1
|
Ahmad W, Ahmad N, Wang K, Aftab S, Hou Y, Wan Z, Yan B, Pan Z, Gao H, Peung C, Junke Y, Liang C, Lu Z, Yan W, Ling M. Electron-Sponge Nature of Polyoxometalates for Next-Generation Electrocatalytic Water Splitting and Nonvolatile Neuromorphic Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304120. [PMID: 38030565 PMCID: PMC10837383 DOI: 10.1002/advs.202304120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/23/2023] [Indexed: 12/01/2023]
Abstract
Designing next-generation molecular devices typically necessitates plentiful oxygen-bearing sites to facilitate multiple-electron transfers. However, the theoretical limits of existing materials for energy conversion and information storage devices make it inevitable to hunt for new competitors. Polyoxometalates (POMs), a unique class of metal-oxide clusters, have been investigated exponentially due to their structural diversity and tunable redox properties. POMs behave as electron-sponges owing to their intrinsic ability of reversible uptake-release of multiple electrons. In this review, numerous POM-frameworks together with desired features of a contender material and inherited properties of POMs are systematically discussed to demonstrate how and why the electron-sponge-like nature of POMs is beneficial to design next-generation water oxidation/reduction electrocatalysts, and neuromorphic nonvolatile resistance-switching random-access memory devices. The aim is to converge the attention of scientists who are working separately on electrocatalysts and memory devices, on a point that, although the application types are different, they all hunt for a material that could exhibit electron-sponge-like feature to realize boosted performances and thus, encouraging the scientists of two completely different fields to explore POMs as imperious contenders to design next-generation nanodevices. Finally, challenges and promising prospects in this research field are also highlighted.
Collapse
Affiliation(s)
- Waqar Ahmad
- Division of New Energy MaterialsInstitute of Zhejiang University‐QuzhouQuzhou324000China
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310058China
| | - Nisar Ahmad
- School of MicroelectronicsUniversity of Science and Technology of ChinaHefei230026China
| | - Kun Wang
- Division of New Energy MaterialsInstitute of Zhejiang University‐QuzhouQuzhou324000China
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310058China
| | - Sumaira Aftab
- CAS Key Laboratory of Mechanical Behavior and Design of MaterialsDepartment of Modern MechanicsCAS Center for Excellence in Complex System MechanicsUniversity of Science and Technology of ChinaHefei230027China
| | - Yunpeng Hou
- Division of New Energy MaterialsInstitute of Zhejiang University‐QuzhouQuzhou324000China
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310058China
| | - Zhengwei Wan
- Division of New Energy MaterialsInstitute of Zhejiang University‐QuzhouQuzhou324000China
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310058China
| | - Bei‐Bei Yan
- CAS Key Laboratory of Mechanical Behavior and Design of MaterialsDepartment of Modern MechanicsCAS Center for Excellence in Complex System MechanicsUniversity of Science and Technology of ChinaHefei230027China
| | - Zhao Pan
- CAS Key Laboratory of Mechanical Behavior and Design of MaterialsDepartment of Modern MechanicsCAS Center for Excellence in Complex System MechanicsUniversity of Science and Technology of ChinaHefei230027China
| | - Huai‐Ling Gao
- CAS Key Laboratory of Mechanical Behavior and Design of MaterialsDepartment of Modern MechanicsCAS Center for Excellence in Complex System MechanicsUniversity of Science and Technology of ChinaHefei230027China
| | - Chen Peung
- Division of New Energy MaterialsInstitute of Zhejiang University‐QuzhouQuzhou324000China
| | - Yang Junke
- Division of New Energy MaterialsInstitute of Zhejiang University‐QuzhouQuzhou324000China
| | - Chengdu Liang
- Division of New Energy MaterialsInstitute of Zhejiang University‐QuzhouQuzhou324000China
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310058China
| | - Zhihui Lu
- Division of New Energy MaterialsInstitute of Zhejiang University‐QuzhouQuzhou324000China
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310058China
| | - Wenjun Yan
- School of AutomationHangzhou Dianzi UniversityHangzhou310018China
| | - Min Ling
- Division of New Energy MaterialsInstitute of Zhejiang University‐QuzhouQuzhou324000China
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310058China
| |
Collapse
|
2
|
Lian H, Cheng X, Hao H, Han J, Lau MT, Li Z, Zhou Z, Dong Q, Wong WY. Metal-containing organic compounds for memory and data storage applications. Chem Soc Rev 2022; 51:1926-1982. [PMID: 35083990 DOI: 10.1039/d0cs00569j] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the upcoming trend of Big Data era, some new types of memory technologies have emerged as substitutes for the traditional Si-based semiconductor memory devices, which are encountering severe scaling down technical obstacles. In particular, the resistance random access memory (RRAM) and magnetic random access memory (MRAM) hold great promise for the in-memory computing, which are regarded as the optimal strategy and pathway to solve the von Neumann bottleneck by high-throughput in situ data processing. As far as the active materials in RRAM and MRAM are concerned, organic semiconducting materials have shown increasing application perspectives in memory devices due to their rich structural diversity and solution processability. With the introduction of metal elements into the backbone of molecules, some new properties and phenomena will emerge accordingly. Consequently, the RRAM and MRAM devices based on metal-containing organic compounds (including the small molecular metal complexes, metallopolymers, metal-organic frameworks (MOFs) and organic-inorganic-hybrid perovskites (OIHPs)) have been widely explored and attracted intense attention. In this review, we highlight the fundamentals of RRAM and MRAM, as well as the research progress of the applications of metal-containing organic compounds in both RRAM and MRAM. Finally, we discuss the challenges and future directions for the research of organic RRAM and MRAM.
Collapse
Affiliation(s)
- Hong Lian
- MOE Key Laboratory of Advanced Display and System Applications, Shanghai University, 149 Yanchang Road, Jingan District, Shanghai 200072, China.,School of Mechanical & Electronic Engineering and Automation, Shanghai University, 99 Shangda Road, Baoshan District, Shanghai 200444, China. .,MOE Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, 79 Yingze West Street, Taiyuan, 030024, China
| | - Xiaozhe Cheng
- MOE Key Laboratory of Advanced Display and System Applications, Shanghai University, 149 Yanchang Road, Jingan District, Shanghai 200072, China.,MOE Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, 79 Yingze West Street, Taiyuan, 030024, China.,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Haotian Hao
- MOE Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, 79 Yingze West Street, Taiyuan, 030024, China
| | - Jinba Han
- MOE Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, 79 Yingze West Street, Taiyuan, 030024, China
| | - Mei-Tung Lau
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China. .,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Zikang Li
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China. .,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Zhi Zhou
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China.
| | - Qingchen Dong
- MOE Key Laboratory of Advanced Display and System Applications, Shanghai University, 149 Yanchang Road, Jingan District, Shanghai 200072, China.,School of Mechanical & Electronic Engineering and Automation, Shanghai University, 99 Shangda Road, Baoshan District, Shanghai 200444, China. .,MOE Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, 79 Yingze West Street, Taiyuan, 030024, China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China. .,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
3
|
Li Y, Zhang C, Ling S, Ma C, Zhang J, Jiang Y, Zhao R, Li H, Lu J, Zhang Q. Toward Highly Robust Nonvolatile Multilevel Memory by Fine Tuning of the Nanostructural Crystalline Solid-State Order. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100102. [PMID: 33788423 DOI: 10.1002/smll.202100102] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Organic resistive memory (ORM) offers great promise for next-generation high-density multilevel-cell (MLC) data storage. However, the fine tuning of crystalline order among its active layer still remains challenging, which largely restricts ORM behavior. Here, an exceptional solid-state transition from disordered orientations to highly-uniform orientation within the ORM layer is facilely triggered via molecular strategic tailoring. Two diketopyrrolopyrrole-based small molecular analogues (NI1 TDPP and NI2 TDPP) are demonstrated to display different symmetry. The asymmetric NI1 TDPP shows an irregular solid-state texture, while the centro-symmetric NI2 TDPP conforms to an ordered out-of-plane single-crystalline pattern that aligns with the foremost charge transportation along the substrate normal, and exhibits excellent MLC memory characteristics. Moreover, this highly oriented pattern guarantees the large-area film uniformity, leading to the twofold increase in the yield of as-fabricated ORM devices. This study reveals that the solid-state crystalline nanostructural order of organic materials can be controlled by reasonable molecular design to actuate high-performance organic electronic circuits.
Collapse
Affiliation(s)
- Yang Li
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Cheng Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Songtao Ling
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, China
| | - Chunlan Ma
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, China
| | - Jinlei Zhang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, China
| | - Yucheng Jiang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, China
| | - Run Zhao
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, China
| | - Hua Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| |
Collapse
|
4
|
Song Y, Zhao L, Yao H, Tian Y, Zhu S, Guan S. Novel Hyperbranched Polyimides Bearing Bis(trifluoromethyl)‐triphenylamine Moiety: Preparation and Rewritable Nonvolatile Memory Behaviours. ChemistrySelect 2021. [DOI: 10.1002/slct.202003923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ying Song
- College of Materials Science and Engineering Changchun University of Technology 2055 Yanan Street Changchun 130012 China
| | - Liqun Zhao
- College of Materials Science and Engineering Changchun University of Technology 2055 Yanan Street Changchun 130012 China
| | - Hongyan Yao
- National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 China
| | - Ye Tian
- National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 China
| | - Shiyang Zhu
- National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 China
| | - Shaowei Guan
- National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 China
| |
Collapse
|
5
|
Ree BJ, Isono T, Satoh T. Chemically Controlled Volatile and Nonvolatile Resistive Memory Characteristics of Novel Oxygen-Based Polymers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:28435-28445. [PMID: 32525296 DOI: 10.1021/acsami.0c06939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recent advancements in modern microelectronics continuously increase the data storage capacity of modern devices, but they require delicate and costly fabrication processes. As alternatives to conventional inorganic based semiconductors, semiconducting polymers are of academic and industrial interest for their cost-efficiency, power efficiency, and flexible processability. Here, we have synthesized a series of novel oxygen-based polymers through the postmodification reactions of poly(ethylene-alt-maleate) with various oxybenzyl alcohol derivatives. The oxygen-based polymers are thermally stable up to 180 °C, and their nanoscale film devices exhibit reliable, power efficient p-type unipolar volatile and nonvolatile resistive memory characteristics with high ON/OFF current ratios. Additionally, when given a higher number of oxygen atoms in oxyphenyl side groups, the thin film polymer devices demonstrate a wide operational film thickness range. The memory characteristics depend on the oxyphenyl moieties functioning as charge trap sites, where a combination of Schottky emission and trap-limited space charge limited conductions in OFF-state and hopping conduction in ON-state are observed. This study demonstrates the chemical incorporation of oxyphenyl derivatives into polymer dielectrics as a powerful development tool for p-type resistive memory materials.
Collapse
Affiliation(s)
- Brian J Ree
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Takuya Isono
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Toshifumi Satoh
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| |
Collapse
|
6
|
Liu S, Chen X, Liu G. Conjugated polymers for information storage and neuromorphic computing. POLYM INT 2020. [DOI: 10.1002/pi.6017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shuzhi Liu
- School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai China
| | - Xinhui Chen
- School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai China
| | - Gang Liu
- School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai China
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou China
| |
Collapse
|
7
|
Choi JY, Lee J, Jeon J, Im J, Jang J, Jin SW, Joung H, Yu HC, Nam KN, Park HJ, Kim DM, Song IH, Yang J, Cho S, Chung CM. High-performance non-volatile resistive switching memory based on a polyimide/graphene oxide nanocomposite. Polym Chem 2020. [DOI: 10.1039/d0py01281e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chemical structure of PI-GO, schematic structure of the ITO/PI-GO/Al device and its memory characteristics.
Collapse
|
8
|
Zhang Q, Ai C, Wen D, Ma D, Wang C, Wang S, Bai X. Novel carbazole-based donor-isoindolo[2,1- a]benzimidazol-11-one acceptor polymers for ternary flash memory and light-emission. RSC Adv 2019; 9:27665-27673. [PMID: 35529197 PMCID: PMC9070752 DOI: 10.1039/c9ra05859a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/22/2019] [Indexed: 11/21/2022] Open
Abstract
Three novel donor-acceptor polymers (PCz0, PCz2 and PCz4) based on 9-(9-heptadecanyl)-9H-carbazole and isoindolo[2,1-a]benzimidazol-11-one with fluorine substituents (0, 2 and 4) on the acceptor unit were prepared by Suzuki polymerization. The synthesized polymers were studied by theoretical calculation, and optical and electrochemical characterizations to further investigate the performance of memory storage and light-emission. The memory devices of the three polymers all exhibited obvious ternary flash behavior with total ON/OFF state current ratio around 104 and threshold voltages below 3.0 V, with no other blending or doping. Bright emissions of an electroluminescence device based on PCz0 was obtained at 556 nm, the maximum brightness was 2006 cd m-2 with EQE of 0.21%. The results suggested that polymers with the structure of carbazole-based donor as backbone and isoindolo[2,1-a]benzimidazol-11-one segment as acceptor could be excellent materials for memory storage and light-emitting applications with further investigation and could be used for further design of other new polymer systems.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry Engineering and Materials Science, Heilongjiang University Harbin 150080 China
| | - Chunpeng Ai
- Key Laboratories of Senior-Education for Electronic Engineering, Heilongjiang University Harbin 150080 China
| | - Dianzhong Wen
- Key Laboratories of Senior-Education for Electronic Engineering, Heilongjiang University Harbin 150080 China
| | - Dongge Ma
- Institute of Polymer Materials, South China University of Technology Guangzhou 510640 China
| | - Cheng Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry Engineering and Materials Science, Heilongjiang University Harbin 150080 China
| | - Shuhong Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry Engineering and Materials Science, Heilongjiang University Harbin 150080 China
| | - Xuduo Bai
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry Engineering and Materials Science, Heilongjiang University Harbin 150080 China
| |
Collapse
|
9
|
Yen HJ, Liou GS. Design and preparation of triphenylamine-based polymeric materials towards emergent optoelectronic applications. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2018.12.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Choi JY, Yu HC, Lee J, Jeon J, Im J, Jang J, Jin SW, Kim KK, Cho S, Chung CM. Preparation of Polyimide/Graphene Oxide Nanocomposite and Its Application to Nonvolatile Resistive Memory Device. Polymers (Basel) 2018; 10:E901. [PMID: 30960826 PMCID: PMC6403621 DOI: 10.3390/polym10080901] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/04/2018] [Accepted: 08/09/2018] [Indexed: 11/28/2022] Open
Abstract
2,6-Diaminoanthracene (AnDA)-functionalized graphene oxide (GO) (AnDA-GO) was prepared and used to synthesize a graphene oxide-based polyimide (PI-GO) by the in-situ polymerization method. A PI-GO nanocomposite thin film was prepared and characterized by infrared (IR) spectroscopy, thermogravimetric analysis (TGA) and UV-visible spectroscopy. The PI-GO film was used as a memory layer in the fabrication of a resistive random access memory (RRAM) device with aluminum (Al) top and indium tin oxide (ITO) bottom electrodes. The device showed write-once-read-many-times (WORM) characteristics with a high ON/OFF current ratio (Ion/Ioff = 3.41 × 10⁸). This excellent current ratio was attributed to the high charge trapping ability of GO. In addition, the device had good endurance until the 100th cycle. These results suggest that PI-GO is an attractive candidate for applications in next generation nonvolatile memory.
Collapse
Affiliation(s)
- Ju-Young Choi
- Department of Chemistry, Yonsei University, Wonju, Gangwon-do 26493, Korea.
| | - Hwan-Chul Yu
- Department of Chemistry, Yonsei University, Wonju, Gangwon-do 26493, Korea.
| | - Jeongjun Lee
- Department of Physics, Yonsei University, Wonju, Gangwon-do 26493, Korea.
| | - Jihyun Jeon
- Department of Physics, Yonsei University, Wonju, Gangwon-do 26493, Korea.
| | - Jaehyuk Im
- Department of Physics, Yonsei University, Wonju, Gangwon-do 26493, Korea.
| | - Junhwan Jang
- Department of Physics, Yonsei University, Wonju, Gangwon-do 26493, Korea.
| | - Seung-Won Jin
- Department of Chemistry, Yonsei University, Wonju, Gangwon-do 26493, Korea.
| | - Kyoung-Kook Kim
- Department of Nano-Optical Engineering, Korea Polytechnic University, Siheung 15073, Korea.
| | - Soohaeng Cho
- Department of Physics, Yonsei University, Wonju, Gangwon-do 26493, Korea.
| | - Chan-Moon Chung
- Department of Chemistry, Yonsei University, Wonju, Gangwon-do 26493, Korea.
| |
Collapse
|
11
|
Li Y, Wang Z, Zhang C, Gu P, Chen W, Li H, Lu J, Zhang Q. Thiadizoloquinoxaline-Based N-Heteroacenes as Active Elements for High-Density Data-Storage Device. ACS APPLIED MATERIALS & INTERFACES 2018; 10:15971-15979. [PMID: 29682969 DOI: 10.1021/acsami.8b05178] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A novel thiadiazoloquinoxaline (TQ)-based donor-acceptor (D-A)-type N-heteroacene (Py-1-TQ) has been demonstrated for promising applications in organic multilevel resistive memory devices. Compared with its counterparts (Py-0-TQ and Py-2-TQ), which show flash-type binary memory behaviors, Py-1-TQ exhibits excellent nonvolatile write-once-read-many-times-type ternary memory effects with high ON2/ON1/OFF current ratios (105.8:103.4:1), which can be attributed to the different electron-withdrawing abilities between the pyrazine unit and TQ species that can induce stepwise D-A charge-transfer processes. These results suggest that TQ-based N-heteroacenes can be potentially useful in ultrahigh-density data-storage devices through the rational D-A tuning.
Collapse
Affiliation(s)
- Yang Li
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
- School of Materials Science and Engineering , Nanyang Technological University , Singapore 639798 , Singapore
| | - Zilong Wang
- School of Materials Science and Engineering , Nanyang Technological University , Singapore 639798 , Singapore
| | - Cheng Zhang
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Peiyang Gu
- School of Materials Science and Engineering , Nanyang Technological University , Singapore 639798 , Singapore
| | - Wangqiao Chen
- School of Materials Science and Engineering , Nanyang Technological University , Singapore 639798 , Singapore
| | - Hua Li
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Qichun Zhang
- School of Materials Science and Engineering , Nanyang Technological University , Singapore 639798 , Singapore
| |
Collapse
|
12
|
Wang M, Zhang QJ, Li Z, Li H, Lu JM. Solvents Effects on Film Morphologies and Memory Behavior of a Perylenediimide-Containing Pendent Polymer. Chem Asian J 2018; 13:1784-1790. [PMID: 29741817 DOI: 10.1002/asia.201800331] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/27/2018] [Indexed: 02/28/2024]
Abstract
The large polydispersity index of functional pendant polymers has hindered their application in semiconductors. Herein, a novel pendant polymer with perylenediimide (PDI) in the side chains was successfully synthesized through ring-opening metathesis polymerization (ROMP) with a very low polydispersity index. The synthesized polymers were spin-coated on indium tin oxide (ITO) substrate by using a mixture of 1,2-dichlorobenzene (o-DCB) and methanol (MeOH) solvents. The surface morphologies and intermolecular π-π stacking of the fabricated film could be adjusted through tuning of the ratio of o-DCB and MeOH, and thus, the sandwich-structured device of ITO/polymer/aluminum exhibited different electrical behavior. The threshold voltages of the devices decreased as the MeOH content was increased from 0 to 30 % (v/v); however, the device changed from being unrewritable to rewritable if the MeOH content was increased to 40 %; a probable mechanism for this process is discussed. It is hoped that this new idea of synthesizing narrow polydispersity index pendant polymers, and the fabrication of high-quality films through the use of a mixture of solvents could allow high-performance memory devices to be prepared in the future.
Collapse
Affiliation(s)
- Ming Wang
- Soochow University, College of Chemistry, Chemical Engineering and Materials Science, No. 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P.R. China
| | - Qi-Jian Zhang
- Soochow University, College of Chemistry, Chemical Engineering and Materials Science, No. 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P.R. China
| | - Zhuang Li
- Soochow University, College of Chemistry, Chemical Engineering and Materials Science, No. 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P.R. China
| | - Hua Li
- Soochow University, College of Chemistry, Chemical Engineering and Materials Science, No. 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P.R. China
| | - Jian-Mei Lu
- Soochow University, College of Chemistry, Chemical Engineering and Materials Science, No. 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P.R. China
| |
Collapse
|
13
|
Yang Y, Xia JC, Zheng Y, Shen Y, Gou G. Synthesis and non-volatile electrical memory characteristics of triphenylamine-based polyimides with flexibility segments. NEW J CHEM 2018. [DOI: 10.1039/c8nj04103b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two triphenylamine-based polyimides (PI(TPA-PMDA) and PI(TPA-BPDA)) containing a flexibility segments were prepared. The memory device of ITO/PI(TPA-PMDA)/Al exhibited write-once read-many-times (WORM) memory behavior, however, the memory device of PI(TPA-BPDA) demonstrated flash-type memory characteristics.
Collapse
Affiliation(s)
- Yanhua Yang
- Applied Chemistry Department
- School of Material Science and Engineering
- Nanjing University of Aeronautics and Astronautics
- Nanjing
- P. R. China
| | - Jing-Cheng Xia
- State Key Laboratory of coordination chemistry
- College of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- P. R. China
| | - Youxuan Zheng
- State Key Laboratory of coordination chemistry
- College of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- P. R. China
| | - Yingzhong Shen
- Applied Chemistry Department
- School of Material Science and Engineering
- Nanjing University of Aeronautics and Astronautics
- Nanjing
- P. R. China
| | - Gaozhang Gou
- Key Laboratory of Natural Pharmaceutical & Chemical Biology of Yunnan Province, College of Science, Honghe University, Mengzi
- P. R. China
| |
Collapse
|
14
|
Li Y, Li H, He J, Xu Q, Li N, Chen D, Lu J. Towards Highly-Efficient Phototriggered Data Storage by Utilizing a Diketopyrrolopyrrole-Based Photoelectronic Small Molecule. Chem Asian J 2016; 11:2078-84. [DOI: 10.1002/asia.201600692] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Yang Li
- College of Chemistry, Chemical Engineering and Materials Science; Collaborative Innovation Center of Suzhou Nano Science and Technology; Soochow University; Suzhou 215123 P. R. China
| | - Hua Li
- College of Chemistry, Chemical Engineering and Materials Science; Collaborative Innovation Center of Suzhou Nano Science and Technology; Soochow University; Suzhou 215123 P. R. China
| | - Jinghui He
- College of Chemistry, Chemical Engineering and Materials Science; Collaborative Innovation Center of Suzhou Nano Science and Technology; Soochow University; Suzhou 215123 P. R. China
| | - Qingfeng Xu
- College of Chemistry, Chemical Engineering and Materials Science; Collaborative Innovation Center of Suzhou Nano Science and Technology; Soochow University; Suzhou 215123 P. R. China
| | - Najun Li
- College of Chemistry, Chemical Engineering and Materials Science; Collaborative Innovation Center of Suzhou Nano Science and Technology; Soochow University; Suzhou 215123 P. R. China
| | - Dongyun Chen
- College of Chemistry, Chemical Engineering and Materials Science; Collaborative Innovation Center of Suzhou Nano Science and Technology; Soochow University; Suzhou 215123 P. R. China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science; Collaborative Innovation Center of Suzhou Nano Science and Technology; Soochow University; Suzhou 215123 P. R. China
| |
Collapse
|
15
|
Li Y, Li H, He J, Xu Q, Li N, Chen D, Lu J. Inserting Thienyl Linkers into Conjugated Molecules for Efficient Multilevel Electronic Memory: A New Understanding of Charge-Trapping in Organic Materials. Chem Asian J 2016; 11:906-14. [DOI: 10.1002/asia.201501441] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Yang Li
- College of Chemistry; Chemical Engineering and Materials Science; Collaborative Innovation Center of Suzhou Nano Science and Technology; Soochow University; Suzhou 215123 P. R. China
| | - Hua Li
- College of Chemistry; Chemical Engineering and Materials Science; Collaborative Innovation Center of Suzhou Nano Science and Technology; Soochow University; Suzhou 215123 P. R. China
| | - Jinghui He
- College of Chemistry; Chemical Engineering and Materials Science; Collaborative Innovation Center of Suzhou Nano Science and Technology; Soochow University; Suzhou 215123 P. R. China
| | - Qingfeng Xu
- College of Chemistry; Chemical Engineering and Materials Science; Collaborative Innovation Center of Suzhou Nano Science and Technology; Soochow University; Suzhou 215123 P. R. China
| | - Najun Li
- College of Chemistry; Chemical Engineering and Materials Science; Collaborative Innovation Center of Suzhou Nano Science and Technology; Soochow University; Suzhou 215123 P. R. China
| | - Dongyun Chen
- College of Chemistry; Chemical Engineering and Materials Science; Collaborative Innovation Center of Suzhou Nano Science and Technology; Soochow University; Suzhou 215123 P. R. China
| | - Jianmei Lu
- College of Chemistry; Chemical Engineering and Materials Science; Collaborative Innovation Center of Suzhou Nano Science and Technology; Soochow University; Suzhou 215123 P. R. China
| |
Collapse
|
16
|
Kim J, Jung J, Phan MD, Ree BJ, Fujita S, Kim H, Matsuoka H, Shin K, Ree M. Self-assembly behaviours of a lipid-mimic brush polymer in thin films and at air–water interface. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Zhang B, Chen Y, Neoh KG, Kang ET. Organic Electronic Memory Devices. ELECTRICAL MEMORY MATERIALS AND DEVICES 2015. [DOI: 10.1039/9781782622505-00001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
With the rapid development of the electronics industry in recent years, information technology devices, such as personal computers, mobile phones, digital cameras and media players, have become an essential part of our daily life. From both the technological and economic points of view, the development of novel information storage materials and devices has become an emergent issue facing the electronics industry. Due to the advantages of good scalability, flexibility, low cost, ease of processing, 3D-stacking capability and high capacity for data storage, organic-based electrical memory devices have been promising alternatives or supplementary devices to conventional inorganic semiconductor-based memory technology. The basic concepts and historical development of electronic memory devices are first presented. The following section introduces the structures and switching mechanisms of organic electronic memory devices classified as transistors, capacitors and resistors. Subsequently, the progress in the field of organic-based memory materials and devices is systematically summarized and discussed. Finally, the challenges posed to the development of novel organic electronic memory devices are summarized.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Chemical & Biomolecular Engineering, National University of Singapore 10 Kent Ridge 119260 Singapore
- Key Lab for Advanced Materials, Institute of Applied Chemistry, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Yu Chen
- Key Lab for Advanced Materials, Institute of Applied Chemistry, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Koon-Gee Neoh
- Department of Chemical & Biomolecular Engineering, National University of Singapore 10 Kent Ridge 119260 Singapore
| | - En-Tang Kang
- Department of Chemical & Biomolecular Engineering, National University of Singapore 10 Kent Ridge 119260 Singapore
| |
Collapse
|
18
|
Solution-processable triarylamine-based high-performance polymers for resistive switching memory devices. Polym J 2015. [DOI: 10.1038/pj.2015.87] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
19
|
Polymer memory devices with widely tunable memory characteristics based on functional copolynaphthalimides bearing varied fluorene and triphenylamine moieties. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2014.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Zhuang H, Zhou Q, Li Y, Zhang Q, Li H, Xu Q, Li N, Lu J, Wang L. Adjustment of ON-state retention ability based on new donor-acceptor imides through structural tailoring for volatile device applications. ACS APPLIED MATERIALS & INTERFACES 2014; 6:94-100. [PMID: 24328279 DOI: 10.1021/am405000c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this study, two D-A molecules NACANA and CANACA, based on carbazole (CA) donor and naphthalimide (NA) acceptor, with different D-A arrangement (A-D-A and D-A-D) were synthesized. The photophysical and electrochemical properties, microstructure and memory behaviors of both A-D-A and D-A-D molecules were systematically investigated. The fabricated devices ITO/NACANA or CANACA layer/Al with a simple sandwich configuration both exhibited volatile nature after shutting off the external electric field. Interestingly, NACANA showed ON-state retention time of ca. 12 min, longer than that of CANACA (ca. 6 min). The difference in retention ability of the programmed states could be assigned to the difference of the D-A arrangement. This type of retention ability adjustment by varying the arrangement of donor and acceptor segments may provide a guide of structure design for future organic-based specific memory devices with tunable volatile property.
Collapse
Affiliation(s)
- Hao Zhuang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lin WP, Liu SJ, Gong T, Zhao Q, Huang W. Polymer-based resistive memory materials and devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:570-606. [PMID: 24339246 DOI: 10.1002/adma.201302637] [Citation(s) in RCA: 225] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 07/27/2013] [Indexed: 06/03/2023]
Abstract
Due to the advantages of good scalability, flexibility, low cost, ease of processing, 3D-stacking capability, and large capacity for data storage, polymer-based resistive memories have been a promising alternative or supplementary devices to conventional inorganic semiconductor-based memory technology, and attracted significant scientific interest as a new and promising research field. In this review, we first introduced the general characteristics of the device structures and fabrication, memory effects, switching mechanisms, and effects of electrodes on memory properties associated with polymer-based resistive memory devices. Subsequently, the research progress concerning the use of single polymers or polymer composites as active materials for resistive memory devices has been summarized and discussed. In particular, we consider a rational approach to their design and discuss how to realize the excellent memory devices and understand the memory mechanisms. Finally, the current challenges and several possible future research directions in this field have also been discussed.
Collapse
Affiliation(s)
- Wen-Peng Lin
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Wenyuan Road 9, Nanjing City, Jiangsu Province, 210023, China
| | | | | | | | | |
Collapse
|
22
|
Zhang W, Wang C, Liu G, Zhu X, Chen X, Pan L, Tan H, Xue W, Ji Z, Wang J, Chen Y, Li RW. Thermally-stable resistive switching with a large ON/OFF ratio achieved in poly(triphenylamine). Chem Commun (Camb) 2014; 50:11856-8. [DOI: 10.1039/c4cc04696j] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thermally stable poly(triphenylamine) (PTPA) has been used to achieve promising resistive switching memory devices with a large ON/OFF ratio.
Collapse
Affiliation(s)
- Wenbin Zhang
- Key Laboratory of Magnetic Materials and Devices
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- , China
- Department of Physics
| | - Cheng Wang
- Institute of Applied Chemistry
- East China University of Science and Technology
- Shanghai 200237, China
| | - Gang Liu
- Key Laboratory of Magnetic Materials and Devices
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- , China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology
| | - Xiaojian Zhu
- Key Laboratory of Magnetic Materials and Devices
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- , China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology
| | - Xinxin Chen
- Key Laboratory of Magnetic Materials and Devices
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- , China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology
| | - Liang Pan
- Key Laboratory of Magnetic Materials and Devices
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- , China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology
| | - Hongwei Tan
- Key Laboratory of Magnetic Materials and Devices
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- , China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology
| | - Wuhong Xue
- Key Laboratory of Magnetic Materials and Devices
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- , China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology
| | - Zhenghui Ji
- Key Laboratory of Magnetic Materials and Devices
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- , China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology
| | - Jun Wang
- Department of Physics
- Ningbo University
- Ningbo 315211, China
| | - Yu Chen
- Institute of Applied Chemistry
- East China University of Science and Technology
- Shanghai 200237, China
| | - Run-Wei Li
- Key Laboratory of Magnetic Materials and Devices
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- , China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology
| |
Collapse
|
23
|
Polycyclic arene-based D-A polyimide electrets for high-performance n-type organic field effect transistor memory devices. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.26983] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
24
|
Yu AD, Kurosawa T, Chou YH, Aoyagi K, Shoji Y, Higashihara T, Ueda M, Liu CL, Chen WC. Tunable electrical memory characteristics using polyimide:polycyclic aromatic compound blends on flexible substrates. ACS APPLIED MATERIALS & INTERFACES 2013; 5:4921-4929. [PMID: 23646879 DOI: 10.1021/am4006594] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Resistance switching memory devices with the configuration of poly(ethylene naphthalate)(PEN)/Al/polyimide (PI) blend/Al are reported. The active layers of the PI blend films were prepared from different compositions of poly[4,4'-diamino-4″-methyltriphenylamine-hexafluoroisopropylidenediphthalimide] (PI(AMTPA)) and polycyclic aromatic compounds (coronene or N,N-bis[4-(2-octyldodecyloxy)phenyl]-3,4,9,10-perylenetetracarboxylic diimide (PDI-DO)). The additives of large π-conjugated polycyclic compounds can stabilize the charge transfer complex induced by the applied electric field. Thus, the memory device characteristic changes from the volatile to nonvolatile behavior of flash and write-once-read-many times (WORM) as the additive contents increase in both blend systems. The main differences between these two blend systems are the threshold voltage values and the additive content to change the memory behavior. Due to the stronger accepting ability and higher electron affinity of PDI-DO than those of coronene, the PI(AMTPA):PDI-DO blend based memory devices show a smaller threshold voltage and change the memory behavior in a smaller additive content. Besides, the memory devices fabricated on a flexible PEN substrate exhibit an excellent durability upon the bending conditions. These tunable memory performances of the developed PI/polycyclic aromatic compound blends are advantageous for future advanced memory device applications.
Collapse
Affiliation(s)
- An-Dih Yu
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617 Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Kurosawa T, Higashihara T, Ueda M. Polyimide memory: a pithy guideline for future applications. Polym Chem 2013. [DOI: 10.1039/c2py20632c] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Ren W, Zhu Y, Ge J, Xu X, Sun R, Li N, Li H, Xu Q, Zheng J, Lu J. Bistable memory devices with lower threshold voltage by extending the molecular alkyl-chain length. Phys Chem Chem Phys 2013; 15:9212-8. [DOI: 10.1039/c3cp51290h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Xia Q, Liu J, Dong J, Yin C, Du Y, Xu Q, Zhang Q. Synthesis and characterization of high-performance polyimides based on 6,4′-diamino-2-phenylbenzimidazole. J Appl Polym Sci 2012. [DOI: 10.1002/app.38709] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
Kim K, Yen HJ, Ko YG, Chang CW, Kwon W, Liou GS, Ree M. Electrically bistable digital memory behaviors of thin films of polyimides based on conjugated bis(triphenylamine) derivatives. POLYMER 2012. [DOI: 10.1016/j.polymer.2012.07.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Diethert A, Körstgens V, Magerl D, Ecker K, Perlich J, Roth SV, Müller-Buschbaum P. Structure and macroscopic tackiness of ultrathin pressure sensitive adhesive films. ACS APPLIED MATERIALS & INTERFACES 2012; 4:3951-3958. [PMID: 22817560 DOI: 10.1021/am300774b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Ultrathin layers of the statistical copolymer P(nBA-stat-MA) with a majority of n-butyl acrylate (nBA) and a minority of methyl acrylate (MA) are characterized with respect to the film morphology and the mechanical response in a probe tack test. The probed copolymer can be regarded as a model system of a pressure sensitive adhesive (PSA). The films are prepared by spin-coating which enables an easy thickness control via the polymer concentration of the solution. The film thickness is determined with x-ray reflectivity (XRR) and white light interferometry (WLI). Grazing incidence small angle x-ray scattering (GISAXS) provides detailed and statistically significant information about the film morphology. Two types of lateral structures are identified and no strong correlation of these structures with the PSA film thickness is observed. In contrast, prominent parameters of the probe tack test, such as the stress maximum and the tack energy, exhibit an exponential dependence on the film thickness.
Collapse
Affiliation(s)
- Alexander Diethert
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien, James-Franck-Str.1, 85748 Garching, Germany
| | | | | | | | | | | | | |
Collapse
|
31
|
Ko YG, Kwon W, Yen HJ, Chang CW, Kim DM, Kim K, Hahm SG, Lee TJ, Liou GS, Ree M. Various Digital Memory Behaviors of Functional Aromatic Polyimides Based on Electron Donor and Acceptor Substituted Triphenylamines. Macromolecules 2012. [DOI: 10.1021/ma300311d] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yong-Gi Ko
- Department of Chemistry, Division of Advanced Materials Science, Pohang Accelerator Laboratory, Center for Electro-Photo Behaviors in Advanced Molecular Systems, BK School of Molecular Science, and Polymer Research Institute, Pohang University of Science & Technology (POSTECH), Pohang 790-784, Republic of Korea
| | - Wonsang Kwon
- Department of Chemistry, Division of Advanced Materials Science, Pohang Accelerator Laboratory, Center for Electro-Photo Behaviors in Advanced Molecular Systems, BK School of Molecular Science, and Polymer Research Institute, Pohang University of Science & Technology (POSTECH), Pohang 790-784, Republic of Korea
| | - Hung-Ju Yen
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Cha-Wen Chang
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Dong Min Kim
- Department of Chemistry, Division of Advanced Materials Science, Pohang Accelerator Laboratory, Center for Electro-Photo Behaviors in Advanced Molecular Systems, BK School of Molecular Science, and Polymer Research Institute, Pohang University of Science & Technology (POSTECH), Pohang 790-784, Republic of Korea
| | - Kyungtae Kim
- Department of Chemistry, Division of Advanced Materials Science, Pohang Accelerator Laboratory, Center for Electro-Photo Behaviors in Advanced Molecular Systems, BK School of Molecular Science, and Polymer Research Institute, Pohang University of Science & Technology (POSTECH), Pohang 790-784, Republic of Korea
| | - Suk Gyu Hahm
- Department of Chemistry, Division of Advanced Materials Science, Pohang Accelerator Laboratory, Center for Electro-Photo Behaviors in Advanced Molecular Systems, BK School of Molecular Science, and Polymer Research Institute, Pohang University of Science & Technology (POSTECH), Pohang 790-784, Republic of Korea
| | - Taek Joon Lee
- Department of Chemistry, Division of Advanced Materials Science, Pohang Accelerator Laboratory, Center for Electro-Photo Behaviors in Advanced Molecular Systems, BK School of Molecular Science, and Polymer Research Institute, Pohang University of Science & Technology (POSTECH), Pohang 790-784, Republic of Korea
| | - Guey-Sheng Liou
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Moonhor Ree
- Department of Chemistry, Division of Advanced Materials Science, Pohang Accelerator Laboratory, Center for Electro-Photo Behaviors in Advanced Molecular Systems, BK School of Molecular Science, and Polymer Research Institute, Pohang University of Science & Technology (POSTECH), Pohang 790-784, Republic of Korea
| |
Collapse
|
32
|
Kim DM, Ko YG, Choi JK, Kim K, Kwon W, Jung J, Yoon TH, Ree M. Digital memory behaviors of aromatic polyimides bearing bis(trifluoromethyl)- and bithiophenyl-triphenylamine units. POLYMER 2012. [DOI: 10.1016/j.polymer.2012.02.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
33
|
Park JE, Eom JH, Lim T, Hwang DH, Pyo S. Electrical bistability of organic devices with a polymeric thin film for nonvolatile data storage. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/pola.25987] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
Chen F, Tian G, Shi L, Qi S, Wu D. Nonvolatile write-once read-many-times memory device based on an aromatic hyperbranched polyimide bearing triphenylamine moieties. RSC Adv 2012. [DOI: 10.1039/c2ra21885b] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
35
|
Wang Z, Zeng F, Yang J, Chen C, Pan F. Resistive switching induced by metallic filaments formation through poly(3,4-ethylene-dioxythiophene):poly(styrenesulfonate). ACS APPLIED MATERIALS & INTERFACES 2012; 4:447-53. [PMID: 22201222 DOI: 10.1021/am201518v] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We report the design and fabrication of Al/poly(3,4-ethylene-dioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/Cu resistive memory devices that utilize the Cu redox reaction and conformational features of PEDOT:PSS to achieve resistive switching. The top Cu electrode acts as the source of the redox ions that are injected through the PEDOT:PSS layer during the forming process. The Cu filament is confirmed directly using the cross-sectional images of transmission electron microscopy and energy-dispersive X-ray spectroscopy. The resultant resistive memory devices can operate over a small voltage range, i.e., the switching-on threshold voltage is less than 1.5 V and the absolute value of the switching-off threshold voltage is less than 1.0 V. The on/off current ratio is as large as 1 × 10(4) and the two different resistance states can be maintained over 10(6) s. Moreover, the devices present good thermal stability that the resistive switching can be observed even at temperature up to 160 °C, at which the oxidation of the Cu top electrode is the failure factor. Furthermore, the cause of failure for Al/PEDOT:PSS/Cu memory devices at higher temperature is confirmed to be the oxidation of Cu top electrode.
Collapse
Affiliation(s)
- Zhishun Wang
- Laboratory of Advanced Materials (MOE), Department of Materials Science and Engineering, Tsinghua University , Beijing 100084, China
| | | | | | | | | |
Collapse
|
36
|
Yu AD, Kurosawa T, Lai YC, Higashihara T, Ueda M, Liu CL, Chen WC. Flexible polymer memory devices derived from triphenylamine–pyrene containing donor–acceptor polyimides. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm33852a] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
37
|
Lee TJ, Ko YG, Yen HJ, Kim K, Kim DM, Kwon W, Hahm SG, Liou GS, Ree M. Programmable digital nonvolatile memory behaviors of donor–acceptor polyimides bearing triphenylamine derivatives: effects of substituents. Polym Chem 2012. [DOI: 10.1039/c2py00617k] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
|