1
|
Li Z, Wang X, Hu G, Li X, Song W, Wei W, Liu L, Gao C. Engineering metabolic flux for the microbial synthesis of aromatic compounds. Metab Eng 2024; 88:94-112. [PMID: 39724940 DOI: 10.1016/j.ymben.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/10/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Microbial cell factories have emerged as a sustainable alternative to traditional chemical synthesis and plant extraction methods for producing aromatic compounds. However, achieving economically viable production of these compounds in microbial systems remains a significant challenge. This review summarizes the latest advancements in metabolic flux regulation during the microbial production of aromatic compounds, providing an overview of its applications and practical outcomes. Various strategies aimed at improving the utilization of extracellular substrates, enhancing the efficiency of synthetic pathways for target products, and rewiring intracellular metabolic networks to boost the titer, yield, and productivity of aromatic compounds are discussed. Additionally, the persistent challenges in this field and potential solutions are highlighted.
Collapse
Affiliation(s)
- Zhendong Li
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Xianghe Wang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Guipeng Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xiaomin Li
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Wanqing Wei
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Liming Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Cong Gao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
2
|
Tönjes S, Uitterhaegen E, Palmans I, Ibach B, De Winter K, Van Dijck P, Soetaert W, Vandecruys P. Metabolic Engineering and Process Intensification for Muconic Acid Production Using Saccharomyces cerevisiae. Int J Mol Sci 2024; 25:10245. [PMID: 39408575 PMCID: PMC11476194 DOI: 10.3390/ijms251910245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/20/2024] Open
Abstract
The efficient production of biobased organic acids is crucial to move to a more sustainable and eco-friendly economy, where muconic acid is gaining interest as a versatile platform chemical to produce industrial building blocks, including adipic acid and terephthalic acid. In this study, a Saccharomyces cerevisiae platform strain able to convert glucose and xylose into cis,cis-muconic acid was further engineered to eliminate C2 dependency, improve muconic acid tolerance, enhance production and growth performance, and substantially reduce the side production of the intermediate protocatechuic acid. This was achieved by reintroducing the PDC5 gene and overexpression of QDR3 genes. The improved strain was integrated in low-pH fed-batch fermentations at bioreactor scale with integrated in situ product recovery. By adding a biocompatible organic phase consisting of CYTOP 503 and canola oil to the process, a continuous extraction of muconic acid was achieved, resulting in significant alleviation of product inhibition. Through this, the muconic acid titer and peak productivity were improved by 300% and 185%, respectively, reaching 9.3 g/L and 0.100 g/L/h in the in situ product recovery process as compared to 3.1 g/L and 0.054 g/L/h in the control process without ISPR.
Collapse
Affiliation(s)
- Sinah Tönjes
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (S.T.)
- Bio Base Europe Pilot Plant (BBEPP), 9042 Ghent, Belgium
| | | | - Ilse Palmans
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, 3001 Leuven, Belgium; (I.P.); (P.V.D.); (P.V.)
| | - Birthe Ibach
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, 3001 Leuven, Belgium; (I.P.); (P.V.D.); (P.V.)
| | | | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, 3001 Leuven, Belgium; (I.P.); (P.V.D.); (P.V.)
| | - Wim Soetaert
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (S.T.)
- Bio Base Europe Pilot Plant (BBEPP), 9042 Ghent, Belgium
| | - Paul Vandecruys
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, 3001 Leuven, Belgium; (I.P.); (P.V.D.); (P.V.)
| |
Collapse
|
3
|
Blaga AC, Dragoi EN, Tucaliuc A, Kloetzer L, Puitel AC, Cascaval D, Galaction AI. Reactive extraction of muconic acid by hydrophobic phosphonium ionic liquids - Experimental, modelling and optimisation with Artificial Neural Networks. Heliyon 2024; 10:e36113. [PMID: 39247304 PMCID: PMC11379585 DOI: 10.1016/j.heliyon.2024.e36113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/17/2024] [Accepted: 08/09/2024] [Indexed: 09/10/2024] Open
Abstract
Muconic acid is a six-carbon dicarboxylic acid with conjugated double bonds that finds extensive use in the food (additive), chemical (production of adipic acid, monomer for functional resins and bio-plastics), and pharmaceutical sectors. The biosynthesis of muconic acid has been the subject of recent industrial and scientific attention. However, because of its low concentration in aqueous solutions and high purity requirement, downstream separation presents a significant problem. Artificial Neural Networks and Differential Evolution were used to optimize process parameters for the recovery of muconic acid from aqueous streams in a system with n-heptane as an organic diluent and ionic liquids as extractants. The system using 120 g/L tri-hexyl-tetra-decyl-phosphonium decanoate dissolved in n-heptane, pH of the aqueous phase 3, 20 min contact time, and 45 °C temperature assured a muconic acid extraction efficiency of 99,24 %. Low stripping efficiency compared to extraction efficiency was observed for the optimum conditions on the extraction step (120 g/L ionic liquids dissolved in heptane). However, re-extraction efficiencies obtained for the recycled organic phase in three consecutive stages were close to the first extraction stage. The mechanism analysis proved that the analysed phosphonium ionic liquids (PILSs) extracts only undissociated molecules of muconic acid through H-bonding.
Collapse
Affiliation(s)
- Alexandra Cristina Blaga
- "Gheorghe Asachi" Technical University of Iasi, "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, Iasi, Romania
| | - Elena Niculina Dragoi
- "Gheorghe Asachi" Technical University of Iasi, "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, Iasi, Romania
| | - Alexandra Tucaliuc
- "Gheorghe Asachi" Technical University of Iasi, "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, Iasi, Romania
| | - Lenuta Kloetzer
- "Gheorghe Asachi" Technical University of Iasi, "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, Iasi, Romania
| | - Adrian-Catalin Puitel
- "Gheorghe Asachi" Technical University of Iasi, "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, Iasi, Romania
| | - Dan Cascaval
- "Gheorghe Asachi" Technical University of Iasi, "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, Iasi, Romania
| | - Anca Irina Galaction
- "Grigore T. Popa" University of Medicine and Pharmacy, Faculty of Medical Bioengineering, Iasi, Romania
| |
Collapse
|
4
|
Abrahamson CH, Palmero BJ, Kennedy NW, Tullman-Ercek D. Theoretical and Practical Aspects of Multienzyme Organization and Encapsulation. Annu Rev Biophys 2023; 52:553-572. [PMID: 36854212 DOI: 10.1146/annurev-biophys-092222-020832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The advent of biotechnology has enabled metabolic engineers to assemble heterologous pathways in cells to produce a variety of products of industrial relevance, often in a sustainable way. However, many pathways face challenges of low product yield. These pathways often suffer from issues that are difficult to optimize, such as low pathway flux and off-target pathway consumption of intermediates. These issues are exacerbated by the need to balance pathway flux with the health of the cell, particularly when a toxic intermediate builds up. Nature faces similar challenges and has evolved spatial organization strategies to increase metabolic pathway flux and efficiency. Inspired by these strategies, bioengineers have developed clever strategies to mimic spatial organization in nature. This review explores the use of spatial organization strategies, including protein scaffolding and protein encapsulation inside of proteinaceous shells, toward overcoming bottlenecks in metabolic engineering efforts.
Collapse
Affiliation(s)
- Charlotte H Abrahamson
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA;
| | - Brett J Palmero
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois, USA
| | - Nolan W Kennedy
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois, USA
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA;
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
5
|
G6P-capturing molecules in the periplasm of Escherichia coli accelerate the shikimate pathway. Metab Eng 2022; 72:68-81. [DOI: 10.1016/j.ymben.2022.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/17/2022] [Accepted: 03/02/2022] [Indexed: 11/21/2022]
|
6
|
Liu J, Liu J, Guo L, Liu J, Chen X, Liu L, Gao C. Advances in microbial synthesis of bioplastic monomers. ADVANCES IN APPLIED MICROBIOLOGY 2022; 119:35-81. [DOI: 10.1016/bs.aambs.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Briou B, Améduri B, Boutevin B. Trends in the Diels-Alder reaction in polymer chemistry. Chem Soc Rev 2021; 50:11055-11097. [PMID: 34605835 DOI: 10.1039/d0cs01382j] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Diels-Alder (DA) reaction is regarded as quite a useful strategy in organic and macromolecular syntheses. The reversibility of this reaction and the advent of self-repair technology, as well as other applications in controlled macromolecular architectures and crosslinking, have strongly boosted the research activity, which is still attracting a huge interest in both academic and industrial research. The DA reaction is a simple and scalable toolbox. Though it is well-established that furan/maleimide is the most studied diene/dienophile couple, this perspective article reports strategies using other reversible systems with deeper features on other types of diene/dienophile pairs being either petro-sourced (cyclopentadiene, anthracene) or bio-sourced (muconic and sorbic acids, myrcene and farnesene derivatives, eugenol, cardanol). This review is composed of four sections. The first one briefly recalls the background on the DA reactions involving cyclodimerizations, dienes, and dienophiles, parameters affecting the reaction, while the second part deals with the furan/maleimide reaction. The third one deals with petro-sourced and bio-sourced (or products becoming bio-sourced) reactants involved in DA reactions are also listed and discussed. Finally, the authors' opinion is given on the potential future of the crosslinking-decrosslinking reaction, especially regarding the process (e.g., key temperatures of decrosslinking) or possibly monocomponents. It presents both fundamental and applied research on the DA reaction and its applications.
Collapse
Affiliation(s)
- Benoit Briou
- Institut Charles Gerhardt, CNRS, Université de Montpellier, ENSCM, Montpellier, France.
| | - Bruno Améduri
- Institut Charles Gerhardt, CNRS, Université de Montpellier, ENSCM, Montpellier, France.
| | - Bernard Boutevin
- Institut Charles Gerhardt, CNRS, Université de Montpellier, ENSCM, Montpellier, France.
| |
Collapse
|
8
|
Dickey RM, Forti AM, Kunjapur AM. Advances in engineering microbial biosynthesis of aromatic compounds and related compounds. BIORESOUR BIOPROCESS 2021; 8:91. [PMID: 38650203 PMCID: PMC10992092 DOI: 10.1186/s40643-021-00434-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/18/2021] [Indexed: 01/14/2023] Open
Abstract
Aromatic compounds have broad applications and have been the target of biosynthetic processes for several decades. New biomolecular engineering strategies have been applied to improve production of aromatic compounds in recent years, some of which are expected to set the stage for the next wave of innovations. Here, we will briefly complement existing reviews on microbial production of aromatic compounds by focusing on a few recent trends where considerable work has been performed in the last 5 years. The trends we highlight are pathway modularization and compartmentalization, microbial co-culturing, non-traditional host engineering, aromatic polymer feedstock utilization, engineered ring cleavage, aldehyde stabilization, and biosynthesis of non-standard amino acids. Throughout this review article, we will also touch on unmet opportunities that future research could address.
Collapse
Affiliation(s)
- Roman M Dickey
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, USA
| | - Amanda M Forti
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, USA
| | - Aditya M Kunjapur
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, USA.
| |
Collapse
|
9
|
Modification of an engineered Escherichia coli by a combinatorial strategy to improve 3,4-dihydroxybutyric acid production. Biotechnol Lett 2021; 43:2035-2043. [PMID: 34448097 DOI: 10.1007/s10529-021-03169-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/05/2021] [Indexed: 01/20/2023]
Abstract
OBJECTIVES 3,4-Dihydroxybutyric acid (3,4-DHBA) is a multifunctional C4 platform compound widely used for the synthesis of various materials, including pharmaceuticals. Although, a biosynthetic pathway for 3,4-DHBA production has been developed, its low yield still precludes large-scale use. Here, a heterologous four-step biosynthetic pathway was established in recombinant Escherichia coli (E. coli) using a combinatorial strategy. RESULTS Several aldehyde dehydrogenases (ALDHs) were screened, using in vitro enzyme assays, to identify suitable catalysts for the dehydrogenation of 3,4-dihydroxybutanal (3,4-DHB) to 3,4-DHBA. A pathway containing glucose dehydrogenase (BsGDH) from Bacillus subtilis, D-xylonate dehydratase (YagF) from E. coli, benzoylformate decarboxylase (PpMdlC) from Pseudomonas putida and ALDH was introduced into E. coli, generating 3.04 g/L 3,4-DHBA from D-xylose (0.190 g 3,4-DHBA/g D-xylose). Disruption of competing pathways by deleting xylA, ghrA, ghrB and adhP contributed to an 87% increase in 3,4-DHBA accumulation. Expression of a fusion construct containing PpMdlC and YagF enhanced the 3,4-DHBA titer, producing the highest titer and yield reported thus far (7.71 g/L; 0.482 g 3,4-DHBA/g D-xylose). CONCLUSIONS These results showed that deleting genes from competing pathways and constructing fusion proteins significantly improved the titer and yield of 3,4-DHBA in engineered E. coli.
Collapse
|
10
|
Geraldi A, Khairunnisa F, Farah N, Bui LM, Rahman Z. Synthetic Scaffold Systems for Increasing the Efficiency of Metabolic Pathways in Microorganisms. BIOLOGY 2021; 10:216. [PMID: 33799683 PMCID: PMC7998396 DOI: 10.3390/biology10030216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 11/16/2022]
Abstract
Microbes have been the preferred hosts for producing high-value chemicals from cheap raw materials. However, metabolic flux imbalance, the presence of competing pathways, and toxic intermediates often lead to low production efficiency. The spatial organization of the substrates, intermediates, and enzymes is critical to ensuring efficient metabolic activity by microorganisms. One of the most common approaches for bringing the key components of biosynthetic pathways together is through molecular scaffolds, which involves the clustering of pathway enzymes on engineered molecules via different interacting mechanisms. In particular, synthetic scaffold systems have been applied to improve the efficiency of various heterologous and synthetic pathways in Escherichia coli and Saccharomyces cerevisiae, with varying degrees of success. Herein, we review the recent developments and applications of protein-based and nucleic acid-based scaffold systems and discuss current challenges and future directions in the use of such approaches.
Collapse
Affiliation(s)
- Almando Geraldi
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
- Research Center for Bio-Molecule Engineering, Universitas Airlangga, Surabaya 60115, Indonesia;
| | - Fatiha Khairunnisa
- Research Center for Bio-Molecule Engineering, Universitas Airlangga, Surabaya 60115, Indonesia;
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Nadya Farah
- Department of Biology, Faculty of Mathematics and Life Sciences, Indonesia Defense University, Bogor 16810, Indonesia;
| | - Le Minh Bui
- NTT Hi-Tech Institute, Nguyen Tat Thanh University (NTTU), Ho Chi Minh City 700000, Vietnam;
| | - Ziaur Rahman
- Department of Microbiology, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa 23200, Pakistan;
| |
Collapse
|
11
|
Li W, Shen X, Wang J, Sun X, Yuan Q. Engineering microorganisms for the biosynthesis of dicarboxylic acids. Biotechnol Adv 2021; 48:107710. [PMID: 33582180 DOI: 10.1016/j.biotechadv.2021.107710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 12/26/2020] [Accepted: 02/02/2021] [Indexed: 01/02/2023]
Abstract
Dicarboxylic acids (DCAs) are important commodity chemicals which have been widely applied in polymer, food and pharmaceutical industries. Biosynthesis of DCAs from renewable carbon sources represents a promising alternative to chemical synthesis. Over the years, the recombinant strains have been constructed to produce an increasing number of DCAs. In this review, recent advances on the microbial synthesis of various DCAs have been summarized and categorized into three groups: the tricarboxylic acid cycle-derived, lysine metabolism-related, and aromatic compounds degradation-derived DCAs. We focused mainly on the metabolic engineering and synthetic biology strategies for improving the production efficiency, including metabolic flux analysis, fine-tuning of gene expression, cofactor balancing, metabolic compartmentalization, dynamic regulation and co-culture to regulate the production at multiple levels. The current challenges and perspectives have also been discussed.
Collapse
Affiliation(s)
- Wenna Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaolin Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jia Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
12
|
Li Y, Yang S, Ma D, Song W, Gao C, Liu L, Chen X. Microbial engineering for the production of C 2-C 6 organic acids. Nat Prod Rep 2021; 38:1518-1546. [PMID: 33410446 DOI: 10.1039/d0np00062k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: up to the end of 2020Organic acids, as building block compounds, have been widely used in food, pharmaceutical, plastic, and chemical industries. Until now, chemical synthesis is still the primary method for industrial-scale organic acid production. However, this process encounters some inevitable challenges, such as depletable petroleum resources, harsh reaction conditions and complex downstream processes. To solve these problems, microbial cell factories provide a promising approach for achieving the sustainable production of organic acids. However, some key metabolites in central carbon metabolism are strictly regulated by the network of cellular metabolism, resulting in the low productivity of organic acids. Thus, multiple metabolic engineering strategies have been developed to reprogram microbial cell factories to produce organic acids, including monocarboxylic acids, hydroxy carboxylic acids, amino carboxylic acids, dicarboxylic acids and monomeric units for polymers. These strategies mainly center on improving the catalytic efficiency of the enzymes to increase the conversion rate, balancing the multi-gene biosynthetic pathways to reduce the byproduct formation, strengthening the metabolic flux to promote the product biosynthesis, optimizing the metabolic network to adapt the environmental conditions and enhancing substrate utilization to broaden the substrate spectrum. Here, we describe the recent advances in producing C2-C6 organic acids by metabolic engineering strategies. In addition, we provide new insights as to when, what and how these strategies should be taken. Future challenges are also discussed in further advancing microbial engineering and establishing efficient biorefineries.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | | | | | | | | | | | | |
Collapse
|
13
|
Current state of aromatics production using yeast: achievements and challenges. Curr Opin Biotechnol 2020; 65:65-74. [DOI: 10.1016/j.copbio.2020.01.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 12/14/2022]
|
14
|
Choi S, Lee HN, Park E, Lee SJ, Kim ES. Recent Advances in Microbial Production of cis,cis-Muconic Acid. Biomolecules 2020; 10:biom10091238. [PMID: 32854378 PMCID: PMC7564838 DOI: 10.3390/biom10091238] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
cis,cis-Muconic acid (MA) is a valuable C6 dicarboxylic acid platform chemical that is used as a starting material for the production of various valuable polymers and drugs, including adipic acid and terephthalic acid. As an alternative to traditional chemical processes, bio-based MA production has progressed to the establishment of de novo MA pathways in several microorganisms, such as Escherichia coli, Corynebacterium glutamicum, Pseudomonas putida, and Saccharomyces cerevisiae. Redesign of the metabolic pathway, intermediate flux control, and culture process optimization were all pursued to maximize the microbial MA production yield. Recently, MA production from biomass, such as the aromatic polymer lignin, has also attracted attention from researchers focusing on microbes that are tolerant to aromatic compounds. This paper summarizes recent microbial MA production strategies that involve engineering the metabolic pathway genes as well as the heterologous expression of some foreign genes involved in MA biosynthesis. Microbial MA production will continue to play a vital role in the field of bio-refineries and a feasible way to complement various petrochemical-based chemical processes.
Collapse
Affiliation(s)
- Sisun Choi
- Department of Biological Engineering, Inha University, Incheon 22212, Korea; (S.C.); (H.-N.L.); (E.P.)
| | - Han-Na Lee
- Department of Biological Engineering, Inha University, Incheon 22212, Korea; (S.C.); (H.-N.L.); (E.P.)
- STR Biotech Co., Ltd., Chuncheon-si, Gangwon-do 24232, Korea;
| | - Eunhwi Park
- Department of Biological Engineering, Inha University, Incheon 22212, Korea; (S.C.); (H.-N.L.); (E.P.)
| | - Sang-Jong Lee
- STR Biotech Co., Ltd., Chuncheon-si, Gangwon-do 24232, Korea;
| | - Eung-Soo Kim
- Department of Biological Engineering, Inha University, Incheon 22212, Korea; (S.C.); (H.-N.L.); (E.P.)
- Correspondence: ; Tel.: +82-32-860-8318; Fax: +82-32-872-4046
| |
Collapse
|
15
|
Common problems associated with the microbial productions of aromatic compounds and corresponding metabolic engineering strategies. Biotechnol Adv 2020; 41:107548. [DOI: 10.1016/j.biotechadv.2020.107548] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 01/06/2023]
|
16
|
Wang G, Øzmerih S, Guerreiro R, Meireles AC, Carolas A, Milne N, Jensen MK, Ferreira BS, Borodina I. Improvement of cis, cis-Muconic Acid Production in Saccharomyces cerevisiae through Biosensor-Aided Genome Engineering. ACS Synth Biol 2020; 9:634-646. [PMID: 32058699 PMCID: PMC8457548 DOI: 10.1021/acssynbio.9b00477] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Muconic acid is a potential platform chemical for the production of nylon, polyurethanes, and terephthalic acid. It is also an attractive functional copolymer in plastics due to its two double bonds. At this time, no economically viable process for the production of muconic acid exists. To harness novel genetic targets for improved production of cis,cis-muconic acid (CCM) in the yeast Saccharomyces cerevisiae, we employed a CCM-biosensor coupled to GFP expression with a broad dynamic response to screen UV-mutagenesis libraries of CCM-producing yeast. Via fluorescence activated cell sorting we identified a clone Mut131 with a 49.7% higher CCM titer and 164% higher titer of biosynthetic intermediate-protocatechuic acid (PCA). Genome resequencing of the Mut131 and reverse engineering identified seven causal missense mutations of the native genes (PWP2, EST2, ATG1, DIT1, CDC15, CTS2, and MNE1) and a duplication of two CCM biosynthetic genes, encoding dehydroshikimate dehydratase and catechol 1,2-dioxygenase, which were not recognized as flux controlling before. The Mut131 strain was further rationally engineered by overexpression of the genes encoding for PCA decarboxylase and AROM protein without shikimate dehydrogenase domain (Aro1pΔE), and by restoring URA3 prototrophy. The resulting engineered strain produced 20.8 g/L CCM in controlled fed-batch fermentation, with a yield of 66.2 mg/g glucose and a productivity of 139 mg/L/h, representing the highest reported performance metrics in a yeast for de novo CCM production to date and the highest production of an aromatic compound in yeast. The study illustrates the benefit of biosensor-based selection and brings closer the prospect of biobased muconic acid.
Collapse
Affiliation(s)
- Guokun Wang
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, DK-2800 Kgs, Denmark
| | - Süleyman Øzmerih
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, DK-2800 Kgs, Denmark
| | - Rogério Guerreiro
- Biotrend-Inovação e Engenharia em Biotecnologia SA, Cantanhede, 3060-197, Portugal
| | - Ana C. Meireles
- Biotrend-Inovação e Engenharia em Biotecnologia SA, Cantanhede, 3060-197, Portugal
| | - Ana Carolas
- Biotrend-Inovação e Engenharia em Biotecnologia SA, Cantanhede, 3060-197, Portugal
| | - Nicholas Milne
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, DK-2800 Kgs, Denmark
| | - Michael K. Jensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, DK-2800 Kgs, Denmark
| | - Bruno S. Ferreira
- Biotrend-Inovação e Engenharia em Biotecnologia SA, Cantanhede, 3060-197, Portugal
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, DK-2800 Kgs, Denmark
| |
Collapse
|
17
|
Cao M, Gao M, Suástegui M, Mei Y, Shao Z. Building microbial factories for the production of aromatic amino acid pathway derivatives: From commodity chemicals to plant-sourced natural products. Metab Eng 2020; 58:94-132. [DOI: 10.1016/j.ymben.2019.08.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/03/2019] [Accepted: 08/07/2019] [Indexed: 01/23/2023]
|
18
|
Metabolic engineering of Escherichia coli for shikimate pathway derivative production from glucose-xylose co-substrate. Nat Commun 2020; 11:279. [PMID: 31937786 PMCID: PMC6959354 DOI: 10.1038/s41467-019-14024-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/13/2019] [Indexed: 11/08/2022] Open
Abstract
Glucose and xylose are the major components of lignocellulose. Effective utilization of both sugars can improve the efficiency of bioproduction. Here, we report a method termed parallel metabolic pathway engineering (PMPE) for producing shikimate pathway derivatives from glucose–xylose co-substrate. In this method, we seek to use glucose mainly for target chemical production, and xylose for supplying essential metabolites for cell growth. Glycolysis and the pentose phosphate pathway are completely separated from the tricarboxylic acid (TCA) cycle. To recover cell growth, we introduce a xylose catabolic pathway that directly flows into the TCA cycle. As a result, we can produce 4.09 g L−1cis,cis-muconic acid using the PMPE Escherichia coli strain with high yield (0.31 g g−1 of glucose) and produce l-tyrosine with 64% of the theoretical yield. The PMPE strategy can contribute to the development of clean processes for producing various valuable chemicals from lignocellulosic resources. In lignocellulose biomass, microbes prefer consuming glucose over xylose, which affects target compound production. Here, the authors achieve simultaneous utilization of glucose and xylose for target chemical production and cell growth, respectively, and realize high-level production of shikimate pathway derivatives.
Collapse
|
19
|
Zhong W, Zhang Y, Wu W, Liu D, Chen Z. Metabolic Engineering of a Homoserine-Derived Non-Natural Pathway for the De Novo Production of 1,3-Propanediol from Glucose. ACS Synth Biol 2019; 8:587-595. [PMID: 30802034 DOI: 10.1021/acssynbio.9b00003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Engineering a homoserine-derived non-natural pathway allows heterologous production of 1,3-propanediol (1,3-PDO) from glucose without adding expensive vitamin B12. Due to the lack of efficient enzymes to catalyze the deamination of homoserine and the decarboxylation of 4-hydroxy-2-ketobutyrate, the previously engineered strain can only produce 51.5 mg/L 1,3-PDO using homoserine and glucose as cosubstrates. In this study, we systematically screened the enzymes from different protein families to catalyze the two corresponding reactions and further optimized the selected enzymes by protein engineering. Together with the improvement of homoserine supply by systematic metabolic engineering, an engineered Escherichia coli strain with an optimal combination of aspartate transaminase ( aspC) from E. coli, pyruvate decarboxylase ( pdc) from Zymomonas mobiliz, and alcohol dehydrogenase yqhD from E. coli can produce 0.32 g/L 1,3-PDO from glucose in shake flask cultivation. The titer of 1,3-PDO was further increased to 0.49 g/L or 0.63 g/L by introducing a point mutation of I472A into pdc gene or constructing a fusion protein between aspC and pdc. This study lays the basis for developing a potential process for 1,3-PDO production from sugars without using expensive coenzyme B12.
Collapse
Affiliation(s)
- Weiqun Zhong
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Ye Zhang
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Wenjun Wu
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Dehua Liu
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Tsinghua Innovation Center in Dongguan, Dongguan 523808, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Zhen Chen
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Tsinghua Innovation Center in Dongguan, Dongguan 523808, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|