1
|
Peng H, Chen IA, Qimron U. Engineering Phages to Fight Multidrug-Resistant Bacteria. Chem Rev 2024. [PMID: 39680919 DOI: 10.1021/acs.chemrev.4c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Facing the global "superbug" crisis due to the emergence and selection for antibiotic resistance, phages are among the most promising solutions. Fighting multidrug-resistant bacteria requires precise diagnosis of bacterial pathogens and specific cell-killing. Phages have several potential advantages over conventional antibacterial agents such as host specificity, self-amplification, easy production, low toxicity as well as biofilm degradation. However, the narrow host range, uncharacterized properties, as well as potential risks from exponential replication and evolution of natural phages, currently limit their applications. Engineering phages can not only enhance the host bacteria range and improve phage efficacy, but also confer new functions. This review first summarizes major phage engineering techniques including both chemical modification and genetic engineering. Subsequent sections discuss the applications of engineered phages for bacterial pathogen detection and ablation through interdisciplinary approaches of synthetic biology and nanotechnology. We discuss future directions and persistent challenges in the ongoing exploration of phage engineering for pathogen control.
Collapse
Affiliation(s)
- Huan Peng
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, Hubei China
| | - Irene A Chen
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095-1592, United States
| | - Udi Qimron
- Department of Clinical Microbiology and Immunology, School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
2
|
Kamata K, Birkholz N, Ceelen M, Fagerlund RD, Jackson SA, Fineran PC. Repurposing an Endogenous CRISPR-Cas System to Generate and Study Subtle Mutations in Bacteriophages. CRISPR J 2024; 7:343-354. [PMID: 39347602 DOI: 10.1089/crispr.2024.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
While bacteriophage applications benefit from effective phage engineering, selecting the desired genotype after subtle modifications remains challenging. Here, we describe a two-phase endogenous CRISPR-Cas-based phage engineering approach that enables selection of small defined edits in Pectobacterium carotovorum phage ZF40. We designed plasmids containing sequences homologous to ZF40 and a mini-CRISPR array. The plasmids allowed genome editing through homologous recombination and counter-selection against non-recombinant phage genomes using an endogenous type I-E CRISPR-Cas system. With this technique, we first deleted target genes and subsequently restored loci with modifications. This two-phase approach circumvented major challenges in subtle phage modifications, including inadequate sequence distinction for CRISPR-Cas counter-selection and the requirement of a protospacer-adjacent motif, limiting sequences that can be modified. Distinct 20-bp barcodes were incorporated through engineering as differential target sites for programmed CRISPR-Cas activity, which allowed quantification of phage variants in mixed populations. This method aids studies and applications that require mixtures of similar phages.
Collapse
Affiliation(s)
- Kotaro Kamata
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Bioprotection Aotearoa, University of Otago, Dunedin, New Zealand
| | - Nils Birkholz
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Bioprotection Aotearoa, University of Otago, Dunedin, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Marijn Ceelen
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Robert D Fagerlund
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Bioprotection Aotearoa, University of Otago, Dunedin, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Simon A Jackson
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Bioprotection Aotearoa, University of Otago, Dunedin, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Bioprotection Aotearoa, University of Otago, Dunedin, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Dunedin, New Zealand
| |
Collapse
|
3
|
Tsoumbris PR, Vincent RM, Jaschke PR. Designing a simple and efficient phage biocontainment system using the amber suppressor initiator tRNA. Arch Virol 2024; 169:248. [PMID: 39557717 DOI: 10.1007/s00705-024-06170-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/21/2024] [Indexed: 11/20/2024]
Abstract
Multidrug-resistant infections are becoming increasingly prevalent worldwide. One of the fastest-emerging alternative and adjuvant therapies being proposed is phage therapy. Naturally isolated phages are used in the vast majority of phage therapy treatments today. Engineered phages are being developed to enhance the effectiveness of phage therapy, but concerns over their potential escape remain a salient issue. To address this problem, we designed a biocontained phage system based on conditional replication using amber stop codon suppression. This system can be easily installed on any natural phage with a known genome sequence. To test the system, we individually mutated the start codons of three essential capsid genes in phage φX174 to the amber stop codon (UAG). These phages were able to efficiently infect host cells expressing the amber initiator tRNA, which suppresses the amber stop codon and initiates translation at TAG stop codons. The amber phage mutants were also able to successfully infect host cells and reduce their population on solid agar and liquid culture but could not produce infectious particles in the absence of the amber initiator tRNA or complementing capsid gene. We did not detect any growth-inhibiting effects on E. coli strains known to lack a receptor for φX174 and we showed that engineered phages have a limited propensity for reversion. The approach outlined here may be useful to control engineered phage replication in both the lab and clinic.
Collapse
Affiliation(s)
- Pamela R Tsoumbris
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Russel M Vincent
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Paul R Jaschke
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia.
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia.
| |
Collapse
|
4
|
Kristensen CS, Petersen AØ, Kilstrup M, van der Helm E, Takos A. Cell-free synthesis of infective phages from in vitro assembled phage genomes for efficient phage engineering and production of large phage libraries. Synth Biol (Oxf) 2024; 9:ysae012. [PMID: 39296367 PMCID: PMC11409935 DOI: 10.1093/synbio/ysae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/04/2024] [Accepted: 08/20/2024] [Indexed: 09/21/2024] Open
Abstract
Bacteriophages are promising alternatives to traditional antimicrobial treatment of bacterial infections. To further increase the potential of phages, efficient engineering methods are needed. This study investigates an approach to phage engineering based on phage rebooting and compares selected methods of assembly and rebooting of phage genomes. GG assembly of phage genomes and subsequent rebooting by cell-free transcription-translation reactions yielded the most efficient phage engineering and allowed production of a proof-of-concept T7 phage library of 1.8 × 107 phages. We obtained 7.5 × 106 different phages, demonstrating generation of large and diverse libraries suitable for high-throughput screening of mutant phenotypes. Implementing versatile and high-throughput phage engineering methods allows vastly accelerated and improved phage engineering, bringing us closer to applying effective phages to treat infections in the clinic.
Collapse
Affiliation(s)
- Camilla S Kristensen
- SNIPR Biome, Copenhagen 2100, Denmark
- The Novo Nordisk Foundation Center for Biosustainability, DTU Biosustain, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | | | - Mogens Kilstrup
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | | | | |
Collapse
|
5
|
Patsch D, Eichenberger M, Voss M, Bornscheuer UT, Buller RM. LibGENiE - A bioinformatic pipeline for the design of information-enriched enzyme libraries. Comput Struct Biotechnol J 2023; 21:4488-4496. [PMID: 37736300 PMCID: PMC10510078 DOI: 10.1016/j.csbj.2023.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
Enzymes are potent catalysts with high specificity and selectivity. To leverage nature's synthetic potential for industrial applications, various protein engineering techniques have emerged which allow to tailor the catalytic, biophysical, and molecular recognition properties of enzymes. However, the many possible ways a protein can be altered forces researchers to carefully balance between the exhaustiveness of an enzyme screening campaign and the required resources. Consequently, the optimal engineering strategy is often defined on a case-by-case basis. Strikingly, while predicting mutations that lead to an improved target function is challenging, here we show that the prediction and exclusion of deleterious mutations is a much more straightforward task as analyzed for an engineered carbonic acid anhydrase, a transaminase, a squalene-hopene cyclase and a Kemp eliminase. Combining such a pre-selection of allowed residues with advanced gene synthesis methods opens a path toward an efficient and generalizable library construction approach for protein engineering. To give researchers easy access to this methodology, we provide the website LibGENiE containing the bioinformatic tools for the library design workflow.
Collapse
Affiliation(s)
- David Patsch
- Zurich University of Applied Sciences, School of Life Sciences and Facility Management, Institute of Chemistry and Biotechnology, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
- Institute of Biochemistry, Department of Biotechnology & Enzyme Catalysis, Greifswald University, Felix-Hausdorff-Strasse 4, 17487 Greifswald, Germany
| | - Michael Eichenberger
- Zurich University of Applied Sciences, School of Life Sciences and Facility Management, Institute of Chemistry and Biotechnology, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Moritz Voss
- Zurich University of Applied Sciences, School of Life Sciences and Facility Management, Institute of Chemistry and Biotechnology, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Uwe T. Bornscheuer
- Institute of Biochemistry, Department of Biotechnology & Enzyme Catalysis, Greifswald University, Felix-Hausdorff-Strasse 4, 17487 Greifswald, Germany
| | - Rebecca M. Buller
- Zurich University of Applied Sciences, School of Life Sciences and Facility Management, Institute of Chemistry and Biotechnology, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| |
Collapse
|
6
|
Huss P, Chen J, Raman S. High-throughput approaches to understand and engineer bacteriophages. Trends Biochem Sci 2023; 48:187-197. [PMID: 36180320 PMCID: PMC9868059 DOI: 10.1016/j.tibs.2022.08.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 01/26/2023]
Abstract
Bacteriophage research has been vital to fundamental aspects of modern biology. Advances in metagenomics have revealed treasure troves of new and uncharacterized bacteriophages ('phages') that are not yet understood. However, our ability to find new phages has outpaced our understanding of how sequence encodes function in phages. Traditional approaches for characterizing phages are limited in scale and face hurdles in determining how changes in sequence drive function. We describe powerful emerging technologies that can be used to clarify sequence-function relationships in phages through high-throughput genome engineering. Using these approaches, up to 105 variants can be characterized through pooled selection experiments and deep sequencing. We describe caveats when using these tools and provide examples of basic science and engineering goals that are pursuable using these approaches.
Collapse
Affiliation(s)
- Phil Huss
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jackie Chen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Srivatsan Raman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
7
|
Mahler M, Costa AR, van Beljouw SPB, Fineran PC, Brouns SJJ. Approaches for bacteriophage genome engineering. Trends Biotechnol 2022; 41:669-685. [PMID: 36117025 DOI: 10.1016/j.tibtech.2022.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/08/2022] [Accepted: 08/22/2022] [Indexed: 12/26/2022]
Abstract
In recent years, bacteriophage research has been boosted by a rising interest in using phage therapy to treat antibiotic-resistant bacterial infections. In addition, there is a desire to use phages and their unique proteins for specific biocontrol applications and diagnostics. However, the ability to manipulate phage genomes to understand and control gene functions, or alter phage properties such as host range, has remained challenging due to a lack of universal selectable markers. Here, we discuss the state-of-the-art techniques to engineer and select desired phage genomes using advances in cell-free methodologies and clustered regularly interspaced short palindromic repeats-CRISPR associated protein (CRISPR-Cas) counter-selection approaches.
Collapse
Affiliation(s)
- Marina Mahler
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand; Department of Bionanoscience, Delft University of Technology, Delft, the Netherlands
| | - Ana Rita Costa
- Department of Bionanoscience, Delft University of Technology, Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands
| | - Sam P B van Beljouw
- Department of Bionanoscience, Delft University of Technology, Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand; Bioprotection Aotearoa, University of Otago, Dunedin, New Zealand; Genetics Otago, University of Otago, Dunedin, New Zealand
| | - Stan J J Brouns
- Department of Bionanoscience, Delft University of Technology, Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands.
| |
Collapse
|
8
|
Kuiper BP, Prins RC, Billerbeck S. Oligo Pools as an Affordable Source of Synthetic DNA for Cost-Effective Library Construction in Protein- and Metabolic Pathway Engineering. Chembiochem 2021; 23:e202100507. [PMID: 34817110 PMCID: PMC9300125 DOI: 10.1002/cbic.202100507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/23/2021] [Indexed: 11/11/2022]
Abstract
The construction of custom libraries is critical for rational protein engineering and directed evolution. Array‐synthesized oligo pools of thousands of user‐defined sequences (up to ∼350 bases in length) have emerged as a low‐cost commercially available source of DNA. These pools cost ≤10 % (depending on error rate and length) of other commercial sources of custom DNA, and this significant cost difference can determine whether an enzyme engineering project can be realized on a given research budget. However, while being cheap, oligo pools do suffer from a low concentration of individual oligos and relatively high error rates. Several powerful techniques that specifically make use of oligo pools have been developed and proven valuable or even essential for next‐generation protein and pathway engineering strategies, such as sequence‐function mapping, enzyme minimization, or de‐novo design. Here we consolidate the knowledge on these techniques and their applications to facilitate the use of oligo pools within the protein engineering community.
Collapse
Affiliation(s)
- Bastiaan P Kuiper
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Rianne C Prins
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Sonja Billerbeck
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
9
|
Biggs KRH, Bailes CL, Scott L, Wichman HA, Schwartz EJ. Ecological Approach to Understanding Superinfection Inhibition in Bacteriophage. Viruses 2021; 13:1389. [PMID: 34372595 PMCID: PMC8310164 DOI: 10.3390/v13071389] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 01/15/2023] Open
Abstract
In microbial communities, viruses compete with each other for host cells to infect. As a consequence of competition for hosts, viruses evolve inhibitory mechanisms to suppress their competitors. One such mechanism is superinfection exclusion, in which a preexisting viral infection prevents a secondary infection. The bacteriophage ΦX174 exhibits a potential superinfection inhibition mechanism (in which secondary infections are either blocked or resisted) known as the reduction effect. In this auto-inhibitory phenomenon, a plasmid containing a fragment of the ΦX174 genome confers resistance to infection among cells that were once permissive to ΦX174. Taking advantage of this plasmid system, we examine the inhibitory properties of the ΦX174 reduction effect on a range of wild ΦX174-like phages. We then assess how closely the reduction effect in the plasmid system mimics natural superinfection inhibition by carrying out phage-phage competitions in continuous culture, and we evaluate whether the overall competitive advantage can be predicted by phage fitness or by a combination of fitness and reduction effect inhibition. Our results show that viral fitness often correctly predicts the winner. However, a phage's reduction sequence also provides an advantage to the phage in some cases, modulating phage-phage competition and allowing for persistence where competitive exclusion was expected. These findings provide strong evidence for more complex dynamics than were previously thought, in which the reduction effect may inhibit fast-growing viruses, thereby helping to facilitate coexistence.
Collapse
Affiliation(s)
- Karin R. H. Biggs
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA; (K.R.H.B.); (C.L.B.)
| | - Clayton L. Bailes
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA; (K.R.H.B.); (C.L.B.)
| | - LuAnn Scott
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (L.S.); (H.A.W.)
| | - Holly A. Wichman
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (L.S.); (H.A.W.)
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID 83844, USA
| | - Elissa J. Schwartz
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA; (K.R.H.B.); (C.L.B.)
- Department of Mathematics & Statistics, Washington State University, P.O. Box 643113, Pullman, WA 99164, USA
| |
Collapse
|
10
|
Van Leuven JT, Ederer MM, Burleigh K, Scott L, Hughes RA, Codrea V, Ellington AD, Wichman HA, Miller CR. ΦX174 Attenuation by Whole-Genome Codon Deoptimization. Genome Biol Evol 2020; 13:5921183. [PMID: 33045052 PMCID: PMC7881332 DOI: 10.1093/gbe/evaa214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2020] [Indexed: 12/11/2022] Open
Abstract
Natural selection acting on synonymous mutations in protein-coding genes influences genome composition and evolution. In viruses, introducing synonymous mutations in genes encoding structural proteins can drastically reduce viral growth, providing a means to generate potent, live-attenuated vaccine candidates. However, an improved understanding of what compositional features are under selection and how combinations of synonymous mutations affect viral growth is needed to predictably attenuate viruses and make them resistant to reversion. We systematically recoded all nonoverlapping genes of the bacteriophage ΦX174 with codons rarely used in its Escherichia coli host. The fitness of recombinant viruses decreases as additional deoptimizing mutations are made to the genome, although not always linearly, and not consistently across genes. Combining deoptimizing mutations may reduce viral fitness more or less than expected from the effect size of the constituent mutations and we point out difficulties in untangling correlated compositional features. We test our model by optimizing the same genes and find that the relationship between codon usage and fitness does not hold for optimization, suggesting that wild-type ΦX174 is at a fitness optimum. This work highlights the need to better understand how selection acts on patterns of synonymous codon usage across the genome and provides a convenient system to investigate the genetic determinants of virulence.
Collapse
Affiliation(s)
- James T Van Leuven
- Department of Biological Science, University of Idaho.,Institute for Modeling Collaboration and Innovation, University of Idaho
| | | | - Katelyn Burleigh
- Department of Biological Science, University of Idaho.,Present address: Seattle Children's Research Institute, Seattle, WA
| | - LuAnn Scott
- Department of Biological Science, University of Idaho
| | - Randall A Hughes
- Applied Research Laboratories, University of Texas, Austin.,Present address: Biotechnology Branch, CCDC US Army Research Laboratory, Adelphi, MD
| | - Vlad Codrea
- Institute for Cellular and Molecular Biology, University of Texas, Austin
| | - Andrew D Ellington
- Applied Research Laboratories, University of Texas, Austin.,Institute for Cellular and Molecular Biology, University of Texas, Austin
| | - Holly A Wichman
- Department of Biological Science, University of Idaho.,Institute for Modeling Collaboration and Innovation, University of Idaho
| | - Craig R Miller
- Department of Biological Science, University of Idaho.,Institute for Modeling Collaboration and Innovation, University of Idaho
| |
Collapse
|
11
|
Steiner PJ, Baumer ZT, Whitehead TA. A Method for User-defined Mutagenesis by Integrating Oligo Pool Synthesis Technology with Nicking Mutagenesis. Bio Protoc 2020; 10:e3697. [PMID: 33659364 DOI: 10.21769/bioprotoc.3697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 11/02/2022] Open
Abstract
Saturation mutagenesis is a fundamental enabling technology for protein engineering and epitope mapping. Nicking mutagenesis (NM) allows the user to rapidly construct libraries of all possible single mutations in a target protein sequence from plasmid DNA in a one-pot procedure. Briefly, one strand of the plasmid DNA is degraded using a nicking restriction endonuclease and exonuclease treatment. Mutagenic primers encoding the desired mutations are annealed to the resulting circular single-stranded DNA, extended with high-fidelity polymerase, and ligated into covalently closed circular DNA by Taq DNA ligase. The heteroduplex DNA is resolved by selective degradation of the template strand. The complementary strand is synthesized and ligated, resulting in a library of mutated covalently closed circular plasmids. It was later shown that because very little primer is used in the procedure, resuspended oligo pools, which normally require amplification before use, can be used directly in the mutagenesis procedure. Because oligo pools can contain tens of thousands of unique oligos, this enables the construction of libraries of tens of thousands of user-defined mutations in a single-pot mutagenesis reaction, which significantly improves the utility of NM as described below. Use of oligo pools afford an economically advantageous approach to mutagenic experiments. First, oligo pool synthesis is much less expensive per nucleotide synthesized than conventional synthesis. Second, a mixed pool may be generated and used for mutagenesis of multiple different genes. To use the same oligo-pool for mutagenesis of a variety of genes, the user must only quantify the fraction of the oligo-pool specific to her mutagenic experiment and adjust the volume and effective concentration of the oligo-pool for use in nicking mutagenesis.
Collapse
Affiliation(s)
- Paul J Steiner
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Colorado, USA
| | - Zachary T Baumer
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Colorado, USA
| | - Timothy A Whitehead
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Colorado, USA
| |
Collapse
|