1
|
Meng X, Hu G, Li X, Gao C, Song W, Wei W, Wu J, Liu L. A synthetic methylotroph achieves accelerated cell growth by alleviating transcription-replication conflicts. Nat Commun 2025; 16:31. [PMID: 39747058 PMCID: PMC11695965 DOI: 10.1038/s41467-024-55502-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
Microbial utilization of methanol for valorization is an effective way to advance green bio-manufacturing technology. Although synthetic methylotrophs have been developed, strategies to enhance their cell growth rate and internal regulatory mechanism remain underexplored. In this study, we design a synthetic methanol assimilation (SMA) pathway containing only six enzymes linked to central carbon metabolism, which does not require energy and carbon emissions. Through rational design and laboratory evolution, E. coli harboring with the SMA pathway is converted into a synthetic methylotroph. By self-adjusting the expression of TOPAI (topoisomerase I inhibitor) to alleviate transcriptional-replication conflicts (TRCs), the doubling time of methylotrophic E. coli is reduced to 4.5 h, approaching that of natural methylotrophs. This work has the potential to overcome the growth limitation of C1-assimilating microbes and advance the development of a circular carbon economy.
Collapse
Affiliation(s)
- Xin Meng
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wux, China
| | - Guipeng Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Xiaomin Li
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wux, China
| | - Cong Gao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wux, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Wanqing Wei
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wux, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Liming Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wux, China.
| |
Collapse
|
2
|
Schann K, Bakker J, Boinot M, Kuschel P, He H, Nattermann M, Paczia N, Erb T, Bar‐Even A, Wenk S. Design, construction and optimization of formaldehyde growth biosensors with broad application in biotechnology. Microb Biotechnol 2024; 17:e14527. [PMID: 39031508 PMCID: PMC11259041 DOI: 10.1111/1751-7915.14527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 07/02/2024] [Indexed: 07/22/2024] Open
Abstract
Formaldehyde is a key metabolite in natural and synthetic one-carbon metabolism. To facilitate the engineering of formaldehyde-producing enzymes, the development of sensitive, user-friendly, and cost-effective detection methods is required. In this study, we engineered Escherichia coli to serve as a cellular biosensor capable of detecting a broad range of formaldehyde concentrations. Using both natural and promiscuous formaldehyde assimilation enzymes, we designed three distinct E. coli growth biosensor strains that depend on formaldehyde for cell growth. These strains were engineered to be auxotrophic for one or several essential metabolites that could be produced through formaldehyde assimilation. The respective assimilating enzyme was expressed from the genome to compensate the auxotrophy in the presence of formaldehyde. We first predicted the formaldehyde dependency of the biosensors by flux balance analysis and then analysed it experimentally. Subsequent to strain engineering, we enhanced the formaldehyde sensitivity of two biosensors either through adaptive laboratory evolution or modifications at metabolic branch points. The final set of biosensors demonstrated the ability to detect formaldehyde concentrations ranging approximately from 30 μM to 13 mM. We demonstrated the application of the biosensors by assaying the in vivo activity of different methanol dehydrogenases in the most sensitive strain. The fully genomic nature of the biosensors allows them to be deployed as "plug-and-play" devices for high-throughput screenings of extensive enzyme libraries. The formaldehyde growth biosensors developed in this study hold significant promise for advancing the field of enzyme engineering, thereby supporting the establishment of a sustainable one-carbon bioeconomy.
Collapse
Affiliation(s)
- Karin Schann
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Jenny Bakker
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Maximilian Boinot
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Pauline Kuschel
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Hai He
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
| | | | - Nicole Paczia
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
| | - Tobias Erb
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
| | - Arren Bar‐Even
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Sebastian Wenk
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| |
Collapse
|
3
|
Orsi E, Schada von Borzyskowski L, Noack S, Nikel PI, Lindner SN. Automated in vivo enzyme engineering accelerates biocatalyst optimization. Nat Commun 2024; 15:3447. [PMID: 38658554 PMCID: PMC11043082 DOI: 10.1038/s41467-024-46574-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/04/2024] [Indexed: 04/26/2024] Open
Abstract
Achieving cost-competitive bio-based processes requires development of stable and selective biocatalysts. Their realization through in vitro enzyme characterization and engineering is mostly low throughput and labor-intensive. Therefore, strategies for increasing throughput while diminishing manual labor are gaining momentum, such as in vivo screening and evolution campaigns. Computational tools like machine learning further support enzyme engineering efforts by widening the explorable design space. Here, we propose an integrated solution to enzyme engineering challenges whereby ML-guided, automated workflows (including library generation, implementation of hypermutation systems, adapted laboratory evolution, and in vivo growth-coupled selection) could be realized to accelerate pipelines towards superior biocatalysts.
Collapse
Affiliation(s)
- Enrico Orsi
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | | | - Stephan Noack
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Steffen N Lindner
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany.
- Department of Biochemistry, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, 10117, Berlin, Germany.
| |
Collapse
|
4
|
Schulz-Mirbach H, Dronsella B, He H, Erb TJ. Creating new-to-nature carbon fixation: A guide. Metab Eng 2024; 82:12-28. [PMID: 38160747 DOI: 10.1016/j.ymben.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Synthetic biology aims at designing new biological functions from first principles. These new designs allow to expand the natural solution space and overcome the limitations of naturally evolved systems. One example is synthetic CO2-fixation pathways that promise to provide more efficient ways for the capture and conversion of CO2 than natural pathways, such as the Calvin Benson Bassham (CBB) cycle of photosynthesis. In this review, we provide a practical guideline for the design and realization of such new-to-nature CO2-fixation pathways. We introduce the concept of "synthetic CO2-fixation", and give a general overview over the enzymology and topology of synthetic pathways, before we derive general principles for their design from their eight naturally evolved analogs. We provide a comprehensive summary of synthetic carbon-assimilation pathways and derive a step-by-step, practical guide from the theoretical design to their practical implementation, before ending with an outlook on new developments in the field.
Collapse
Affiliation(s)
- Helena Schulz-Mirbach
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Beau Dronsella
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany; Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Hai He
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Tobias J Erb
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany; Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Str. 16, D-35043, Marburg, Germany.
| |
Collapse
|
5
|
Nie M, Wang J, Zhang K. Engineering a Novel Acetyl-CoA Pathway for Efficient Biosynthesis of Acetyl-CoA-Derived Compounds. ACS Synth Biol 2024; 13:358-369. [PMID: 38151239 DOI: 10.1021/acssynbio.3c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Acetyl-CoA is an essential central metabolite in living organisms and a key precursor for various value-added products as well. However, the intracellular availability of acetyl-CoA limits the efficient production of these target products due to complex and strict regulation. Here, we proposed a new acetyl-CoA pathway, relying on two enzymes, threonine aldolase and acetaldehyde dehydrogenase (acetylating), which can convert one l-threonine into one acetyl-CoA, one glycine, and generate one NADH, without carbon loss. Introducing the acetyl-CoA pathway could increase the intracellular concentration of acetyl-CoA by 8.6-fold compared with the wild-type strain. To develop a cost-competitive and genetically stable acetyl-CoA platform strain, the new acetyl-CoA pathway, driven by the constitutive strong promoter, was integrated into the chromosome of Escherichia coli. We demonstrated the practical application of this new acetyl-CoA pathway by high titer production of β-alanine, mevalonate, and N-acetylglucosamine. At the same time, this pathway achieved a high-yield production of glycine, a value-added commodity chemical for the synthesis of glyphosate and thiamphenicol. This work shows the potential of this new acetyl-CoA pathway for the industrial production of acetyl-CoA-derived compounds.
Collapse
Affiliation(s)
- Mengzhen Nie
- Zhejiang University, Hangzhou, Zhejiang 310027, China
- Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Jingyu Wang
- Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Kechun Zhang
- Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| |
Collapse
|
6
|
Wu T, Gómez-Coronado PA, Kubis A, Lindner SN, Marlière P, Erb TJ, Bar-Even A, He H. Engineering a synthetic energy-efficient formaldehyde assimilation cycle in Escherichia coli. Nat Commun 2023; 14:8490. [PMID: 38123535 PMCID: PMC10733421 DOI: 10.1038/s41467-023-44247-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
One-carbon (C1) substrates, such as methanol or formate, are attractive feedstocks for circular bioeconomy. These substrates are typically converted into formaldehyde, serving as the entry point into metabolism. Here, we design an erythrulose monophosphate (EuMP) cycle for formaldehyde assimilation, leveraging a promiscuous dihydroxyacetone phosphate dependent aldolase as key enzyme. In silico modeling reveals that the cycle is highly energy-efficient, holding the potential for high bioproduct yields. Dissecting the EuMP into four modules, we use a stepwise strategy to demonstrate in vivo feasibility of the modules in E. coli sensor strains with sarcosine as formaldehyde source. From adaptive laboratory evolution for module integration, we identify key mutations enabling the accommodation of the EuMP reactions with endogenous metabolism. Overall, our study demonstrates the proof-of-concept for a highly efficient, new-to-nature formaldehyde assimilation pathway, opening a way for the development of a methylotrophic platform for a C1-fueled bioeconomy in the future.
Collapse
Affiliation(s)
- Tong Wu
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Biochemistry, Charitéplatz 1, 10117, Berlin, Germany
| | - Paul A Gómez-Coronado
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Armin Kubis
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Steffen N Lindner
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Biochemistry, Charitéplatz 1, 10117, Berlin, Germany
| | - Philippe Marlière
- TESSSI, The European Syndicate of Synthetic Scientists and Industrialists, 81 rue Réaumur, 75002, Paris, France
| | - Tobias J Erb
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Hai He
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany.
| |
Collapse
|
7
|
Kang DK, Kim SH, Sohn JH, Sung BH. Insights into Enzyme Reactions with Redox Cofactors in Biological Conversion of CO 2. J Microbiol Biotechnol 2023; 33:1403-1411. [PMID: 37482811 DOI: 10.4014/jmb.2306.06005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023]
Abstract
Carbon dioxide (CO2) is the most abundant component of greenhouse gases (GHGs) and directly creates environmental issues such as global warming and climate change. Carbon capture and storage have been proposed mainly to solve the problem of increasing CO2 concentration in the atmosphere; however, more emphasis has recently been placed on its use. Among the many methods of using CO2, one of the key environmentally friendly technologies involves biologically converting CO2 into other organic substances such as biofuels, chemicals, and biomass via various metabolic pathways. Although an efficient biocatalyst for industrial applications has not yet been developed, biological CO2 conversion is the needed direction. To this end, this review briefly summarizes seven known natural CO2 fixation pathways according to carbon number and describes recent studies in which natural CO2 assimilation systems have been applied to heterogeneous in vivo and in vitro systems. In addition, studies on the production of methanol through the reduction of CO2 are introduced. The importance of redox cofactors, which are often overlooked in the CO2 assimilation reaction by enzymes, is presented; methods for their recycling are proposed. Although more research is needed, biological CO2 conversion will play an important role in reducing GHG emissions and producing useful substances in terms of resource cycling.
Collapse
Affiliation(s)
- Du-Kyeong Kang
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Biosystems and Bioengineering, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Seung-Hwa Kim
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Biosystems and Bioengineering, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Jung-Hoon Sohn
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Biosystems and Bioengineering, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Bong Hyun Sung
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Biosystems and Bioengineering, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
8
|
Qian J, Fan L, Yang J, Feng J, Gao N, Cheng G, Pu W, Zhou W, Cai T, Li S, Zheng P, Sun J, Wang D, Wang Y. Directed evolution of a neutrophilic and mesophilic methanol dehydrogenase based on high-throughput and accurate measurement of formaldehyde. Synth Syst Biotechnol 2023; 8:386-395. [PMID: 37342805 PMCID: PMC10277290 DOI: 10.1016/j.synbio.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/01/2023] [Accepted: 05/21/2023] [Indexed: 06/23/2023] Open
Abstract
Methanol is a promising one-carbon feedstock for biomanufacturing, which can be sustainably produced from carbon dioxide and natural gas. However, the efficiency of methanol bioconversion is limited by the poor catalytic properties of nicotinamide adenine dinucleotide (NAD+)-dependent methanol dehydrogenase (Mdh) that oxidizes methanol to formaldehyde. Herein, the neutrophilic and mesophilic NAD+-dependent Mdh from Bacillus stearothermophilus DSM 2334 (MdhBs) was subjected to directed evolution for enhancing the catalytic activity. The combination of formaldehyde biosensor and Nash assay allowed high-throughput and accurate measurement of formaldehyde and facilitated efficient selection of desired variants. MdhBs variants with up to 6.5-fold higher Kcat/KM value for methanol were screened from random mutation libraries. The T153 residue that is spatially proximal to the substrate binding pocket has significant influence on enzyme activity. The beneficial T153P mutation changes the interaction network of this residue and breaks the α-helix important for substrate binding into two short α-helices. Reconstructing the interaction network of T153 with surrounding residues may represent a promising strategy to further improve MdhBs, and this study provides an efficient strategy for directed evolution of Mdh.
Collapse
Affiliation(s)
- Jin Qian
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300222, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Liwen Fan
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jinxing Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Jinhui Feng
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Ning Gao
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guimin Cheng
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300222, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Wei Pu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Wenjuan Zhou
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Tao Cai
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Shuang Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Ping Zheng
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jibin Sun
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Depei Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300222, China
| | - Yu Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300222, China
- Haihe Laboratory of Synthetic Biology, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
9
|
Sarwar A, Lee EY. Methanol-based biomanufacturing of fuels and chemicals using native and synthetic methylotrophs. Synth Syst Biotechnol 2023; 8:396-415. [PMID: 37384124 PMCID: PMC10293595 DOI: 10.1016/j.synbio.2023.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/03/2023] [Accepted: 06/04/2023] [Indexed: 06/30/2023] Open
Abstract
Methanol has recently gained significant attention as a potential carbon substrate for the production of fuels and chemicals, owing to its high degree of reduction, abundance, and low price. Native methylotrophic yeasts and bacteria have been investigated for the production of fuels and chemicals. Alternatively, synthetic methylotrophic strains are also being developed by reconstructing methanol utilization pathways in model microorganisms, such as Escherichia coli. Owing to the complex metabolic pathways, limited availability of genetic tools, and methanol/formaldehyde toxicity, the high-level production of target products for industrial applications are still under development to satisfy commercial feasibility. This article reviews the production of biofuels and chemicals by native and synthetic methylotrophic microorganisms. It also highlights the advantages and limitations of both types of methylotrophs and provides an overview of ways to improve their efficiency for the production of fuels and chemicals from methanol.
Collapse
Affiliation(s)
- Arslan Sarwar
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| |
Collapse
|
10
|
Arevalo Villa C, Marienhagen J, Noack S, Wahl SA. Achieving net zero CO 2 emission in the biobased production of reduced platform chemicals using defined co-feeding of methanol. Curr Opin Biotechnol 2023; 82:102967. [PMID: 37441841 DOI: 10.1016/j.copbio.2023.102967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023]
Abstract
Next-generation bioprocesses of a future bio-based economy will rely on a flexible mix of readily available feedstocks. Renewable energy can be used to generate sustainable CO2-derived substrates. Metabolic engineering already enables the functional implementation of different pathways for the assimilation of C1 substrates in various microorganisms. In addition to feedstocks, the benchmark for all future bioprocesses will be sustainability, including the avoidance of CO2 emissions. Here we review recent advances in the utilization of C1-compounds from different perspectives, considering both strain and bioprocess engineering technologies. In particular, we evaluate methanol as a co-feed for enabling the CO2 emission-free production of acetyl-CoA-derived compounds. The possible metabolic strategies are analyzed using stoichiometric modeling combined with thermodynamic analysis and prospects for industrial-scale implementation are discussed.
Collapse
Affiliation(s)
- Carlos Arevalo Villa
- Lehrstuhl für Bioverfahrenstechnik, Friedrich Alexander Universität Erlangen-Nürnberg, D-91052 Erlangen, Germany
| | - Jan Marienhagen
- Institute of Bio, and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany; Institute of Biotechnology, RWTH Aachen University, D-52074 Aachen, Germany
| | - Stephan Noack
- Institute of Bio, and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | - Sebastian Aljoscha Wahl
- Lehrstuhl für Bioverfahrenstechnik, Friedrich Alexander Universität Erlangen-Nürnberg, D-91052 Erlangen, Germany.
| |
Collapse
|
11
|
Bierbaumer S, Nattermann M, Schulz L, Zschoche R, Erb TJ, Winkler CK, Tinzl M, Glueck SM. Enzymatic Conversion of CO 2: From Natural to Artificial Utilization. Chem Rev 2023; 123:5702-5754. [PMID: 36692850 PMCID: PMC10176493 DOI: 10.1021/acs.chemrev.2c00581] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Indexed: 01/25/2023]
Abstract
Enzymatic carbon dioxide fixation is one of the most important metabolic reactions as it allows the capture of inorganic carbon from the atmosphere and its conversion into organic biomass. However, due to the often unfavorable thermodynamics and the difficulties associated with the utilization of CO2, a gaseous substrate that is found in comparatively low concentrations in the atmosphere, such reactions remain challenging for biotechnological applications. Nature has tackled these problems by evolution of dedicated CO2-fixing enzymes, i.e., carboxylases, and embedding them in complex metabolic pathways. Biotechnology employs such carboxylating and decarboxylating enzymes for the carboxylation of aromatic and aliphatic substrates either by embedding them into more complex reaction cascades or by shifting the reaction equilibrium via reaction engineering. This review aims to provide an overview of natural CO2-fixing enzymes and their mechanistic similarities. We also discuss biocatalytic applications of carboxylases and decarboxylases for the synthesis of valuable products and provide a separate summary of strategies to improve the efficiency of such processes. We briefly summarize natural CO2 fixation pathways, provide a roadmap for the design and implementation of artificial carbon fixation pathways, and highlight examples of biocatalytic cascades involving carboxylases. Additionally, we suggest that biochemical utilization of reduced CO2 derivates, such as formate or methanol, represents a suitable alternative to direct use of CO2 and provide several examples. Our discussion closes with a techno-economic perspective on enzymatic CO2 fixation and its potential to reduce CO2 emissions.
Collapse
Affiliation(s)
- Sarah Bierbaumer
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Maren Nattermann
- Department
of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | - Luca Schulz
- Department
of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | | | - Tobias J. Erb
- Department
of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | - Christoph K. Winkler
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Matthias Tinzl
- Department
of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | - Silvia M. Glueck
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| |
Collapse
|
12
|
Aslam S, Jing Y, Nowak KM. Fate of glyphosate and its degradation products AMPA, glycine and sarcosine in an agricultural soil: Implications for environmental risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130847. [PMID: 36696778 DOI: 10.1016/j.jhazmat.2023.130847] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
Glyphosate can be biodegraded via the aminomethylphosponic acid (AMPA) and the sarcosine/glycine pathway leading to the formation of three intermediate products AMPA, sarcosine or glycine. The fate of the three intermediate compounds of glyphosate biodegradation including nature of non-extractable residues (NERs; harmless biogenic [NERsbiogenic] versus hazardous xenobiotic [NERsxenobiotic]) in soils has not been investigated yet. This information is crucial for an assessment of environmental risks related to the speciation of glyphosate-derived NERs which may stem from glyphosate intermediates. Therefore, we incubated 13C- and 15N-labeled glyphosate (2-13C,15N-glyphosate) and its degradation product AMPA (13C,15N-AMPA), sarcosine (13C3,15N-sarcosine) or glycine (13C2,15N-glycine) in an agricultural soil separately for a period of 75 days. 13C2-glycine and 13C3-sarcosine mineralized rapidly compared to 2-13C-glyphosate and 13C-AMPA. The mineralization of 13C-AMPA was lowest among all four compounds due to its persistent nature. Only 0.5% of the initially added 2-13C,15N-glyphosate and still about 30% of the initially added 13C,15N-AMPA was extracted from soil after 75 days. The NERs formed from 13C,15N-AMPA were mostly NERsxenobiotic as compared to other three compounds for which significant amounts of NERsbiogenic were determined. We noticed 2-13C,15N-glyphosate was biodegraded via two biodegradation pathways simultaneously; however, the sarcosine/glycine pathway with the formation of harmless NERsbiogenic presumably dominated.
Collapse
Affiliation(s)
- Sohaib Aslam
- Department of Environmental Biotechnology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany; Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany; Department of Environmental Sciences, Forman Christian College (A Chartered University), Ferozepur Road, 54600 Lahore, Pakistan
| | - Yuying Jing
- Department of Environmental Biotechnology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Karolina M Nowak
- Department of Environmental Biotechnology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany.
| |
Collapse
|
13
|
Naizabekov S, Hyun SW, Na JG, Yoon S, Lee OK, Lee EY. Comparative genomic analysis of Methylocystis sp. MJC1 as a platform strain for polyhydroxybutyrate biosynthesis. PLoS One 2023; 18:e0284846. [PMID: 37163531 PMCID: PMC10171618 DOI: 10.1371/journal.pone.0284846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/06/2023] [Indexed: 05/12/2023] Open
Abstract
Biodegradable polyhydroxybutyrate (PHB) can be produced from methane by some type II methanotroph such as the genus Methylocystis. This study presents the comparative genomic analysis of a newly isolated methanotroph, Methylocystis sp. MJC1 as a biodegradable PHB-producing platform strain. Methylocystis sp. MJC1 accumulates up to 44.5% of PHB based on dry cell weight under nitrogen-limiting conditions. To facilitate its development as a PHB-producing platform strain, the complete genome sequence of Methylocystis sp. MJC1 was assembled, functionally annotated, and compared with genomes of other Methylocystis species. Phylogenetic analysis has shown that Methylocystis parvus to be the closest species to Methylocystis sp. MJC1. Genome functional annotation revealed that Methylocystis sp. MJC1 contains all major type II methanotroph biochemical pathways such as the serine cycle, EMC pathway, and Krebs cycle. Interestingly, Methylocystis sp. MJC1 has both particulate and soluble methane monooxygenases, which are not commonly found among Methylocystis species. In addition, this species also possesses most of the RuMP pathway reactions, a characteristic of type I methanotrophs, and all PHB biosynthetic genes. These comparative analysis would open the possibility of future practical applications such as the development of organism-specific genome-scale models and application of metabolic engineering strategies to Methylocystis sp. MJC1.
Collapse
Affiliation(s)
- Sanzhar Naizabekov
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Seung Woon Hyun
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Jeong-Geol Na
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
| | - Sukhwan Yoon
- Department of Civil & Environmental Engineering, Korea Advanced Institute of Science & Technology, Daejeon, Republic of Korea
| | - Ok Kyung Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
14
|
Qiao W, Xu S, Liu Z, Fu X, Zhao H, Shi S. Challenges and opportunities in C1-based biomanufacturing. BIORESOURCE TECHNOLOGY 2022; 364:128095. [PMID: 36220528 DOI: 10.1016/j.biortech.2022.128095] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The intensifying impact of green-house gas (GHG) emission on environment and climate change has attracted increasing attention, and biorefinery represents one of the most effective routes for reducing GHG emissions from human activities. However, this requires a shift for microbial fermentation from the current use of sugars to the use of biomass, and even better to the primary fixation of single carbon (C1) compounds. Here how microorganisms can be engineered for fixation and conversion of C1 compounds into metabolites that can serve as fuels and platform chemicals are reviewed. Meanwhile, key factors for utilization of these different pathways are discussed, followed by challenges and barriers for the development of C1-based biorefinery.
Collapse
Affiliation(s)
- Weibo Qiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shijie Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zihe Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoying Fu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
15
|
Orsi E, Claassens NJ, Nikel PI, Lindner SN. Optimizing microbial networks through metabolic bypasses. Biotechnol Adv 2022; 60:108035. [PMID: 36096403 DOI: 10.1016/j.biotechadv.2022.108035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 01/29/2023]
Abstract
Metabolism has long been considered as a relatively stiff set of biochemical reactions. This somewhat outdated and dogmatic view has been challenged over the last years, as multiple studies exposed unprecedented plasticity of metabolism by exploring rational and evolutionary modifications within the metabolic network of cell factories. Of particular importance is the emergence of metabolic bypasses, which consist of enzymatic reaction(s) that support unnatural connections between metabolic nodes. Such novel topologies can be generated through the introduction of heterologous enzymes or by upregulating native enzymes (sometimes relying on promiscuous activities thereof). Altogether, the adoption of bypasses resulted in an expansion in the capacity of the host's metabolic network, which can be harnessed for bioproduction. In this review, we discuss modifications to the canonical architecture of central carbon metabolism derived from such bypasses towards six optimization purposes: stoichiometric gain, overcoming kinetic limitations, solving thermodynamic barriers, circumventing toxic intermediates, uncoupling product synthesis from biomass formation, and altering redox cofactor specificity. The metabolic costs associated with bypass-implementation are likewise discussed, including tailoring their design towards improving bioproduction.
Collapse
Affiliation(s)
- Enrico Orsi
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Nico J Claassens
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Steffen N Lindner
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; Department of Biochemistry, Charité Universitätsmedizin, Virchowweg 6, 10117 Berlin, Germany.
| |
Collapse
|
16
|
Keller P, Reiter MA, Kiefer P, Gassler T, Hemmerle L, Christen P, Noor E, Vorholt JA. Generation of an Escherichia coli strain growing on methanol via the ribulose monophosphate cycle. Nat Commun 2022; 13:5243. [PMID: 36068201 PMCID: PMC9448777 DOI: 10.1038/s41467-022-32744-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
Methanol is a liquid with high energy storage capacity that holds promise as an alternative substrate to replace sugars in the biotechnology industry. It can be produced from CO2 or methane and its use does not compete with food and animal feed production. However, there are currently only limited biotechnological options for the valorization of methanol, which hinders its widespread adoption. Here, we report the conversion of the industrial platform organism Escherichia coli into a synthetic methylotroph that assimilates methanol via the energy efficient ribulose monophosphate cycle. Methylotrophy is achieved after evolution of a methanol-dependent E. coli strain over 250 generations in continuous chemostat culture. We demonstrate growth on methanol and biomass formation exclusively from the one-carbon source by 13C isotopic tracer analysis. In line with computational modeling, the methylotrophic E. coli strain optimizes methanol oxidation by upregulation of an improved methanol dehydrogenase, increasing ribulose monophosphate cycle activity, channeling carbon flux through the Entner-Doudoroff pathway and downregulating tricarboxylic acid cycle enzymes. En route towards sustainable bioproduction processes, our work lays the foundation for the efficient utilization of methanol as the dominant carbon and energy resource. Using one carbon compounds as feedstock is a promising approach in abating climate change. Here, the authors report the conversion of E. coli into a synthetic methylotroph that assimilates methanol via the ribulose monophosphate cycle and a set of distinctive mutations.
Collapse
Affiliation(s)
- Philipp Keller
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093, Zurich, Switzerland
| | - Michael A Reiter
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093, Zurich, Switzerland
| | - Patrick Kiefer
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093, Zurich, Switzerland
| | - Thomas Gassler
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093, Zurich, Switzerland
| | - Lucas Hemmerle
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093, Zurich, Switzerland.,Laboratory for Environmental Biotechnology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Philipp Christen
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093, Zurich, Switzerland
| | - Elad Noor
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Julia A Vorholt
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093, Zurich, Switzerland.
| |
Collapse
|
17
|
Massad N, Banta S. Development of a Kinetic Model and Figures of Merit for Formaldehyde Carboligations Catalyzed by Formolase Enzymes. Biotechnol Bioeng 2022; 119:3140-3148. [DOI: 10.1002/bit.28217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Nadim Massad
- Department of Chemical EngineeringColumbia UniversityNew YorkNYUSA
| | - Scott Banta
- Department of Chemical EngineeringColumbia UniversityNew YorkNYUSA
| |
Collapse
|
18
|
Brott S, Thomas F, Behrens M, Methling K, Bartosik D, Dutschei T, Lalk M, Michel G, Schweder T, Bornscheuer U. Connecting algal polysaccharide degradation to formaldehyde detoxification. Chembiochem 2022; 23:e202200269. [PMID: 35561127 PMCID: PMC9400963 DOI: 10.1002/cbic.202200269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Indexed: 11/22/2022]
Abstract
Formaldehyde is a toxic metabolite that is formed in large quantities during bacterial utilization of the methoxy sugar 6‐O‐methyl‐d‐galactose, an abundant monosaccharide in the red algal polysaccharide porphyran. Marine bacteria capable of metabolizing porphyran must therefore possess suitable detoxification systems for formaldehyde. We demonstrate here that detoxification of formaldehyde in the marine Flavobacterium Zobellia galactanivorans proceeds via the ribulose monophosphate pathway. Simultaneously, we show that the genes encoding the key enzymes of this pathway are important for maintaining high formaldehyde resistance. Additionally, these genes are upregulated in the presence of porphyran, allowing us to connect porphyran degradation to the detoxification of formed formaldehyde.
Collapse
Affiliation(s)
- Stefan Brott
- Universität Greifswald: Universitat Greifswald, Institute of Biochemistry, GERMANY
| | | | - Maike Behrens
- University of Greifswald: Universitat Greifswald, Institute of Biochemistry, GERMANY
| | - Karen Methling
- Universität Greifswald: Universitat Greifswald, Institute of Biochemistry, GERMANY
| | - Daniel Bartosik
- Universität Greifswald: Universitat Greifswald, Institute of Pharmacy, GERMANY
| | - Theresa Dutschei
- Universität Greifswald: Universitat Greifswald, Institute of Biochemistry, GERMANY
| | - Michael Lalk
- Universität Greifswald: Universitat Greifswald, Institute of Biochemistry, GERMANY
| | - Gurvan Michel
- Sorbonne Universite, Station Biologique de Roscoff, FRANCE
| | - Thomas Schweder
- Universität Greifswald: Universitat Greifswald, Institute of Pharmacy, GERMANY
| | - Uwe Bornscheuer
- Greifswald University, Dept. of Biotechnology & Enzyme Catalysis, Felix-Hausdorff-Str. 4, 17487, Greifswald, GERMANY
| |
Collapse
|
19
|
Klein VJ, Irla M, Gil López M, Brautaset T, Fernandes Brito L. Unravelling Formaldehyde Metabolism in Bacteria: Road towards Synthetic Methylotrophy. Microorganisms 2022; 10:microorganisms10020220. [PMID: 35208673 PMCID: PMC8879981 DOI: 10.3390/microorganisms10020220] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/26/2022] Open
Abstract
Formaldehyde metabolism is prevalent in all organisms, where the accumulation of formaldehyde can be prevented through the activity of dissimilation pathways. Furthermore, formaldehyde assimilatory pathways play a fundamental role in many methylotrophs, which are microorganisms able to build biomass and obtain energy from single- and multicarbon compounds with no carbon–carbon bonds. Here, we describe how formaldehyde is formed in the environment, the mechanisms of its toxicity to the cells, and the cell’s strategies to circumvent it. While their importance is unquestionable for cell survival in formaldehyde rich environments, we present examples of how the modification of native formaldehyde dissimilation pathways in nonmethylotrophic bacteria can be applied to redirect carbon flux toward heterologous, synthetic formaldehyde assimilation pathways introduced into their metabolism. Attempts to engineer methylotrophy into nonmethylotrophic hosts have gained interest in the past decade, with only limited successes leading to the creation of autonomous synthetic methylotrophy. Here, we discuss how native formaldehyde assimilation pathways can additionally be employed as a premise to achieving synthetic methylotrophy. Lastly, we discuss how emerging knowledge on regulation of formaldehyde metabolism can contribute to creating synthetic regulatory circuits applied in metabolic engineering strategies.
Collapse
|
20
|
Wang J, Anderson K, Yang E, He L, Lidstrom ME. Enzyme engineering and in vivo testing of a formate reduction pathway. Synth Biol (Oxf) 2021; 6:ysab020. [PMID: 34651085 PMCID: PMC8511477 DOI: 10.1093/synbio/ysab020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 07/08/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022] Open
Abstract
Formate is an attractive feedstock for sustainable microbial production of fuels and chemicals, but its potential is limited by the lack of efficient assimilation pathways. The reduction of formate to formaldehyde would allow efficient downstream assimilation, but no efficient enzymes are known for this transformation. To develop a 2-step formate reduction pathway, we screened natural variants of acyl-CoA synthetase (ACS) and acylating aldehyde dehydrogenase (ACDH) for activity on one-carbon substrates and identified active and highly expressed homologs of both enzymes. We then performed directed evolution, increasing ACDH-specific activity by 2.5-fold and ACS lysate activity by 5-fold. To test for the in vivo activity of our pathway, we expressed it in a methylotroph which can natively assimilate formaldehyde. Although the enzymes were active in cell extracts, we could not detect formate assimilation into biomass, indicating that further improvement will be required for formatotrophy. Our work provides a foundation for further development of a versatile pathway for formate assimilation.
Collapse
Affiliation(s)
- Jue Wang
- Department of Chemical Engineering, University of Washington, Seattle, DC, USA
| | - Karl Anderson
- Department of Chemical Engineering, University of Washington, Seattle, DC, USA
| | - Ellen Yang
- Department of Chemical Engineering, University of Washington, Seattle, DC, USA
| | - Lian He
- Department of Chemical Engineering, University of Washington, Seattle, DC, USA
| | - Mary E Lidstrom
- Department of Chemical Engineering, University of Washington, Seattle, DC, USA
| |
Collapse
|
21
|
Löwe H, Kremling A. In-Depth Computational Analysis of Natural and Artificial Carbon Fixation Pathways. BIODESIGN RESEARCH 2021; 2021:9898316. [PMID: 37849946 PMCID: PMC10521678 DOI: 10.34133/2021/9898316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/02/2021] [Indexed: 10/19/2023] Open
Abstract
In the recent years, engineering new-to-nature CO2- and C1-fixing metabolic pathways made a leap forward. New, artificial pathways promise higher yields and activity than natural ones like the Calvin-Benson-Bassham (CBB) cycle. The question remains how to best predict their in vivo performance and what actually makes one pathway "better" than another. In this context, we explore aerobic carbon fixation pathways by a computational approach and compare them based on their specific activity and yield on methanol, formate, and CO2/H2 considering the kinetics and thermodynamics of the reactions. Besides pathways found in nature or implemented in the laboratory, this included two completely new cycles with favorable features: the reductive citramalyl-CoA cycle and the 2-hydroxyglutarate-reverse tricarboxylic acid cycle. A comprehensive kinetic data set was collected for all enzymes of all pathways, and missing kinetic data were sampled with the Parameter Balancing algorithm. Kinetic and thermodynamic data were fed to the Enzyme Cost Minimization algorithm to check for respective inconsistencies and calculate pathway-specific activities. The specific activities of the reductive glycine pathway, the CETCH cycle, and the new reductive citramalyl-CoA cycle were predicted to match the best natural cycles with superior product-substrate yield. However, the CBB cycle performed better in terms of activity compared to the alternative pathways than previously thought. We make an argument that stoichiometric yield is likely not the most important design criterion of the CBB cycle. Still, alternative carbon fixation pathways were paretooptimal for specific activity and product-substrate yield in simulations with C1 substrates and CO2/H2 and therefore hold great potential for future applications in Industrial Biotechnology and Synthetic Biology.
Collapse
Affiliation(s)
- Hannes Löwe
- Systems Biotechnology, Technical University of Munich, Germany
| | | |
Collapse
|
22
|
Fan L, Wang Y, Qian J, Gao N, Zhang Z, Ni X, Sun L, Yuan Q, Zheng P, Sun J. Transcriptome analysis reveals the roles of nitrogen metabolism and sedoheptulose bisphosphatase pathway in methanol-dependent growth of Corynebacterium glutamicum. Microb Biotechnol 2021; 14:1797-1808. [PMID: 34132489 PMCID: PMC8313271 DOI: 10.1111/1751-7915.13863] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/22/2021] [Indexed: 11/29/2022] Open
Abstract
Methanol is a promising feedstock for biomanufacturing of fuels and chemicals. Although efforts have been made to engineer platform microorganisms for methanol bioconversion, the substrate uptake and cell growth rates on methanol are still unsatisfactory, suggesting certain limiting factors remain unsolved. Herein, we analysed the global metabolic regulation changes between an evolved methanol-dependent Corynebacterium glutamicum mutant and its ancestral strain by transcriptome analysis. Many genes involved in central metabolism including glycolysis, amino acid biosynthesis and energy generation were regulated, implying the adaptive laboratory evolution reprogrammed the cellular metabolism for methanol utilization. We then demonstrated that nitrate could serve as a complementary electron acceptor for aerobic methanol metabolism, and the biosynthesis of several amino acids limited methylotrophic growth. Finally, the sedoheptulose bisphosphatase pathway for generating methanol assimilation acceptor was found effective in C. glutamicum. This study identifies limiting factors of methanol metabolism and provides engineering targets for developing superior synthetic methylotrophs.
Collapse
Affiliation(s)
- Liwen Fan
- School of Life SciencesUniversity of Science and Technology of ChinaHefei230026China
- Key Laboratory of Systems Microbial BiotechnologyTianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjin300308China
| | - Yu Wang
- Key Laboratory of Systems Microbial BiotechnologyTianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjin300308China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jin Qian
- Key Laboratory of Systems Microbial BiotechnologyTianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjin300308China
- College of BiotechnologyTianjin University of Science and TechnologyTianjin300457China
| | - Ning Gao
- Key Laboratory of Systems Microbial BiotechnologyTianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjin300308China
- University of Chinese Academy of SciencesBeijing100049China
| | - Zhihui Zhang
- Key Laboratory of Systems Microbial BiotechnologyTianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjin300308China
- University of Chinese Academy of SciencesBeijing100049China
| | - Xiaomeng Ni
- Key Laboratory of Systems Microbial BiotechnologyTianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjin300308China
| | - Letian Sun
- Key Laboratory of Systems Microbial BiotechnologyTianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjin300308China
- University of Chinese Academy of SciencesBeijing100049China
| | - Qianqian Yuan
- Key Laboratory of Systems Microbial BiotechnologyTianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjin300308China
| | - Ping Zheng
- School of Life SciencesUniversity of Science and Technology of ChinaHefei230026China
- Key Laboratory of Systems Microbial BiotechnologyTianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjin300308China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jibin Sun
- Key Laboratory of Systems Microbial BiotechnologyTianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjin300308China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
23
|
Meng H, Wang C, Yuan Q, Ren J, Zeng AP. An Aldolase-Based New Pathway for Bioconversion of Formaldehyde and Ethanol into 1,3-Propanediol in Escherichia coli. ACS Synth Biol 2021; 10:799-809. [PMID: 33729768 DOI: 10.1021/acssynbio.0c00597] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Formaldehyde (HCHO) is a reactive one-carbon compound that is interesting for biosynthesis. The assimilation of HCHO depends on the catalysis of aldolase. Here, we present a novel synthetic pathway in E. coli to convert HCHO and ethanol into 1,3-propanediol (PDO) using a deoxyribose-5-phosphate aldolase (DERA). DERA condenses HCHO and acetaldehyde to form 3-hydroxypropionaldehyde, the direct precursor of PDO formation. This new pathway opens up the possibility to synthesize an appealing C3 compound from a C1 compound and a C2 compound without carbon loss in contrast to all the other known PDO synthetic pathways where typically 30-50% of the carbons are lost as CO2 and other byproducts. The pathway is successfully demonstrated by elaborating three metabolic modules. First, DERA from Thermotoga maritima was found to be efficient for the aldol condensation and PDO production module. For the module of acetaldehyde supply from ethanol, an alcohol dehydrogenase from Hansenula polymorpha was selected. For the HCHO supply module, the control of HCHO concentration and its utilization were shown to be important for achieving the assimilation of HCHO in recombinant E. coli cells. By deleting the gene frmA for endogenous conversion of HCHO to formate and controlling HCHO at a level of about 0.6 mM, the concentration and yield of PDO were increased from initially 5.67 mM (0.43 g/L) and 0.057 mol/mol to 17.35 mM (1.32 g/L) and 0.096 mol/mol in bioconversion of ethanol and HCHO with resting E. coli cells. Further engineering of DERA and the HCHO supply module is necessary to realize the potential of this promising metabolic pathway.
Collapse
Affiliation(s)
- Hao Meng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, 100029 Beijing, China
| | - Chuang Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, 100029 Beijing, China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Jie Ren
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, 100029 Beijing, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agriproduct Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - An-Ping Zeng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, 100029 Beijing, China
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, D-21073 Hamburg, Germany
| |
Collapse
|
24
|
Satanowski A, Dronsella B, Noor E, Vögeli B, He H, Wichmann P, Erb TJ, Lindner SN, Bar-Even A. Awakening a latent carbon fixation cycle in Escherichia coli. Nat Commun 2020; 11:5812. [PMID: 33199707 PMCID: PMC7669889 DOI: 10.1038/s41467-020-19564-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Carbon fixation is one of the most important biochemical processes. Most natural carbon fixation pathways are thought to have emerged from enzymes that originally performed other metabolic tasks. Can we recreate the emergence of a carbon fixation pathway in a heterotrophic host by recruiting only endogenous enzymes? In this study, we address this question by systematically analyzing possible carbon fixation pathways composed only of Escherichia coli native enzymes. We identify the GED (Gnd-Entner-Doudoroff) cycle as the simplest pathway that can operate with high thermodynamic driving force. This autocatalytic route is based on reductive carboxylation of ribulose 5-phosphate (Ru5P) by 6-phosphogluconate dehydrogenase (Gnd), followed by reactions of the Entner-Doudoroff pathway, gluconeogenesis, and the pentose phosphate pathway. We demonstrate the in vivo feasibility of this new-to-nature pathway by constructing E. coli gene deletion strains whose growth on pentose sugars depends on the GED shunt, a linear variant of the GED cycle which does not require the regeneration of Ru5P. Several metabolic adaptations, most importantly the increased production of NADPH, assist in establishing sufficiently high flux to sustain this growth. Our study exemplifies a trajectory for the emergence of carbon fixation in a heterotrophic organism and demonstrates a synthetic pathway of biotechnological interest.
Collapse
Affiliation(s)
- Ari Satanowski
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Beau Dronsella
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Elad Noor
- Institute of Molecular Systems Biology, ETH Zürich, Otto-Stern-Weg 3, 8093, Zürich, Switzerland
| | - Bastian Vögeli
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043, Marburg, Germany
| | - Hai He
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Philipp Wichmann
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Tobias J Erb
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043, Marburg, Germany.,Center for Synthetic Microbiology (SYNMIKRO), 35043, Marburg, Germany
| | - Steffen N Lindner
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany.
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
25
|
Adaptive laboratory evolution of native methanol assimilation in Saccharomyces cerevisiae. Nat Commun 2020; 11:5564. [PMID: 33149159 PMCID: PMC7643182 DOI: 10.1038/s41467-020-19390-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/05/2020] [Indexed: 01/22/2023] Open
Abstract
Utilising one-carbon substrates such as carbon dioxide, methane, and methanol is vital to address the current climate crisis. Methylotrophic metabolism enables growth and energy generation from methanol, providing an alternative to sugar fermentation. Saccharomyces cerevisiae is an important industrial microorganism for which growth on one-carbon substrates would be relevant. However, its ability to metabolize methanol has been poorly characterised. Here, using adaptive laboratory evolution and 13C-tracer analysis, we discover that S. cerevisiae has a native capacity for methylotrophy. A systems biology approach reveals that global rearrangements in central carbon metabolism fluxes, gene expression changes, and a truncation of the uncharacterized transcriptional regulator Ygr067cp supports improved methylotrophy in laboratory evolved S. cerevisiae. This research paves the way for further biotechnological development and fundamental understanding of methylotrophy in the preeminent eukaryotic model organism and industrial workhorse, S. cerevisiae. Methylotrophic metabolism enables growth on methanol, an alternative to sugar fermentation. Here the authors use adaptive laboratory evolution to uncover native methylotrophy capacity in Saccharomyces cerevisiae.
Collapse
|
26
|
Keller P, Noor E, Meyer F, Reiter MA, Anastassov S, Kiefer P, Vorholt JA. Methanol-dependent Escherichia coli strains with a complete ribulose monophosphate cycle. Nat Commun 2020; 11:5403. [PMID: 33106470 PMCID: PMC7588473 DOI: 10.1038/s41467-020-19235-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
Methanol is a biotechnologically promising substitute for food and feed substrates since it can be produced renewably from electricity, water and CO2. Although progress has been made towards establishing Escherichia coli as a platform organism for methanol conversion via the energy efficient ribulose monophosphate (RuMP) cycle, engineering strains that rely solely on methanol as a carbon source remains challenging. Here, we apply flux balance analysis to comprehensively identify methanol-dependent strains with high potential for adaptive laboratory evolution. We further investigate two out of 1200 candidate strains, one with a deletion of fructose-1,6-bisphosphatase (fbp) and another with triosephosphate isomerase (tpiA) deleted. In contrast to previous reported methanol-dependent strains, both feature a complete RuMP cycle and incorporate methanol to a high degree, with up to 31 and 99% fractional incorporation into RuMP cycle metabolites. These strains represent ideal starting points for evolution towards a fully methylotrophic lifestyle.
Collapse
Affiliation(s)
- Philipp Keller
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093, Zurich, Switzerland
| | - Elad Noor
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, 8093, Zurich, Switzerland
| | - Fabian Meyer
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093, Zurich, Switzerland
| | - Michael A Reiter
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093, Zurich, Switzerland
| | - Stanislav Anastassov
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093, Zurich, Switzerland
| | - Patrick Kiefer
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093, Zurich, Switzerland
| | - Julia A Vorholt
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093, Zurich, Switzerland.
| |
Collapse
|
27
|
Wenk S, Schann K, He H, Rainaldi V, Kim S, Lindner SN, Bar-Even A. An "energy-auxotroph" Escherichia coli provides an in vivo platform for assessing NADH regeneration systems. Biotechnol Bioeng 2020; 117:3422-3434. [PMID: 32658302 DOI: 10.1002/bit.27490] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/01/2020] [Accepted: 07/09/2020] [Indexed: 12/18/2022]
Abstract
An efficient in vivo regeneration of the primary cellular resources NADH and ATP is vital for optimizing the production of value-added chemicals and enabling the activity of synthetic pathways. Currently, such regeneration routes are tested and characterized mainly in vitro before being introduced into the cell. However, in vitro measurements could be misleading as they do not reflect enzyme activity under physiological conditions. Here, we construct an in vivo platform to test and compare NADH regeneration systems. By deleting dihydrolipoyl dehydrogenase in Escherichia coli, we abolish the activity of pyruvate dehydrogenase and 2-ketoglutarate dehydrogenase. When cultivated on acetate, the resulting strain is auxotrophic to NADH and ATP: acetate can be assimilated via the glyoxylate shunt but cannot be oxidized to provide the cell with reducing power and energy. This strain can, therefore, serve to select for and test different NADH regeneration routes. We exemplify this by comparing several NAD-dependent formate dehydrogenases and methanol dehydrogenases. We identify the most efficient enzyme variants under in vivo conditions and pinpoint optimal feedstock concentrations that maximize NADH biosynthesis while avoiding cellular toxicity. Our strain thus provides a useful platform for comparing and optimizing enzymatic systems for cofactor regeneration under physiological conditions.
Collapse
Affiliation(s)
- Sebastian Wenk
- Systems and Synthetic Metabolism Lab, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Karin Schann
- Systems and Synthetic Metabolism Lab, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Hai He
- Systems and Synthetic Metabolism Lab, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Vittorio Rainaldi
- Systems and Synthetic Metabolism Lab, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Seohyoung Kim
- Systems and Synthetic Metabolism Lab, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Steffen N Lindner
- Systems and Synthetic Metabolism Lab, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Arren Bar-Even
- Systems and Synthetic Metabolism Lab, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| |
Collapse
|
28
|
De Simone A, Vicente CM, Peiro C, Gales L, Bellvert F, Enjalbert B, Heux S. Mixing and matching methylotrophic enzymes to design a novel methanol utilization pathway in E. coli. Metab Eng 2020; 61:315-325. [PMID: 32687991 DOI: 10.1016/j.ymben.2020.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 01/23/2023]
Abstract
One-carbon (C1) compounds, such as methanol, have recently gained attention as alternative low-cost and non-food feedstocks for microbial bioprocesses. Considerable research efforts are thus currently focused on the generation of synthetic methylotrophs by transferring methanol assimilation pathways into established bacterial production hosts. In this study, we used an iterative combination of dry and wet approaches to design, implement and optimize this metabolic trait in the most common chassis, E. coli. Through in silico modelling, we designed a new route that "mixed and matched" two methylotrophic enzymes: a bacterial methanol dehydrogenase (Mdh) and a dihydroxyacetone synthase (Das) from yeast. To identify the best combination of enzymes to introduce into E. coli, we built a library of 266 pathway variants containing different combinations of Mdh and Das homologues and screened it using high-throughput 13C-labeling experiments. The highest level of incorporation of methanol into central metabolism intermediates (e.g. 22% into the PEP), was obtained using a variant composed of a Mdh from A. gerneri and a codon-optimized version of P. angusta Das. Finally, the activity of this new synthetic pathway was further improved by engineering strategic metabolic targets identified using omics and modelling approaches. The final synthetic strain had 1.5 to 5.9 times higher methanol assimilation in intracellular metabolites and proteinogenic amino acids than the starting strain did. Broadening the repertoire of methanol assimilation pathways is one step further toward synthetic methylotrophy in E. coli.
Collapse
Affiliation(s)
- A De Simone
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - C M Vicente
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - C Peiro
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - L Gales
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France; MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, 31077, France
| | - F Bellvert
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France; MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, 31077, France
| | - B Enjalbert
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - S Heux
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.
| |
Collapse
|
29
|
Tuyishime P, Sinumvayo JP. Novel outlook in engineering synthetic methylotrophs and formatotrophs: a course for advancing C1-based chemicals production. World J Microbiol Biotechnol 2020; 36:118. [DOI: 10.1007/s11274-020-02899-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022]
|
30
|
Genome-scale metabolic models of Microbacterium species isolated from a high altitude desert environment. Sci Rep 2020; 10:5560. [PMID: 32221328 PMCID: PMC7101325 DOI: 10.1038/s41598-020-62130-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/28/2020] [Indexed: 01/09/2023] Open
Abstract
The Atacama Desert is the most arid desert on Earth, focus of important research activities related to microbial biodiversity studies. In this context, metabolic characterization of arid soil bacteria is crucial to understand their survival strategies under extreme environmental stress. We investigated whether strain-specific features of two Microbacterium species were involved in the metabolic ability to tolerate/adapt to local variations within an extreme desert environment. Using an integrative systems biology approach we have carried out construction and comparison of genome-scale metabolic models (GEMs) of two Microbacterium sp., CGR1 and CGR2, previously isolated from physicochemically contrasting soil sites in the Atacama Desert. Despite CGR1 and CGR2 belong to different phylogenetic clades, metabolic pathways and attributes are highly conserved in both strains. However, comparison of the GEMs showed significant differences in the connectivity of specific metabolites related to pH tolerance and CO2 production. The latter is most likely required to handle acidic stress through decarboxylation reactions. We observed greater GEM connectivity within Microbacterium sp. CGR1 compared to CGR2, which is correlated with the capacity of CGR1 to tolerate a wider pH tolerance range. Both metabolic models predict the synthesis of pigment metabolites (β-carotene), observation validated by HPLC experiments. Our study provides a valuable resource to further investigate global metabolic adaptations of bacterial species to grow in soils with different abiotic factors within an extreme environment.
Collapse
|
31
|
Formate Utilization by the Crenarchaeon Desulfurococcus amylolyticus. Microorganisms 2020; 8:microorganisms8030454. [PMID: 32210133 PMCID: PMC7143981 DOI: 10.3390/microorganisms8030454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 12/03/2022] Open
Abstract
Formate is one of the key compounds of the microbial carbon and/or energy metabolism. It owes a significant contribution to various anaerobic syntrophic associations, and may become one of the energy storage compounds of modern energy biotechnology. Microbial growth on formate was demonstrated for different bacteria and archaea, but not yet for species of the archaeal phylum Crenarchaeota. Here, we show that Desulfurococcus amylolyticus DSM 16532, an anaerobic and hyperthermophilic Crenarchaeon, metabolises formate without the production of molecular hydrogen. Growth, substrate uptake, and production kinetics on formate, glucose, and glucose/formate mixtures exhibited similar specific growth rates and similar final cell densities. A whole cell conversion experiment on formate revealed that D. amylolyticus converts formate into carbon dioxide, acetate, citrate, and ethanol. Using bioinformatic analysis, we examined whether one of the currently known and postulated formate utilisation pathways could be operative in D. amylolyticus. This analysis indicated the possibility that D. amylolyticus uses formaldehyde producing enzymes for the assimilation of formate. Therefore, we propose that formate might be assimilated into biomass through formaldehyde dehydrogenase and the oxidative pentose phosphate pathway. These findings shed new light on the metabolic versatility of the archaeal phylum Crenarchaeota.
Collapse
|
32
|
He H, Höper R, Dodenhöft M, Marlière P, Bar-Even A. An optimized methanol assimilation pathway relying on promiscuous formaldehyde-condensing aldolases in E. coli. Metab Eng 2020; 60:1-13. [PMID: 32169542 DOI: 10.1016/j.ymben.2020.03.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/26/2020] [Accepted: 03/06/2020] [Indexed: 12/20/2022]
Abstract
Engineering biotechnological microorganisms to use methanol as a feedstock for bioproduction is a major goal for the synthetic metabolism community. Here, we aim to redesign the natural serine cycle for implementation in E. coli. We propose the homoserine cycle, relying on two promiscuous formaldehyde aldolase reactions, as a superior pathway design. The homoserine cycle is expected to outperform the serine cycle and its variants with respect to biomass yield, thermodynamic favorability, and integration with host endogenous metabolism. Even as compared to the RuMP cycle, the most efficient naturally occurring methanol assimilation route, the homoserine cycle is expected to support higher yields of a wide array of products. We test the in vivo feasibility of the homoserine cycle by constructing several E. coli gene deletion strains whose growth is coupled to the activity of different pathway segments. Using this approach, we demonstrate that all required promiscuous enzymes are active enough to enable growth of the auxotrophic strains. Our findings thus identify a novel metabolic solution that opens the way to an optimized methylotrophic platform.
Collapse
Affiliation(s)
- Hai He
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Rune Höper
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Moritz Dodenhöft
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Philippe Marlière
- TESSSI, The European Syndicate of Synthetic Scientists and Industrialists, 81 rue Réaumur, 75002, Paris, France.
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
| |
Collapse
|
33
|
In Vivo Rate of Formaldehyde Condensation with Tetrahydrofolate. Metabolites 2020; 10:metabo10020065. [PMID: 32059429 PMCID: PMC7073904 DOI: 10.3390/metabo10020065] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/28/2022] Open
Abstract
Formaldehyde is a highly reactive compound that participates in multiple spontaneous reactions, but these are mostly deleterious and damage cellular components. In contrast, the spontaneous condensation of formaldehyde with tetrahydrofolate (THF) has been proposed to contribute to the assimilation of this intermediate during growth on C1 carbon sources such as methanol. However, the in vivo rate of this condensation reaction is unknown and its possible contribution to growth remains elusive. Here, we used microbial platforms to assess the rate of this condensation in the cellular environment. We constructed Escherichia coli strains lacking the enzymes that naturally produce 5,10-methylene-THF. These strains were able to grow on minimal medium only when equipped with a sarcosine (N-methyl-glycine) oxidation pathway that sustained a high cellular concentration of formaldehyde, which spontaneously reacts with THF to produce 5,10-methylene-THF. We used flux balance analysis to derive the rate of the spontaneous condensation from the observed growth rate. According to this, we calculated that a microorganism obtaining its entire biomass via the spontaneous condensation of formaldehyde with THF would have a doubling time of more than three weeks. Hence, this spontaneous reaction is unlikely to serve as an effective route for formaldehyde assimilation.
Collapse
|
34
|
Renewable methanol and formate as microbial feedstocks. Curr Opin Biotechnol 2019; 62:168-180. [PMID: 31733545 DOI: 10.1016/j.copbio.2019.10.002] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/23/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022]
Abstract
Methanol and formate are attractive microbial feedstocks as they can be sustainably produced from CO2 and renewable energy, are completely miscible, and are easy to store and transport. Here, we provide a biochemical perspective on microbial growth and bioproduction using these compounds. We show that anaerobic growth of acetogens on methanol and formate is more efficient than on H2/CO2 or CO. We analyze the aerobic C1 assimilation pathways and suggest that new-to-nature routes could outperform their natural counterparts. We further discuss practical bioprocessing aspects related to growth on methanol and formate, including feedstock toxicity. While challenges in realizing sustainable production from methanol and formate still exist, the utilization of these feedstocks paves the way towards a truly circular carbon economy.
Collapse
|
35
|
Zhao C, Zhang Y, Li Y. Production of fuels and chemicals from renewable resources using engineered Escherichia coli. Biotechnol Adv 2019; 37:107402. [DOI: 10.1016/j.biotechadv.2019.06.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 05/23/2019] [Accepted: 06/02/2019] [Indexed: 02/06/2023]
|
36
|
Desmons S, Fauré R, Bontemps S. Formaldehyde as a Promising C1 Source: The Instrumental Role of Biocatalysis for Stereocontrolled Reactions. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03128] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Sarah Desmons
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France
- TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Régis Fauré
- TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | | |
Collapse
|
37
|
Aslan S, Noor E, Benito Vaquerizo S, Lindner SN, Bar-Even A. Design and engineering of E. coli metabolic sensor strains with a wide sensitivity range for glycerate. Metab Eng 2019; 57:96-109. [PMID: 31491545 DOI: 10.1016/j.ymben.2019.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/05/2019] [Accepted: 09/02/2019] [Indexed: 11/16/2022]
Abstract
Microbial biosensors are used to detect the presence of compounds provided externally or produced internally. The latter case is commonly constrained by the need to screen a large library of enzyme or pathway variants to identify those that can efficiently generate the desired compound. To address this limitation, we suggest the use of metabolic sensor strains which can grow only if the relevant compound is present and thus replace screening with direct selection. We used a computational platform to design metabolic sensor strains with varying dependencies on a specific compound. Our method systematically explores combinations of gene deletions and identifies how the growth requirement for a compound changes with the media composition. We demonstrate this approach by constructing a set of E. coli glycerate sensor strains. In each of these strains a different set of enzymes is disrupted such that central metabolism is effectively dissected into multiple segments, each requiring a dedicated carbon source. We find an almost perfect match between the predicted and experimental dependence on glycerate and show that the strains can be used to accurately detect glycerate concentrations across two orders of magnitude. Apart from demonstrating the potential application of metabolic sensor strains, our work reveals key phenomena in central metabolism, including spontaneous degradation of central metabolites and the importance of metabolic sinks for balancing small metabolic networks.
Collapse
Affiliation(s)
- Selçuk Aslan
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Elad Noor
- Institute of Molecular Systems Biology, ETH Zürich, Otto-Stern-Weg 3, 8093, Zürich, Switzerland
| | - Sara Benito Vaquerizo
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Steffen N Lindner
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
| |
Collapse
|
38
|
Antoniewicz MR. Synthetic methylotrophy: Strategies to assimilate methanol for growth and chemicals production. Curr Opin Biotechnol 2019; 59:165-174. [PMID: 31437746 DOI: 10.1016/j.copbio.2019.07.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 11/29/2022]
Abstract
Methanol is an attractive and broadly available substrate for large-scale bioproduction of fuels and chemicals. It contains more energy and electrons per carbon than carbohydrates and can be cheaply produced from natural gas. Synthetic methylotrophy refers to the development of non-native methylotrophs such as Escherichia coli and Corynebacterium glutamicum to utilize methanol as a carbon source. Here, we discuss recent advances in engineering these industrial hosts to assimilate methanol for growth and chemicals production through the introduction of the ribulose monophosphate (RuMP) cycle. In addition, we present novel strategies based on flux coupling and adaptive laboratory evolution to engineer new strains that can grow exclusively on methanol.
Collapse
Affiliation(s)
- Maciek R Antoniewicz
- Department of Chemical and Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, Newark DE 19716, USA.
| |
Collapse
|
39
|
Zeng AP. New bioproduction systems for chemicals and fuels: Needs and new development. Biotechnol Adv 2019; 37:508-518. [DOI: 10.1016/j.biotechadv.2019.01.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/04/2019] [Accepted: 01/05/2019] [Indexed: 11/17/2022]
|
40
|
A critical comparison of cellular and cell-free bioproduction systems. Curr Opin Biotechnol 2019; 60:221-229. [PMID: 31207555 DOI: 10.1016/j.copbio.2019.05.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/07/2019] [Indexed: 12/22/2022]
Abstract
Conversion of biological feedstocks into value-added chemicals is mostly performed via microbial fermentation. An emerging alternative approach is the use of cell-free systems, consisting of purified enzymes and cofactors. Unfortunately, the in vivo and in vitro research communities rarely interact, which leads to oversimplifications and exaggerations that do not permit fair comparison of the two strategies and impede synergistic interactions. Here, we provide a comprehensive account for the advantages and drawbacks associated with each strategy, and further discuss recent research efforts that aim to breach the limits of cellular and cell-free production. We also explore emerging hybrid solutions that integrate the benefits of both worlds and could expand the boundaries of biosynthesis.
Collapse
|
41
|
Synthetic methanol auxotrophy of Escherichia coli for methanol-dependent growth and production. Metab Eng 2018; 49:257-266. [PMID: 30172686 DOI: 10.1016/j.ymben.2018.08.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/22/2018] [Accepted: 08/28/2018] [Indexed: 02/06/2023]
Abstract
Methanol is a potentially attractive substrate for bioproduction of chemicals because of the abundance of natural gas and biogas-derived methane. To move towards utilizing methanol as a sole carbon source, here we engineer an Escherichia coli strain to couple methanol utilization with growth on five-carbon (C5) sugars. By deleting essential genes in the pentose phosphate pathway for pentose utilization and expressing heterologous enzymes from the ribulose-monophosphate (RuMP) pathway, we constructed a strain that cannot grow on xylose or ribose minimal media unless methanol is utilized, creating a phenotype termed "synthetic methanol auxotrophy". Our best strains were able to utilize methanol for growth at a rate of 0.17 ± 0.006 (h-1) with methanol and xylose co-assimilation at a molar ratio of approximately 1:1. Genome sequencing and reversion of mutations indicated that mutations on genes encoding for adenylate cyclase (cyaA) and the formaldehyde detoxification operon (frmRAB) were necessary for the growth phenotype. The methanol auxotrophic strain was further engineered to produce ethanol or 1-butanol to final titers of 4.6 g/L and 2.0 g/L, respectively. 13C tracing showed that 43% and 71% of ethanol and 1-butanol produced had labeled carbon derived from methanol, respectively.
Collapse
|
42
|
Pontrelli S, Fricke RCB, Sakurai SSM, Putri SP, Fitz-Gibbon S, Chung M, Wu HY, Chen YJ, Pellegrini M, Fukusaki E, Liao JC. Directed strain evolution restructures metabolism for 1-butanol production in minimal media. Metab Eng 2018; 49:153-163. [PMID: 30107263 DOI: 10.1016/j.ymben.2018.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 06/30/2018] [Accepted: 08/10/2018] [Indexed: 01/02/2023]
Abstract
Engineering a microbial strain for production sometimes entails metabolic modifications that impair essential physiological processes for growth or production. Restoring these functions may require amending a variety of non-obvious physiological networks, and thus, rational design strategies may not be practical. Here we demonstrate that growth and production may be restored by evolution that repairs impaired metabolic function. Furthermore, we use genomics, metabolomics and proteomics to identify several underlying mutations and metabolic perturbations that allow metabolism to repair. Previously, high titers of butanol production were achieved by Escherichia coli using a growth-coupled, modified Clostridial CoA-dependent pathway after all native fermentative pathways were deleted. However, production was only observed in rich media. Native metabolic function of the host was unable to support growth and production in minimal media. We use directed cell evolution to repair this phenotype and observed improved growth, titers and butanol yields. We found a mutation in pcnB which resulted in decreased plasmid copy numbers and pathway enzymes to balance resource utilization. Increased protein abundance was measured for biosynthetic pathways, glycolytic enzymes have increased activity, and adenosyl energy charge was increased. We also found mutations in the ArcAB two-component system and integration host factor (IHF) that tune redox metabolism to alter byproduct formation. These results demonstrate that directed strain evolution can enable systematic adaptations to repair metabolic function and enhance microbial production. Furthermore, these results demonstrate the versatile repair capabilities of cell metabolism and highlight important aspects of cell physiology that are required for production in minimal media.
Collapse
Affiliation(s)
- Sammy Pontrelli
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles (UCLA), United States
| | - Riley C B Fricke
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles (UCLA), United States
| | | | - Sastia Prama Putri
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Japan
| | - Sorel Fitz-Gibbon
- Institute of Genomics and Proteomics, University of California, Los Angeles, United States
| | - Matthew Chung
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles (UCLA), United States
| | - Hsin-Yi Wu
- Instrumentation Center, National Taiwan University, Taipei, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Matteo Pellegrini
- Institute of Genomics and Proteomics, University of California, Los Angeles, United States; Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, United States
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Japan
| | - James C Liao
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|