1
|
Chan DC, Winter L, Bjerg J, Krsmanovic S, Baldwin GS, Bernstein HC. Fine-Tuning Genetic Circuits via Host Context and RBS Modulation. ACS Synth Biol 2025; 14:193-205. [PMID: 39754601 PMCID: PMC11744933 DOI: 10.1021/acssynbio.4c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/19/2024] [Accepted: 12/16/2024] [Indexed: 01/06/2025]
Abstract
The choice of organism to host a genetic circuit, the chassis, is often defaulted to model organisms due to their amenability. The chassis-design space has therefore remained underexplored as an engineering variable. In this work, we explored the design space of a genetic toggle switch through variations in nine ribosome binding site compositions and three host contexts, creating 27 circuit variants. Characterization of performance metrics in terms of toggle switch output and host growth dynamics unveils a spectrum of performance profiles from our circuit library. We find that changes in host context cause large shifts in overall performance, while modulating ribosome binding sites leads to more incremental changes. We find that a combined ribosome binding site and host context modulation approach can be used to fine-tune the properties of a toggle switch according to user-defined specifications, such as toward greater signaling strength, inducer sensitivity, or both. Other auxiliary properties, such as inducer tolerance, are also exclusively accessed through changes in the host context. We demonstrate here that exploration of the chassis-design space can offer significant value, reconceptualizing the chassis organism as an important part in the synthetic biologist's toolbox with important implications for the field of synthetic biology.
Collapse
Affiliation(s)
- Dennis
Tin Chat Chan
- Faculty
of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, 9019 Tromsø, Norway
| | - Lena Winter
- Faculty
of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, 9019 Tromsø, Norway
| | - Johan Bjerg
- Faculty
of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, 9019 Tromsø, Norway
| | - Stina Krsmanovic
- Faculty
of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, 9019 Tromsø, Norway
| | - Geoff S. Baldwin
- Department
of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, U.K.
- Imperial
College Centre for Synthetic Biology, Imperial
College London, South
Kensington, London SW7
2AZ, U.K.
| | - Hans C. Bernstein
- Faculty
of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, 9019 Tromsø, Norway
- The
Arctic Centre for Sustainable Energy, UiT—The
Arctic University of Norway, 9019 Tromsø, Norway
| |
Collapse
|
2
|
Li M, Chen Z, Huo YX. Application Evaluation and Performance-Directed Improvement of the Native and Engineered Biosensors. ACS Sens 2024; 9:5002-5024. [PMID: 39392681 DOI: 10.1021/acssensors.4c01072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Transcription factor (TF)-based biosensors (TFBs) have received considerable attention in various fields due to their capability of converting biosignals, such as molecule concentrations, into analyzable signals, thereby bypassing the dependence on time-consuming and laborious detection techniques. Natural TFs are evolutionarily optimized to maintain microbial survival and metabolic balance rather than for laboratory scenarios. As a result, native TFBs often exhibit poor performance, such as low specificity, narrow dynamic range, and limited sensitivity, hindering their application in laboratory and industrial settings. This work analyzes four types of regulatory mechanisms underlying TFBs and outlines strategies for constructing efficient sensing systems. Recent advances in TFBs across various usage scenarios are reviewed with a particular focus on the challenges of commercialization. The systematic improvement of TFB performance by modifying the constituent elements is thoroughly discussed. Additionally, we propose future directions of TFBs for developing rapid-responsive biosensors and addressing the challenge of application isolation. Furthermore, we look to the potential of artificial intelligence (AI) technologies and various models for programming TFB genetic circuits. This review sheds light on technical suggestions and fundamental instructions for constructing and engineering TFBs to promote their broader applications in Industry 4.0, including smart biomanufacturing, environmental and food contaminants detection, and medical science.
Collapse
Affiliation(s)
- Min Li
- Department of Gastroenterology, Aerospace Center Hospital, College of Life Science, Beijing Institute of Technology, Haidian District, No. 5 South Zhongguancun Street, Beijing 100081, China
| | - Zhenya Chen
- Department of Gastroenterology, Aerospace Center Hospital, College of Life Science, Beijing Institute of Technology, Haidian District, No. 5 South Zhongguancun Street, Beijing 100081, China
- Center for Future Foods, Muyuan Laboratory, 110 Shangding Road, Zhengzhou, Henan 450016, China
| | - Yi-Xin Huo
- Department of Gastroenterology, Aerospace Center Hospital, College of Life Science, Beijing Institute of Technology, Haidian District, No. 5 South Zhongguancun Street, Beijing 100081, China
- Center for Future Foods, Muyuan Laboratory, 110 Shangding Road, Zhengzhou, Henan 450016, China
| |
Collapse
|
3
|
Wang J, Chen C, Guo Q, Gu Y, Shi TQ. Advances in Flavonoid and Derivative Biosynthesis: Systematic Strategies for the Construction of Yeast Cell Factories. ACS Synth Biol 2024; 13:2667-2683. [PMID: 39145487 DOI: 10.1021/acssynbio.4c00383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Flavonoids, a significant group of natural polyphenolic compounds, possess a broad spectrum of pharmacological effects. Recent advances in the systematic metabolic engineering of yeast cell factories (YCFs) provide new opportunities for enhanced flavonoid production. Herein, we outline the latest research progress on typical flavonoid products in YCFs. Advanced engineering strategies involved in flavonoid biosynthesis are discussed in detail, including enhancing precursor supply, cofactor engineering, optimizing core pathways, eliminating competitive pathways, relieving transport limitations, and dynamic regulation. Additionally, we highlight the existing problems in the biosynthesis of flavonoid glucosides in yeast, such as endogenous degradation of flavonoid glycosides, substrate promiscuity of UDP-glycosyltransferases, and an insufficient supply of UDP-sugars, with summaries on the corresponding solutions. Discussions also cover other typical postmodifications like prenylation and methylation, and the recent biosynthesis of complex flavonoid compounds in yeast. Finally, a series of advanced technologies are envisioned, i.e., semirational enzyme engineering, ML/DL algorithn, and systems biology, with the aspiration of achieving large-scale industrial production of flavonoid compounds in the future.
Collapse
Affiliation(s)
- Jian Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Cheng Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Qi Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Yang Gu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| |
Collapse
|
4
|
Tang M, You J, Yang T, Sun Q, Jiang S, Xu M, Pan X, Rao Z. Application of modern synthetic biology technology in aromatic amino acids and derived compounds biosynthesis. BIORESOURCE TECHNOLOGY 2024; 406:131050. [PMID: 38942210 DOI: 10.1016/j.biortech.2024.131050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 06/30/2024]
Abstract
Aromatic amino acids (AAA) and derived compounds have enormous commercial value with extensive applications in the food, chemical and pharmaceutical fields. Microbial production of AAA and derived compounds is a promising prospect for its environmental friendliness and sustainability. However, low yield and production efficiency remain major challenges for realizing industrial production. With the advancement of synthetic biology, microbial production of AAA and derived compounds has been significantly facilitated. In this review, a comprehensive overview on the current progresses, challenges and corresponding solutions for AAA and derived compounds biosynthesis is provided. The most cutting-edge developments of synthetic biology technology in AAA and derived compounds biosynthesis, including CRISPR-based system, genetically encoded biosensors and synthetic genetic circuits, were highlighted. Finally, future prospects of modern strategies conducive to the biosynthesis of AAA and derived compounds are discussed. This review offers guidance on constructing microbial cell factory for aromatic compound using synthetic biology technology.
Collapse
Affiliation(s)
- Mi Tang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Jiajia You
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Tianjin Yang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Qisheng Sun
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Shuran Jiang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Xuewei Pan
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China.
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China.
| |
Collapse
|
5
|
Zhou Z, Li Z, Zhong Y, Xu S, Li Z. Engineering of the Lrp/AsnC-type transcriptional regulator DecR as a genetically encoded biosensor for multilevel optimization of L-cysteine biosynthesis pathway in Escherichia coli. Biotechnol Bioeng 2024; 121:2133-2146. [PMID: 38634289 DOI: 10.1002/bit.28716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
L-cysteine is an important sulfur-containing amino acid being difficult to produce by microbial fermentation. Due to the lack of high-throughput screening methods, existing genetically engineered bacteria have been developed by simply optimizing the expression of L-cysteine-related genes one by one. To overcome this limitation, in this study, a biosensor-based approach for multilevel biosynthetic pathway optimization of L-cysteine from the DecR regulator variant of Escherichia coli was applied. Through protein engineering, we obtained the DecRN29Y/C81E/M90Q/M99E variant-based biosensor with improved specificity and an 8.71-fold increase in dynamic range. Using the developed biosensor, we performed high-throughput screening of the constructed promoter and RBS combination library, and successfully obtained the optimized strain, which resulted in a 6.29-fold increase in L-cysteine production. Molecular dynamics (MD) simulations and electrophoretic mobility shift analysis (EMSA) showed that the N29Y/C81E/M90Q/M99E variant had enhanced induction activity. This enhancement may be due to the increased binding of the variant to DNA in the presence of L-cysteine, which enhances transcriptional activation. Overall, our biosensor-based strategy provides a promising approach for optimizing biosynthetic pathways at multiple levels. The successful implementation of this strategy demonstrates its potential for screening improved recombinant strains.
Collapse
Affiliation(s)
- Zhiyou Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zonglin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yahui Zhong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Shuai Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhimin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai, China
| |
Collapse
|
6
|
Chaisupa P, Wright RC. State-of-the-art in engineering small molecule biosensors and their applications in metabolic engineering. SLAS Technol 2024; 29:100113. [PMID: 37918525 PMCID: PMC11314541 DOI: 10.1016/j.slast.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023]
Abstract
Genetically encoded biosensors are crucial for enhancing our understanding of how molecules regulate biological systems. Small molecule biosensors, in particular, help us understand the interaction between chemicals and biological processes. They also accelerate metabolic engineering by increasing screening throughput and eliminating the need for sample preparation through traditional chemical analysis. Additionally, they offer significantly higher spatial and temporal resolution in cellular analyte measurements. In this review, we discuss recent progress in in vivo biosensors and control systems-biosensor-based controllers-for metabolic engineering. We also specifically explore protein-based biosensors that utilize less commonly exploited signaling mechanisms, such as protein stability and induced degradation, compared to more prevalent transcription factor and allosteric regulation mechanism. We propose that these lesser-used mechanisms will be significant for engineering eukaryotic systems and slower-growing prokaryotic systems where protein turnover may facilitate more rapid and reliable measurement and regulation of the current cellular state. Lastly, we emphasize the utilization of cutting-edge and state-of-the-art techniques in the development of protein-based biosensors, achieved through rational design, directed evolution, and collaborative approaches.
Collapse
Affiliation(s)
- Patarasuda Chaisupa
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | - R Clay Wright
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, United States; Translational Plant Sciences Center (TPSC), Virginia Tech, Blacksburg, VA 24061, United States.
| |
Collapse
|
7
|
Kim DH, Hwang HG, Ye DY, Jung GY. Transcriptional and translational flux optimization at the key regulatory node for enhanced production of naringenin using acetate in engineered Escherichia coli. J Ind Microbiol Biotechnol 2024; 51:kuae006. [PMID: 38285614 PMCID: PMC10853766 DOI: 10.1093/jimb/kuae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/27/2024] [Indexed: 01/31/2024]
Abstract
As a key molecular scaffold for various flavonoids, naringenin is a value-added chemical with broad pharmaceutical applicability. For efficient production of naringenin from acetate, it is crucial to precisely regulate the carbon flux of the oxaloacetate-phosphoenolpyruvate (OAA-PEP) regulatory node through appropriate pckA expression control, as excessive overexpression of pckA can cause extensive loss of OAA and metabolic imbalance. However, considering the critical impact of pckA on naringenin biosynthesis, the conventional strategy of transcriptional regulation of gene expression is limited in its ability to cover the large and balanced solution space. To overcome this hurdle, in this study, pckA expression was fine-tuned at both the transcriptional and translational levels in a combinatorial expression library for the precise exploration of optimal naringenin production from acetate. Additionally, we identified the effects of regulating pckA expression by validating the correlation between phosphoenolpyruvate kinase (PCK) activity and naringenin production. As a result, the flux-optimized strain exhibited a 49.8-fold increase compared with the unoptimized strain, producing 122.12 mg/L of naringenin. Collectively, this study demonstrated the significance of transcriptional and translational flux rebalancing at the key regulatory node, proposing a pivotal metabolic engineering strategy for the biosynthesis of various flavonoids derived from naringenin using acetate. ONE-SENTENCE SUMMARY In this study, transcriptional and translational regulation of pckA expression at the crucial regulatory node was conducted to optimize naringenin biosynthesis using acetate in E. coli.
Collapse
Affiliation(s)
- Dong H Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Hyun G Hwang
- Institute of Environmental and Energy Technology, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Dae-yeol Ye
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Gyoo Y Jung
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| |
Collapse
|
8
|
Xiao C, Pan Y, Huang M. Advances in the dynamic control of metabolic pathways in Saccharomyces cerevisiae. ENGINEERING MICROBIOLOGY 2023; 3:100103. [PMID: 39628908 PMCID: PMC11610979 DOI: 10.1016/j.engmic.2023.100103] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/19/2023] [Accepted: 06/16/2023] [Indexed: 12/06/2024]
Abstract
The metabolic engineering of Saccharomyces cerevisiae has great potential for enhancing the production of high-value chemicals and recombinant proteins. Recent studies have demonstrated the effectiveness of dynamic regulation as a strategy for optimizing metabolic flux and improving production efficiency. In this review, we provide an overview of recent advancements in the dynamic regulation of S. cerevisiae metabolism. Here, we focused on the successful utilization of transcription factor (TF)-based biosensors within the dynamic regulatory network of S. cerevisiae. These biosensors are responsive to a wide range of endogenous and exogenous signals, including chemical inducers, light, temperature, cell density, intracellular metabolites, and stress. Additionally, we explored the potential of omics tools for the discovery of novel responsive promoters and their roles in fine-tuning metabolic networks. We also provide an outlook on the development trends in this field.
Collapse
Affiliation(s)
- Chufan Xiao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yuyang Pan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
9
|
Wang B, Zhao X, Fu T, Chen X, Guo X, Li X, Yang F. Glucose Starvation Stimulates the Promoting Strength of a Novel Evolved Suc2 Promoter. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13838-13847. [PMID: 37669532 DOI: 10.1021/acs.jafc.3c03699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Promoters are essential for designing Saccharomyces cerevisiae cell factories. Identifying novel promoters tuned to produce specific metabolites under increasingly diverse industrial stresses is required to improve the economic feasibility of whole fermentation processes. In this study, a positively evolved Suc2 promoter (SUC 2p) with promoter activity stronger than that of the wild-type Suc2 promoter (SUC 2wtp) was obtained. Quantitative real-time PCR, fluorescence analysis, Western blotting, and a β-galactosidase activity assay revealed that SUC 2p is a medium-strength promoter compared with eight reported promoters at a medium glucose concentration (2% (w/v)). Different glucose concentrations modulated the strength of SUC 2p. Low glucose concentrations (0.05 and 0.5% (w/v)) enhanced the promoter strength of SUC 2p dramatically, with promoter activity higher than that of reported strong promoters. Glucose starvation resulted in the formation of a new Msn2/4 binding site on SUC 2p. Our work should facilitate the development of promoters with novel fine-tuning properties and the construction of S. cerevisiae cell factories suitable for the industrial production of essential chemicals under glucose-deprived conditions.
Collapse
Affiliation(s)
- Biying Wang
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian 116034, P. R. China
| | - Xiaoya Zhao
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian 116034, P. R. China
| | - Tong Fu
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian 116034, P. R. China
| | - Xiaoyi Chen
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian 116034, P. R. China
| | - Xiaoyu Guo
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian 116034, P. R. China
| | - Xianzhen Li
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian 116034, P. R. China
| | - Fan Yang
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, Dalian 116034, P. R. China
| |
Collapse
|
10
|
Jiang T, Li C, Teng Y, Zhang J, Logan DA, Yan Y. Dynamic Metabolic Control: From the Perspective of Regulation Logic. SYNTHETIC BIOLOGY AND ENGINEERING 2023; 1:10012. [PMID: 38572077 PMCID: PMC10986841 DOI: 10.35534/sbe.2023.10012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Establishing microbial cell factories has become a sustainable and increasingly promising approach for the synthesis of valuable chemicals. However, introducing heterologous pathways into these cell factories can disrupt the endogenous cellular metabolism, leading to suboptimal production performance. To address this challenge, dynamic pathway regulation has been developed and proven effective in improving microbial biosynthesis. In this review, we summarized typical dynamic regulation strategies based on their control logic. The applicable scenarios for each control logic were highlighted and perspectives for future research direction in this area were discussed.
Collapse
Affiliation(s)
- Tian Jiang
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Chenyi Li
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Yuxi Teng
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Jianli Zhang
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Diana Alexis Logan
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Yajun Yan
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
11
|
Nasr MA, Martin VJJ, Kwan DH. Divergent directed evolution of a TetR-type repressor towards aromatic molecules. Nucleic Acids Res 2023; 51:7675-7690. [PMID: 37377432 PMCID: PMC10415137 DOI: 10.1093/nar/gkad503] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 05/18/2023] [Accepted: 06/25/2023] [Indexed: 06/29/2023] Open
Abstract
Reprogramming cellular behaviour is one of the hallmarks of synthetic biology. To this end, prokaryotic allosteric transcription factors (aTF) have been repurposed as versatile tools for processing small molecule signals into cellular responses. Expanding the toolbox of aTFs that recognize new inducer molecules is of considerable interest in many applications. Here, we first establish a resorcinol responsive aTF-based biosensor in Escherichia coli using the TetR-family repressor RolR from Corynebacterium glutamicum. We then perform an iterative walk along the fitness landscape of RolR to identify new inducer specificities, namely catechol, methyl catechol, caffeic acid, protocatechuate, L-DOPA, and the tumour biomarker homovanillic acid. Finally, we demonstrate the versatility of these engineered aTFs by transplanting them into the model eukaryote Saccharomyces cerevisiae. This work provides a framework for efficient aTF engineering to expand ligand specificity towards novel molecules on laboratory timescales, which, more broadly, is invaluable across a wide range of applications such as protein and metabolic engineering, as well as point-of-care diagnostics.
Collapse
Affiliation(s)
- Mohamed A Nasr
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Québec, Canada
- Department of Biology, Concordia University, Montréal, Québec, Canada
- PROTEO, Québec Network for Research on Protein Function, Structure, and Engineering, Québec City, Québec, Canada
| | - Vincent J J Martin
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Québec, Canada
- Department of Biology, Concordia University, Montréal, Québec, Canada
| | - David H Kwan
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Québec, Canada
- Department of Biology, Concordia University, Montréal, Québec, Canada
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, Canada
- PROTEO, Québec Network for Research on Protein Function, Structure, and Engineering, Québec City, Québec, Canada
| |
Collapse
|
12
|
Zhang J, Gong X, Gan Q, Yan Y. Application of Metabolite-Responsive Biosensors for Plant Natural Products Biosynthesis. BIOSENSORS 2023; 13:633. [PMID: 37366998 DOI: 10.3390/bios13060633] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/26/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023]
Abstract
Plant natural products (PNPs) have shown various pharmaceutical activities, possessing great potential in global markets. Microbial cell factories (MCFs) provide an economical and sustainable alternative for the synthesis of valuable PNPs compared with traditional approaches. However, the heterologous synthetic pathways always lack native regulatory systems, bringing extra burden to PNPs production. To overcome the challenges, biosensors have been exploited and engineered as powerful tools for establishing artificial regulatory networks to control enzyme expression in response to environments. Here, we reviewed the recent progress involved in the application of biosensors that are responsive to PNPs and their precursors. Specifically, the key roles these biosensors played in PNP synthesis pathways, including isoprenoids, flavonoids, stilbenoids and alkaloids, were discussed in detail.
Collapse
Affiliation(s)
- Jianli Zhang
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Xinyu Gong
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Qi Gan
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Yajun Yan
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
13
|
Chen S, Chen X, Su H, Guo M, Liu H. Advances in Synthetic-Biology-Based Whole-Cell Biosensors: Principles, Genetic Modules, and Applications in Food Safety. Int J Mol Sci 2023; 24:ijms24097989. [PMID: 37175695 PMCID: PMC10178329 DOI: 10.3390/ijms24097989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
A whole-cell biosensor based on synthetic biology provides a promising new method for the on-site detection of food contaminants. The basic components of whole-cell biosensors include the sensing elements, such as transcription factors and riboswitches, and reporting elements, such as fluorescence, gas, etc. The sensing and reporting elements are coupled through gene expression regulation to form a simple gene circuit for the detection of target substances. Additionally, a more complex gene circuit can involve other functional elements or modules such as signal amplification, multiple detection, and delay reporting. With the help of synthetic biology, whole-cell biosensors are becoming more versatile and integrated, that is, integrating pre-detection sample processing, detection processes, and post-detection signal calculation and storage processes into cells. Due to the relative stability of the intracellular environment, whole-cell biosensors are highly resistant to interference without the need of complex sample preprocessing. Due to the reproduction of chassis cells, whole-cell biosensors replicate all elements automatically without the need for purification processing. Therefore, whole-cell biosensors are easy to operate and simple to produce. Based on the above advantages, whole-cell biosensors are more suitable for on-site detection than other rapid detection methods. Whole-cell biosensors have been applied in various forms such as test strips and kits, with the latest reported forms being wearable devices such as masks, hand rings, and clothing. This paper examines the composition, construction methods, and types of the fundamental components of synthetic biological whole-cell biosensors. We also introduce the prospect and development trend of whole-cell biosensors in commercial applications.
Collapse
Affiliation(s)
- Shijing Chen
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Xiaolin Chen
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Hongfei Su
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Mingzhang Guo
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Huilin Liu
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|
14
|
Tellechea-Luzardo J, Stiebritz MT, Carbonell P. Transcription factor-based biosensors for screening and dynamic regulation. Front Bioeng Biotechnol 2023; 11:1118702. [PMID: 36814719 PMCID: PMC9939652 DOI: 10.3389/fbioe.2023.1118702] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/26/2023] [Indexed: 02/09/2023] Open
Abstract
Advances in synthetic biology and genetic engineering are bringing into the spotlight a wide range of bio-based applications that demand better sensing and control of biological behaviours. Transcription factor (TF)-based biosensors are promising tools that can be used to detect several types of chemical compounds and elicit a response according to the desired application. However, the wider use of this type of device is still hindered by several challenges, which can be addressed by increasing the current metabolite-activated transcription factor knowledge base, developing better methods to identify new transcription factors, and improving the overall workflow for the design of novel biosensor circuits. These improvements are particularly important in the bioproduction field, where researchers need better biosensor-based approaches for screening production-strains and precise dynamic regulation strategies. In this work, we summarize what is currently known about transcription factor-based biosensors, discuss recent experimental and computational approaches targeted at their modification and improvement, and suggest possible future research directions based on two applications: bioproduction screening and dynamic regulation of genetic circuits.
Collapse
Affiliation(s)
- Jonathan Tellechea-Luzardo
- Institute of Industrial Control Systems and Computing (AI2), Universitat Politècnica de València (UPV), Valencia, Spain
| | - Martin T. Stiebritz
- Institute of Industrial Control Systems and Computing (AI2), Universitat Politècnica de València (UPV), Valencia, Spain
| | - Pablo Carbonell
- Institute of Industrial Control Systems and Computing (AI2), Universitat Politècnica de València (UPV), Valencia, Spain
- Institute for Integrative Systems Biology I2SysBio, Universitat de València-CSIC, Paterna, Spain
| |
Collapse
|
15
|
Chen Y, Zheng H, Yang J, Cao Y, Zhou H. Development of a synthetic transcription factor-based S-adenosylmethionine biosensor in Saccharomyces cerevisiae. Biotechnol Lett 2023; 45:255-262. [PMID: 36550338 DOI: 10.1007/s10529-022-03338-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/09/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022]
Abstract
S-Adenosylmethionine (SAM) is a crucial small-molecule metabolite widely used in food and medicine. The development of high-throughput biosensors for SAM biosynthesis can significantly improve the titer of SAM. This paper constructed a synthetic transcription factor (TF)-based biosensor for SAM detecting in Saccharomyces cerevisiae. The synthetic TF, named MetJ-hER-VP16, consists of an Escherichia coli-derived DNA-binding domain MetJ, GS linker, the human estrogen receptor binding domain hER, and the viral activation domain VP16. The synthetic biosensor is capable of sensing SAM in a dose-dependent manner with fluorescence as the output. Additionally, it is tightly regulated by the inducer SAM and β-estradiol, which means that the fluorescence output is only available when both are present together. The synthetic SAM biosensor could potentially be applied for high-throughput metabolic engineering and is expected to improve SAM production.
Collapse
Affiliation(s)
- Yawei Chen
- College of Chemical and Pharmaceutical Engineering, Henan University of Science and Technology, Luoyang, 471023, People's Republic of China.
| | - Huijie Zheng
- College of Chemical and Pharmaceutical Engineering, Henan University of Science and Technology, Luoyang, 471023, People's Republic of China
| | - Jiajia Yang
- College of Chemical and Pharmaceutical Engineering, Henan University of Science and Technology, Luoyang, 471023, People's Republic of China
| | - Yiting Cao
- College of Chemical and Pharmaceutical Engineering, Henan University of Science and Technology, Luoyang, 471023, People's Republic of China
| | - Huiyun Zhou
- College of Chemical and Pharmaceutical Engineering, Henan University of Science and Technology, Luoyang, 471023, People's Republic of China
| |
Collapse
|
16
|
Hwang HG, Milito A, Yang JS, Jang S, Jung GY. Riboswitch-guided chalcone synthase engineering and metabolic flux optimization for enhanced production of flavonoids. Metab Eng 2023; 75:143-152. [PMID: 36549411 DOI: 10.1016/j.ymben.2022.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/05/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Flavonoids are a group of secondary metabolites from plants that have received attention as high value-added pharmacological substances. Recently, a robust and efficient bioprocess using recombinant microbes has emerged as a promising approach to supply flavonoids. In the flavonoid biosynthetic pathway, the rate of chalcone synthesis, the first committed step, is a major bottleneck. However, chalcone synthase (CHS) engineering was difficult because of high-level conservation and the absence of effective screening tools, which are limited to overexpression or homolog-based combinatorial strategies. Furthermore, it is necessary to precisely regulate the metabolic flux for the optimum availability of malonyl-CoA, a substrate of chalcone synthesis. In this study, we engineered CHS and optimized malonyl-CoA availability to establish a platform strain for naringenin production, a key molecular scaffold for various flavonoids. First, we engineered CHS through synthetic riboswitch-based high-throughput screening of rationally designed mutant libraries. Consequently, the catalytic efficiency (kcat/Km) of the optimized CHS enzyme was 62% higher than that of the wild-type enzyme. In addition to CHS engineering, we designed genetic circuits using transcriptional repressors to fine-tune the malonyl-CoA availability. The best mutant with synergistic effects of the engineered CHS and the optimized genetic circuit produced 98.71 mg/L naringenin (12.57 mg naringenin/g glycerol), which is the highest naringenin concentration and yield from glycerol in similar culture conditions reported to date, a 2.5-fold increase compared to the parental strain. Overall, this study provides an effective strategy for efficient production of flavonoids.
Collapse
Affiliation(s)
- Hyun Gyu Hwang
- Institute of Environmental and Energy Technology, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Alfonsina Milito
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
| | - Jae-Seong Yang
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain.
| | - Sungho Jang
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, South Korea; Division of Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, South Korea; Research Center for Bio Materials & Process Development, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, South Korea.
| | - Gyoo Yeol Jung
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea.
| |
Collapse
|
17
|
Jiang T, Li C, Zou Y, Zhang J, Gan Q, Yan Y. Establishing an Autonomous Cascaded Artificial Dynamic (AutoCAD) regulation system for improved pathway performance. Metab Eng 2022; 74:1-10. [PMID: 36041638 PMCID: PMC10947494 DOI: 10.1016/j.ymben.2022.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/21/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022]
Abstract
Endogenous metabolic pathways in microbial cells are usually precisely controlled by sophisticated regulation networks. However, the lack of such regulations when introducing heterologous pathways in microbial hosts often causes unbalanced enzyme expression and carbon flux distribution, hindering the construction of highly efficient microbial biosynthesis systems. Here, using naringenin as the target compound, we developed an Autonomous Cascaded Artificial Dynamic (AutoCAD) regulation system to automatically coordinate the pathway expression and redirect carbon fluxes for enhanced naringenin production. The AutoCAD regulation system, consisting of both intermediate-based feedforward and product-based feedback control genetic circuits, resulted in a 16.5-fold increase in naringenin titer compared with the static control. Fed-batch fermentation using the strain with AutoCAD regulation further enhanced the naringenin titer to 277.2 mg/L. The AutoCAD regulation system, with intermediate-based feedforward control and product-triggered feedback control, provides a new paradigm of developing complicated cascade dynamic control to engineer heterologous pathways.
Collapse
Affiliation(s)
- Tian Jiang
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA
| | - Chenyi Li
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA
| | - Yusong Zou
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA
| | - Jianli Zhang
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA
| | - Qi Gan
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA
| | - Yajun Yan
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
18
|
Mormino M, Lenitz I, Siewers V, Nygård Y. Identification of acetic acid sensitive strains through biosensor-based screening of a Saccharomyces cerevisiae CRISPRi library. Microb Cell Fact 2022; 21:214. [PMID: 36243715 PMCID: PMC9571444 DOI: 10.1186/s12934-022-01938-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/02/2022] [Indexed: 11/10/2022] Open
Abstract
Background Acetic acid tolerance is crucial for the development of robust cell factories for conversion of lignocellulosic hydrolysates that typically contain high levels of acetic acid. Screening mutants for growth in medium with acetic acid is an attractive way to identify sensitive variants and can provide novel insights into the complex mechanisms regulating the acetic acid stress response. Results An acetic acid biosensor based on the Saccharomyces cerevisiae transcription factor Haa1, was used to screen a CRISPRi yeast strain library where dCas9-Mxi was set to individually repress each essential or respiratory growth essential gene. Fluorescence-activated cell sorting led to the enrichment of a population of cells with higher acetic acid retention. These cells with higher biosensor signal were demonstrated to be more sensitive to acetic acid. Biosensor-based screening of the CRISPRi library strains enabled identification of strains with increased acetic acid sensitivity: strains with gRNAs targeting TIF34, MSN5, PAP1, COX10 or TRA1. Conclusions This study demonstrated that biosensors are valuable tools for screening and monitoring acetic acid tolerance in yeast. Fine-tuning the expression of essential genes can lead to altered acetic acid tolerance. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01938-7.
Collapse
Affiliation(s)
- Maurizio Mormino
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ibai Lenitz
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Verena Siewers
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Yvonne Nygård
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
19
|
Kim DH, Hwang HG, Jung GY. Optimum flux rerouting for efficient production of naringenin from acetate in engineered Escherichia coli. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:90. [PMID: 36056377 PMCID: PMC9440541 DOI: 10.1186/s13068-022-02188-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/20/2022] [Indexed: 11/13/2022]
Abstract
Background Microbial production of naringenin has received much attention owing to its pharmaceutical applicability and potential as a key molecular scaffold for various flavonoids. In the microbial fermentation, a cheap and abundant feedstock is required to achieve an economically feasible bioprocess. From this perspective, utilizing acetate for naringenin production could be an effective strategy, with the advantages of both low-cost and abundant feedstock. For the efficient production of naringenin using acetate, identification of the appropriate regulatory node of carbon flux in the biosynthesis of naringenin from acetate would be important. While acetyl-CoA is a key precursor for naringenin production, carbon flux between the TCA cycle and anaplerosis is effectively regulated at the isocitrate node through glyoxylate shunt in acetate metabolism. Accordingly, appropriate rerouting of TCA cycle intermediates from anaplerosis into naringenin biosynthesis via acetyl-CoA replenishment would be required. Results This study identified the isocitrate and oxaloacetate (OAA) nodes as key regulatory nodes for the naringenin production using acetate. Precise rerouting at the OAA node for enhanced acetyl-CoA was conducted, avoiding extensive loss of OAA by fine-tuning the expression of pckA (encoding phosphoenolpyruvate carboxykinase) with flux redistribution between naringenin biosynthesis and cell growth at the isocitrate node. Consequently, the flux-optimized strain exhibited a significant increase in naringenin production, a 27.2-fold increase (with a 38.3-fold increase of naringenin yield on acetate) over that by the unoptimized strain, producing 97.02 mg/L naringenin with 21.02 mg naringenin/g acetate, which is a competitive result against those in previous studies on conventional substrates, such as glucose. Conclusions Collectively, we demonstrated efficient flux rerouting for maximum naringenin production from acetate in E. coli. This study was the first attempt of naringenin production from acetate and suggested the potential of biosynthesis of various flavonoids derived from naringenin using acetate. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02188-w.
Collapse
|
20
|
Lebovich M, Andrews LB. Surveying the Genetic Design Space for Transcription Factor-Based Metabolite Biosensors: Synthetic Gamma-Aminobutyric Acid and Propionate Biosensors in E. coli Nissle 1917. Front Bioeng Biotechnol 2022; 10:938056. [PMID: 36091463 PMCID: PMC9452892 DOI: 10.3389/fbioe.2022.938056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/22/2022] [Indexed: 11/25/2022] Open
Abstract
Engineered probiotic bacteria have been proposed as a next-generation strategy for noninvasively detecting biomarkers in the gastrointestinal tract and interrogating the gut-brain axis. A major challenge impeding the implementation of this strategy has been the difficulty to engineer the necessary whole-cell biosensors. Creation of transcription factor-based biosensors in a clinically-relevant strain often requires significant tuning of the genetic parts and gene expression to achieve the dynamic range and sensitivity required. Here, we propose an approach to efficiently engineer transcription-factor based metabolite biosensors that uses a design prototyping construct to quickly assay the gene expression design space and identify an optimal genetic design. We demonstrate this approach using the probiotic bacterium Escherichia coli Nissle 1917 (EcN) and two neuroactive gut metabolites: the neurotransmitter gamma-aminobutyric acid (GABA) and the short-chain fatty acid propionate. The EcN propionate sensor, utilizing the PrpR transcriptional activator from E. coli, has a large 59-fold dynamic range and >500-fold increased sensitivity that matches biologically-relevant concentrations. Our EcN GABA biosensor uses the GabR transcriptional repressor from Bacillus subtilis and a synthetic GabR-regulated promoter created in this study. This work reports the first known synthetic microbial whole-cell biosensor for GABA, which has an observed 138-fold activation in EcN at biologically-relevant concentrations. Using this rapid design prototyping approach, we engineer highly functional biosensors for specified in vivo metabolite concentrations that achieve a large dynamic range and high output promoter activity upon activation. This strategy may be broadly useful for accelerating the engineering of metabolite biosensors for living diagnostics and therapeutics.
Collapse
Affiliation(s)
- Matthew Lebovich
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, United States
- Biotechnology Training Program, University of Massachusetts Amherst, Amherst, MA, United States
| | - Lauren B. Andrews
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, United States
- Biotechnology Training Program, University of Massachusetts Amherst, Amherst, MA, United States
- Molecular and Cellular Biology Graduate, Program University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
21
|
Baldera-Aguayo PA, Lee A, Cornish VW. High-Titer Production of the Fungal Anhydrotetracycline, TAN-1612, in Engineered Yeasts. ACS Synth Biol 2022; 11:2429-2444. [PMID: 35699947 PMCID: PMC9480237 DOI: 10.1021/acssynbio.2c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Antibiotic resistance is a growing global health threat, demanding urgent responses. Tetracyclines, a widely used antibiotic class, are increasingly succumbing to antibiotic resistance; generating novel analogues is therefore a top priority for public health. Fungal tetracyclines provide structural and enzymatic diversity for novel tetracycline analogue production in tractable heterologous hosts, like yeasts, to combat antibiotic-resistant pathogens. Here, we successfully engineered Saccharomyces cerevisiae (baker's yeast) and Saccharomyces boulardii (probiotic yeast) to produce the nonantibiotic fungal anhydrotetracycline, TAN-1612, in synthetic defined media─necessary for clean purifications─through heterologously expressing TAN-1612 genes mined from the fungus, Aspergillus niger ATCC 1015. This was accomplished via (i) a promoter library-based combinatorial pathway optimization of the biosynthetic TAN-1612 genes coexpressed with a putative TAN-1612 efflux pump, reducing TAN-1612 toxicity in yeasts while simultaneously increasing supernatant titers and (ii) the development of a medium-throughput UV-visible spectrophotometric assay that facilitates TAN-1612 combinatorial library screening. Through this multipronged approach, we optimized TAN-1612 production, yielding an over 450-fold increase compared to previously reported S. cerevisiae yields. TAN-1612 is an important tetracycline analogue precursor, and we thus present the first step toward generating novel tetracycline analogue therapeutics to combat current and emerging antibiotic resistance. We also report the first heterologous production of a fungal polyketide, like TAN-1612, in the probiotic S. boulardii. This highlights that engineered S. boulardii can biosynthesize complex natural products like tetracyclines, setting the stage to equip probiotic yeasts with synthetic therapeutic functionalities to generate living therapeutics or biocontrol agents for clinical and agricultural applications.
Collapse
Affiliation(s)
- Pedro A Baldera-Aguayo
- Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University, New York, New York 10032, United States
- Department of Chemistry, Columbia University, 550 W 120th Street, Northwest Corner Building 1206, New York, New York 10027, United States
| | - Arden Lee
- Department of Chemistry, Columbia University, 550 W 120th Street, Northwest Corner Building 1206, New York, New York 10027, United States
| | - Virginia W Cornish
- Department of Chemistry, Columbia University, 550 W 120th Street, Northwest Corner Building 1206, New York, New York 10027, United States
- Department of Systems Biology, Columbia University Irving Cancer Research Center, 1130 St. Nicholas Avenue, New York, New York 10032, United States
| |
Collapse
|
22
|
Isogai S, Tominaga M, Kondo A, Ishii J. Plant Flavonoid Production in Bacteria and Yeasts. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.880694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Flavonoids, a major group of secondary metabolites in plants, are promising for use as pharmaceuticals and food supplements due to their health-promoting biological activities. Industrial flavonoid production primarily depends on isolation from plants or organic synthesis, but neither is a cost-effective or sustainable process. In contrast, recombinant microorganisms have significant potential for the cost-effective, sustainable, environmentally friendly, and selective industrial production of flavonoids, making this an attractive alternative to plant-based production or chemical synthesis. Structurally and functionally diverse flavonoids are derived from flavanones such as naringenin, pinocembrin and eriodictyol, the major basic skeletons for flavonoids, by various modifications. The establishment of flavanone-producing microorganisms can therefore be used as a platform for producing various flavonoids. This review summarizes metabolic engineering and synthetic biology strategies for the microbial production of flavanones. In addition, we describe directed evolution strategies based on recently-developed high-throughput screening technologies for the further improvement of flavanone production. We also describe recent progress in the microbial production of structurally and functionally complicated flavonoids via the flavanone modifications. Strategies based on synthetic biology will aid more sophisticated and controlled microbial production of various flavonoids.
Collapse
|
23
|
Qian Z, Yu J, Chen X, Kang Y, Ren Y, Liu Q, Lu J, Zhao Q, Cai M. De Novo Production of Plant 4'-Deoxyflavones Baicalein and Oroxylin A from Ethanol in Crabtree-Negative Yeast. ACS Synth Biol 2022; 11:1600-1612. [PMID: 35389625 DOI: 10.1021/acssynbio.2c00026] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Baicalein and oroxylin A are well-known medicinal 4'-deoxyflavones found mainly in the roots of traditional medicinal plant Scutellaria baicalensis Georgi. However, extraction from plants is time-consuming, environmentally unfriendly, and insufficient. Although microbial synthesis of flavonoids has been extensively reported, synthesis of downstream modified 4'-deoxyflavones has not, and their yields are extremely low. Here, we reassembled the S. baicalensis 4'-deoxyflavone biosynthetic pathway in a Crabtree-negative yeast, Pichia pastoris, with activity analysis and combinatorial expression of eight biosynthetic genes, allowing production of 4'-deoxyflavones like baicalein, oroxylin A, wogonin, norwogonin, 6-methoxywogonin, and the novel 6-methoxynorwogonin. De novo baicalein synthesis was then achieved by complete pathway assembly. Toxic intermediates highly impaired the cell production capacity; hence, we alleviated cinnamic acid growth inhibition by culturing the cells at near-neutral pH and using alcoholic carbon sources. To achieve pathway balance and improve baicalein and oroxylin A synthesis, we further divided the pathway into five modules. A series of ethanol-induced and constitutive transcriptional amplification devices were constructed to adapt to the modules. This fine-tuning pathway control considerably reduced byproduct and intermediate accumulation and achieved high-level de novo baicalein (401.9 mg/L with a total increase of 1182-fold, the highest titer reported) and oroxylin A (339.5 mg/L, for the first time) production from ethanol. This study provides new strategies for the microbial synthesis of 4'-deoxyflavones and other flavonoids.
Collapse
Affiliation(s)
- Zhilan Qian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiahui Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xinjie Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yijia Kang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yanna Ren
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qi Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jian Lu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qing Zhao
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai 201602, China
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Menghao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
24
|
Engineering of Synthetic Transcriptional Switches in Yeast. Life (Basel) 2022; 12:life12040557. [PMID: 35455048 PMCID: PMC9030632 DOI: 10.3390/life12040557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 02/04/2023] Open
Abstract
Transcriptional switches can be utilized for many purposes in synthetic biology, including the assembly of complex genetic circuits to achieve sophisticated cellular systems and the construction of biosensors for real-time monitoring of intracellular metabolite concentrations. Although to date such switches have mainly been developed in prokaryotes, those for eukaryotes are increasingly being reported as both rational and random engineering technologies mature. In this review, we describe yeast transcriptional switches with different modes of action and how to alter their properties. We also discuss directed evolution technologies for the rapid and robust construction of yeast transcriptional switches.
Collapse
|
25
|
Biosensor-Coupled In Vivo Mutagenesis and Omics Analysis Reveals Reduced Lysine and Arginine Synthesis To Improve Malonyl-Coenzyme A Flux in Saccharomyces cerevisiae. mSystems 2022; 7:e0136621. [PMID: 35229648 PMCID: PMC9040634 DOI: 10.1128/msystems.01366-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Malonyl-coenzyme A (malonyl-CoA) is an important precursor for producing various chemicals, but its low availability limits the synthesis of downstream products in Saccharomyces cerevisiae. Owing to the complexity of metabolism, evolutionary engineering is required for developing strains with improved malonyl-CoA synthesis. Here, using the biosensor we constructed previously, a growth-based screening system that links the availability of malonyl-CoA with cell growth is developed. Coupling this system with in vivo continuous mutagenesis enabled rapid generation of genome-scale mutation library and screening strains with improved malonyl-CoA availability. The mutant strains are analyzed by whole-genome sequencing and transcriptome analysis. The omics analysis revealed that the carbon flux rearrangement to storage carbohydrate and amino acids synthesis affected malonyl-CoA metabolism. Through reverse engineering, new processes especially reduced lysine and arginine synthesis were found to improve malonyl-CoA synthesis. Our study provides a valuable complementary tool to other high-throughput screening method for mutant strains with improved metabolite synthesis and improves our understanding of the metabolic regulation of malonyl-CoA synthesis. IMPORTANCE Malonyl-CoA is a key precursor for the production a variety of value-added chemicals. Although rational engineering has been performed to improve the synthesis of malonyl-CoA in S. cerevisiae, due to the complexity of the metabolism there is a need for evolving strains and analyzing new mechanism to improve malonyl-CoA flux. Here, we developed a growth-based screening system that linked the availability of malonyl-CoA with cell growth and manipulated DNA replication for rapid in vivo mutagenesis. The combination of growth-based screening with in vivo mutagenesis enabled quick evolution of strains with improved malonyl-CoA availability. The whole-genome sequencing, transcriptome analysis of the mutated strains, together with reverse engineering, demonstrated weakening carbon flux to lysine and arginine synthesis and storage carbohydrate can contribute to malonyl-CoA synthesis. Our work provides a guideline in simultaneous strain screening and continuous evolution for improved metabolic intermediates and identified new targets for improving malonyl-CoA downstream product synthesis.
Collapse
|
26
|
Otto M, Liu D, Siewers V. Saccharomyces cerevisiae as a Heterologous Host for Natural Products. Methods Mol Biol 2022; 2489:333-367. [PMID: 35524059 DOI: 10.1007/978-1-0716-2273-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cell factories can provide a sustainable supply of natural products with applications as pharmaceuticals, food-additives or biofuels. Besides being an important model organism for eukaryotic systems, Saccharomyces cerevisiae is used as a chassis for the heterologous production of natural products. Its success as a cell factory can be attributed to the vast knowledge accumulated over decades of research, its overall ease of engineering and its robustness. Many methods and toolkits have been developed by the yeast metabolic engineering community with the aim of simplifying and accelerating the engineering process.In this chapter, a range of methodologies are highlighted, which can be used to develop novel natural product cell factories or to improve titer, rate and yields of an existing cell factory with the goal of developing an industrially relevant strain. The addressed topics are applicable for different stages of a cell factory engineering project and include the choice of a natural product platform strain, expression cassette design for heterologous or native genes, basic and advanced genetic engineering strategies, and library screening methods using biosensors. The many engineering methods available and the examples of yeast cell factories underline the importance and future potential of this host for industrial production of natural products.
Collapse
Affiliation(s)
- Maximilian Otto
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Dany Liu
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Verena Siewers
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
27
|
Li C, Jiang T, Li M, Zou Y, Yan Y. Fine-tuning gene expression for improved biosynthesis of natural products: From transcriptional to post-translational regulation. Biotechnol Adv 2022; 54:107853. [PMID: 34637919 PMCID: PMC8724446 DOI: 10.1016/j.biotechadv.2021.107853] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 02/08/2023]
Abstract
Microbial production of natural compounds has attracted extensive attention due to their high value in pharmaceutical, cosmetic, and food industries. Constructing efficient microbial cell factories for biosynthesis of natural products requires the fine-tuning of gene expressions to minimize the accumulation of toxic metabolites, reduce the competition between cell growth and product generation, as well as achieve the balance of redox or co-factors. In this review, we focus on recent advances in fine-tuning gene expression at the DNA, RNA, and protein levels to improve the microbial biosynthesis of natural products. Commonly used regulatory toolsets in each level are discussed, and perspectives for future direction in this area are provided.
Collapse
Affiliation(s)
- Chenyi Li
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Tian Jiang
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Michelle Li
- North Oconee High School, Bogart, GA 30622, USA
| | - Yusong Zou
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Yajun Yan
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
28
|
Zhou P, Fang X, Xu N, Yao Z, Xie W, Ye L. Development of a Highly Efficient Copper-Inducible GAL Regulation System (CuIGR) in Saccharomyces cerevisiae. ACS Synth Biol 2021; 10:3435-3444. [PMID: 34874147 DOI: 10.1021/acssynbio.1c00378] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Dynamic regulation of gene expression to decouple growth and production has been proven to be effective for improving the biosynthetic efficiency of microbial cell factories. However, the number of efficient regulatory systems available for regulation of Saccharomyces cerevisiae is limited. In the present study, a novel copper-inducible gene expression system (CuIGR) composed of the copper-induced transcriptional activator Gal4 and the copper-inhibited repressor Gal80 was constructed in S. cerevisiae. When Gal80 was fused with a N-degron tag (K15), the resulting CuIGR4 system exhibited the most stringent regulation of gene expression driven by GAL1/2/7/10 promoters. As compared to the native Cu2+-inducible CUP1 promoter, the CuIGR4 system amplified the response to copper by as much as 2.7 folds, resulting in 72-fold induction of EGFP expression and a 33-fold change in lycopene production (3-100 mg/L) with addition of 20 μM copper. This newly developed copper-inducible system provides a powerful tool for gene expression control in S. cerevisiae, which is expected to be widely applicable in the regulation of yeast cell factories for enhanced biosynthesis of valuable products.
Collapse
Affiliation(s)
- Pingping Zhou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Xin Fang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Nannan Xu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Zhen Yao
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Wenping Xie
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
- Zhejiang NHU Company Limited, Shaoxing 312521, PR China
| | - Lidan Ye
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| |
Collapse
|
29
|
Koch M, Apushkinskaya N, Zolotukhina E, Silina Y. Towards hybrid one-pot/one-electrode Pd-NPs-based nanoreactors for modular biocatalysis. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Wu Z, Li Y, Zhang L, Ding Z, Shi G. Microbial production of small peptide: pathway engineering and synthetic biology. Microb Biotechnol 2021; 14:2257-2278. [PMID: 33459516 PMCID: PMC8601181 DOI: 10.1111/1751-7915.13743] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/12/2020] [Accepted: 12/13/2020] [Indexed: 01/14/2023] Open
Abstract
Small peptides are a group of natural products with low molecular weights and complex structures. The diverse structures of small peptides endow them with broad bioactivities and suggest their potential therapeutic use in the medical field. The remaining challenge is methods to address the main limitations, namely (i) the low amount of available small peptides from natural sources, and (ii) complex processes required for traditional chemical synthesis. Therefore, harnessing microbial cells as workhorse appears to be a promising approach to synthesize these bioactive peptides. As an emerging engineering technology, synthetic biology aims to create standard, well-characterized and controllable synthetic systems for the biosynthesis of natural products. In this review, we describe the recent developments in the microbial production of small peptides. More importantly, synthetic biology approaches are considered for the production of small peptides, with an emphasis on chassis cells, the evolution of biosynthetic pathways, strain improvements and fermentation.
Collapse
Affiliation(s)
- Zhiyong Wu
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxiJiangsu Province214122China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
- Jiangsu Provisional Research Center for Bioactive Product Processing TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
| | - Youran Li
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxiJiangsu Province214122China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
- Jiangsu Provisional Research Center for Bioactive Product Processing TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
| | - Liang Zhang
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxiJiangsu Province214122China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
- Jiangsu Provisional Research Center for Bioactive Product Processing TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
| | - Zhongyang Ding
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxiJiangsu Province214122China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
- Jiangsu Provisional Research Center for Bioactive Product Processing TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
| | - Guiyang Shi
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxiJiangsu Province214122China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
- Jiangsu Provisional Research Center for Bioactive Product Processing TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
| |
Collapse
|
31
|
M V, Wang K. Dietary natural products as a potential inhibitor towards advanced glycation end products and hyperglycemic complications: A phytotherapy approaches. Biomed Pharmacother 2021; 144:112336. [PMID: 34678719 DOI: 10.1016/j.biopha.2021.112336] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/07/2021] [Accepted: 10/10/2021] [Indexed: 12/14/2022] Open
Abstract
Natural products exist in various natural foods such as plants, herbs, fruits, and vegetables. Furthermore, marine life offers potential natural products with significant biological activity. The biochemical reaction is known as advanced glycation end products (AGEs) occurs in the human body. On the other hand, foods are capable of a wide range of processing conditions resulting in the generation of exogenous AGEs adducts. Protein glycation and the formation of advanced glycation end products both contribute to the pathogenesis of hyperglycemic complications. AGEs also play a pivotal role in microvascular and macrovascular complications progression by receptors for advanced glycation end products (RAGE). RAGE activate by AGEs leads to up-regulation of transcriptional factor NF-kB and inflammatory genes. Around the globe, researchers are working in various approaches for therapeutical implications on controlling AGEs mediated disease complications. In this regard, one of the potential promising agents observed with a wide range of AGEs inhibition by food-derived natural products. Current biotechnological tools have been turned to natural products or phytochemicals to manufacture the molecules without compromising their functionality. Metabolic engineering and bioinformatics perspectives have recently enabled the generation of a few potent metabolites with anti-diabetic activity. As the primary focus, this review article will also discuss multidisciplinary approaches that emphasize current advances in anti-diabetic therapeutic action and future perspectives of natural products.
Collapse
Affiliation(s)
- Vijaykrishnaraj M
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China.
| | - Kuiwu Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China.
| |
Collapse
|
32
|
Multi-level rebalancing of the naringenin pathway using riboswitch-guided high-throughput screening. Metab Eng 2021; 67:417-427. [PMID: 34416365 DOI: 10.1016/j.ymben.2021.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/28/2021] [Accepted: 08/13/2021] [Indexed: 11/20/2022]
Abstract
Recombinant microbes have emerged as promising alternatives to natural sources of naringenin-a key molecular scaffold for flavonoids. In recombinant strains, expression levels of the pathway genes should be optimized at both transcription and the translation stages to precisely allocate cellular resources and maximize metabolite production. However, the optimization of the expression levels of naringenin generally relies on evaluating a small number of variants from libraries constructed by varying transcription efficiency only. In this study, we introduce a systematic strategy for the multi-level optimization of biosynthetic pathways. We constructed a multi-level combinatorial library covering both transcription and translation stages using synthetic T7 promoter variants and computationally designed 5'-untranslated regions. Furthermore, we identified improved strains through high-throughput screening based on a synthetic naringenin riboswitch. The most-optimized strain obtained using this approach exhibited a 3-fold increase in naringenin production, compared with the parental strain in which only the transcription efficiency was modulated. Furthermore, in a fed-batch bioreactor, the optimized strain produced 260.2 mg/L naringenin, which is the highest concentration reported to date using glycerol and p-coumaric acid as substrates. Collectively, this work provides an efficient strategy for the expression optimization of the biosynthetic pathways.
Collapse
|
33
|
Wu M, Gong DC, Yang Q, Zhang MQ, Mei YZ, Dai CC. Activation of Naringenin and Kaempferol through Pathway Refactoring in the Endophyte Phomopsis Liquidambaris. ACS Synth Biol 2021; 10:2030-2039. [PMID: 34251173 DOI: 10.1021/acssynbio.1c00205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Abundant gene clusters of natural products are observed in the endophytic fungus Phomopsis liquidambaris; however, most of them are silent. Herein, a plug-and-play DNA assembly tool has been applied for flavonoid synthesis in P. liquidambaris. A shuttle plasmid was constructed based on S. cerevisiae, E. coli, and P. liquidambaris with screening markers URA, Amp, and hygR, respectively. Each fragment or cassette was successively assembled by overlap extension PCR with at least 40-50 bp homologous arms in S. cerevisiae for generating a new vector. Seven native promoters were screened by the DNA assembly based on the fluorescence intensity of the mCherry reporter gene in P. liquidambaris, and two of them were new promoters. The key enzyme chalcone synthase was the limiting step of the pathway. The naringenin and kaempferol pathways were refactored and activated with the titers of naringenin and kaempferol of 121.53 mg/L and 75.38 mg/L in P. liquidambaris using fed-batch fermentation, respectively. This study will be efficient and helpful for the biosynthesis of secondary metabolites.
Collapse
Affiliation(s)
- Mei Wu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu Province China
| | - Da-Chun Gong
- China Key Laboratory of Light Industry Functional Yeast, Three Gorges University, Yichang, 443000, Hubei Province China
| | - Qian Yang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu Province China
| | - Meng-Qian Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu Province China
| | - Yan-Zhen Mei
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu Province China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu Province China
| |
Collapse
|
34
|
Ren CY, Liu Y, Wei WP, Dai J, Ye BC. Reconstruction of Secondary Metabolic Pathway to Synthesize Novel Metabolite in Saccharopolyspora erythraea. Front Bioeng Biotechnol 2021; 9:628569. [PMID: 34277577 PMCID: PMC8283810 DOI: 10.3389/fbioe.2021.628569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/16/2021] [Indexed: 12/31/2022] Open
Abstract
Natural polyketides play important roles in clinical treatment, agriculture, and animal husbandry. Compared to natural hosts, heterologous chassis (especially Actinomycetes) have many advantages in production of polyketide compounds. As a widely studied model Actinomycete, Saccharopolyspora erythraea is an excellent host to produce valuable heterologous polyketide compounds. However, many host factors affect the expression efficiency of heterologous genes, and it is necessary to modify the host to adapt heterologous production. In this study, the CRISPR-Cas9 system was used to knock out the erythromycin biosynthesis gene cluster of Ab (erythromycin high producing stain). A fragment of 49491 bp in genome (from SACE_0715 to SACE_0733) was deleted, generating the recombinant strain AbΔery in which erythromycin synthesis was blocked and synthetic substrates methylmalonyl-CoA and propionyl-CoA accumulated enormously. Based on AbΔery as heterologous host, three genes, AsCHS, RgTAL, and Sc4CL, driven by strong promoters Pj23119, PermE, and PkasO, respectively, were introduced to produce novel polyketide by L-tyrosine and methylmalonyl-CoA. The product (E)-4-hydroxy-6-(4-hydroxystyryl)-3,5-dimethyl-2H-pyrone was identified in fermentation by LC-MS. High performance liquid chromatography analysis showed that knocking out ery BGC resulted in an increase of methylmalonyl-CoA by 142% and propionyl-CoA by 57.9% in AbΔery compared to WT, and the yield of heterologous product in AbΔery:AsCHS-RgTAL-Sc4CL was higher than WT:AsCHS-RgTAL-Sc4CL. In summary, this study showed that AbΔery could potentially serve as a precious heterologous host to boost the synthesis of other valuable polyketone compounds using methylmalonyl-CoA and propionyl-CoA in the future.
Collapse
Affiliation(s)
- Chong-Yang Ren
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yong Liu
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Key Laboratory of Synthetic Genomics and Center for Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wen-Ping Wei
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Junbiao Dai
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Key Laboratory of Synthetic Genomics and Center for Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Bang-Ce Ye
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.,Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
35
|
Wong M, Badri A, Gasparis C, Belfort G, Koffas M. Modular optimization in metabolic engineering. Crit Rev Biochem Mol Biol 2021; 56:587-602. [PMID: 34180323 DOI: 10.1080/10409238.2021.1937928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
There is an increasing demand for bioproducts produced by metabolically engineered microbes, such as pharmaceuticals, biofuels, biochemicals and other high value compounds. In order to meet this demand, modular optimization, the optimizing of subsections instead of the whole system, has been adopted to engineer cells to overproduce products. Research into modularity has focused on traditional approaches such as DNA, RNA, and protein-level modularity of intercellular machinery, by optimizing metabolic pathways for enhanced production. While research into these traditional approaches continues, limitations such as scale-up and time cost hold them back from wider use, while at the same time there is a shift to more novel methods, such as moving from episomal expression to chromosomal integration. Recently, nontraditional approaches such as co-culture systems and cell-free metabolic engineering (CFME) are being investigated for modular optimization. Co-culture modularity looks to optimally divide the metabolic burden between different hosts. CFME seeks to modularly optimize metabolic pathways in vitro, both speeding up the design of such systems and eliminating the issues associated with live hosts. In this review we will examine both traditional and nontraditional approaches for modular optimization, examining recent developments and discussing issues and emerging solutions for future research in metabolic engineering.
Collapse
Affiliation(s)
- Matthew Wong
- Howard P. Isermann Department of Chemical and Biological Engineering and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Abinaya Badri
- Howard P. Isermann Department of Chemical and Biological Engineering and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Christopher Gasparis
- Howard P. Isermann Department of Chemical and Biological Engineering and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Georges Belfort
- Howard P. Isermann Department of Chemical and Biological Engineering and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Mattheos Koffas
- Howard P. Isermann Department of Chemical and Biological Engineering and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
36
|
Dacquay LC, McMillen DR. Improving the design of an oxidative stress sensing biosensor in yeast. FEMS Yeast Res 2021; 21:6232160. [PMID: 33864457 PMCID: PMC8088429 DOI: 10.1093/femsyr/foab025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/15/2021] [Indexed: 12/23/2022] Open
Abstract
Transcription factor (TF)-based biosensors have proven useful for increasing biomanufacturing yields, large-scale functional screening, and in environmental monitoring. Most yeast TF-based biosensors are built from natural promoters, resulting in large DNA parts retaining considerable homology to the host genome, which can complicate biological engineering efforts. There is a need to explore smaller, synthetic biosensors to expand the options for regulating gene expression in yeast. Here, we present a systematic approach to improving the design of an existing oxidative stress sensing biosensor in Saccharomyces cerevisiae based on the Yap1 transcription factor. Starting from a synthetic core promoter, we optimized the activity of a Yap1-dependent promoter through rational modification of a minimalist Yap1 upstream activating sequence. Our novel promoter achieves dynamic ranges of activation surpassing those of the previously engineered Yap1-dependent promoter, while reducing it to only 171 base pairs. We demonstrate that coupling the promoter to a positive-feedback-regulated TF further improves the biosensor by increasing its dynamic range of activation and reducing its limit of detection. We have illustrated the robustness and transferability of the biosensor by reproducing its activity in an unconventional probiotic yeast strain, Saccharomyces boulardii. Our findings can provide guidance in the general process of TF-based biosensor design.
Collapse
Affiliation(s)
- Louis C Dacquay
- Dept of Cell and Systems Biology, University of Toronto, 25 Harbord St, Toronto, ON M5S 3G5, Canada.,Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga ON L5L 1C6, Canada
| | - David R McMillen
- Dept of Cell and Systems Biology, University of Toronto, 25 Harbord St, Toronto, ON M5S 3G5, Canada.,Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga ON L5L 1C6, Canada.,Departments of Chemistry and Physics, University of Toronto, 80 St. George St., Toronto ON M5S 3H6, Canada
| |
Collapse
|
37
|
Zhang Y, Shi S. Transcription Factor-Based Biosensor for Dynamic Control in Yeast for Natural Product Synthesis. Front Bioeng Biotechnol 2021; 9:635265. [PMID: 33614618 PMCID: PMC7892902 DOI: 10.3389/fbioe.2021.635265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
The synthesis of natural products in yeast has gained remarkable achievements with intensive metabolic engineering efforts. In particular, transcription factor (TF)-based biosensors for dynamic control of gene circuits could facilitate strain evaluation, high-throughput screening (HTS), and adaptive laboratory evolution (ALE) for natural product synthesis. In this review, we summarized recent developments of several TF-based biosensors for core intermediates in natural product synthesis through three important pathways, i.e., fatty acid synthesis pathway, shikimate pathway, and methylerythritol-4-phosphate (MEP)/mevalonate (MVA) pathway. Moreover, we have shown how these biosensors are implemented in synthetic circuits for dynamic control of natural product synthesis and also discussed the design/evaluation principles for improved biosensor performance.
Collapse
Affiliation(s)
- Yiming Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
38
|
Sun X, Li X, Shen X, Wang J, Yuan Q. Recent advances in microbial production of phenolic compounds. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
39
|
Ferreira SS, Antunes MS. Re-engineering Plant Phenylpropanoid Metabolism With the Aid of Synthetic Biosensors. FRONTIERS IN PLANT SCIENCE 2021; 12:701385. [PMID: 34603348 PMCID: PMC8481569 DOI: 10.3389/fpls.2021.701385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/23/2021] [Indexed: 05/03/2023]
Abstract
Phenylpropanoids comprise a large class of specialized plant metabolites with many important applications, including pharmaceuticals, food nutrients, colorants, fragrances, and biofuels. Therefore, much effort has been devoted to manipulating their biosynthesis to produce high yields in a more controlled manner in microbial and plant systems. However, current strategies are prone to significant adverse effects due to pathway complexity, metabolic burden, and metabolite bioactivity, which still hinder the development of tailor-made phenylpropanoid biofactories. This gap could be addressed by the use of biosensors, which are molecular devices capable of sensing specific metabolites and triggering a desired response, as a way to sense the pathway's metabolic status and dynamically regulate its flux based on specific signals. Here, we provide a brief overview of current research on synthetic biology and metabolic engineering approaches to control phenylpropanoid synthesis and phenylpropanoid-related biosensors, advocating for the use of biosensors and genetic circuits as a step forward in plant synthetic biology to develop autonomously-controlled phenylpropanoid-producing plant biofactories.
Collapse
|
40
|
Gao S, Xu X, Zeng W, Xu S, Lyv Y, Feng Y, Kai G, Zhou J, Chen J. Efficient Biosynthesis of (2 S)-Eriodictyol from (2 S)-Naringenin in Saccharomyces cerevisiae through a Combination of Promoter Adjustment and Directed Evolution. ACS Synth Biol 2020; 9:3288-3297. [PMID: 33226782 DOI: 10.1021/acssynbio.0c00346] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The compound (2S)-eriodictyol is an important flavonoid that can be derived from (2S)-naringenin through flavonoid 3'-hydroxylase (F3'H) catalyzation. F3'H is a cytochrome P450 enzyme that requires a cytochrome P450 reductase (CPR) to function. However, P450s have limited applications in industrial scale biosynthesis, owing to their low activity. Here, an efficient SmF3'H and a matched SmCPR were identified from Silybum marianum. To improve the efficiency of SmF3'H, we established a high-throughput detection method for (2S)-eriodictyol, in which the promoter combination of SmF3'H and SmCPR were optimized in Saccharomyces cerevisiae. The results revealed that SmF3'H/SmCPR should be expressed by using promoters with similar and strong expression levels. Furthermore, directed evolution was applied to further improve the efficiency of SmF3'H/SmCPR. With the optimized promoter and mutated combinations SmF3'HD285N/SmCPRI453V, the (2S)-eriodictyol titer was improved to 3.3 g/L, the highest titer in currently available reports. These results indicated that S. cerevisiae is an ideal platform for functional expression of flavonoid related P450 enzymes.
Collapse
Affiliation(s)
- Song Gao
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xiaoyu Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Sha Xu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yunbin Lyv
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yue Feng
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Guoyin Kai
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
41
|
|
42
|
Yang Q, Wu M, Zhu YL, Yang YQ, Mei YZ, Dai CC. The disruption of the MAPKK gene triggering the synthesis of flavonoids in endophytic fungus Phomopsis liquidambaris. Biotechnol Lett 2020; 43:119-132. [PMID: 33128663 DOI: 10.1007/s10529-020-03042-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/27/2020] [Indexed: 12/26/2022]
Abstract
Flavonoids, which are mainly extracted from plants, are important antioxidants and play an important role in human diseases. However, the growing market demand is limited by low productivity and complex production processes. Herein, the flavonoids biosynthesis pathway of the endophytic fungus Phomopsis liquidambaris was revealed. The mitogen-activated protein kinase kinase (MAPKK) of the strain was disrupted using a newly constructed CRISPR-Cas9 system mediated by two gRNAs which was conducive to cause plasmid loss. The disruption of the MAPKK gene triggered the biosynthesis of flavonoids against stress and resulted in the precipitation of flavonoids from fermentation broth. Naringenin, kaempferol and quercetin were detected in fed-batch fermentation with yields of 5.65 mg/L, 1.96 mg/L and 2.37 mg/L from P. liquidambaris for dry cell weigh using the mixture of glucose and xylose and corn steep powder as carbon source and nitrogen source for 72 h, respectively. The biosynthesis of flavonoids was triggered by disruption of MAPKK gene in P. liquidambaris and the mutant could utilize xylose.
Collapse
Affiliation(s)
- Qian Yang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Mei Wu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Ya-Li Zhu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Ya-Qiong Yang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Yan-Zhen Mei
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China.
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
43
|
Current state of aromatics production using yeast: achievements and challenges. Curr Opin Biotechnol 2020; 65:65-74. [DOI: 10.1016/j.copbio.2020.01.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 12/14/2022]
|
44
|
Boada Y, Vignoni A, Picó J, Carbonell P. Extended Metabolic Biosensor Design for Dynamic Pathway Regulation of Cell Factories. iScience 2020; 23:101305. [PMID: 32629420 PMCID: PMC7334618 DOI: 10.1016/j.isci.2020.101305] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/05/2020] [Accepted: 06/18/2020] [Indexed: 12/17/2022] Open
Abstract
Transcription factor-based biosensors naturally occur in metabolic pathways to maintain cell growth and to provide a robust response to environmental fluctuations. Extended metabolic biosensors, i.e., the cascading of a bio-conversion pathway and a transcription factor (TF) responsive to the downstream effector metabolite, provide sensing capabilities beyond natural effectors for implementing context-aware synthetic genetic circuits and bio-observers. However, the engineering of such multi-step circuits is challenged by stability and robustness issues. In order to streamline the design of TF-based biosensors in metabolic pathways, here we investigate the response of a genetic circuit combining a TF-based extended metabolic biosensor with an antithetic integral circuit, a feedback controller that achieves robustness against environmental fluctuations. The dynamic response of an extended biosensor-based regulated flavonoid pathway is analyzed in order to address the issues of biosensor tuning of the regulated pathway under industrial biomanufacturing operating constraints.
Collapse
Affiliation(s)
- Yadira Boada
- Synthetic Biology and Biosystems Control Lab, I.U. de Automática e Informática Industrial (ai2), Universitat Politècnica de València, Camí de Vera S/N, 46022 Valencia, Spain; Centro Universitario EDEM, Escuela de Empresarios, Muelle de la Aduana s/n, La Marina de València, 46024 Valencia, Spain
| | - Alejandro Vignoni
- Synthetic Biology and Biosystems Control Lab, I.U. de Automática e Informática Industrial (ai2), Universitat Politècnica de València, Camí de Vera S/N, 46022 Valencia, Spain
| | - Jesús Picó
- Synthetic Biology and Biosystems Control Lab, I.U. de Automática e Informática Industrial (ai2), Universitat Politècnica de València, Camí de Vera S/N, 46022 Valencia, Spain
| | - Pablo Carbonell
- Synthetic Biology and Biosystems Control Lab, I.U. de Automática e Informática Industrial (ai2), Universitat Politècnica de València, Camí de Vera S/N, 46022 Valencia, Spain.
| |
Collapse
|
45
|
Gao S, Zhou H, Zhou J, Chen J. Promoter-Library-Based Pathway Optimization for Efficient (2 S)-Naringenin Production from p-Coumaric Acid in Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6884-6891. [PMID: 32458684 DOI: 10.1021/acs.jafc.0c01130] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Pathway optimization plays an important role in fine-tuning metabolic pathways. In most conditions, more than three genes are involved in the biosynthesis pathway of a specific target product. To improve the titer of products, rational regulation of a group of genes by a series of promoters with different strengths is essential. On the basis of a series of RNA-Seq data, a set of 66 native promoters was chosen to fine-tune gene expression in Saccharomyces cerevisiae. Promoter strength was characterized by measuring the fluorescence strength of the enhanced green fluorescent protein through fluorescence-activated cell sorting. The expressions of PTDH1, PPGK1, PINO1, PSED1, and PCCW12 were stronger than that of PTDH3, whereas those of another 15 promoters were stronger than that of PTEF1. Then, 30 promoters were chosen to optimize the biosynthesis pathway of (2S)-naringenin from p-coumaric acid. With a high-throughput screening method, the highest titer of (2S)-naringenin in a 5 L bioreactor reached 1.21 g/L from p-coumaric acid, which is the highest titer according to the currently available reports.
Collapse
Affiliation(s)
- Song Gao
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Hengrui Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
46
|
Naseri G, Koffas MAG. Application of combinatorial optimization strategies in synthetic biology. Nat Commun 2020; 11:2446. [PMID: 32415065 PMCID: PMC7229011 DOI: 10.1038/s41467-020-16175-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 04/15/2020] [Indexed: 12/26/2022] Open
Abstract
In the first wave of synthetic biology, genetic elements, combined into simple circuits, are used to control individual cellular functions. In the second wave of synthetic biology, the simple circuits, combined into complex circuits, form systems-level functions. However, efforts to construct complex circuits are often impeded by our limited knowledge of the optimal combination of individual circuits. For example, a fundamental question in most metabolic engineering projects is the optimal level of enzymes for maximizing the output. To address this point, combinatorial optimization approaches have been established, allowing automatic optimization without prior knowledge of the best combination of expression levels of individual genes. This review focuses on current combinatorial optimization methods and emerging technologies facilitating their applications.
Collapse
Affiliation(s)
- Gita Naseri
- Institut für Chemie, Humboldt Universität zu Berlin, 12489, Berlin, Germany.
| | - Mattheos A G Koffas
- Center for Biotechnology, Rensselaer Polytechnic Institute, Troy, NY, USA.
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA.
| |
Collapse
|
47
|
Marsafari M, Samizadeh H, Rabiei B, Mehrabi A, Koffas M, Xu P. Biotechnological Production of Flavonoids: An Update on Plant Metabolic Engineering, Microbial Host Selection, and Genetically Encoded Biosensors. Biotechnol J 2020; 15:e1900432. [DOI: 10.1002/biot.201900432] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/19/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Monireh Marsafari
- Department of ChemicalBiochemical, and Environmental EngineeringUniversity of Maryland Baltimore MD 21250 USA
- Department of Agronomy and Plant BiotechnologyUniversity of Guilan Rasht 44052 Iran
| | - Habibollah Samizadeh
- Department of Agronomy and Plant BiotechnologyUniversity of Guilan Rasht 44052 Iran
| | - Babak Rabiei
- Department of Agronomy and Plant BiotechnologyUniversity of Guilan Rasht 44052 Iran
| | | | - Mattheos Koffas
- Department of Chemical and Biological EngineeringRensselaer Polytechnic Institute Troy NY 12180 USA
| | - Peng Xu
- Department of ChemicalBiochemical, and Environmental EngineeringUniversity of Maryland Baltimore MD 21250 USA
| |
Collapse
|
48
|
Gao S, Lyu Y, Zeng W, Du G, Zhou J, Chen J. Efficient Biosynthesis of (2 S)-Naringenin from p-Coumaric Acid in Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1015-1021. [PMID: 31690080 DOI: 10.1021/acs.jafc.9b05218] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
(2S)-Naringenin, a (2S)-flavanone, is widely used in the food, chemical, and pharmaceutical industries because of its diverse physiological activities. The production of (2S)-naringenin in microorganisms provides an ideal source that reduces the cost of the flavonoid. To achieve efficient production of (2S)-naringenin in Saccharomyces cerevisiae (S. cerevisiae), we constructed a biosynthetic pathway from p-coumaric acid, a cost-effective and more efficient precursor. The (2S)-naringenin synthesis pathway genes were integrated into the yeast genome to obtain a (2S)-naringenin production strain. After gene dosage experiments, the genes negatively regulating the shikimate pathway and inefficient chalcone synthase activity were verified as factors limiting (2S)-naringenin biosynthesis. With fed-batch process optimization of the engineered strain, the titer of (2S)-naringenin reached 648.63 mg/L from 2.5 g/L p-coumaric acid. Our results indicate that the constitutive production of (2S)-naringenin from p-coumaric acid in S. cerevisiae is highly promising.
Collapse
|