1
|
Wu M, Hong C, Shen C, Xie D, Chen T, Wu A, Li Q. Polydopamine nanomaterials and their potential applications in the treatment of autoimmune diseases. Drug Deliv 2023; 30:2289846. [PMID: 38069584 PMCID: PMC10987051 DOI: 10.1080/10717544.2023.2289846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
The conventional treatment methods used for the management of autoimmune diseases (ADs) have limited efficacy and also exhibit significant side effects. Thus, identification of novel strategies to improve the efficacy and safety of ADs treatment is urgently required. Overactivated immune response and oxidative stress are common characteristics associated with ADs. Polydopamine (PDA), as a polymer material with good antioxidant and photothermal conversion properties, has displayed useful application potential against ADs. In addition, PDA possesses good biosafety, simple preparation, and easy functionalization, which is conducive for the pharmacological development of PDA nanomaterials with clinical transformation prospects. Here, we have first reviewed the preparation of PDA, the different functional integration strategies of PDA-based biomaterials, and their potential applications in ADs. Next, the mechanism of action of PDA in ADs has been elaborated in detail. Finally, the application opportunities and challenges linked with PDA nanomaterials for ADs treatment are discussed. This review is contributed to design reasonable and effective PDA nanomaterials for the diagnosis and treatment of ADs.
Collapse
Affiliation(s)
- Manxiang Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo, China
- Department of Radiology, The Affiliated People’s Hospital of Ningbo University, Ningbo, P. R. China
| | - Chengyuan Hong
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo, China
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo, P. R. China
| | - Chunjuan Shen
- Center for Reproductive Medicine, Jiaxing University Affilated Maternity and Child Hospital, Jiaxing, P. R. China
| | - Dong Xie
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo, China
- Department of Radiology, The Affiliated People’s Hospital of Ningbo University, Ningbo, P. R. China
| | - Tianxiang Chen
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo, China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo, China
| | - Qiang Li
- Department of Radiology, The Affiliated People’s Hospital of Ningbo University, Ningbo, P. R. China
| |
Collapse
|
2
|
Tang Q, Deng N, Chen J, Sun H, Dong Y, Zeng Q, Yuan H, Binks BP, Meng T. One-Step Fabrication of Coconut-Like Capsules via Competitive Reactions at an All-Aqueous Interface for Enzyme Immobilization. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10621-10628. [PMID: 36800174 DOI: 10.1021/acsami.2c19788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A concept of interfacial competitive reaction between biomineralization and alginate gelation at an all-aqueous single-emulsion droplet interface to prepare robust coconut-like capsules (inner hard wall and outer soft wall) is developed. The concept is further applied for enzyme immobilization with high encapsulation efficiency, enzyme loading, mass transfer coefficient, and recyclability. The thickness and swelling properties of the shell are simply tunable by a competitive reaction. Our platform may open a green, facile, and efficient way to prepare organic-inorganic hybrid sustainable materials with tailored compositions and structures.
Collapse
Affiliation(s)
- Qiming Tang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China
| | - Ningjun Deng
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China
| | - Jialin Chen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China
| | - Hejia Sun
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China
| | - Yuman Dong
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China
| | - Qi Zeng
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China
| | - Hao Yuan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China
| | - Bernard P Binks
- Department of Chemistry, University of Hull, Hull HU6 7RX, U.K
| | - Tao Meng
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China
| |
Collapse
|
3
|
Yin SY, Hu Y, Zheng J, Li J, Yang R. Tannic Acid-Assisted Biomineralization Strategy for Encapsulation and Intracellular Delivery of Protein Drugs. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50583-50591. [PMID: 36322919 DOI: 10.1021/acsami.2c15205] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Protein therapy has been considered to be one of the most direct and safe ways to regulate cell function and treat tumors. However, safe and effective intracellular delivery of protein drugs is still a key challenge. Herein, we developed a tannic acid-assisted biomineralization strategy for the encapsulation and intracellular delivery of protein drugs. RNase A and glucose oxidase (GOD) were choose as the protein drug model. RNase A, GOD, TA, and Mn2+ are mixed in one pot to attain RG@MT, and CaCO3 coating is subsequently carried out to construct RG@MT@C through biomineralization. Once RG@MT@C is endocytosed, the acidic environment of the lysosome will dissolve the protective layer of CaCO3 and produce plenty of CO2 to cause lysosome bursting, ensuring the lysosome escape of the RG@MT@C and thus releasing the generated TA-Mn2+, RNase A, and GOD into the cytoplasm. The released substances would activate starvation therapy, chemodynamic therapy, and protein therapy pathways to ensure a high performance of cancer therapy. Due to simple preparation, low toxicity, and controlled release in the tumor microenvironment, we expect it can realize efficient and nondestructive delivery of protein drugs and meet the needs for precise, high performance of synergistically antitumor therapy in biomedical applications.
Collapse
Affiliation(s)
- Sheng-Yan Yin
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yingcai Hu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jing Zheng
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jishan Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Ronghua Yang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
4
|
Ju Y, Liao H, Richardson JJ, Guo J, Caruso F. Nanostructured particles assembled from natural building blocks for advanced therapies. Chem Soc Rev 2022; 51:4287-4336. [PMID: 35471996 DOI: 10.1039/d1cs00343g] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Advanced treatments based on immune system manipulation, gene transcription and regulation, specific organ and cell targeting, and/or photon energy conversion have emerged as promising therapeutic strategies against a range of challenging diseases. Naturally derived macromolecules (e.g., proteins, lipids, polysaccharides, and polyphenols) have increasingly found use as fundamental building blocks for nanostructured particles as their advantageous properties, including biocompatibility, biodegradability, inherent bioactivity, and diverse chemical properties make them suitable for advanced therapeutic applications. This review provides a timely and comprehensive summary of the use of a broad range of natural building blocks in the rapidly developing field of advanced therapeutics with insights specific to nanostructured particles. We focus on an up-to-date overview of the assembly of nanostructured particles using natural building blocks and summarize their key scientific and preclinical milestones for advanced therapies, including adoptive cell therapy, immunotherapy, gene therapy, active targeted drug delivery, photoacoustic therapy and imaging, photothermal therapy, and combinational therapy. A cross-comparison of the advantages and disadvantages of different natural building blocks are highlighted to elucidate the key design principles for such bio-derived nanoparticles toward improving their performance and adoption. Current challenges and future research directions are also discussed, which will accelerate our understanding of designing, engineering, and applying nanostructured particles for advanced therapies.
Collapse
Affiliation(s)
- Yi Ju
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia. .,School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Haotian Liao
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China. .,Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Sichuan 610065, China
| | - Joseph J Richardson
- Department of Materials Engineering, University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-8656, Japan
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China. .,State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China. .,Bioproducts Institute, Departments of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
5
|
Corrosion Inhibition Coating Based on the Self-Assembled Polydopamine Films and Its Anti-Corrosion Properties. Polymers (Basel) 2022; 14:polym14040794. [PMID: 35215707 PMCID: PMC8875011 DOI: 10.3390/polym14040794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/04/2022] [Accepted: 01/29/2022] [Indexed: 11/26/2022] Open
Abstract
Metal corrosion is becoming increasingly serious in oil and gas production, and one way to solve this problem is to modify the metal surface. Thus, a corrosion inhibition coating on the N80 steel was constructed via the self-polymerization and assembling of the dopamine. The optimum reaction condition of polydopamine films was determined by the corrosion rate assessment of the films coated N80 steel, which was the reaction at 60 °C and 5 g/L dopamine in the Tris-HCl buffer solution (pH = 8.5) for 1 h. The spectral results confirmed the existence of the polydopamine coating on the surface of N80 steel, and high stability of the coating in the oil well produced water was observed. The anti-corrosion performance of the polydopamine-coated N80 steel confirmed that high temperature accelerated the anti-corrosion effect of the coating, and the corrosion rate of N80 plate in 90 °C oil well produced water was 0.0591 mm·a−1, lower than the standard value. The corrosion rates of the polydopamine coated N80, A3 and J55 plates at 90 °C were 0.0541 mm·a−1, 0.0498 mm·a−1 and 0.0455 mm·a−1, respectively. No significant effects of the categories of corrosive medium and steel plate on the performance of the coating were observed.
Collapse
|
6
|
Wei S, Zhou D, Qin J, Peng B, Zan X. Insight into the mechanism and formation process of bioinspired poly(amino acid)/polyphenol capsules engineered with fast pH switchable permeability. Colloids Surf B Biointerfaces 2021; 210:112234. [PMID: 34871819 DOI: 10.1016/j.colsurfb.2021.112234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 11/24/2022]
Abstract
Capsules have hollow cores and closed wall structures, and they have attracted considerable interest due to their wide applications and significance in life science. The engineering process of bioinspired capsules and related applications have earned heavy concerns. However, the mechanism of capsule formation is often ignored. Herein, based on polyornithine (POR) and tannic acid (TA), two facile strategies to engineer bioinspired capsules were proposed, and the formation mechanisms were deeply explored. We found that the oxidized state of TA had a profound influence not on the thickness or permeability of the formed capsule but on the mechanism and generation process. Compared to TA/POR capsules produced from TA without oxidization (TA/POR), capsules produced from TA with preoxidization (oTA/POR) had thicker shells with higher impermeability. The dominant construction mode in the shells of TA/POR capsules was electrostatic interactions but became Schiff base bonds in oTA/POR capsules. The permeability of oTA/POR displayed pH reversibility and strong pH dependence, with 100% permeability at lower pH and 100% impermeability at pH 7, completing loading/releasing kinetics in minutes at pH 4. We believe these findings contribute to knowledge of bioinspired capsules from engineering processes and formation mechanisms, extending their applications in various fields, such as in drug delivery, artificial cells, and sensors.
Collapse
Affiliation(s)
- Shaoyin Wei
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325035, PR China
| | - Daozhen Zhou
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325035, PR China
| | - Jianghui Qin
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325035, PR China
| | - Bo Peng
- Oujiang Laboratory, Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, No.1 Jinlian Road, Wenzhou 325001, PR China.
| | - Xingjie Zan
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325035, PR China; Oujiang Laboratory, Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, No.1 Jinlian Road, Wenzhou 325001, PR China.
| |
Collapse
|
7
|
Huang L, Mu X, Huang W, Guo Q, Zhao J. Versatile surface modification of millimeter‐scale “aqueous pearls” with nanoparticles via self‐polymerization of dopamine. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Leping Huang
- School of Material Science and Engineering Wuhan Textile University Wuhan China
| | - Xiaoqing Mu
- School of Material Science and Engineering Wuhan Textile University Wuhan China
| | - Wei Huang
- Hubei Key Laboratory of Biomass Fibers and Eco‐dyeing & Finishing Wuhan Textile University Wuhan China
| | - Qing Guo
- Hubei Key Laboratory of Biomass Fibers and Eco‐dyeing & Finishing Wuhan Textile University Wuhan China
| | - Jinchao Zhao
- Hubei Key Laboratory of Biomass Fibers and Eco‐dyeing & Finishing Wuhan Textile University Wuhan China
| |
Collapse
|
8
|
Wang J, Lv Y. An enzyme-loaded reactor using metal-organic framework-templated polydopamine microcapsule. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.07.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
9
|
Affiliation(s)
- Árpád Molnár
- Department of Organic Chemistry University of Szeged Dóm tér 8 Szeged 6720 Hungary
| |
Collapse
|
10
|
Cheng W, Zeng X, Chen H, Li Z, Zeng W, Mei L, Zhao Y. Versatile Polydopamine Platforms: Synthesis and Promising Applications for Surface Modification and Advanced Nanomedicine. ACS NANO 2019; 13:8537-8565. [PMID: 31369230 DOI: 10.1021/acsnano.9b04436] [Citation(s) in RCA: 518] [Impact Index Per Article: 86.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
As a mussel-inspired material, polydopamine (PDA), possesses many properties, such as a simple preparation process, good biocompatibility, strong adhesive property, easy functionalization, outstanding photothermal conversion efficiency, and strong quenching effect. PDA has attracted increasingly considerable attention because it provides a simple and versatile approach to functionalize material surfaces for obtaining a variety of multifunctional nanomaterials. In this review, recent significant research developments of PDA including its synthesis and polymerization mechanism, physicochemical properties, different nano/microstructures, and diverse applications are summarized and discussed. For the sections of its applications in surface modification and biomedicine, we mainly highlight the achievements in the past few years (2016-2019). The remaining challenges and future perspectives of PDA-based nanoplatforms are discussed rationally at the end. This timely and overall review should be desirable for a wide range of scientists and facilitate further development of surface coating methods and the production of PDA-based materials.
Collapse
Affiliation(s)
- Wei Cheng
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen) , Sun Yat-sen University , Guangzhou 510275 , China
| | - Xiaowei Zeng
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen) , Sun Yat-sen University , Guangzhou 510275 , China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 Singapore
| | - Hongzhong Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 Singapore
| | - Zimu Li
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen) , Sun Yat-sen University , Guangzhou 510275 , China
| | - Wenfeng Zeng
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen) , Sun Yat-sen University , Guangzhou 510275 , China
| | - Lin Mei
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen) , Sun Yat-sen University , Guangzhou 510275 , China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 Singapore
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 Singapore
| |
Collapse
|
11
|
Cai Z, Shi J, Li W, Wu Y, Zhang Y, Zhang S, Jiang Z. Mussel-Inspired pH-Switched Assembly of Capsules with an Ultrathin and Robust Nanoshell. ACS APPLIED MATERIALS & INTERFACES 2019; 11:28228-28235. [PMID: 31310494 DOI: 10.1021/acsami.9b11445] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Enclosed films, also called capsules, bearing an ultrathin and robust nanoshell have sparked much interest for use in many applications, for which facile preparation methods are urgently pursued. Inspired by the pH-programmed adhesion/cohesion of mussel-secreted foot proteins, polyphenol/polyamine capsules with an ultrathin and robust nanoshell are fabricated through a pH-switched assembly on sacrificial calcium carbonate (CaCO3) templates. Polyphenols adhere to the templates at pH 6.0 and rapidly cohere with polyamines at pH 8.0. The pH-switched assembly process is accomplished in only a few minutes where multiple instances of electrostatic interactions and chemical conjugation between polyphenols and polyamines occur. As a result, the capsules exhibit a nanoshell thickness of ∼10 nm and a superior mechanical strength of ∼1.575 GPa (elasticity modulus). Cell mimics are prepared through encasing enzymes in the lumen and present an activity recovery of ∼70% along with little activity decline during reuse. Amine or phenolic groups on the nanoshell of capsules are then applied to induce the generation of titania or silver nanoparticles, which may expand the applications of the capsules to the photo- and biorelated realms. Our study not only deepens the understanding of the adhering process of mussels but also offers a generic method toward functional materials for diverse applications.
Collapse
Affiliation(s)
- Ziyi Cai
- State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , 92 Weijin Road , Nankai District, Tianjin 300072 , P. R. China
| | - Jiafu Shi
- State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , 92 Weijin Road , Nankai District, Tianjin 300072 , P. R. China
| | | | - Yizhou Wu
- State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , 92 Weijin Road , Nankai District, Tianjin 300072 , P. R. China
| | - Yishan Zhang
- State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , 92 Weijin Road , Nankai District, Tianjin 300072 , P. R. China
| | - Shaohua Zhang
- State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , 92 Weijin Road , Nankai District, Tianjin 300072 , P. R. China
| | - Zhongyi Jiang
- State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , 92 Weijin Road , Nankai District, Tianjin 300072 , P. R. China
| |
Collapse
|
12
|
Tang C, Li Y, Pun J, Mohamed Osman AS, Tam KC. Polydopamine microcapsules from cellulose nanocrystal stabilized Pickering emulsions for essential oil and pesticide encapsulation. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.03.049] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Affiliation(s)
- Ee Taek Hwang
- Center for Convergence Bioceramic Materials, Korea Institute of Ceramic Engineering & Technology, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Seonbyul Lee
- Center for Convergence Bioceramic Materials, Korea Institute of Ceramic Engineering & Technology, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| |
Collapse
|
14
|
Li H, Li S, Li F, Li Z, Wang H. Fabrication of SiO2 wrapped polystyrene microcapsules by Pickering polymerization for self-lubricating coatings. J Colloid Interface Sci 2018; 528:92-99. [DOI: 10.1016/j.jcis.2018.05.081] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 11/15/2022]
|
15
|
Shi J, Wu Y, Zhang S, Tian Y, Yang D, Jiang Z. Bioinspired construction of multi-enzyme catalytic systems. Chem Soc Rev 2018; 47:4295-4313. [PMID: 29737332 DOI: 10.1039/c7cs00914c] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Enzyme catalysis, as a green, efficient process, displays exceptional functionality, adaptivity and sustainability. Multi-enzyme catalysis, which can accomplish the tandem synthesis of valuable materials/chemicals from renewable feedstocks, establishes a bridge between single-enzyme catalysis and whole-cell catalysis. Multi-enzyme catalysis occupies a unique and indispensable position in the realm of biological reactions for energy and environmental applications. Two complementary strategies, i.e., compartmentalization and substrate channeling, have been evolved by living organisms for implementing the complex in vivo multi-enzyme reactions (MERs), which have been applied to construct multi-enzyme catalytic systems (MECSs) with superior catalytic activity and stabilities in practical biocatalysis. This tutorial review aims to present the recent advances and future prospects in this burgeoning research area, stressing the features and applications of the two strategies for constructing MECSs and implementing in vitro MERs. The concluding remarks are presented with a perspective on the construction of MECSs through rational combination of compartmentalization and substrate channeling.
Collapse
Affiliation(s)
- Jiafu Shi
- Tianjin Engineering Center of Biomass-derived Gas and Oil, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | | | | | | | | | | |
Collapse
|
16
|
Wang Q, Zhang R, You G, Hu J, Li P, Wang Y, Zhang J, Wu Y, Zhao L, Zhou H. Influence of polydopamine-mediated surface modification on oxygen-release capacity of haemoglobin-based oxygen carriers. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:484-492. [DOI: 10.1080/21691401.2018.1459636] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Quan Wang
- Institute of Health Service and Transfusion Medicine, Beijing Key Laboratory of Blood Safety and Supply Technologies, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Ruirui Zhang
- National Centre for Nanoscience and Technology, Beijing, People’s Republic of China
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Guoxing You
- Institute of Health Service and Transfusion Medicine, Beijing Key Laboratory of Blood Safety and Supply Technologies, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Jilin Hu
- Institute of Health Service and Transfusion Medicine, Beijing Key Laboratory of Blood Safety and Supply Technologies, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Penglong Li
- Institute of Health Service and Transfusion Medicine, Beijing Key Laboratory of Blood Safety and Supply Technologies, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Ying Wang
- Institute of Health Service and Transfusion Medicine, Beijing Key Laboratory of Blood Safety and Supply Technologies, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Jun Zhang
- Institute of Health Service and Transfusion Medicine, Beijing Key Laboratory of Blood Safety and Supply Technologies, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Yan Wu
- National Centre for Nanoscience and Technology, Beijing, People’s Republic of China
| | - Lian Zhao
- Institute of Health Service and Transfusion Medicine, Beijing Key Laboratory of Blood Safety and Supply Technologies, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Hong Zhou
- Institute of Health Service and Transfusion Medicine, Beijing Key Laboratory of Blood Safety and Supply Technologies, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
17
|
Batul R, Tamanna T, Khaliq A, Yu A. Recent progress in the biomedical applications of polydopamine nanostructures. Biomater Sci 2018; 5:1204-1229. [PMID: 28594019 DOI: 10.1039/c7bm00187h] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Polydopamine is a dark brown-black insoluble biopolymer produced by autoxidation of dopamine. Although its structure and polymerization mechanism have not been fully understood, there has been a rapid growth in the synthesis and applications of polydopamine nanostructures in biomedical fields such as drug delivery, photothermal therapy, bone and tissue engineering, and cell adhesion and patterning, as well as antimicrobial applications. This article is dedicated to reviewing some of the recent polydopamine developments in these biomedical fields. Firstly, the polymerization mechanism is introduced with a discussion of the factors that influence the polymerization process. The discussion is followed by the introduction of various forms of polydopamine nanostructures and their recent applications in biomedical fields, especially in drug delivery. Finally, the review is summarized followed by brief comments on the future prospects of polydopamine.
Collapse
Affiliation(s)
- Rahila Batul
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
| | | | | | | |
Collapse
|
18
|
Ang JM, Li B, Xi S, Du Y, Zhao C, Kong J, Zong Y, Ludger Stubbs P, Lu X. Mussel-inspired facile synthesis of Fe/Co-polydopamine complex nanospheres: complexation mechanism and application of the carbonized hybrid nanospheres as an efficient bifunctional electrocatalyst. NEW J CHEM 2018. [DOI: 10.1039/c8nj04243h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A one-pot synthesis of Co(ii)–Fe(iii)–PDA complex nanospheres as a facile approach to obtain binary metal-doped carbon nanostructures.
Collapse
Affiliation(s)
- Jia Ming Ang
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Bing Li
- Institute of Materials Research and Engineering
- A*STAR (Agency for Science, Technology and Research)
- Singapore 138634
- Singapore
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences
- A*STAR (Agency for Science, Technology and Research)
- Singapore 627833
- Singapore
| | - Yonghua Du
- Institute of Chemical and Engineering Sciences
- A*STAR (Agency for Science, Technology and Research)
- Singapore 627833
- Singapore
| | - Chenyang Zhao
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Junhua Kong
- Institute of Materials Research and Engineering
- A*STAR (Agency for Science, Technology and Research)
- Singapore 138634
- Singapore
| | - Yun Zong
- Institute of Materials Research and Engineering
- A*STAR (Agency for Science, Technology and Research)
- Singapore 138634
- Singapore
| | - Paul Ludger Stubbs
- Institute of Chemical and Engineering Sciences
- A*STAR (Agency for Science, Technology and Research)
- Singapore 627833
- Singapore
| | - Xuehong Lu
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| |
Collapse
|
19
|
Truong QD, Dien LX, Vo DVN, Le TS. Controlled synthesis of titania using water-soluble titanium complexes: A review. J SOLID STATE CHEM 2017. [DOI: 10.1016/j.jssc.2017.04.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Li CC, Yu DH, Chang SJ, Chen JW. New Approach for the Synthesis of Nanozirconia Fortified Microcapsules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:5843-5851. [PMID: 28514854 DOI: 10.1021/acs.langmuir.7b01066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Robust poly(urea-formaldehyde) (PUF) microcapsules with composite shells comprising zirconia (ZrO2) nanopowder incorporated in PUF were fabricated via a novel and facile one-pot synthesis. ZrO2 nanopowder was chosen because it owns one of the highest mechanical strengths among ceramics. The nanopowder was predispersed in the core material to combine encapsulation and fortification into a single process. In the core, the well-dispersed nanopowder migrated to the interface, where PUF polymerization took place. The mechanical strength of the microcapsule with nano-ZrO2 incorporated in the shell (42% by weight) is three times greater than that of the microcapsule without ZrO2. In a preliminary application wherein the microcapsules were embedded in a model of poly(vinyl alcohol) (PVA) membrane, the PVA specimen exhibited a higher ultimate tensile strength when fortified microcapsules were embedded than when unfortified microcapsules were used.
Collapse
Affiliation(s)
- Chia-Chen Li
- Institute of Materials Science and Engineering, and Department of Materials & Mineral Resources Engineering, National Taipei University of Technology , Taipei 10608, Taiwan
| | - Dzu-How Yu
- Institute of Materials Science and Engineering, and Department of Materials & Mineral Resources Engineering, National Taipei University of Technology , Taipei 10608, Taiwan
| | - Shinn-Jen Chang
- Material and Chemical Research Laboratories, Industrial Technology Research Institute , Hsinchu 30011, Taiwan
| | - Jia-Wei Chen
- Institute of Materials Science and Engineering, and Department of Materials & Mineral Resources Engineering, National Taipei University of Technology , Taipei 10608, Taiwan
| |
Collapse
|
21
|
Ran J, Xiao L, Wu W, Liu Y, Qiu W, Wu J. Zeolitic imidazolate framework-8 (ZIF-8) as a sacrificial template: one-pot synthesis of hollow poly(dopamine) nanocapsules and yolk-structured poly(dopamine) nanocomposites. NANOTECHNOLOGY 2017; 28:055604. [PMID: 28032614 DOI: 10.1088/1361-6528/28/5/055604] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Hollow poly(dopamine) (PDA) nanocapsules and yolk-structured PDA nanocomposites were prepared by an aqueous one-pot synthesis method utilizing zeolitic imidazolate framework-8 (ZIF-8) nanocrystals as a sacrificial template without any special etchant. The resulting PDA nanocapsules show negligible cytotoxicity in HeLa cells after incubation for 48 h at various doses, which implies their potential as candidates for practical applications in drug transport and targeting.
Collapse
Affiliation(s)
- Jingyu Ran
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550003, People's Republic of China. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China. Photoelectric Institute of Functional Materials, Guizhou Institute of Technology, Guiyang 550003, People's Republic of China
| | | | | | | | | | | |
Collapse
|
22
|
Li H, Jia Y, Feng X, Li J. Facile fabrication of robust polydopamine microcapsules for insulin delivery. J Colloid Interface Sci 2017; 487:12-19. [DOI: 10.1016/j.jcis.2016.10.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/04/2016] [Accepted: 10/04/2016] [Indexed: 12/19/2022]
|
23
|
Gao Z, Pang L, Feng H, Wang S, Wang Q, Wang M, Xia Y, Hu S. Preparation and characterization of a novel imidacloprid microcapsule via coating of polydopamine and polyurea. RSC Adv 2017. [DOI: 10.1039/c7ra01527e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel method to encapsulate imidacloprid with step self-polymerization of dopamine and IPDI was developed, which no organic solvent or surfactant was used in the preparation process.
Collapse
Affiliation(s)
- Zideng Gao
- College of Resources and Environmental Sciences
- China Agricultural University
- Beijing 100193
- China
| | - Long Pang
- College of Resources and Environmental Sciences
- China Agricultural University
- Beijing 100193
- China
| | - Haojie Feng
- College of Resources and Environmental Sciences
- China Agricultural University
- Beijing 100193
- China
| | - Shunyi Wang
- College of Resources and Environmental Sciences
- China Agricultural University
- Beijing 100193
- China
| | - Qiuyun Wang
- College of Resources and Environmental Sciences
- China Agricultural University
- Beijing 100193
- China
| | - Mengyao Wang
- College of Resources and Environmental Sciences
- China Agricultural University
- Beijing 100193
- China
| | - Yining Xia
- Institute of Quality Standard and Testing Technology for Agro-Products
- Chinese Academy of Agricultural Sciences
- Beijing 100081
- China
| | - Shuwen Hu
- College of Resources and Environmental Sciences
- China Agricultural University
- Beijing 100193
- China
| |
Collapse
|
24
|
Ang JM, Du Y, Tay BY, Zhao C, Kong J, Stubbs LP, Lu X. One-Pot Synthesis of Fe(III)-Polydopamine Complex Nanospheres: Morphological Evolution, Mechanism, and Application of the Carbonized Hybrid Nanospheres in Catalysis and Zn-Air Battery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:9265-75. [PMID: 27550631 DOI: 10.1021/acs.langmuir.6b02331] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We report one-pot synthesis of Fe(III)-polydopamine (PDA) complex nanospheres, their structures, morphology evolution, and underlying mechanism. The complex nanospheres were synthesized by introducing ferric ions into the reaction mixture used for polymerization of dopamine. It is verified that both the oxidative polymerization of dopamine and Fe(III)-PDA complexation contribute to the "polymerization" process, in which the ferric ions form coordination bonds with both oxygen and nitrogen, as indicated by X-ray absorption fine-structure spectroscopy. In the "polymerization" process, the morphology of the complex nanostructures is gradually transformed from sheetlike to spherical at the feed Fe(III)/dopamine molar ratio of 1/3. The final size of the complex spheres is much smaller than its neat PDA counterpart. At higher feed Fe(III)/dopamine molar ratios, the final morphology of the "polymerization" products is sheetlike. The results suggest that the formation of spherical morphology is likely to be driven by covalent polymerization-induced decrease of hydrophilic functional groups, which causes reself-assembly of the PDA oligomers to reduce surface area. We also demonstrate that this one-pot synthesis route for hybrid nanospheres enables the facile construction of carbonized PDA (C-PDA) nanospheres uniformly embedded with Fe3O4 nanoparticles of only 3-5 nm in size. The C-PDA/Fe3O4 nanospheres exhibit catalytic activity toward oxygen reduction reaction and deliver a stable discharge voltage for over 200 h when utilized as the cathode in a primary Zn-air battery and are also good recyclable catalyst supports.
Collapse
Affiliation(s)
- Jia Ming Ang
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798
| | - Yonghua Du
- Institute of Chemical and Engineering Sciences, A*STAR (Agency for Science, Technology and Research) , 1 Pesek Road, Jurong Island, Singapore 627833
| | - Boon Ying Tay
- Institute of Chemical and Engineering Sciences, A*STAR (Agency for Science, Technology and Research) , 1 Pesek Road, Jurong Island, Singapore 627833
| | - Chenyang Zhao
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798
| | - Junhua Kong
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798
| | - Ludger Paul Stubbs
- Institute of Chemical and Engineering Sciences, A*STAR (Agency for Science, Technology and Research) , 1 Pesek Road, Jurong Island, Singapore 627833
| | - Xuehong Lu
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798
| |
Collapse
|
25
|
Xue J, Zheng W, Wang L, Jin Z. Scalable Fabrication of Polydopamine Nanotubes Based on Curcumin Crystals. ACS Biomater Sci Eng 2016; 2:489-493. [DOI: 10.1021/acsbiomaterials.6b00102] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Junhui Xue
- Department of Chemistry, Renmin University of China, No. 59, Zhongguancun Street, Haidian
District, Beijing 100872, P. R. China
| | - Weichao Zheng
- Department of Chemistry, Renmin University of China, No. 59, Zhongguancun Street, Haidian
District, Beijing 100872, P. R. China
| | - Le Wang
- Department of Chemistry, Renmin University of China, No. 59, Zhongguancun Street, Haidian
District, Beijing 100872, P. R. China
| | - Zhaoxia Jin
- Department of Chemistry, Renmin University of China, No. 59, Zhongguancun Street, Haidian
District, Beijing 100872, P. R. China
| |
Collapse
|
26
|
Zhang L, Wang Y, Tang N, Cheng P, Xiang J, Du W, Wang X. Bioinspired stability improvement of layer-by-layer microcapsules using a bioadhesive for enzyme encapsulation. REACT FUNCT POLYM 2016. [DOI: 10.1016/j.reactfunctpolym.2015.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Shi J, Jiang Y, Zhang S, Yang D, Jiang Z. Biomimetic/Bioinspired Design of Enzyme@capsule Nano/Microsystems. Methods Enzymol 2016; 571:87-112. [DOI: 10.1016/bs.mie.2015.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
28
|
Wu H, Ang JM, Kong J, Zhao C, Du Y, Lu X. One-pot synthesis of polydopamine–Zn complex antifouling coatings on membranes for ultrafiltration under harsh conditions. RSC Adv 2016. [DOI: 10.1039/c6ra19858a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this work, dopamine is polymerized in a basic aqueous solution that contains zinc species to form a hybrid coating on polysulfone (PSf) ultrafiltration membranes.
Collapse
Affiliation(s)
- Huiqing Wu
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore 639798
- School of Materials Science and Engineering
- Xiamen University of Technology
| | - Jia Ming Ang
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore 639798
| | - Junhua Kong
- Institute of Materials Research and Engineering
- A*STAR (Agency for Science, Technology and Research)
- Singapore 138634
| | - Chenyang Zhao
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore 639798
| | - Yonghua Du
- Institute of Chemical and Engineering Sciences
- A*STAR (Agency for Science, Technology and Research)
- Jurong Island
- Singapore 627833
| | - Xuehong Lu
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore 639798
| |
Collapse
|
29
|
Hwang ET, Seo BK, Gu MB, Zeng AP. Successful bi-enzyme stabilization for the biomimetic cascade transformation of carbon dioxide. Catal Sci Technol 2016. [DOI: 10.1039/c6cy00783j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In nature, carbon dioxide (CO2) conversion to valuable chemicals occurs via several metabolic pathways through multi-enzymatic reactions.
Collapse
Affiliation(s)
- Ee Taek Hwang
- Institute of Bioprocess and Biosystems Engineering
- Hamburg University of Technology
- D-21073 Hamburg
- Germany
| | - Bo-Kuk Seo
- Department of Biotechnology
- College of Life Science and Biotechnology
- Korea University
- Seongbuk-gu
- Republic of Korea
| | - Man Bock Gu
- Department of Biotechnology
- College of Life Science and Biotechnology
- Korea University
- Seongbuk-gu
- Republic of Korea
| | - An-Ping Zeng
- Institute of Bioprocess and Biosystems Engineering
- Hamburg University of Technology
- D-21073 Hamburg
- Germany
| |
Collapse
|
30
|
Zhang S, Jiang Z, Wang X, Yang C, Shi J. Facile Method To Prepare Microcapsules Inspired by Polyphenol Chemistry for Efficient Enzyme Immobilization. ACS APPLIED MATERIALS & INTERFACES 2015; 7:19570-8. [PMID: 26291776 DOI: 10.1021/acsami.5b03823] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
In this study, a method inspired by polyphenol chemistry is developed for the facile preparation of microcapsules under mild conditions. Specifically, the preparation process includes four steps: formation of the sacrificial template, generation of the polyphenol coating on the template surface, cross-linking of the polyphenol coating by cationic polymers, and removal of the template. Tannic acid (TA) is chosen as a representative polyphenol coating precursor for the preparation of microcapsules. The strong interfacial affinity of TA contributes to the formation of polyphenol coating through oxidative oligomerization, while the high reactivity of TA is in charge of reacting/cross-linking with cationic polymer polyethylenimine (PEI) through Schiff base/Michael addition reaction. The chemical/topological structures of the resultant microcapsules are simultaneously characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier Transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), etc. The wall thickness of the microcapsules could be tailored from 257±20 nm to 486±46 nm through changing the TA concentration. The microcapsules are then utilized for encapsulating glucose oxidase (GOD), and the immobilized enzyme exhibits desired catalytic activity and enhanced pH and thermal stabilities. Owing to the structural diversity and functional versatility of polyphenols, this study may offer a facile and generic method to prepare microcapsules and other kinds of functional porous materials.
Collapse
Affiliation(s)
- Shaohua Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, China
| | - Xiaoli Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, China
| | - Chen Yang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, China
| | - Jiafu Shi
- School of Environmental Science and Engineering, Tianjin University , Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, China
| |
Collapse
|
31
|
Huang R, Wu M, Goldman MJ, Li Z. Encapsulation of enzyme via one-step template-free formation of stable organic-inorganic capsules: A simple and efficient method for immobilizing enzyme with high activity and recyclability. Biotechnol Bioeng 2015; 112:1092-101. [DOI: 10.1002/bit.25536] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/09/2014] [Accepted: 12/23/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Renliang Huang
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Mengyun Wu
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Mark J. Goldman
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| |
Collapse
|
32
|
Zhang S, Jiang Z, Zhang W, Wang X, Shi J. Polymer–inorganic microcapsules fabricated by combining biomimetic adhesion and bioinspired mineralization and their use for catalase immobilization. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2014.10.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
33
|
Fan KW, Roberts JJ, Martens PJ, Stenzel MH, Granville AM. Copolymerization of an indazole ligand into the self-polymerization of dopamine for enhanced binding with metal ions. J Mater Chem B 2015; 3:7457-7465. [DOI: 10.1039/c5tb01150g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis and mussel-inspired polymerization of a new catechol monomer. The generated copolymer exhibits enhanced metal binding, due to the ligand nature of the new monomer, compared to polydopamine homopolymer.
Collapse
Affiliation(s)
- Ka Wai Fan
- Centre for Advanced Macromolecular Design
- School of Chemical Engineering
- UNSW
- Australia
| | | | | | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design
- School of Chemistry
- UNSW
- Australia
| | - Anthony M. Granville
- Centre for Advanced Macromolecular Design
- School of Chemical Engineering
- UNSW
- Australia
| |
Collapse
|
34
|
Han P, Jiang Z, Wang X, Wang X, Zhang S, Shi J, Wu H. Facile preparation of porous magnetic polydopamine microspheres through an inverse replication strategy for efficient enzyme immobilization. J Mater Chem B 2015; 3:7194-7202. [DOI: 10.1039/c5tb01094b] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Porous microspheres composed of biocompatible dopamine and magnetic Fe3O4 nanoparticles were fabricated by inverse replication of CaCO3 templates.
Collapse
Affiliation(s)
- Pingping Han
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xiaoli Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xueyan Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Shaohua Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Jiafu Shi
- Collaborative Innovation Center of Chemical Science and Engineering
- Tianjin
- China
- School of Environment Science and Engineering
- Tianjin University
| | - Hong Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|
35
|
Shi J, Zhang W, Zhang S, Wang X, Jiang Z. Synthesis of organic–inorganic hybrid microcapsules through in situ generation of an inorganic layer on an adhesive layer with mineralization-inducing capability. J Mater Chem B 2015; 3:465-474. [DOI: 10.1039/c4tb01802h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile and efficient route is developed to prepare (PDA–PEI)/titania hybrid microcapsules by in situ generation of an inorganic layer on an adhesive layer with mineralization-inducing capability under mild conditions.
Collapse
Affiliation(s)
- Jiafu Shi
- School of Environmental Science and Engineering
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Wenyan Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Shaohua Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xiaoli Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|
36
|
Wang H, Jiang F, Zhu Y, Zhao Y. Photocatalytic properties of polydopamine-modified Ag NP/TiO2 porous nanofibers prepared by electrospinning. RSC Adv 2015. [DOI: 10.1039/c5ra16797c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A polydopamine-modified Ag/TiO2 porous nanofibercomposite catalyst was successfully prepared via a simple electrospinning process, demonstrating not only superior degradation properties but also excellent adsorption capacity.
Collapse
Affiliation(s)
- Huaiyuan Wang
- College of Chemistry and Chemical Engineering
- Northeast Petroleum University
- Daqing 163318
- People’s Republic of China
| | - Feng Jiang
- College of Chemistry and Chemical Engineering
- Northeast Petroleum University
- Daqing 163318
- People’s Republic of China
| | - Yanji Zhu
- College of Chemistry and Chemical Engineering
- Northeast Petroleum University
- Daqing 163318
- People’s Republic of China
| | - Ya’nan Zhao
- College of Chemistry and Chemical Engineering
- Northeast Petroleum University
- Daqing 163318
- People’s Republic of China
| |
Collapse
|
37
|
|
38
|
|
39
|
Shi J, Jiang Y, Wang X, Wu H, Yang D, Pan F, Su Y, Jiang Z. Design and synthesis of organic–inorganic hybrid capsules for biotechnological applications. Chem Soc Rev 2014; 43:5192-210. [DOI: 10.1039/c4cs00108g] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Cui J, van Koeverden MP, Müllner M, Kempe K, Caruso F. Emerging methods for the fabrication of polymer capsules. Adv Colloid Interface Sci 2014; 207:14-31. [PMID: 24210468 DOI: 10.1016/j.cis.2013.10.012] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/11/2013] [Accepted: 10/13/2013] [Indexed: 12/13/2022]
Abstract
Hollow polymer capsules are attracting increasing research interest due to their potential application as drug delivery vectors, sensors, biomimetic nano- or multi-compartment reactors and catalysts. Thus, significant effort has been directed toward tuning their size, composition, morphology, and functionality to further their application. In this review, we provide an overview of emerging techniques for the fabrication of polymer capsules, encompassing: self-assembly, layer-by-layer assembly, single-step polymer adsorption, bio-inspired assembly, surface polymerization, and ultrasound assembly. These techniques can be applied to prepare polymer capsules with diverse functionality and physicochemical properties, which may fulfill specific requirements in various areas. In addition, we critically evaluate the challenges associated with the application of polymer capsules in drug delivery systems.
Collapse
Affiliation(s)
- Jiwei Cui
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Martin P van Koeverden
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Markus Müllner
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Kristian Kempe
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Frank Caruso
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
41
|
Wang X, Li Z, Shi J, Wu H, Jiang Z, Zhang W, Song X, Ai Q. Bioinspired Approach to Multienzyme Cascade System Construction for Efficient Carbon Dioxide Reduction. ACS Catal 2014. [DOI: 10.1021/cs401096c] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xiaoli Wang
- Key
Laboratory for Green Chemical Technology of Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- National
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Collaborative Innovation
Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| | - Zheng Li
- Key
Laboratory for Green Chemical Technology of Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation
Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| | - Jiafu Shi
- Key
Laboratory for Green Chemical Technology of Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation
Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| | - Hong Wu
- Key
Laboratory for Green Chemical Technology of Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation
Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| | - Zhongyi Jiang
- Key
Laboratory for Green Chemical Technology of Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- National
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Collaborative Innovation
Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| | - Wenyan Zhang
- Key
Laboratory for Green Chemical Technology of Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation
Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| | - Xiaokai Song
- Key
Laboratory for Green Chemical Technology of Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation
Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| | - Qinghong Ai
- Key
Laboratory for Green Chemical Technology of Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation
Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| |
Collapse
|
42
|
Liu Y, Ai K, Lu L. Polydopamine and Its Derivative Materials: Synthesis and Promising Applications in Energy, Environmental, and Biomedical Fields. Chem Rev 2014; 114:5057-115. [DOI: 10.1021/cr400407a] [Citation(s) in RCA: 3219] [Impact Index Per Article: 292.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yanlan Liu
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
- Chinese Academy of Sciences, Beijing 100039, People’s Republic of China
| | - Kelong Ai
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Lehui Lu
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| |
Collapse
|
43
|
Ai Q, Yang D, Li Y, Shi J, Wang X, Jiang Z. Highly efficient covalent immobilization of catalase on titanate nanotubes. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2013.11.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
44
|
Zhang W, Shi J, Wang X, Jiang Z, Song X, Ai Q. Conferring an adhesion layer with mineralization-inducing capabilities for preparing organic–inorganic hybrid microcapsules. J Mater Chem B 2014; 2:1371-1378. [DOI: 10.1039/c3tb21202e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Tong Z, Jiang Y, Yang D, Shi J, Zhang S, Liu C, Jiang Z. Biomimetic and bioinspired synthesis of titania and titania-based materials. RSC Adv 2014. [DOI: 10.1039/c3ra47336h] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
46
|
Shi J, Yang C, Zhang S, Wang X, Jiang Z, Zhang W, Song X, Ai Q, Tian C. Polydopamine microcapsules with different wall structures prepared by a template-mediated method for enzyme immobilization. ACS APPLIED MATERIALS & INTERFACES 2013; 5:9991-7. [PMID: 24059356 DOI: 10.1021/am403523d] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Microcapsules with diverse wall structures may exhibit different performance in specific applications. In the present study, three kinds of mussel-inspired polydopamine (PDA) microcapsules with different wall structures have been prepared by a template-mediated method. More specifically, three types of CaCO3 microspheres (poly(allylamine hydrochloride), (PAH)-doped CaCO3; pure-CaCO3; and poly(styrene sulfonate sodium), (PSS)-doped CaCO3) were synthesized as sacrificial templates, which were then treated by dopamine to obtain the corresponding PDA-CaCO3 microspheres. Through treating these microspheres with disodium ethylene diamine tetraacetic acid (EDTA-2Na) to remove CaCO3, three types of PDA microcapsules were acquired: that was (1) PAH-PDA microcapsule with a thick (∼600 nm) and highly porous capsule wall composed of interconnected networks, (2) pure-PDA microcapsule with a thick (∼600 nm) and less porous capsule wall, (3) PSS-PDA microcapsule with a thin (∼70 nm) and dense capsule wall. Several characterizations confirmed that a higher degree in porosity and interconnectivity of the capsule wall would lead to a higher mass transfer coefficient. When serving as the carrier for catalase (CAT) immobilization, these enzyme-encapsulated PDA microcapsules showed distinct structure-related activity and stability. In particular, PAH-PDA microcapsules with a wall of highly interconnected networks displayed several significant advantages, including increases in enzyme encapsulation efficiency and enzyme activity/stability and a decrease in enzyme leaching in comparison with other two types of PDA microcapsules. Besides, this hierarchically structured PAH-PDA microcapsule may find other promising applications in biocatalysis, biosensors, drug delivery, etc.
Collapse
Affiliation(s)
- Jiafu Shi
- Key Laboratory for Green Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, China
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Wang X, Shi J, Jiang Z, Li Z, Zhang W, Song X, Ai Q, Wu H. Preparation of Ultrathin, Robust Protein Microcapsules through Template-Mediated Interfacial Reaction between Amine and Catechol Groups. Biomacromolecules 2013; 14:3861-9. [DOI: 10.1021/bm400983a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Xiaoli Wang
- Key
Laboratory for Green Chemical Technology of Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Synergetic
Innovation Center of Chemical Science and Engineering, Tianjin 300072, People’s Republic of China
| | - Jiafu Shi
- Key
Laboratory for Green Chemical Technology of Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Synergetic
Innovation Center of Chemical Science and Engineering, Tianjin 300072, People’s Republic of China
| | - Zhongyi Jiang
- Key
Laboratory for Green Chemical Technology of Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- National
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- Synergetic
Innovation Center of Chemical Science and Engineering, Tianjin 300072, People’s Republic of China
| | - Zheng Li
- Key
Laboratory for Green Chemical Technology of Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Wenyan Zhang
- Key
Laboratory for Green Chemical Technology of Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Synergetic
Innovation Center of Chemical Science and Engineering, Tianjin 300072, People’s Republic of China
| | - Xiaokai Song
- Key
Laboratory for Green Chemical Technology of Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Synergetic
Innovation Center of Chemical Science and Engineering, Tianjin 300072, People’s Republic of China
| | - Qinghong Ai
- Key
Laboratory for Green Chemical Technology of Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Synergetic
Innovation Center of Chemical Science and Engineering, Tianjin 300072, People’s Republic of China
| | - Hong Wu
- Key
Laboratory for Green Chemical Technology of Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Synergetic
Innovation Center of Chemical Science and Engineering, Tianjin 300072, People’s Republic of China
| |
Collapse
|
48
|
In Vitro Multienzymatic Reaction Systems for Biosynthesis. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 137:153-84. [DOI: 10.1007/10_2013_232] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
49
|
Safety and efficacy of ethylenediaminetetraacetic acid for removing microcapsules. J Surg Res 2013; 183:442-9. [PMID: 23453836 DOI: 10.1016/j.jss.2013.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/08/2013] [Accepted: 01/11/2013] [Indexed: 11/22/2022]
Abstract
BACKGROUND Microencapsulated islets are used to prevent immune rejection associated with pancreatic islet transplantation, but cellular overgrowth affects transplantation success, necessitating removal of microcapsules prior to retransplantation. This study aimed to investigate the safety and efficacy of ethylendiaminetetraacetic acid (EDTA) for the removal of microcapsules surrounding islet cells. METHODS Microcapsule dissolution was investigated after in vitro exposure to EDTA for 72 h. Dissolution, blood biochemical markers, and pathologic changes in abdominal organs were observed after intraperitoneal administration of different concentrations of EDTA to rats with abdominally transplanted empty microcapsules. The extent of overgrowth and time to adhesion development were recorded after implantation of microencapsulated islets into the abdominal cavity of diabetic rats. EDTA (0-240 mmol/L) was injected to observe the transplantation effect and ability to dissolve microcapsules. RESULTS There was a positive correlation between the rate of microcapsule dissolution and EDTA concentration in vitro. Following administration of 60 mmol/L EDTA, the majority of microcapsules within the abdominal cavity were dissolved and the retrieval rate was 2.6%. No adverse effects, abnormal blood biochemical markers, or organ damage were observed in rats 1 mo following intraperitoneal injection with EDTA at doses up to 60 mmol/L. Microcapsule retrieval and blood glucose were significantly higher in cases of grade II cellular overgrowth than in cases of grade 0-I overgrowth. CONCLUSIONS EDTA (60 mmol/L) dissolved microcapsules in vivo without affecting islet cell viability or secretion capacity, and without affecting blood biochemical markers. Optimal dissolution was achieved with grade 0-I overgrowth after implantation of microencapsulated islets.
Collapse
|
50
|
Sedó J, Saiz-Poseu J, Busqué F, Ruiz-Molina D. Catechol-based biomimetic functional materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013. [PMID: 23180685 DOI: 10.1002/adma.201202343] [Citation(s) in RCA: 478] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Catechols are found in nature taking part in a remarkably broad scope of biochemical processes and functions. Though not exclusively, such versatility may be traced back to several properties uniquely found together in the o-dihydroxyaryl chemical function; namely, its ability to establish reversible equilibria at moderate redox potentials and pHs and to irreversibly cross-link through complex oxidation mechanisms; its excellent chelating properties, greatly exemplified by, but by no means exclusive, to the binding of Fe(3+); and the diverse modes of interaction of the vicinal hydroxyl groups with all kinds of surfaces of remarkably different chemical and physical nature. Thanks to this diversity, catechols can be found either as simple molecular systems, forming part of supramolacular structures, coordinated to different metal ions or as macromolecules mostly arising from polymerization mechanisms through covalent bonds. Such versatility has allowed catechols to participate in several natural processes and functions that range from the adhesive properties of marine organisms to the storage of some transition metal ions. As a result of such an astonishing range of functionalities, catechol-based systems have in recent years been subject to intense research, aimed at mimicking these natural systems in order to develop new functional materials and coatings. A comprehensive review of these studies is discussed in this paper.
Collapse
Affiliation(s)
- Josep Sedó
- Centro de Investigación en Nanociencia y Nanotecnología, Campus UAB, Cerdanyola del Vallès, Barcelona, Spain
| | | | | | | |
Collapse
|