1
|
Muench P, Fiumara M, Southern N, Coda D, Aschenbrenner S, Correia B, Gräff J, Niopek D, Mathony J. A modular toolbox for the optogenetic deactivation of transcription. Nucleic Acids Res 2024:gkae1237. [PMID: 39676667 DOI: 10.1093/nar/gkae1237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024] Open
Abstract
Light-controlled transcriptional activation is a commonly used optogenetic strategy that allows researchers to regulate gene expression with high spatiotemporal precision. The vast majority of existing tools are, however, limited to light-triggered induction of gene expression. Here, we inverted this mode of action and created optogenetic systems capable of efficiently terminating transcriptional activation in response to blue light. First, we designed highly compact regulators by photo-controlling the VP16 (pcVP16) transactivation peptide. Then, applying a two-hybrid strategy, we engineered LOOMINA (light off-operated modular inductor of transcriptional activation), a versatile transcriptional control platform for mammalian cells that is compatible with various effector proteins. Leveraging the flexibility of CRISPR systems, we combined LOOMINA with dCas9 to control transcription with blue light from endogenous promoters with exceptionally high dynamic ranges in multiple cell lines. Functionally and mechanistically, the versatile LOOMINA platform and the exceptionally compact pcVP16 transactivator represent valuable additions to the optogenetic repertoire for transcriptional regulation.
Collapse
Affiliation(s)
- Philipp Muench
- Department of Biology, Technical University of Darmstadt, Schnittspahnstraße 10, Darmstadt 64287, Germany
| | - Matteo Fiumara
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), SV 2513 (Bâtiment SV) - Station 19, Lausanne CH-1015, Switzerland
| | - Nicholas Southern
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Faculty of Engineering Sciences, Heidelberg University, Im Neuenheimer Feld 364, Heidelberg 69120, Germany
| | - Davide Coda
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), SV 2513 (Bâtiment SV) - Station 19, Lausanne CH-1015, Switzerland
| | - Sabine Aschenbrenner
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Faculty of Engineering Sciences, Heidelberg University, Im Neuenheimer Feld 364, Heidelberg 69120, Germany
| | - Bruno Correia
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, AI 3138 (Bâtiment AI) - Station 19, Lausanne CH-1015, Switzerland
- Swiss Institute of Bioinformatics (SIB), AI 3138 (Bâtiment AI) - Station 19, Lausanne CH-1015, Switzerland
| | - Johannes Gräff
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), SV 2513 (Bâtiment SV) - Station 19, Lausanne CH-1015, Switzerland
| | - Dominik Niopek
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Faculty of Engineering Sciences, Heidelberg University, Im Neuenheimer Feld 364, Heidelberg 69120, Germany
| | - Jan Mathony
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Faculty of Engineering Sciences, Heidelberg University, Im Neuenheimer Feld 364, Heidelberg 69120, Germany
| |
Collapse
|
2
|
Beyer HM, Kumar S, Nieke M, Diehl CMC, Tang K, Shumka S, Koh CS, Fleck C, Davies JA, Khammash M, Zurbriggen MD. Genetically-stable engineered optogenetic gene switches modulate spatial cell morphogenesis in two- and three-dimensional tissue cultures. Nat Commun 2024; 15:10470. [PMID: 39622829 PMCID: PMC11612184 DOI: 10.1038/s41467-024-54350-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 11/08/2024] [Indexed: 12/06/2024] Open
Abstract
Recent advances in tissue engineering have been remarkable, yet the precise control of cellular behavior in 2D and 3D cultures remains challenging. One approach to address this limitation is to genomically engineer optogenetic control of cellular processes into tissues using gene switches that can operate with only a few genomic copies. Here, we implement blue and red light-responsive gene switches to engineer genomically stable two- and three-dimensional mammalian tissue models. Notably, we achieve precise control of cell death and morphogen-directed patterning in 2D and 3D tissues by optogenetically regulating cell necroptosis and synthetic WNT3A signaling at high spatiotemporal resolution. This is accomplished using custom-built patterned LED systems, including digital mirrors and photomasks, as well as laser techniques. These advancements demonstrate the capability of precise spatiotemporal modulation in tissue engineering and open up new avenues for developing programmable 3D tissue and organ models, with significant implications for biomedical research and therapeutic applications.
Collapse
Affiliation(s)
- Hannes M Beyer
- Institute of Synthetic Biology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, Düsseldorf, Germany
| | - Sant Kumar
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Klingelbergstrasse 48, Basel, Switzerland
| | - Marius Nieke
- Institute of Synthetic Biology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, Düsseldorf, Germany
| | - Carroll M C Diehl
- Institute of Synthetic Biology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, Düsseldorf, Germany
| | - Kun Tang
- Institute of Synthetic Biology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, Düsseldorf, Germany
| | - Sara Shumka
- Institute of Synthetic Biology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, Düsseldorf, Germany
| | - Cha San Koh
- Institute of Synthetic Biology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, Düsseldorf, Germany
| | - Christian Fleck
- Freiburg Center for Data Analysis and Modeling (FDM), University of Freiburg, Ernst-Zermelo-Straße 1, Freiburg im Breisgau, Germany
| | - Jamie A Davies
- Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Mustafa Khammash
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Klingelbergstrasse 48, Basel, Switzerland.
| | - Matias D Zurbriggen
- Institute of Synthetic Biology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, Düsseldorf, Germany.
- CEPLAS - Cluster of Excellence on Plant Sciences, Düsseldorf, Universitätsstrasse 1, Düsseldorf, Germany.
| |
Collapse
|
3
|
Zheng Y, Chen F, Frank S, Quispe Haro JJ, Wegner SV. Three-Color Protein Photolithography with Green, Red, and Far-Red Light. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405687. [PMID: 39422040 DOI: 10.1002/smll.202405687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Indexed: 10/19/2024]
Abstract
Protein photolithography is an invaluable tool for generating protein microchips and regulating interactions between cells and materials. However, the absence of light-responsive molecules that allow for the copatterning of multiple functional proteins with biocompatible visible light poses a significant challenge. Here, a new approach for photopatterning three distinct proteins on a single surface by using green, red, and far-red light is reported. The cofactor of the green light-sensitive protein CarH is engineered such that it also becomes sensitive to red and far-red light. These new cofactors are shown to be compatible with two CarH-based optogenetic tools to regulate bacterial cell-cell adhesions and gene expression in mammalian cells with red and far-red light. Further, by incorporating different CarH variants with varying light sensitivities in layer-by-layer (LbL) multiprotein films, specific layers within the films, along with other protein layers on top are precisely removed by using different colors of light, all with high spatiotemporal accuracy. Notably, with these three distinct colors of visible light, it is possible to incorporate diverse proteins under mild conditions in LbL films based on the reliable interaction between Ni2+- nitrilotriacetic acid (NTA) groups and polyhistidine-tags (His-tags)on the proteins and their subsequent photopatterning. This approach has potential applications spanning biofabrication, material engineering, and biotechnology.
Collapse
Affiliation(s)
- Yanjun Zheng
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149, Münster, Germany
| | - Fei Chen
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149, Münster, Germany
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410083, China
| | - Saskia Frank
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149, Münster, Germany
| | - Juan José Quispe Haro
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149, Münster, Germany
| | - Seraphine V Wegner
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149, Münster, Germany
| |
Collapse
|
4
|
Beyer HM, Ramírez V. Integrating bioprinting and optogenetic technologies for precision plant tissue engineering. Curr Opin Biotechnol 2024; 89:103193. [PMID: 39208621 DOI: 10.1016/j.copbio.2024.103193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/11/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Recent advancements in plant bioprinting and optogenetic tools have unlocked new avenues to revolutionize plant tissue engineering. Bioprinting of plant cells has the potential to craft intricate 3D structures incorporating multiple cell types, replicating the complex microenvironments found in plants. Concurrently, optogenetic tools enable the control of biological events with spatial, temporal, and quantitative precision. Originally developed for human and microbial systems, these two cutting-edge methodologies are now being adapted for plant research. Although still in the early stages of development, we here review the latest progress in plant bioprinting and optogenetics and discuss compelling opportunities for plant biotechnology and research arising from the combination of the two technologies.
Collapse
Affiliation(s)
- Hannes M Beyer
- Institute of Synthetic Biology, Heinrich-Heine University Düsseldorf, Düsseldorf 40225, Germany.
| | - Vicente Ramírez
- Institute for Plant Cell Biology and Biotechnology, Heinrich-Heine University Düsseldorf, Düsseldorf 40225, Germany.
| |
Collapse
|
5
|
Mateus M, Hammill ML, Simmons DBD, Desaulniers JP. In Vivo Injection of Reversible Optically Controlled Short Interfering RNA into Japanese Medaka Embryos ( Oryzias latipes) to Regulate Gene Silencing. ACS Chem Biol 2024; 19:1904-1909. [PMID: 39162696 PMCID: PMC11421425 DOI: 10.1021/acschembio.4c00290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/26/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024]
Abstract
Photoswitchable ortho-functionalized tetrafluorinated azobenzene-modified siRNAs (F-azo-siRNAs) were synthesized using solid-phase phosphoramidite chemistry. The activity of an F-azo-siRNA targeting enhanced green fluorescence protein (eGFP) in transgenic (Tg) Japanese Medaka (Oryzias latipes) was reversibly photocontrolled with blue (470 nm) and green (530 nm) light, to activate and inactivate the siRNA, respectively. This study highlights the first reversible in vivo study with photoswitchable siRNA. Controlling siRNA function reversibly in vivo could open new opportunities for biotech research to better understand gene function and cellular mechanisms.
Collapse
Affiliation(s)
- Makenzie Mateus
- Faculty of Science, Ontario
Tech University, 2000
Simcoe Street North, Oshawa ON L1G 0C5, Canada
| | - Matthew L. Hammill
- Faculty of Science, Ontario
Tech University, 2000
Simcoe Street North, Oshawa ON L1G 0C5, Canada
| | - Denina B. D. Simmons
- Faculty of Science, Ontario
Tech University, 2000
Simcoe Street North, Oshawa ON L1G 0C5, Canada
| | | |
Collapse
|
6
|
Fok HKF, Dai X, Yi Q, Che CM, Jiang L, Duan L, Huang J, Yang Z, Sun F. Red-Shifting B 12-Dependent Photoreceptor Protein via Optical Coupling for Inducible Living Materials. Angew Chem Int Ed Engl 2024:e202411105. [PMID: 39239776 DOI: 10.1002/anie.202411105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 09/07/2024]
Abstract
Cobalamin (B12)-dependent photoreceptors are gaining traction in materials synthetic biology, especially for optically controlling cell-to-cell adhesion in living materials. However, these proteins are mostly responsive to green light, limiting their deep-tissue applications. Here, we present a general strategy for shifting photoresponse of B12-dependent photoreceptor CarHC from green to red/far-red light via optical coupling. Using thiol-maleimide click chemistry, we labeled cysteine-containing CarHC mutants with SulfoCyanine5 (Cy5), a red light-capturing fluorophore. The resulting photoreceptors not only retained the ability to tetramerize in the presence of adenosylcobalamin (AdoB12), but also gained sensitivity to red light; labeled tetramers disassembled on red light exposure. Using genetically encoded click chemistry, we assembled the red-shifted proteins into hydrogels that degraded rapidly in response to red light. Furthermore, Saccharomyces cerevisiae cells were genetically engineered to display CarHC variants, which, alongside in situ Cy5 labeling, led to living materials that could assemble and disassemble in response to AdoB12 and red light, respectively. These results illustrate the CarHC spectrally tuned by optical coupling as a versatile motif for dynamically controlling cell-to-cell interactions within engineered living materials. Given their prevalence and ecological diversity in nature, this spectral tuning method will expand the use of B12-dependent photoreceptors in optogenetics and living materials.
Collapse
Affiliation(s)
- Hong Kiu Francis Fok
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Xin Dai
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- Laboratory for Synthetic Chemistry and Chemical Biology, Health@InnoHK Hong Kong Science Park, New Territories, Hong Kong SAR, 999077, China
| | - Qikun Yi
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Chi Ming Che
- Laboratory for Synthetic Chemistry and Chemical Biology, Health@InnoHK Hong Kong Science Park, New Territories, Hong Kong SAR, 999077, China
| | - Lingxiang Jiang
- South China Advanced Institute for Soft Matter Science and Technology School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
| | - Liting Duan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, 999077, China
| | - Jinqing Huang
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Zhongguang Yang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Fei Sun
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen, 518036, China
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
- Research Institute of Tsinghua Pearl River Delta, Guangzhou, 510530, China
| |
Collapse
|
7
|
Xu M, Wang YY, Wu Y, Zhou X, Shan Z, Tao K, Qian K, Wang X, Li J, Wu Q, Deng XW, Ling JJ. Green light mediates atypical photomorphogenesis by dual modulation of Arabidopsis phytochromes B and A. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1915-1933. [PMID: 39023402 DOI: 10.1111/jipb.13742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024]
Abstract
Although green light (GL) is located in the middle of the visible light spectrum and regulates a series of plant developmental processes, the mechanism by which it regulates seedling development is largely unknown. In this study, we demonstrated that GL promotes atypical photomorphogenesis in Arabidopsis thaliana via the dual regulations of phytochrome B (phyB) and phyA. Although the Pr-to-Pfr conversion rates of phyB and phyA under GL were lower than those under red light (RL) in a fluence rate-dependent and time-dependent manner, long-term treatment with GL induced high Pfr/Pr ratios of phyB and phyA. Moreover, GL induced the formation of numerous small phyB photobodies in the nucleus, resulting in atypical photomorphogenesis, with smaller cotyledon opening angles and longer hypocotyls in seedlings compared to RL. The abundance of phyA significantly decreased after short- and long-term GL treatments. We determined that four major PHYTOCHROME-INTERACTING FACTORs (PIFs: PIF1, PIF3, PIF4, and PIF5) act downstream of phyB in GL-mediated cotyledon opening. In addition, GL plays opposite roles in regulating different PIFs. For example, under continuous GL, the protein levels of all PIFs decreased, whereas the transcript levels of PIF4 and PIF5 strongly increased compared with dark treatment. Taken together, our work provides a detailed molecular framework for understanding the role of the antagonistic regulations of phyB and phyA in GL-mediated atypical photomorphogenesis.
Collapse
Affiliation(s)
- Miqi Xu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yi-Yuan Wang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yujie Wu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Xiuhong Zhou
- Biotechnology Center, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Ziyan Shan
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Kunying Tao
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Kaiqiang Qian
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Xuncheng Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jian Li
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Qingqing Wu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences, and School of Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory of Wheat Improvement, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, China
| | - Jun-Jie Ling
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
8
|
Muslihatin W, Wibowo AT, Manuhara YSW. Effect of light and cytokinin on growth and curculin gene expression of Curculigo latifolia on in vitro culture. BRAZ J BIOL 2024; 84:e280778. [PMID: 38922193 DOI: 10.1590/1519-6984.280778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/29/2024] [Indexed: 06/27/2024] Open
Abstract
Despite being valuable for producing a natural sweetener Curculin, Curculigo latifolia has a low growth and difficult to domestificate. So, to solve this problem, propagation on in vitro culture will be an alternative method to propagated this spesies under different cytokinins and light condition. Cytokinins and light has major role in organogenesis, growth and gene expression of many species. Thus, in this study, we aimed to improve the Curculigo latifolia growth on in vitro condition and expression of curculin gene by combining cytokinins addition and different light exposure. Four weeks seedlings were sub-cultured into medium (MS free hormone) containing 3 mg/L benzyladenine (BA) and various concentrations of meta-Topolin (mT) including 0.1 mg/L, 0.5 mg/L, and 5 mg/L. The cultures then incubated under different light types (red, blue, white LED lights and white fluorescence light) with 16-h light/ 18-h dark photoperiod for 14 weeks at 25 ± 2°C. Several parameters, including plant height, leaf number, chlorophyll contents, stomatal structure, and density and curculin expression, were observed every week. Unexpectedly, our results showed that C. latifolia growth displayed significant improvement when it was treated under white LED light without any additional cytokinins. In sum, white LED light further improves plantlets phenotype, such as plant height, leaf number, chlorophyll production, and stomatal number and structure, whereas, red LED light lead to a decreased phenotypes but increase the curculin gene expression.
Collapse
Affiliation(s)
- W Muslihatin
- Airlangga University, Faculty of Science and Technology, Doctoral Study Program of Mathematics and Natural Sciences, Surabaya, Indonesia
- Institut Teknologi Sepuluh Nopember, Faculty of Science and Data Analytics, Department of Biology, Surabaya, Indonesia
| | - A T Wibowo
- Airlangga University, Faculty of Science and Technology, Department of Biology, Surabaya, Indonesia
| | - Y S W Manuhara
- Airlangga University, Faculty of Science and Technology, Department of Biology, Surabaya, Indonesia
| |
Collapse
|
9
|
Pérez-Castaño R, Aranda J, Widner FJ, Kieninger C, Deery E, Warren MJ, Orozco M, Elías-Arnanz M, Padmanabhan S, Kräutler B. The Rhodium Analogue of Coenzyme B 12 as an Anti-Photoregulatory Ligand Inhibiting Bacterial CarH Photoreceptors. Angew Chem Int Ed Engl 2024; 63:e202401626. [PMID: 38416546 DOI: 10.1002/anie.202401626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 02/29/2024]
Abstract
Coenzyme B12 (AdoCbl; 5'-deoxy-5'-adenosylcobalamin), the quintessential biological organometallic radical catalyst, has a formerly unanticipated, yet extensive, role in photoregulation in bacteria. The light-responsive cobalt-corrin AdoCbl performs this nonenzymatic role by facilitating the assembly of CarH photoreceptors into DNA-binding tetramers in the dark, suppressing gene expression. Conversely, exposure to light triggers the decomposition of this AdoCbl-bound complex by a still elusive photochemical mechanism, activating gene expression. Here, we have examined AdoRhbl, the non-natural rhodium analogue of AdoCbl, as a photostable isostructural surrogate for AdoCbl. We show that AdoRhbl closely emulates AdoCbl in its uptake by bacterial cells and structural functionality as a regulatory ligand for CarH tetramerization, DNA binding, and repressor activity. Remarkably, we find AdoRhbl is photostable even when bound "base-off/His-on" to CarH in vitro and in vivo. Thus, AdoRhbl, an antivitamin B12, also represents an unprecedented anti-photoregulatory ligand, opening a pathway to precisely target biomimetic inhibition of AdoCbl-based photoregulation, with new possibilities for selective antibacterial applications. Computational biomolecular analysis of AdoRhbl binding to CarH yields detailed structural insights into this complex, which suggest that the adenosyl group of photoexcited AdoCbl bound to CarH may specifically undergo a concerted non-radical syn-1,2-elimination mechanism, an aspect not previously considered for this photoreceptor.
Collapse
Affiliation(s)
- Ricardo Pérez-Castaño
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
| | - Juan Aranda
- Institute for Research in Biomedicine, IRB Barcelona), Baldiri Reixac 10-12, 08028, Barcelona, Spain
| | - Florian J Widner
- Institute of Organic Chemistry & Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, A-6020, Innsbruck, Austria
| | - Christoph Kieninger
- Institute of Organic Chemistry & Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, A-6020, Innsbruck, Austria
| | - Evelyne Deery
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Martin J Warren
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Modesto Orozco
- Institute for Research in Biomedicine, IRB Barcelona), Baldiri Reixac 10-12, 08028, Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona (Spain); the Joint BSC-IRB Research Program in Computational Biology, and Department of Biochemistry and Biomedicine, University of Barcelona, Baldiri Reixac 10-12, 08028, Barcelona, Spain
| | - Montserrat Elías-Arnanz
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
| | - S Padmanabhan
- Instituto de Química Física Blas Cabrera (IQF-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), 119 c/Serrano, 28006, Madrid, Spain
| | - Bernhard Kräutler
- Institute of Organic Chemistry & Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, A-6020, Innsbruck, Austria
| |
Collapse
|
10
|
Zhang S, Jeffreys LN, Poddar H, Yu Y, Liu C, Patel K, Johannissen LO, Zhu L, Cliff MJ, Yan C, Schirò G, Weik M, Sakuma M, Levy CW, Leys D, Heyes DJ, Scrutton NS. Photocobilins integrate B 12 and bilin photochemistry for enzyme control. Nat Commun 2024; 15:2740. [PMID: 38548733 PMCID: PMC10979010 DOI: 10.1038/s41467-024-46995-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 03/17/2024] [Indexed: 04/01/2024] Open
Abstract
Photoreceptor proteins utilise chromophores to sense light and trigger a biological response. The discovery that adenosylcobalamin (or coenzyme B12) can act as a light-sensing chromophore heralded a new field of B12-photobiology. Although microbial genome analysis indicates that photoactive B12-binding domains form part of more complex protein architectures, regulating a range of molecular-cellular functions in response to light, experimental evidence is lacking. Here we identify and characterise a sub-family of multi-centre photoreceptors, termed photocobilins, that use B12 and biliverdin (BV) to sense light across the visible spectrum. Crystal structures reveal close juxtaposition of the B12 and BV chromophores, an arrangement that facilitates optical coupling. Light-triggered conversion of the B12 affects quaternary structure, in turn leading to light-activation of associated enzyme domains. The apparent widespread nature of photocobilins implies involvement in light regulation of a wider array of biochemical processes, and thus expands the scope for B12 photobiology. Their characterisation provides inspiration for the design of broad-spectrum optogenetic tools and next generation bio-photocatalysts.
Collapse
Affiliation(s)
- Shaowei Zhang
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, China.
| | - Laura N Jeffreys
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Harshwardhan Poddar
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Yuqi Yu
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Chuanyang Liu
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, China
| | - Kaylee Patel
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Linus O Johannissen
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Lingyun Zhu
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, China
| | - Matthew J Cliff
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Cunyu Yan
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Giorgio Schirò
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Martin Weik
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Michiyo Sakuma
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Colin W Levy
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - David Leys
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Derren J Heyes
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
11
|
Camacho IS, Wall E, Sazanovich IV, Gozzard E, Towrie M, Hunt NT, Hay S, Jones AR. Tuning of B 12 photochemistry in the CarH photoreceptor to avoid radical photoproducts. Chem Commun (Camb) 2023; 59:13014-13017. [PMID: 37831010 DOI: 10.1039/d3cc03900e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Time-resolved infrared spectroscopy reveals the flow of electron density through coenzyme B12 in the light-activated, bacterial transcriptional regulator, CarH. The protein stabilises a series of charge transfer states that result in a photoresponse that avoids reactive, and potentially damaging, radical photoproducts.
Collapse
Affiliation(s)
- Ines S Camacho
- Biometrology, Chemical and Biological Sciences Department, National Physical Laboratory, Teddington, Middlesex, UK.
| | - Emma Wall
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, UK
| | - Igor V Sazanovich
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, UK
| | - Emma Gozzard
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, UK
| | - Mike Towrie
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, UK
| | - Neil T Hunt
- Department of Chemistry and York Biomedical Research Institute, University of York, UK
| | - Sam Hay
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, UK
| | - Alex R Jones
- Biometrology, Chemical and Biological Sciences Department, National Physical Laboratory, Teddington, Middlesex, UK.
| |
Collapse
|
12
|
Wang Y, Demirer GS. Synthetic biology for plant genetic engineering and molecular farming. Trends Biotechnol 2023; 41:1182-1198. [PMID: 37012119 DOI: 10.1016/j.tibtech.2023.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 04/03/2023]
Abstract
Many efforts have been put into engineering plants to improve crop yields and stress tolerance and boost the bioproduction of valuable molecules. Yet, our capabilities are still limited due to the lack of well-characterized genetic building blocks and resources for precise manipulation and given the inherently challenging properties of plant tissues. Advancements in plant synthetic biology can overcome these bottlenecks and release the full potential of engineered plants. In this review, we first discuss the recently developed plant synthetic elements from single parts to advanced circuits, software, and hardware tools expediting the engineering cycle. Next, we survey the advancements in plant biotechnology enabled by these recent resources. We conclude the review with outstanding challenges and future directions of plant synthetic biology.
Collapse
Affiliation(s)
- Yunqing Wang
- Department of Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Gozde S Demirer
- Department of Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
13
|
Larsen B, Hofmann R, Camacho IS, Clarke RW, Lagarias JC, Jones AR, Jones AM. Highlighter: An optogenetic system for high-resolution gene expression control in plants. PLoS Biol 2023; 21:e3002303. [PMID: 37733664 PMCID: PMC10513317 DOI: 10.1371/journal.pbio.3002303] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 08/18/2023] [Indexed: 09/23/2023] Open
Abstract
Optogenetic actuators have revolutionized the resolution at which biological processes can be controlled. In plants, deployment of optogenetics is challenging due to the need for these light-responsive systems to function in the context of horticultural light environments. Furthermore, many available optogenetic actuators are based on plant photoreceptors that might crosstalk with endogenous signaling processes, while others depend on exogenously supplied cofactors. To overcome such challenges, we have developed Highlighter, a synthetic, light-gated gene expression system tailored for in planta function. Highlighter is based on the photoswitchable CcaS-CcaR system from cyanobacteria and is repurposed for plants as a fully genetically encoded system. Analysis of a re-engineered CcaS in Escherichia coli demonstrated green/red photoswitching with phytochromobilin, a chromophore endogenous to plants, but also revealed a blue light response likely derived from a flavin-binding LOV-like domain. We deployed Highlighter in transiently transformed Nicotiana benthamiana for optogenetic control of fluorescent protein expression. Using light to guide differential fluorescent protein expression in nuclei of neighboring cells, we demonstrate unprecedented spatiotemporal control of target gene expression. We implemented the system to demonstrate optogenetic control over plant immunity and pigment production through modulation of the spectral composition of broadband visible (white) light. Highlighter is a step forward for optogenetics in plants and a technology for high-resolution gene induction that will advance fundamental plant biology and provide new opportunities for crop improvement.
Collapse
Affiliation(s)
- Bo Larsen
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Roberto Hofmann
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Ines S. Camacho
- Biometrology, Chemical and Biological Sciences Department, National Physical Laboratory, Teddington, United Kingdom
| | - Richard W. Clarke
- Biometrology, Chemical and Biological Sciences Department, National Physical Laboratory, Teddington, United Kingdom
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology, University of California, Davis, California, United States of America
| | - Alex R. Jones
- Biometrology, Chemical and Biological Sciences Department, National Physical Laboratory, Teddington, United Kingdom
| | - Alexander M. Jones
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
14
|
Poddar H, Rios-Santacruz R, Heyes DJ, Shanmugam M, Brookfield A, Johannissen LO, Levy CW, Jeffreys LN, Zhang S, Sakuma M, Colletier JP, Hay S, Schirò G, Weik M, Scrutton NS, Leys D. Redox driven B 12-ligand switch drives CarH photoresponse. Nat Commun 2023; 14:5082. [PMID: 37604813 PMCID: PMC10442372 DOI: 10.1038/s41467-023-40817-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/09/2023] [Indexed: 08/23/2023] Open
Abstract
CarH is a coenzyme B12-dependent photoreceptor involved in regulating carotenoid biosynthesis. How light-triggered cleavage of the B12 Co-C bond culminates in CarH tetramer dissociation to initiate transcription remains unclear. Here, a series of crystal structures of the CarH B12-binding domain after illumination suggest formation of unforeseen intermediate states prior to tetramer dissociation. Unexpectedly, in the absence of oxygen, Co-C bond cleavage is followed by reorientation of the corrin ring and a switch from a lower to upper histidine-Co ligation, corresponding to a pentacoordinate state. Under aerobic conditions, rapid flash-cooling of crystals prior to deterioration upon illumination confirm a similar B12-ligand switch occurs. Removal of the upper His-ligating residue prevents monomer formation upon illumination. Combined with detailed solution spectroscopy and computational studies, these data demonstrate the CarH photoresponse integrates B12 photo- and redox-chemistry to drive large-scale conformational changes through stepwise Co-ligation changes.
Collapse
Affiliation(s)
- Harshwardhan Poddar
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, UK
| | - Ronald Rios-Santacruz
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Derren J Heyes
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, UK
| | - Muralidharan Shanmugam
- Photon Science Institute, Department of Chemistry, University of Manchester, Manchester, UK
| | - Adam Brookfield
- Photon Science Institute, Department of Chemistry, University of Manchester, Manchester, UK
| | - Linus O Johannissen
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, UK
| | - Colin W Levy
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, UK
| | - Laura N Jeffreys
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, UK
| | - Shaowei Zhang
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, UK
| | - Michiyo Sakuma
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, UK
| | | | - Sam Hay
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, UK
| | - Giorgio Schirò
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Martin Weik
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, UK.
| | - David Leys
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, UK.
| |
Collapse
|
15
|
Konrad KR, Gao S, Zurbriggen MD, Nagel G. Optogenetic Methods in Plant Biology. ANNUAL REVIEW OF PLANT BIOLOGY 2023; 74:313-339. [PMID: 37216203 DOI: 10.1146/annurev-arplant-071122-094840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Optogenetics is a technique employing natural or genetically engineered photoreceptors in transgene organisms to manipulate biological activities with light. Light can be turned on or off, and adjusting its intensity and duration allows optogenetic fine-tuning of cellular processes in a noninvasive and spatiotemporally resolved manner. Since the introduction of Channelrhodopsin-2 and phytochrome-based switches nearly 20 years ago, optogenetic tools have been applied in a variety of model organisms with enormous success, but rarely in plants. For a long time, the dependence of plant growth on light and the absence of retinal, the rhodopsin chromophore, prevented the establishment of plant optogenetics until recent progress overcame these difficulties. We summarize the recent results of work in the field to control plant growth and cellular motion via green light-gated ion channels and present successful applications to light-control gene expression with single or combined photoswitches in plants. Furthermore, we highlight the technical requirements and options for future plant optogenetic research.
Collapse
Affiliation(s)
- Kai R Konrad
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Biosciences, Biocenter, University of Würzburg, Würzburg, Germany;
| | - Shiqiang Gao
- Department of Neurophysiology, Institute of Physiology, Biocenter, University of Würzburg, Würzburg, Germany; ,
| | - Matias D Zurbriggen
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, Düsseldorf, Germany;
| | - Georg Nagel
- Department of Neurophysiology, Institute of Physiology, Biocenter, University of Würzburg, Würzburg, Germany; ,
| |
Collapse
|
16
|
Jang J, Tang K, Youn J, McDonald S, Beyer HM, Zurbriggen MD, Uppalapati M, Woolley GA. Engineering of bidirectional, cyanobacteriochrome-based light-inducible dimers (BICYCL)s. Nat Methods 2023; 20:432-441. [PMID: 36823330 DOI: 10.1038/s41592-023-01764-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 12/21/2022] [Indexed: 02/25/2023]
Abstract
Optogenetic tools for controlling protein-protein interactions (PPIs) have been developed from a small number of photosensory modules that respond to a limited selection of wavelengths. Cyanobacteriochrome (CBCR) GAF domain variants respond to an unmatched array of colors; however, their natural molecular mechanisms of action cannot easily be exploited for optogenetic control of PPIs. Here we developed bidirectional, cyanobacteriochrome-based light-inducible dimers (BICYCL)s by engineering synthetic light-dependent interactors for a red/green GAF domain. The systematic approach enables the future engineering of the broad chromatic palette of CBCRs for optogenetics use. BICYCLs are among the smallest optogenetic tools for controlling PPIs and enable either green-ON/red-OFF (BICYCL-Red) or red-ON/green-OFF (BICYCL-Green) control with up to 800-fold state selectivity. The access to green wavelengths creates new opportunities for multiplexing with existing tools. We demonstrate the utility of BICYCLs for controlling protein subcellular localization and transcriptional processes in mammalian cells and for multiplexing with existing blue-light tools.
Collapse
Affiliation(s)
- Jaewan Jang
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Kun Tang
- Institute of Synthetic Biology, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Jeffrey Youn
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Sherin McDonald
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Hannes M Beyer
- Institute of Synthetic Biology, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Matias D Zurbriggen
- Institute of Synthetic Biology, Heinrich-Heine-Universität, Düsseldorf, Germany. .,CEPLAS - Cluster of Excellence on Plant Science, Düsseldorf, Germany.
| | - Maruti Uppalapati
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - G Andrew Woolley
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
17
|
Chen X, Liu Z, Lou C, Guan Y, Ouyang Q, Xiang Y. Improving cooperativity of transcription activators by oligomerization domains in mammalian cells. Synth Syst Biotechnol 2023; 8:114-120. [PMID: 36605704 PMCID: PMC9804245 DOI: 10.1016/j.synbio.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Cooperative activation is critical for the applications of synthetic biology in mammalian cells. In this study, we have developed cooperative transcription factor by fusing oligomerization domain in mammalian cells. Firstly, we demonstrated that two oligomerized domains (CI434 and CI) successfully improved transcription factor cooperativity in bacterial cells but failed to increase cooperativity in mammalian cells, possibly because the additional mammalian activation domain disrupted their oligomerization capability. Therefore, we chose a different type of oligomerized domain (CarHC), whose ability to oligomerize is not dependent on its C-terminal domains, to fuse with a transcription factor (RpaR) and activation domain (VTR3), forming a potential cooperative transcription activator RpaR-CarH-VTR3 for mammalian regulatory systems. Compared with RpaR-VTR3, the cooperativity of RpaR-CarH-VTR3 was significantly improved with higher Hill coefficient and a narrower input range in the inducible switch system in mammalian cells. Moreover, a mathematical model based on statistical mechanics model was developed and the simulation results supported the hypothesis that the tetramer of the CarH domain in mammalian cells was the reason for the cooperative capacity of RpaR-CarH-VTR3.
Collapse
Affiliation(s)
- Xinmao Chen
- School of Physics, Peking University, Beijing, 100871, China
| | - Ziming Liu
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Chunbo Lou
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ying Guan
- School of Physics, Peking University, Beijing, 100871, China
- Department of Chemical Engineering, Tsinghua University, Beijing, 100871, China
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qi Ouyang
- School of Physics, Peking University, Beijing, 100871, China
| | - Yanhui Xiang
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
18
|
Gomide MDS, Leitão MDC, Coelho CM. Biocircuits in plants and eukaryotic algae. FRONTIERS IN PLANT SCIENCE 2022; 13:982959. [PMID: 36212277 PMCID: PMC9545776 DOI: 10.3389/fpls.2022.982959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
As one of synthetic biology's foundations, biocircuits are a strategy of genetic parts assembling to recognize a signal and to produce a desirable output to interfere with a biological function. In this review, we revisited the progress in the biocircuits technology basis and its mandatory elements, such as the characterization and assembly of functional parts. Furthermore, for a successful implementation, the transcriptional control systems are a relevant point, and the computational tools help to predict the best combinations among the biological parts planned to be used to achieve the desirable phenotype. However, many challenges are involved in delivering and stabilizing the synthetic structures. Some research experiences, such as the golden crops, biosensors, and artificial photosynthetic structures, can indicate the positive and limiting aspects of the practice. Finally, we envision that the modulatory structural feature and the possibility of finer gene regulation through biocircuits can contribute to the complex design of synthetic chromosomes aiming to develop plants and algae with new or improved functions.
Collapse
Affiliation(s)
- Mayna da Silveira Gomide
- Laboratory of Synthetic Biology, Department of Genetics and Morphology, Institute of Biological Science, University of Brasília (UnB), Brasília, Distrito Federal, Brazil
- School of Medicine, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil
| | - Matheus de Castro Leitão
- Laboratory of Synthetic Biology, Department of Genetics and Morphology, Institute of Biological Science, University of Brasília (UnB), Brasília, Distrito Federal, Brazil
| | - Cíntia Marques Coelho
- Laboratory of Synthetic Biology, Department of Genetics and Morphology, Institute of Biological Science, University of Brasília (UnB), Brasília, Distrito Federal, Brazil
| |
Collapse
|
19
|
Shikata H, Denninger P. Plant optogenetics: Applications and perspectives. CURRENT OPINION IN PLANT BIOLOGY 2022; 68:102256. [PMID: 35780691 DOI: 10.1016/j.pbi.2022.102256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
To understand cell biological processes, like signalling pathways, protein movements, or metabolic processes, precise tools for manipulation are desired. Optogenetics allows to control cellular processes by light and can be applied at a high temporal and spatial resolution. In the last three decades, various optogenetic applications have been developed for animal, fungal, and prokaryotic cells. However, using optogenetics in plants has been difficult due to biological and technical issues, like missing cofactors, the presence of endogenous photoreceptors, or the necessity of light for photosynthesis, which potentially activates optogenetic tools constitutively. Recently developed tools overcome these limitations, making the application of optogenetics feasible also in plants. Here, we highlight the most useful recent applications in plants and give a perspective for future optogenetic approaches in plants science.
Collapse
Affiliation(s)
- Hiromasa Shikata
- Division of Plant Environmental Responses, National Institute for Basic Biology, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Japan; PRESTO, Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi, Japan.
| | - Philipp Denninger
- Technical University of Munich, School of Life Sciences, Plant Systems Biology, Emil-Ramann-Strasse 8, 85354 Freising, Germany.
| |
Collapse
|
20
|
Piccinini L, Iacopino S, Cazzaniga S, Ballottari M, Giuntoli B, Licausi F. A synthetic switch based on orange carotenoid protein to control blue-green light responses in chloroplasts. PLANT PHYSIOLOGY 2022. [PMID: 35289909 DOI: 10.1101/2021.01.27.428448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Synthetic biology approaches to engineer light-responsive systems are widely used, but their applications in plants are still limited due to the interference with endogenous photoreceptors and the intrinsic requirement of light for photosynthesis. Cyanobacteria possess a family of soluble carotenoid-associated proteins named orange carotenoid proteins (OCPs) that, when activated by blue-green light, undergo a reversible conformational change that enables the photoprotection mechanism that occurs on the phycobilisome. Exploiting this system, we developed a chloroplast-localized synthetic photoswitch based on a protein complementation assay where two nanoluciferase fragments were fused to separate polypeptides corresponding to the OCP2 domains. Since Arabidopsis (Arabidopsis thaliana) does not possess the prosthetic group needed for the assembly of the OCP2 complex, we first implemented the carotenoid biosynthetic pathway with a bacterial β-carotene ketolase enzyme (crtW) to generate keto-carotenoid-producing plants. The photoswitch was tested and characterized in Arabidopsis protoplasts and stably transformed plants with experiments aimed to uncover its regulation by a range of light intensities, wavelengths, and its conversion dynamics. Finally, we applied the OCP-based photoswitch to control transcriptional responses in chloroplasts in response to green light illumination by fusing the two OCP fragments with the plastidial SIGMA FACTOR 2 and bacteriophage T4 anti-sigma factor AsiA. This pioneering study establishes the basis for future implementation of plastid optogenetics to regulate organelle responses upon exposure to specific light spectra.
Collapse
Affiliation(s)
- Luca Piccinini
- Plantlab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa 56127, Italy
| | - Sergio Iacopino
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Stefano Cazzaniga
- Department of Biotechnology, University of Verona, Verona 37134, Italy
| | - Matteo Ballottari
- Department of Biotechnology, University of Verona, Verona 37134, Italy
| | - Beatrice Giuntoli
- Plantlab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa 56127, Italy
- Department of Biology, University of Pisa, Pisa 56126, Italy
| | - Francesco Licausi
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
- Department of Biology, University of Pisa, Pisa 56126, Italy
| |
Collapse
|
21
|
Piccinini L, Iacopino S, Cazzaniga S, Ballottari M, Giuntoli B, Licausi F. A synthetic switch based on orange carotenoid protein to control blue-green light responses in chloroplasts. PLANT PHYSIOLOGY 2022; 189:1153-1168. [PMID: 35289909 PMCID: PMC9157063 DOI: 10.1093/plphys/kiac122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/20/2022] [Indexed: 05/11/2023]
Abstract
Synthetic biology approaches to engineer light-responsive systems are widely used, but their applications in plants are still limited due to the interference with endogenous photoreceptors and the intrinsic requirement of light for photosynthesis. Cyanobacteria possess a family of soluble carotenoid-associated proteins named orange carotenoid proteins (OCPs) that, when activated by blue-green light, undergo a reversible conformational change that enables the photoprotection mechanism that occurs on the phycobilisome. Exploiting this system, we developed a chloroplast-localized synthetic photoswitch based on a protein complementation assay where two nanoluciferase fragments were fused to separate polypeptides corresponding to the OCP2 domains. Since Arabidopsis (Arabidopsis thaliana) does not possess the prosthetic group needed for the assembly of the OCP2 complex, we first implemented the carotenoid biosynthetic pathway with a bacterial β-carotene ketolase enzyme (crtW) to generate keto-carotenoid-producing plants. The photoswitch was tested and characterized in Arabidopsis protoplasts and stably transformed plants with experiments aimed to uncover its regulation by a range of light intensities, wavelengths, and its conversion dynamics. Finally, we applied the OCP-based photoswitch to control transcriptional responses in chloroplasts in response to green light illumination by fusing the two OCP fragments with the plastidial SIGMA FACTOR 2 and bacteriophage T4 anti-sigma factor AsiA. This pioneering study establishes the basis for future implementation of plastid optogenetics to regulate organelle responses upon exposure to specific light spectra.
Collapse
Affiliation(s)
- Luca Piccinini
- Plantlab, Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa 56127, Italy
| | - Sergio Iacopino
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Stefano Cazzaniga
- Department of Biotechnology, University of Verona, Verona 37134, Italy
| | - Matteo Ballottari
- Department of Biotechnology, University of Verona, Verona 37134, Italy
| | - Beatrice Giuntoli
- Plantlab, Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa 56127, Italy
- Department of Biology, University of Pisa, Pisa 56126, Italy
| | - Francesco Licausi
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
- Department of Biology, University of Pisa, Pisa 56126, Italy
- Author for correspondence:
| |
Collapse
|
22
|
Poddar H, Heyes DJ, Zhang S, Hardman SJ, Sakuma M, Scrutton NS. An unusual light-sensing function for coenzyme B 12 in bacterial transcription regulator CarH. Methods Enzymol 2022; 668:349-372. [PMID: 35589201 DOI: 10.1016/bs.mie.2021.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Coenzyme B12 is one of the most complex cofactors found in nature and synthesized de novo by certain groups of bacteria. Although its use in various enzymatic reactions is well characterized, only recently an unusual light-sensing function has been ascribed to coenzyme B12. It has been reported that the coenzyme B12 binding protein CarH, found in the carotenoid biosynthesis pathway of several thermostable bacteria, binds to the promoter region of DNA and suppresses transcription. To overcome the harmful effects of light-induced damage in the cells, CarH releases DNA in the presence of light and promotes transcription and synthesis of carotenoids, thereby working as a photoreceptor. CarH is able to achieve this by exploiting the photosensitive nature of the CoC bond between the adenosyl moiety and the cobalt atom in the coenzyme B12 molecule. Extensive structural and spectroscopy studies provided a mechanistic understanding of the molecular basis of this unique light-sensitive reaction. Most studies on CarH have used the ortholog from the thermostable bacterium Thermus thermophilus, due to the ease with which it can be expressed and purified in high quantities. In this chapter we give an overview of this intriguing class of photoreceptors and report a step-by-step protocol for expression, purification and spectroscopy experiments (both static and time-resolved techniques) employed in our laboratory to study CarH from T. thermophilus. We hope the contents of this chapter will be of interest to the wider coenzyme B12 community and apprise them of the potential and possibilities of using coenzyme B12 as a light-sensing probe in a protein scaffold.
Collapse
Affiliation(s)
- Harshwardhan Poddar
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, United Kingdom
| | - Derren J Heyes
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, United Kingdom
| | - Shaowei Zhang
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, United Kingdom
| | - Samantha J Hardman
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, United Kingdom
| | - Michiyo Sakuma
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, United Kingdom
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
23
|
Padmanabhan S, Pérez-Castaño R, Osete-Alcaraz L, Polanco MC, Elías-Arnanz M. Vitamin B 12 photoreceptors. VITAMINS AND HORMONES 2022; 119:149-184. [PMID: 35337618 DOI: 10.1016/bs.vh.2022.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Photoreceptor proteins enable living organisms to sense light and transduce this signal into biochemical outputs to elicit appropriate cellular responses. Their light sensing is typically mediated by covalently or noncovalently bound molecules called chromophores, which absorb light of specific wavelengths and modulate protein structure and biological activity. Known photoreceptors have been classified into about ten families based on the chromophore and its associated photosensory domain in the protein. One widespread photoreceptor family uses coenzyme B12 or 5'-deoxyadenosylcobalamin, a biological form of vitamin B12, to sense ultraviolet, blue, or green light, and its discovery revealed both a new type of photoreceptor and a novel functional facet of this vitamin, best known as an enzyme cofactor. Large strides have been made in our understanding of how these B12-based photoreceptors function, high-resolution structural descriptions of their functional states are available, as are details of their unusual photochemistry. Additionally, they have inspired notable applications in optogenetics/optobiochemistry and synthetic biology. Here, we provide an overview of what is currently known about these B12-based photoreceptors, their discovery, distribution, molecular mechanism of action, and the structural and photochemical basis of how they orchestrate signal transduction and gene regulation, and how they have been used to engineer optogenetic control of protein activities in living cells.
Collapse
Affiliation(s)
- S Padmanabhan
- Instituto de Química Física "Rocasolano", Consejo Superior de Investigaciones Científicas, Madrid, Spain.
| | - Ricardo Pérez-Castaño
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Lucía Osete-Alcaraz
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - María Carmen Polanco
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Montserrat Elías-Arnanz
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain.
| |
Collapse
|
24
|
Optogenetic and Chemical Induction Systems for Regulation of Transgene Expression in Plants: Use in Basic and Applied Research. Int J Mol Sci 2022; 23:ijms23031737. [PMID: 35163658 PMCID: PMC8835832 DOI: 10.3390/ijms23031737] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 02/01/2023] Open
Abstract
Continuous and ubiquitous expression of foreign genes sometimes results in harmful effects on the growth, development and metabolic activities of plants. Tissue-specific promoters help to overcome this disadvantage, but do not allow one to precisely control transgene expression over time. Thus, inducible transgene expression systems have obvious benefits. In plants, transcriptional regulation is usually driven by chemical agents under the control of chemically-inducible promoters. These systems are diverse, but usually contain two elements, the chimeric transcription factor and the reporter gene. The commonly used chemically-induced expression systems are tetracycline-, steroid-, insecticide-, copper-, and ethanol-regulated. Unlike chemical-inducible systems, optogenetic tools enable spatiotemporal, quantitative and reversible control over transgene expression with light, overcoming limitations of chemically-inducible systems. This review updates and summarizes optogenetic and chemical induction methods of transgene expression used in basic plant research and discusses their potential in field applications.
Collapse
|
25
|
Optogenetic approaches in biotechnology and biomaterials. Trends Biotechnol 2022; 40:858-874. [PMID: 35031132 DOI: 10.1016/j.tibtech.2021.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 11/21/2022]
Abstract
Advances in genetic engineering, combined with the development of optical technologies, have allowed optogenetics to broaden its area of possible applications in recent years. However, the application of optogenetic tools in industry, including biotechnology and the production of biomaterials, is still limited, because each practical task requires the engineering of a specific optogenetic system. In this review, we discuss recent advances in the use of optogenetic tools in the production of biofuels and valuable chemicals, the synthesis of biomedical and polymer materials, and plant agrobiology. We also offer a comprehensive analysis of the properties and industrial applicability of light-controlled and other smart biomaterials. These data allow us to outline the prospects for the future use of optogenetics in bioindustry.
Collapse
|
26
|
Tang K, Beyer HM, Zurbriggen MD, Gärtner W. The Red Edge: Bilin-Binding Photoreceptors as Optogenetic Tools and Fluorescence Reporters. Chem Rev 2021; 121:14906-14956. [PMID: 34669383 PMCID: PMC8707292 DOI: 10.1021/acs.chemrev.1c00194] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Indexed: 12/15/2022]
Abstract
This review adds the bilin-binding phytochromes to the Chemical Reviews thematic issue "Optogenetics and Photopharmacology". The work is structured into two parts. We first outline the photochemistry of the covalently bound tetrapyrrole chromophore and summarize relevant spectroscopic, kinetic, biochemical, and physiological properties of the different families of phytochromes. Based on this knowledge, we then describe the engineering of phytochromes to further improve these chromoproteins as photoswitches and review their employment in an ever-growing number of different optogenetic applications. Most applications rely on the light-controlled complex formation between the plant photoreceptor PhyB and phytochrome-interacting factors (PIFs) or C-terminal light-regulated domains with enzymatic functions present in many bacterial and algal phytochromes. Phytochrome-based optogenetic tools are currently implemented in bacteria, yeast, plants, and animals to achieve light control of a wide range of biological activities. These cover the regulation of gene expression, protein transport into cell organelles, and the recruitment of phytochrome- or PIF-tagged proteins to membranes and other cellular compartments. This compilation illustrates the intrinsic advantages of phytochromes compared to other photoreceptor classes, e.g., their bidirectional dual-wavelength control enabling instant ON and OFF regulation. In particular, the long wavelength range of absorption and fluorescence within the "transparent window" makes phytochromes attractive for complex applications requiring deep tissue penetration or dual-wavelength control in combination with blue and UV light-sensing photoreceptors. In addition to the wide variability of applications employing natural and engineered phytochromes, we also discuss recent progress in the development of bilin-based fluorescent proteins.
Collapse
Affiliation(s)
- Kun Tang
- Institute
of Synthetic Biology, Heinrich-Heine-University
Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Hannes M. Beyer
- Institute
of Synthetic Biology, Heinrich-Heine-University
Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Matias D. Zurbriggen
- Institute
of Synthetic Biology and CEPLAS, Heinrich-Heine-University
Düsseldorf, Universitätsstrasse
1, D-40225 Düsseldorf, Germany
| | - Wolfgang Gärtner
- Retired: Max Planck Institute
for Chemical Energy Conversion. At present: Institute for Analytical Chemistry, University
Leipzig, Linnéstrasse
3, 04103 Leipzig, Germany
| |
Collapse
|
27
|
Zhou Y, Ding M, Nagel G, Konrad KR, Gao S. Advances and prospects of rhodopsin-based optogenetics in plant research. PLANT PHYSIOLOGY 2021; 187:572-589. [PMID: 35237820 PMCID: PMC8491038 DOI: 10.1093/plphys/kiab338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/05/2021] [Indexed: 05/20/2023]
Abstract
Microbial rhodopsins have advanced optogenetics since the discovery of channelrhodopsins almost two decades ago. During this time an abundance of microbial rhodopsins has been discovered, engineered, and improved for studies in neuroscience and other animal research fields. Optogenetic applications in plant research, however, lagged largely behind. Starting with light-regulated gene expression, optogenetics has slowly expanded into plant research. The recently established all-trans retinal production in plants now enables the use of many microbial opsins, bringing extra opportunities to plant research. In this review, we summarize the recent advances of rhodopsin-based plant optogenetics and provide a perspective for future use, combined with fluorescent sensors to monitor physiological parameters.
Collapse
Affiliation(s)
- Yang Zhou
- Institute of Physiology, Department of Neurophysiology, Biocenter, University of Wuerzburg, Wuerzburg 97070, Germany
| | - Meiqi Ding
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, Biocenter, University of Wuerzburg, Wuerzburg 97082, Germany
| | - Georg Nagel
- Institute of Physiology, Department of Neurophysiology, Biocenter, University of Wuerzburg, Wuerzburg 97070, Germany
| | - Kai R. Konrad
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, Biocenter, University of Wuerzburg, Wuerzburg 97082, Germany
| | - Shiqiang Gao
- Institute of Physiology, Department of Neurophysiology, Biocenter, University of Wuerzburg, Wuerzburg 97070, Germany
| |
Collapse
|
28
|
Pérez ALA, Piva LC, Fulber JPC, de Moraes LMP, De Marco JL, Vieira HLA, Coelho CM, Reis VCB, Torres FAG. Optogenetic strategies for the control of gene expression in yeasts. Biotechnol Adv 2021; 54:107839. [PMID: 34592347 DOI: 10.1016/j.biotechadv.2021.107839] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/07/2021] [Accepted: 09/22/2021] [Indexed: 12/18/2022]
Abstract
Optogenetics involves the use of light to control cellular functions and has become increasingly popular in various areas of research, especially in the precise control of gene expression. While this technology is already well established in neurobiology and basic research, its use in bioprocess development is still emerging. Some optogenetic switches have been implemented in yeasts for different purposes, taking advantage of a wide repertoire of biological parts and relatively easy genetic manipulation. In this review, we cover the current strategies used for the construction of yeast strains to be used in optogenetically controlled protein or metabolite production, as well as the operational aspects to be considered for the scale-up of this type of process. Finally, we discuss the main applications of optogenetic switches in yeast systems and highlight the main advantages and challenges of bioprocess development considering future directions for this field.
Collapse
Affiliation(s)
- Ana Laura A Pérez
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Bloco K, 1° andar, Universidade de Brasília, Brasília 70910-900, Brazil
| | - Luiza C Piva
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Bloco K, 1° andar, Universidade de Brasília, Brasília 70910-900, Brazil
| | - Julia P C Fulber
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Bloco K, 1° andar, Universidade de Brasília, Brasília 70910-900, Brazil
| | - Lidia M P de Moraes
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Bloco K, 1° andar, Universidade de Brasília, Brasília 70910-900, Brazil
| | - Janice L De Marco
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Bloco K, 1° andar, Universidade de Brasília, Brasília 70910-900, Brazil
| | - Hugo L A Vieira
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Bloco K, 1° andar, Universidade de Brasília, Brasília 70910-900, Brazil
| | - Cintia M Coelho
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Bloco K, 1° andar, Universidade de Brasília, Brasília 70910-900, Brazil
| | - Viviane C B Reis
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Bloco K, 1° andar, Universidade de Brasília, Brasília 70910-900, Brazil
| | - Fernando A G Torres
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Bloco K, 1° andar, Universidade de Brasília, Brasília 70910-900, Brazil.
| |
Collapse
|
29
|
Wichert N, Witt M, Blume C, Scheper T. Clinical applicability of optogenetic gene regulation. Biotechnol Bioeng 2021; 118:4168-4185. [PMID: 34287844 DOI: 10.1002/bit.27895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/27/2021] [Accepted: 07/13/2021] [Indexed: 11/10/2022]
Abstract
The field of optogenetics is rapidly growing in relevance and number of developed tools. Among other things, the optogenetic repertoire includes light-responsive ion channels and methods for gene regulation. This review will be confined to the optogenetic control of gene expression in mammalian cells as suitable models for clinical applications. Here optogenetic gene regulation might offer an excellent method for spatially and timely regulated gene and protein expression in cell therapeutic approaches. Well-known systems for gene regulation, such as the LOV-, CRY2/CIB-, PhyB/PIF-systems, as well as other, in mammalian cells not yet fully established systems, will be described. Advantages and disadvantages with regard to clinical applications are outlined in detail. Among the many unanswered questions concerning the application of optogenetics, we discuss items such as the use of exogenous chromophores and their effects on the biology of the cells and methods for a gentle, but effective gene transfection method for optogenetic tools for in vivo applications.
Collapse
Affiliation(s)
- Nina Wichert
- Insitute of Technical Chemistry, Leibniz University of Hannover, Hannover, Germany
| | - Martin Witt
- Insitute of Technical Chemistry, Leibniz University of Hannover, Hannover, Germany
| | - Cornelia Blume
- Insitute of Technical Chemistry, Leibniz University of Hannover, Hannover, Germany
| | - Thomas Scheper
- Insitute of Technical Chemistry, Leibniz University of Hannover, Hannover, Germany
| |
Collapse
|
30
|
Smart-watch-programmed green-light-operated percutaneous control of therapeutic transgenes. Nat Commun 2021; 12:3388. [PMID: 34099676 PMCID: PMC8184832 DOI: 10.1038/s41467-021-23572-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/23/2021] [Indexed: 02/05/2023] Open
Abstract
Wearable smart electronic devices, such as smart watches, are generally equipped with green-light-emitting diodes, which are used for photoplethysmography to monitor a panoply of physical health parameters. Here, we present a traceless, green-light-operated, smart-watch-controlled mammalian gene switch (Glow Control), composed of an engineered membrane-tethered green-light-sensitive cobalamin-binding domain of Thermus thermophilus (TtCBD) CarH protein in combination with a synthetic cytosolic TtCBD-transactivator fusion protein, which manage translocation of TtCBD-transactivator into the nucleus to trigger expression of transgenes upon illumination. We show that Apple-Watch-programmed percutaneous remote control of implanted Glow-controlled engineered human cells can effectively treat experimental type-2 diabetes by producing and releasing human glucagon-like peptide-1 on demand. Directly interfacing wearable smart electronic devices with therapeutic gene expression will advance next-generation personalized therapies by linking biopharmaceutical interventions to the internet of things.
Collapse
|
31
|
Li JH, Fan LF, Zhao DJ, Zhou Q, Yao JP, Wang ZY, Huang L. Plant electrical signals: A multidisciplinary challenge. JOURNAL OF PLANT PHYSIOLOGY 2021; 261:153418. [PMID: 33887526 DOI: 10.1016/j.jplph.2021.153418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 05/15/2023]
Abstract
Plant electrical signals, an early event in the plant-stimulus interaction, rapidly transmit information generated by the stimulus to other organs, and even the whole plant, to promote the corresponding response and trigger a regulatory cascade. In recent years, many promising state-of-the-art technologies applicable to study plant electrophysiology have emerged. Research focused on expression of genes associated with electrical signals has also proliferated. We propose that it is appropriate for plant electrical signals to be considered in the form of a "plant electrophysiological phenotype". This review synthesizes research on plant electrical signals from a novel, interdisciplinary perspective, which is needed to improve the efficient aggregation and use of plant electrical signal data and to expedite interpretation of plant electrical signals.
Collapse
Affiliation(s)
- Jin-Hai Li
- College of Information and Electrical Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, Beijing, 100083, China
| | - Li-Feng Fan
- College of Information and Electrical Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, Beijing, 100083, China
| | - Dong-Jie Zhao
- Institute for Future (IFF), Qingdao University, Qingdao, 266071, China
| | - Qiao Zhou
- College of Information and Electrical Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, Beijing, 100083, China
| | - Jie-Peng Yao
- College of Information and Electrical Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, Beijing, 100083, China
| | - Zhong-Yi Wang
- College of Information and Electrical Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, Beijing, 100083, China; Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, Beijing, 100083, China.
| | - Lan Huang
- College of Information and Electrical Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, Beijing, 100083, China.
| |
Collapse
|
32
|
Light-Triggered Carotenogenesis in Myxococcus xanthus: New Paradigms in Photosensory Signaling, Transduction and Gene Regulation. Microorganisms 2021; 9:microorganisms9051067. [PMID: 34063365 PMCID: PMC8156234 DOI: 10.3390/microorganisms9051067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/17/2022] Open
Abstract
Myxobacteria are Gram-negative δ-proteobacteria found predominantly in terrestrial habitats and often brightly colored due to the biosynthesis of carotenoids. Carotenoids are lipophilic isoprenoid pigments that protect cells from damage and death by quenching highly reactive and toxic oxidative species, like singlet oxygen, generated upon growth under light. The model myxobacterium Myxococcus xanthus turns from yellow in the dark to red upon exposure to light because of the photoinduction of carotenoid biosynthesis. How light is sensed and transduced to bring about regulated carotenogenesis in order to combat photooxidative stress has been extensively investigated in M. xanthus using genetic, biochemical and high-resolution structural methods. These studies have unearthed new paradigms in bacterial light sensing, signal transduction and gene regulation, and have led to the discovery of prototypical members of widely distributed protein families with novel functions. Major advances have been made over the last decade in elucidating the molecular mechanisms underlying the light-dependent signaling and regulation of the transcriptional response leading to carotenogenesis in M. xanthus. This review aims to provide an up-to-date overview of these findings and their significance.
Collapse
|
33
|
Camacho IS, Black R, Heyes DJ, Johannissen LO, Ramakers LAI, Bellina B, Barran PE, Hay S, Jones AR. Interplay between chromophore binding and domain assembly by the B 12-dependent photoreceptor protein, CarH. Chem Sci 2021; 12:8333-8341. [PMID: 34221314 PMCID: PMC8221060 DOI: 10.1039/d1sc00522g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Organisms across the natural world respond to their environment through the action of photoreceptor proteins. The vitamin B12-dependent photoreceptor, CarH, is a bacterial transcriptional regulator that controls the biosynthesis of carotenoids to protect against photo-oxidative stress. The binding of B12 to CarH monomers in the dark results in the formation of a homo-tetramer that complexes with DNA; B12 photochemistry results in tetramer dissociation, releasing DNA for transcription. Although the details of the response of CarH to light are beginning to emerge, the biophysical mechanism of B12-binding in the dark and how this drives domain assembly is poorly understood. Here – using a combination of molecular dynamics simulations, native ion mobility mass spectrometry and time-resolved spectroscopy – we reveal a complex picture that varies depending on the availability of B12. When B12 is in excess, its binding drives structural changes in CarH monomers that result in the formation of head-to-tail dimers. The structural changes that accompany these steps mean that they are rate-limiting. The dimers then rapidly combine to form tetramers. Strikingly, when B12 is scarcer, as is likely in nature, tetramers with native-like structures can form without a B12 complement to each monomer, with only one apparently required per head-to-tail dimer. We thus show how a bulky chromophore such as B12 shapes protein/protein interactions and in turn function, and how a protein can adapt to a sub-optimal availability of resources. This nuanced picture should help guide the engineering of B12-dependent photoreceptors as light-activated tools for biomedical applications. The function of the bacterial photoreceptor protein, CarH, is regulated by changes to its oligomeric state. Camacho et al. detail how binding of vitamin B12 in the dark drives assembly of the protein tetramer that in turn blocks transcription.![]()
Collapse
Affiliation(s)
- Inês S Camacho
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester 131 Princess Street Manchester M1 7DN UK .,Photon Science Institute, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Rachelle Black
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Derren J Heyes
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Linus O Johannissen
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Lennart A I Ramakers
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Bruno Bellina
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester 131 Princess Street Manchester M1 7DN UK .,Photon Science Institute, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Perdita E Barran
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester 131 Princess Street Manchester M1 7DN UK .,Photon Science Institute, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Sam Hay
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Alex R Jones
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester 131 Princess Street Manchester M1 7DN UK .,Photon Science Institute, The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
34
|
Zhou Y, Ding M, Duan X, Konrad KR, Nagel G, Gao S. Extending the Anion Channelrhodopsin-Based Toolbox for Plant Optogenetics. MEMBRANES 2021; 11:membranes11040287. [PMID: 33919843 PMCID: PMC8070814 DOI: 10.3390/membranes11040287] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 11/16/2022]
Abstract
Optogenetics was developed in the field of neuroscience and is most commonly using light-sensitive rhodopsins to control the neural activities. Lately, we have expanded this technique into plant science by co-expression of a chloroplast-targeted β-carotene dioxygenase and an improved anion channelrhodopsin GtACR1 from the green alga Guillardia theta. The growth of Nicotiana tabacum pollen tube can then be manipulated by localized green light illumination. To extend the application of analogous optogenetic tools in the pollen tube system, we engineered another two ACRs, GtACR2, and ZipACR, which have different action spectra, light sensitivity and kinetic features, and characterized them in Xenopus laevis oocytes, Nicotiana benthamiana leaves and N. tabacum pollen tubes. We found that the similar molecular engineering method used to improve GtACR1 also enhanced GtACR2 and ZipACR performance in Xenopus laevis oocytes. The ZipACR1 performed in N. benthamiana mesophyll cells and N. tabacum pollen tubes with faster kinetics and reduced light sensitivity, allowing for optogenetic control of anion fluxes with better temporal resolution. The reduced light sensitivity would potentially facilitate future application in plants, grown under low ambient white light, combined with an optogenetic manipulation triggered by stronger green light.
Collapse
Affiliation(s)
- Yang Zhou
- Institute of Physiology, Department of Neurophysiology, Biocenter, University of Wuerzburg, 97070 Wuerzburg, Germany; (Y.Z.); (X.D.); (G.N.)
| | - Meiqi Ding
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, Biocenter, University of Wuerzburg, 97082 Wuerzburg, Germany; (M.D.); (K.R.K.)
| | - Xiaodong Duan
- Institute of Physiology, Department of Neurophysiology, Biocenter, University of Wuerzburg, 97070 Wuerzburg, Germany; (Y.Z.); (X.D.); (G.N.)
- Department of Biology, College of Science, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Kai R. Konrad
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, Biocenter, University of Wuerzburg, 97082 Wuerzburg, Germany; (M.D.); (K.R.K.)
| | - Georg Nagel
- Institute of Physiology, Department of Neurophysiology, Biocenter, University of Wuerzburg, 97070 Wuerzburg, Germany; (Y.Z.); (X.D.); (G.N.)
| | - Shiqiang Gao
- Institute of Physiology, Department of Neurophysiology, Biocenter, University of Wuerzburg, 97070 Wuerzburg, Germany; (Y.Z.); (X.D.); (G.N.)
- Correspondence:
| |
Collapse
|
35
|
Christie JM, Zurbriggen MD. Optogenetics in plants. THE NEW PHYTOLOGIST 2021; 229:3108-3115. [PMID: 33064858 DOI: 10.1111/nph.17008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
The last two decades have witnessed the emergence of optogenetics; a field that has given researchers the ability to use light to control biological processes at high spatiotemporal and quantitative resolutions, in a reversible manner with minimal side-effects. Optogenetics has revolutionized the neurosciences, increased our understanding of cellular signalling and metabolic networks and resulted in variety of applications in biotechnology and biomedicine. However, implementing optogenetics in plants has been less straightforward, given their dependency on light for their life cycle. Here, we highlight some of the widely used technologies in microorganisms and animal systems derived from plant photoreceptor proteins and discuss strategies recently implemented to overcome the challenges for using optogenetics in plants.
Collapse
Affiliation(s)
- John M Christie
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Matias D Zurbriggen
- Institute of Synthetic Biology and CEPLAS, University of Duesseldorf, Duesseldorf, 40225, Germany
| |
Collapse
|
36
|
Nzigou Mombo B, Bijonowski BM, Rasoulinejad S, Mueller M, Wegner SV. Spatiotemporal Control Over Multicellular Migration Using Green Light Reversible Cell-Cell Interactions. Adv Biol (Weinh) 2021; 5:e2000199. [PMID: 34028212 DOI: 10.1002/adbi.202000199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/22/2020] [Indexed: 01/02/2023]
Abstract
The regulation of cell-cell adhesions in space and time plays a crucial role in cell biology, especially in the coordination of multicellular behavior. Therefore, tools that allow for the modulation of cell-cell interactions with high precision are of great interest to a better understanding of their roles and building tissue-like structures. Herein, the green light-responsive protein CarH is expressed at the plasma membrane of cells as an artificial cell adhesion receptor, so that upon addition of its cofactor vitamin B12 specific cell-cell interactions form and lead to cell clustering in a concentration-dependent manner. Upon green light illumination, the CarH based cell-cell interactions disassemble and allow for their reversion with high spatiotemporal control. Moreover, these artificial cell-cell interactions impact cell migration, as observed in a wound-healing assay. When the cells interact with each other in the presence of vitamin B12 in the dark, the cells form on a solid front and migrate collectively; however, under green light illumination, individual cells migrate randomly out of the monolayer. Overall, the possibility of precisely controlling cell-cell interactions and regulating multicellular behavior is a potential pathway to gaining more insight into cell-cell interactions in biological processes.
Collapse
Affiliation(s)
- Brice Nzigou Mombo
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstraße 15, Münster, 48149, Germany
| | - Brent M Bijonowski
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstraße 15, Münster, 48149, Germany
| | - Samaneh Rasoulinejad
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| | - Marc Mueller
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| | - Seraphine V Wegner
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstraße 15, Münster, 48149, Germany.,Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| |
Collapse
|
37
|
Schneider N, Chatelle CV, Ochoa-Fernandez R, Zurbriggen MD, Weber W. Green Light-Controlled Gene Switch for Mammalian and Plant Cells. Methods Mol Biol 2021; 2312:89-107. [PMID: 34228286 DOI: 10.1007/978-1-0716-1441-9_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The quest to engineer increasingly complex synthetic gene networks in mammalian and plant cells requires an ever-growing portfolio of orthogonal gene expression systems. To control gene expression, light is of particular interest due to high spatial and temporal resolution, ease of dosage and simplicity of administration, enabling increasingly sophisticated man-machine interfaces. However, the majority of applied optogenetic switches are crowded in the UVB, blue and red/far-red light parts of the optical spectrum, limiting the number of simultaneously applicable stimuli. This problem is even more pertinent in plant cells, in which UV-A/B, blue, and red light-responsive photoreceptors are already expressed endogenously. To alleviate these challenges, we developed a green light responsive gene switch, based on the light-sensitive bacterial transcription factor CarH from Thermus thermophilus and its cognate DNA operator sequence CarO. The switch is characterized by high reversibility, high transgene expression levels, and low leakiness, leading to up to 350-fold induction ratios in mammalian cells. In this chapter, we describe the essential steps to build functional components of the green light-regulated gene switch, followed by detailed protocols to quantify transgene expression over time in mammalian cells. In addition, we expand this protocol with a description of how the optogenetic switch can be implemented in protoplasts of A. thaliana.
Collapse
Affiliation(s)
- Nils Schneider
- Signalling Research Centres BIOSS and CIBSS and Faculty of Biology, University of Freiburg, Freiburg, Germany.,Celonic AG, Basel, Switzerland
| | - Claire V Chatelle
- Signalling Research Centres BIOSS and CIBSS and Faculty of Biology, University of Freiburg, Freiburg, Germany.,DSM Nutritional Products, Kaiseraugst, Switzerland
| | - Rocio Ochoa-Fernandez
- Institute of Synthetic Biology and iGRAD Plant Graduate School, University of Düsseldorf, Düsseldorf, Germany
| | - Matias D Zurbriggen
- Institute of Synthetic Biology and iGRAD Plant Graduate School, University of Düsseldorf, Düsseldorf, Germany.,CEPLAS-Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Wilfried Weber
- Signalling Research Centres BIOSS and CIBSS and Faculty of Biology, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
38
|
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020; 120:13135-13272. [PMID: 33125209 PMCID: PMC7833475 DOI: 10.1021/acs.chemrev.0c00663] [Citation(s) in RCA: 297] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Collapse
Affiliation(s)
- Roy Weinstain
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Dnyaneshwar Kand
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Petr Klán
- Department
of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
39
|
Yuan G, Hassan MM, Liu D, Lim SD, Yim WC, Cushman JC, Markel K, Shih PM, Lu H, Weston DJ, Chen JG, Tschaplinski TJ, Tuskan GA, Yang X. Biosystems Design to Accelerate C 3-to-CAM Progression. BIODESIGN RESEARCH 2020; 2020:3686791. [PMID: 37849902 PMCID: PMC10521703 DOI: 10.34133/2020/3686791] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 08/21/2020] [Indexed: 10/19/2023] Open
Abstract
Global demand for food and bioenergy production has increased rapidly, while the area of arable land has been declining for decades due to damage caused by erosion, pollution, sea level rise, urban development, soil salinization, and water scarcity driven by global climate change. In order to overcome this conflict, there is an urgent need to adapt conventional agriculture to water-limited and hotter conditions with plant crop systems that display higher water-use efficiency (WUE). Crassulacean acid metabolism (CAM) species have substantially higher WUE than species performing C3 or C4 photosynthesis. CAM plants are derived from C3 photosynthesis ancestors. However, it is extremely unlikely that the C3 or C4 crop plants would evolve rapidly into CAM photosynthesis without human intervention. Currently, there is growing interest in improving WUE through transferring CAM into C3 crops. However, engineering a major metabolic plant pathway, like CAM, is challenging and requires a comprehensive deep understanding of the enzymatic reactions and regulatory networks in both C3 and CAM photosynthesis, as well as overcoming physiometabolic limitations such as diurnal stomatal regulation. Recent advances in CAM evolutionary genomics research, genome editing, and synthetic biology have increased the likelihood of successful acceleration of C3-to-CAM progression. Here, we first summarize the systems biology-level understanding of the molecular processes in the CAM pathway. Then, we review the principles of CAM engineering in an evolutionary context. Lastly, we discuss the technical approaches to accelerate the C3-to-CAM transition in plants using synthetic biology toolboxes.
Collapse
Affiliation(s)
- Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Md. Mahmudul Hassan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Genetics and Plant Breeding, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Degao Liu
- Department of Genetics, Cell Biology and Development, Center for Precision Plant Genomics, and Center for Genome Engineering, University of Minnesota, Saint Paul, MN 55108, USA
| | - Sung Don Lim
- Department of Applied Plant Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Won Cheol Yim
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - John C. Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - Kasey Markel
- Department of Plant Biology, University of California, Davis, Davis, CA, USA
| | - Patrick M. Shih
- Department of Plant Biology, University of California, Davis, Davis, CA, USA
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
| | - Haiwei Lu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - David J. Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Timothy J. Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
40
|
Patron NJ. Beyond natural: synthetic expansions of botanical form and function. THE NEW PHYTOLOGIST 2020; 227:295-310. [PMID: 32239523 PMCID: PMC7383487 DOI: 10.1111/nph.16562] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/03/2020] [Indexed: 05/05/2023]
Abstract
Powered by developments that enabled genome-scale investigations, systems biology emerged as a field aiming to understand how phenotypes emerge from network functions. These advances fuelled a new engineering discipline focussed on synthetic reconstructions of complex biological systems with the goal of predictable rational design and control. Initially, progress in the nascent field of synthetic biology was slow due to the ad hoc nature of molecular biology methods such as cloning. The application of engineering principles such as standardisation, together with several key technical advances, enabled a revolution in the speed and accuracy of genetic manipulation. Combined with mathematical and statistical modelling, this has improved the predictability of engineering biological systems of which nonlinearity and stochasticity are intrinsic features leading to remarkable achievements in biotechnology as well as novel insights into biological function. In the past decade, there has been slow but steady progress in establishing foundations for synthetic biology in plant systems. Recently, this has enabled model-informed rational design to be successfully applied to the engineering of plant gene regulation and metabolism. Synthetic biology is now poised to transform the potential of plant biotechnology. However, reaching full potential will require conscious adjustments to the skillsets and mind sets of plant scientists.
Collapse
Affiliation(s)
- Nicola J. Patron
- Engineering BiologyEarlham InstituteNorwich Research Park, NorwichNorfolkNR4 7UZUK
| |
Collapse
|
41
|
Ochoa-Fernandez R, Abel NB, Wieland FG, Schlegel J, Koch LA, Miller JB, Engesser R, Giuriani G, Brandl SM, Timmer J, Weber W, Ott T, Simon R, Zurbriggen MD. Optogenetic control of gene expression in plants in the presence of ambient white light. Nat Methods 2020; 17:717-725. [PMID: 32601426 DOI: 10.1038/s41592-020-0868-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 02/24/2020] [Accepted: 05/18/2020] [Indexed: 12/22/2022]
Abstract
Optogenetics is the genetic approach for controlling cellular processes with light. It provides spatiotemporal, quantitative and reversible control over biological signaling and metabolic processes, overcoming limitations of chemically inducible systems. However, optogenetics lags in plant research because ambient light required for growth leads to undesired system activation. We solved this issue by developing plant usable light-switch elements (PULSE), an optogenetic tool for reversibly controlling gene expression in plants under ambient light. PULSE combines a blue-light-regulated repressor with a red-light-inducible switch. Gene expression is only activated under red light and remains inactive under white light or in darkness. Supported by a quantitative mathematical model, we characterized PULSE in protoplasts and achieved high induction rates, and we combined it with CRISPR-Cas9-based technologies to target synthetic signaling and developmental pathways. We applied PULSE to control immune responses in plant leaves and generated Arabidopsis transgenic plants. PULSE opens broad experimental avenues in plant research and biotechnology.
Collapse
Affiliation(s)
- Rocio Ochoa-Fernandez
- Institute of Synthetic Biology, University of Düsseldorf, Düsseldorf, Germany.,iGRAD Plant Graduate School, University of Düsseldorf, Düsseldorf, Germany
| | - Nikolaj B Abel
- Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | | | - Jenia Schlegel
- iGRAD Plant Graduate School, University of Düsseldorf, Düsseldorf, Germany.,Institute of Developmental Genetics, University of Düsseldorf, Düsseldorf, Germany
| | - Leonie-Alexa Koch
- Institute of Synthetic Biology, University of Düsseldorf, Düsseldorf, Germany
| | - J Benjamin Miller
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Raphael Engesser
- Institute of Physics, University of Freiburg, Freiburg im Breisgau, Germany
| | - Giovanni Giuriani
- Institute of Synthetic Biology, University of Düsseldorf, Düsseldorf, Germany.,Univeersity of Glasgow, Glasgow, Scotland, UK
| | - Simon M Brandl
- Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Jens Timmer
- Institute of Physics, University of Freiburg, Freiburg im Breisgau, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, Germany
| | - Wilfried Weber
- Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, Germany
| | - Thomas Ott
- Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, Germany
| | - Rüdiger Simon
- iGRAD Plant Graduate School, University of Düsseldorf, Düsseldorf, Germany.,Institute of Developmental Genetics, University of Düsseldorf, Düsseldorf, Germany.,CEPLAS-Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Matias D Zurbriggen
- Institute of Synthetic Biology, University of Düsseldorf, Düsseldorf, Germany. .,iGRAD Plant Graduate School, University of Düsseldorf, Düsseldorf, Germany. .,CEPLAS-Cluster of Excellence on Plant Sciences, Düsseldorf, Germany.
| |
Collapse
|
42
|
Evolution-inspired design of multicolored photoswitches from a single cyanobacteriochrome scaffold. Proc Natl Acad Sci U S A 2020; 117:15573-15580. [PMID: 32571944 DOI: 10.1073/pnas.2004273117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cyanobacteriochromes (CBCRs) are small, bistable linear tetrapyrrole (bilin)-binding light sensors which are typically found as modular components in multidomain cyanobacterial signaling proteins. The CBCR family has been categorized into many lineages that roughly correlate with their spectral diversity, but CBCRs possessing a conserved DXCF motif are found in multiple lineages. DXCF CBCRs typically possess two conserved Cys residues: a first Cys that remains ligated to the bilin chromophore and a second Cys found in the DXCF motif. The second Cys often forms a second thioether linkage, providing a mechanism to sense blue and violet light. DXCF CBCRs have been described with blue/green, blue/orange, blue/teal, and green/teal photocycles, and the molecular basis for some of this spectral diversity has been well established. We here characterize AM1_1499g1, an atypical DXCF CBCR that lacks the second cysteine residue and exhibits an orange/green photocycle. Based on prior studies of CBCR spectral tuning, we have successfully engineered seven AM1_1499g1 variants that exhibit robust yellow/teal, green/teal, blue/teal, orange/yellow, yellow/green, green/green, and blue/green photocycles. The remarkable spectral diversity generated by modification of a single CBCR provides a good template for multiplexing synthetic photobiology systems within the same cellular context, thereby bypassing the time-consuming empirical optimization process needed for multiple probes with different protein scaffolds.
Collapse
|
43
|
Naseri G, Koffas MAG. Application of combinatorial optimization strategies in synthetic biology. Nat Commun 2020; 11:2446. [PMID: 32415065 PMCID: PMC7229011 DOI: 10.1038/s41467-020-16175-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 04/15/2020] [Indexed: 12/26/2022] Open
Abstract
In the first wave of synthetic biology, genetic elements, combined into simple circuits, are used to control individual cellular functions. In the second wave of synthetic biology, the simple circuits, combined into complex circuits, form systems-level functions. However, efforts to construct complex circuits are often impeded by our limited knowledge of the optimal combination of individual circuits. For example, a fundamental question in most metabolic engineering projects is the optimal level of enzymes for maximizing the output. To address this point, combinatorial optimization approaches have been established, allowing automatic optimization without prior knowledge of the best combination of expression levels of individual genes. This review focuses on current combinatorial optimization methods and emerging technologies facilitating their applications.
Collapse
Affiliation(s)
- Gita Naseri
- Institut für Chemie, Humboldt Universität zu Berlin, 12489, Berlin, Germany.
| | - Mattheos A G Koffas
- Center for Biotechnology, Rensselaer Polytechnic Institute, Troy, NY, USA.
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA.
| |
Collapse
|
44
|
Roell MS, Zurbriggen MD. The impact of synthetic biology for future agriculture and nutrition. Curr Opin Biotechnol 2020; 61:102-109. [DOI: 10.1016/j.copbio.2019.10.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/30/2019] [Accepted: 10/14/2019] [Indexed: 12/25/2022]
|
45
|
Redchuk TA, Karasev MM, Verkhusha PV, Donnelly SK, Hülsemann M, Virtanen J, Moore HM, Vartiainen MK, Hodgson L, Verkhusha VV. Optogenetic regulation of endogenous proteins. Nat Commun 2020; 11:605. [PMID: 32001718 PMCID: PMC6992714 DOI: 10.1038/s41467-020-14460-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 01/12/2020] [Indexed: 12/21/2022] Open
Abstract
Techniques of protein regulation, such as conditional gene expression, RNA interference, knock-in and knock-out, lack sufficient spatiotemporal accuracy, while optogenetic tools suffer from non-physiological response due to overexpression artifacts. Here we present a near-infrared light-activatable optogenetic system, which combines the specificity and orthogonality of intrabodies with the spatiotemporal precision of optogenetics. We engineer optically-controlled intrabodies to regulate genomically expressed protein targets and validate the possibility to further multiplex protein regulation via dual-wavelength optogenetic control. We apply this system to regulate cytoskeletal and enzymatic functions of two non-tagged endogenous proteins, actin and RAS GTPase, involved in complex functional networks sensitive to perturbations. The optogenetically-enhanced intrabodies allow fast and reversible regulation of both proteins, as well as simultaneous monitoring of RAS signaling with visible-light biosensors, enabling all-optical approach. Growing number of intrabodies should make their incorporation into optogenetic tools the versatile technology to regulate endogenous targets.
Collapse
Affiliation(s)
- Taras A Redchuk
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, 00790, Finland
| | - Maksim M Karasev
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland
| | - Polina V Verkhusha
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Sara K Donnelly
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Maren Hülsemann
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Jori Virtanen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, 00790, Finland
| | - Henna M Moore
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, 00790, Finland
| | - Maria K Vartiainen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, 00790, Finland
| | - Louis Hodgson
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Vladislav V Verkhusha
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland.
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
46
|
Banerjee S, Mitra D. Structural Basis of Design and Engineering for Advanced Plant Optogenetics. TRENDS IN PLANT SCIENCE 2020; 25:35-65. [PMID: 31699521 DOI: 10.1016/j.tplants.2019.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 09/12/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
In optogenetics, light-sensitive proteins are specifically expressed in target cells and light is used to precisely control the activity of these proteins at high spatiotemporal resolution. Optogenetics initially used naturally occurring photoreceptors to control neural circuits, but has expanded to include carefully designed and engineered photoreceptors. Several optogenetic constructs are based on plant photoreceptors, but their application to plant systems has been limited. Here, we present perspectives on the development of plant optogenetics, considering different levels of design complexity. We discuss how general principles of light-driven signal transduction can be coupled with approaches for engineering protein folding to develop novel optogenetic tools. Finally, we explore how the use of computation, networks, circular permutation, and directed evolution could enrich optogenetics.
Collapse
Affiliation(s)
- Sudakshina Banerjee
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, India
| | - Devrani Mitra
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, India.
| |
Collapse
|
47
|
|
48
|
Hu W, Li Q, Li B, Ma K, Zhang C, Fu X. Optogenetics sheds new light on tissue engineering and regenerative medicine. Biomaterials 2019; 227:119546. [PMID: 31655444 DOI: 10.1016/j.biomaterials.2019.119546] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 01/23/2023]
Abstract
Optogenetics has demonstrated great potential in the fields of tissue engineering and regenerative medicine, from basic research to clinical applications. Spatiotemporal encoding during individual development has been widely identified and is considered a novel strategy for regeneration. A as a noninvasive method with high spatiotemporal resolution, optogenetics are suitable for this strategy. In this review, we discuss roles of dynamic signal coding in cell physiology and embryonic development. Several optogenetic systems are introduced as ideal optogenetic tools, and their features are compared. In addition, potential applications of optogenetics for tissue engineering are discussed, including light-controlled genetic engineering and regulation of signaling pathways. Furthermore, we present how emerging biomaterials and photoelectric technologies have greatly promoted the clinical application of optogenetics and inspired new concepts for optically controlled therapies. Our summation of currently available data conclusively demonstrates that optogenetic tools are a promising method for elucidating and simulating developmental processes, thus providing vast prospects for tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Wenzhi Hu
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China; Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center, Chinese PLA General Hospital, 100048, Beijing, PR China
| | - Qiankun Li
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China; Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center, Chinese PLA General Hospital, 100048, Beijing, PR China
| | - Bingmin Li
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China; Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center, Chinese PLA General Hospital, 100048, Beijing, PR China
| | - Kui Ma
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center, Chinese PLA General Hospital, 100048, Beijing, PR China
| | - Cuiping Zhang
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center, Chinese PLA General Hospital, 100048, Beijing, PR China.
| | - Xiaobing Fu
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China; Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center, Chinese PLA General Hospital, 100048, Beijing, PR China.
| |
Collapse
|
49
|
Padmanabhan S, Pérez-Castaño R, Elías-Arnanz M. B12-based photoreceptors: from structure and function to applications in optogenetics and synthetic biology. Curr Opin Struct Biol 2019; 57:47-55. [DOI: 10.1016/j.sbi.2019.01.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 12/14/2022]
|
50
|
Lukinović V, Woodward JR, Marrafa TC, Shanmugam M, Heyes DJ, Hardman SJO, Scrutton NS, Hay S, Fielding AJ, Jones AR. Photochemical Spin Dynamics of the Vitamin B 12 Derivative, Methylcobalamin. J Phys Chem B 2019; 123:4663-4672. [PMID: 31081330 DOI: 10.1021/acs.jpcb.9b01969] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Derivatives of vitamin B12 are six-coordinate cobalt corrinoids found in humans, other animals, and microorganisms. By acting as enzymatic cofactors and photoreceptor chromophores, they serve vital metabolic and photoprotective functions. Depending on the context, the chemical mechanisms of the biologically active derivatives of B12-methylcobalamin (MeCbl) and 5'-deoxyadenosylcobalamin (AdoCbl)-can be very different from one another. The extent to which this chemistry is tuned by the upper axial ligand, however, is not yet clear. Here, we have used a combination of time-resolved Fourier transform-electron paramagnetic resonance (FT-EPR), magnetic field effect experiments, and spin dynamic simulations to reveal that the upper axial ligand alone only results in relatively minor changes to the photochemical spin dynamics of B12. By studying the photolysis of MeCbl, we find that, similar to AdoCbl, the initial (or "geminate") radical pairs (RPs) are born predominantly in the singlet spin state and thus originate from singlet excited-state precursors. This is in contrast to the triplet RPs and precursors proposed previously. Unlike AdoCbl, the extent of geminate recombination is limited following MeCbl photolysis, resulting in significant distortions to the FT-EPR signal caused by polarization from spin-correlated methyl-methyl radical "f-pairs" formed following rapid diffusion. Despite the photophysical mechanism that precedes photolysis of MeCbl showing wavelength dependence, the subsequent spin dynamics appear to be largely independent of excitation wavelength, again similar to AdoCbl. Our data finally provide clarity to what in the literature to date has been a confused and contradictory picture. We conclude that, although the upper axial position of MeCbl and AdoCbl does impact their reactivity to some extent, the remarkable biochemical diversity of these fascinating molecules is most likely a result of tuning by their protein environment.
Collapse
Affiliation(s)
- Valentina Lukinović
- Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| | - Jonathan R Woodward
- Graduate School of Arts and Sciences , The University of Tokyo , 3-8-1 Komaba , Meguro-ku, Tokyo 153-8902 , Japan
| | - Teresa C Marrafa
- Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| | - Muralidharan Shanmugam
- Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| | - Derren J Heyes
- Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| | - Samantha J O Hardman
- Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| | - Sam Hay
- Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| | | | - Alex R Jones
- Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| |
Collapse
|