD(P)H-dependent flavin enzymes (OX1/OX2) are responsible for the second five-membered ring formation in HSAF and alteramides. Intriguingly, the products of OX1/OX2 always carry the C20-OH. To test the hypothesis that the formation of the second five-membered ring is coupled with the C20-hydroxylation, we constructed a hybrid PoTeM gene cluster through removing OX1/OX2 in the HSAF cluster and functional complementation by CbmB, which also catalyzes the second five-membered ring formation in combamides but lacking the C20-OH. Two heterologous hosts carrying the hybrid cluster generated the same three PoTeMs, including lysobacterene B (3, the one-ring precursor of HSAF) and combamide D (4, a two-ring product lacking the C20-OH). The third product was not related to either of the clusters and was identified to be pactamide A (5) using mass spectrometry, 1D- and 2D-NMR, and ECD spectroscopy. The results demonstrate the feasibility of producing new PoTeM compounds through combinatorial biosynthesis. More importantly, this study provides the first experimental evidence to support that the second ring formation is coupled with the C20-hydroxylation in the biosynthesis of HSAF and analogues.
Collapse
Affiliation(s)
- Xue Li
- State Key Laboratory of Microbial Technology , Shandong University , Qingdao , Shandong 266237 , P. R. China
| | - Haoxin Wang
- State Key Laboratory of Microbial Technology , Shandong University , Qingdao , Shandong 266237 , P. R. China
| | - Yaoyao Li
- Key Laboratory of Chemical Biology (Ministry of Education) , School of Pharmaceutical Sciences , Shandong University , Jinan , Shandong 250012 , P. R. China .
| | - Liangcheng Du
- Department of Chemistry , University of Nebraska-Lincoln , Lincoln , NE 68588 , USA .
| |
Collapse
|
23
|
Hu Y, Qi Y, Stumpf SD, D’Alessandro JM, Blodgett JAV. Bioinformatic and Functional Evaluation of Actinobacterial Piperazate Metabolism. ACS Chem Biol 2019; 14:696-703. [PMID: 30921511 DOI: 10.1021/acschembio.8b01086] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Piperazate (Piz) is a nonproteinogenic amino acid noted for its unusual N-N bond motif. Piz is a proline mimic that imparts conformational rigidity to peptides. Consequently, piperazyl molecules are often bioactive and desirable for therapeutic exploration. The in vitro characterization of Kutzneria enzymes KtzI and KtzT recently led to a biosynthetic pathway for Piz. However, Piz anabolism in vivo has remained completely uncharacterized. Herein, we describe the systematic interrogation of actinobacterial Piz metabolism using a combination of bioinformatics, genetics, and select biochemistry. Following studies in Streptomyces flaveolus, Streptomyces lividans, and several environmental Streptomyces isolates, our data suggest that KtzI-type enzymes are conditionally dispensable for Piz production. We also demonstrate the feasibility of Piz monomer production using engineered actinobacteria for the first time. Finally, we show that some actinobacteria employ fused KtzI-KtzT chimeric enzymes to produce Piz. Our findings have implications for future piperazyl drug discovery, pathway engineering, and fine chemical bioproduction.
Collapse
Affiliation(s)
- Yifei Hu
- Department of Biology, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130, United States
| | - Yunci Qi
- Department of Biology, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130, United States
| | - Spencer D. Stumpf
- Department of Biology, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130, United States
| | - John M. D’Alessandro
- Department of Biology, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130, United States
| | - Joshua A. V. Blodgett
- Department of Biology, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130, United States
| |
Collapse
|
24
|
Dhaneesha M, Hasin O, Sivakumar KC, Ravinesh R, Naman CB, Carmeli S, Sajeevan TP. DNA Binding and Molecular Dynamic Studies of Polycyclic Tetramate Macrolactams (PTM) with Potential Anticancer Activity Isolated from a Sponge-Associated Streptomyces zhaozhouensis subsp. mycale subsp. nov. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:124-137. [PMID: 30542952 DOI: 10.1007/s10126-018-9866-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 11/22/2018] [Indexed: 06/09/2023]
Abstract
A sponge-associated actinomycete (strain MCCB267) was isolated from a marine sponge Mycale sp. collected in the Indian Ocean off the Southeast coast of India. Phylogenetic studies of this strain using 16S rRNA gene sequencing showed high sequence similarity to Streptomyces zhaozhouensis. However, strain MCCB267 showed distinct physiological and biochemical characteristic features and was thus designated as S. zhaozhouensis subsp. mycale. subsp. nov. A cytotoxicity-guided fractionation of the crude ethyl acetate extract of strain MCCB267 culture medium yielded four pure compounds belonging to the polycyclic tetramate macrolactam (PTM) family of natural products: ikarugamycin (IK) (1), clifednamide A (CF) (2), 30-oxo-28-N-methylikarugamycin (OI) (3), and 28-N-methylikarugamycin (MI) (4). The four compounds exhibited promising cytotoxic activity against NCI-H460 lung carcinoma cells in vitro, by inducing cell death via apoptosis. Flow cytometric analysis revealed that 1, 3, and 4 induced cell cycle arrest during G1 phase in the NCI-H460 cell line, whereas 2 induced cell arrest in the S phase. A concentration-dependent accumulation of cells in the sub-G1 phase was also detected upon treatment of the cancer cell line with compounds 1-4. The in vitro cytotoxicity studies were supported by molecular docking and molecular dynamic simulation analyses. An in silico study revealed that the PTMs can bind to the minor groove of DNA and subsequently induce the apoptotic stimuli leading to cell death. The characterization of the isolated actinomycete, the study of the mode of action of the four PTMs, 1-4, and the molecular docking and molecular dynamic simulations analyses are herein described.
Collapse
Affiliation(s)
- M Dhaneesha
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682 016, India
| | - O Hasin
- Raymond and Beverly Sackler School of Chemistry and Faculty of Exact Sciences, Tel-Aviv University, Ramat Aviv, 69978, Tel-Aviv, Israel
| | - K C Sivakumar
- Bioinformatics Facility, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - R Ravinesh
- Department of Aquatic Biology and Fisheries, University of Kerala, Thiruvananthapuram, Kerala, 695581, India
| | - C Benjamin Naman
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, 315211, China
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
| | - S Carmeli
- Raymond and Beverly Sackler School of Chemistry and Faculty of Exact Sciences, Tel-Aviv University, Ramat Aviv, 69978, Tel-Aviv, Israel
| | - T P Sajeevan
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682 016, India.
| |
Collapse
|
25
|
Huo L, Hug JJ, Fu C, Bian X, Zhang Y, Müller R. Heterologous expression of bacterial natural product biosynthetic pathways. Nat Prod Rep 2019. [DOI: 10.1039/c8np00091c [epub ahead of print]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The review highlights the 2013–2018 literature on the heterologous expression of bacterial natural product biosynthetic pathways and emphasises new techniques, heterologous hosts, and novel chemistry.
Collapse
Affiliation(s)
- Liujie Huo
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Joachim J. Hug
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| | - Chengzhang Fu
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| | - Xiaoying Bian
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Youming Zhang
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Rolf Müller
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| |
Collapse
|
26
|
Huo L, Hug JJ, Fu C, Bian X, Zhang Y, Müller R. Heterologous expression of bacterial natural product biosynthetic pathways. Nat Prod Rep 2019; 36:1412-1436. [DOI: 10.1039/c8np00091c] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The review highlights the 2013–2018 literature on the heterologous expression of bacterial natural product biosynthetic pathways and emphasises new techniques, heterologous hosts, and novel chemistry.
Collapse
Affiliation(s)
- Liujie Huo
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Joachim J. Hug
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| | - Chengzhang Fu
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| | - Xiaoying Bian
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Youming Zhang
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Rolf Müller
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| |
Collapse
|
27
|
Zhang W, Zhang G, Zhang L, Liu W, Jiang X, Jin H, Liu Z, Zhang H, Zhou A, Zhang C. New polycyclic tetramate macrolactams from marine-derived Streptomyces sp. SCSIO 40060. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
28
|
Liu Y, Wang H, Song R, Chen J, Li T, Li Y, Du L, Shen Y. Targeted Discovery and Combinatorial Biosynthesis of Polycyclic Tetramate Macrolactam Combamides A–E. Org Lett 2018; 20:3504-3508. [DOI: 10.1021/acs.orglett.8b01285] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Yan Liu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Haoxin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Rentai Song
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Jining Chen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Tianhong Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Yaoyao Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Liangcheng Du
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, P. R. China
- Department of Chemistry, University of Nebraska Lincoln, Lincoln, Nebraska 68588, United States
| | - Yuemao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, P. R. China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, P. R. China
| |
Collapse
|
29
|
Li Y, Wang H, Liu Y, Jiao Y, Li S, Shen Y, Du L. Biosynthesis of the Polycyclic System in the Antifungal HSAF and Analogues from
Lysobacter enzymogenes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yaoyao Li
- State Key Laboratory of Microbial Technology, Key Laboratory of Chemical Biology School of Pharmaceutical Sciences Shandong University Jinan 250100 China
| | - Haoxin Wang
- State Key Laboratory of Microbial Technology, Key Laboratory of Chemical Biology School of Pharmaceutical Sciences Shandong University Jinan 250100 China
| | - Yan Liu
- State Key Laboratory of Microbial Technology, Key Laboratory of Chemical Biology School of Pharmaceutical Sciences Shandong University Jinan 250100 China
| | - Yujie Jiao
- State Key Laboratory of Microbial Technology, Key Laboratory of Chemical Biology School of Pharmaceutical Sciences Shandong University Jinan 250100 China
| | - Shanren Li
- Department of Chemistry University of Nebraska-Lincoln Lincoln NE 68588 USA
| | - Yuemao Shen
- State Key Laboratory of Microbial Technology, Key Laboratory of Chemical Biology School of Pharmaceutical Sciences Shandong University Jinan 250100 China
| | - Liangcheng Du
- Department of Chemistry University of Nebraska-Lincoln Lincoln NE 68588 USA
| |
Collapse
|
30
|
Li Y, Wang H, Liu Y, Jiao Y, Li S, Shen Y, Du L. Biosynthesis of the Polycyclic System in the Antifungal HSAF and Analogues from Lysobacter enzymogenes. Angew Chem Int Ed Engl 2018; 57:6221-6225. [PMID: 29573092 DOI: 10.1002/anie.201802488] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Indexed: 01/05/2023]
Abstract
The biocontrol agent Lysobacter enzymogenes produces polycyclic tetramate macrolactams (PoTeMs), including the antifungal HSAF. To elucidate the biosynthesis of the cyclic systems, we identified eleven HSAF precursors/analogues with zero, one, two, or three rings through heterologous expression of the HSAF gene cluster. A series of combinatorial gene expression and deletion experiments showed that OX3 is the "gatekeeper" responsible for the formation of the first 5-membered ring from lysobacterene A, OX1 and OX2 are responsible for formation of the second ring but with different selectivity, and OX4 is responsible for formation of the 6-membered ring. In vitro experiments showed that OX4 is an NADPH-dependent enzyme that catalyzes the reductive cyclization of 3-dehydroxy alteramide C to form 3-dehydroxy HSAF. Thus, the multiplicity of OX genes is the basis for the structural diversity of the HSAF family, which is the only characterized PoTeM cluster that involves four redox enzymes in the formation of the cyclic system.
Collapse
Affiliation(s)
- Yaoyao Li
- State Key Laboratory of Microbial Technology, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan, 250100, China
| | - Haoxin Wang
- State Key Laboratory of Microbial Technology, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan, 250100, China
| | - Yan Liu
- State Key Laboratory of Microbial Technology, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan, 250100, China
| | - Yujie Jiao
- State Key Laboratory of Microbial Technology, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan, 250100, China
| | - Shanren Li
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Yuemao Shen
- State Key Laboratory of Microbial Technology, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan, 250100, China
| | - Liangcheng Du
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
31
|
Draft Genome Sequence of Streptomyces sp. Strain JV178, a Producer of Clifednamide-Type Polycyclic Tetramate Macrolactams. GENOME ANNOUNCEMENTS 2018; 6:6/1/e01401-17. [PMID: 29301882 PMCID: PMC5754491 DOI: 10.1128/genomea.01401-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Here, we report the draft genome sequence of Streptomyces sp. JV178, a strain originating from Connecticut (USA) garden soil. This strain produces the polycyclic tetramate macrolactam compounds clifednamides A and B. The draft genome contains 10.65 Mb, 9,045 predicted protein coding sequences, and several natural product biosynthetic loci.
Collapse
|
32
|
Pei ZF, Yang MJ, Li L, Jian XH, Yin Y, Li D, Pan HX, Lu Y, Jiang W, Tang GL. Directed production of aurantizolicin and new members based on a YM-216391 biosynthetic system. Org Biomol Chem 2018; 16:9373-9376. [DOI: 10.1039/c8ob02665c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aurantizolicin and new compound 3 with improved bioactivity were generated highly effectively by heterologous expression of an engineered YM-216391 biosynthetic gene cluster.
Collapse
|