1
|
Heidarnezhad Z, Ghorbani-Choghamarani A, Taherinia Z. Magnetically recoverable Fe 3O 4@SiO 2@SBA-3@2-ATP-Cu: an improved catalyst for the synthesis of 5-substituted 1 H-tetrazoles. NANOSCALE ADVANCES 2024; 6:4360-4368. [PMID: 39170982 PMCID: PMC11334987 DOI: 10.1039/d4na00414k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/06/2024] [Indexed: 08/23/2024]
Abstract
Functionalization of Fe3O4@SiO2@SBA-3 with double-charged 3-chloropropyltrimethoxysilane (CPTMS) and 2-aminophenol, followed by mechanical mixing of the solid product with copper(i) chloride produces a new, greener and efficient Fe3O4@SiO2@SBA-3@2-ATP-Cu catalyst for the synthesis of 5-substituted 1H-tetrazoles. XRD, SEM, atomic absorption, TGA, N2 adsorption-desorption, and VSM analyses were performed for the characterization of the Fe3O4@SiO2@SBA-3@2-ATP-Cu structure. Nitrogen adsorption-desorption analysis revealed that Fe3O4@SiO2@SBA-3@2-ATP-Cu has a surface area of 242 m2 g-1 and a total pore volume of 55.72 cm3 g-1. In synthesizing 5-substituted 1H-tetrazoles, Fe3O4@SiO2@SBA-3@2-ATP-Cu shows superior yields in short reaction times at 120 °C. This catalyst also showed high thermal stability and recyclability at least for 4 runs without apparent loss of efficiency.
Collapse
Affiliation(s)
| | - Arash Ghorbani-Choghamarani
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan 6517838683 Iran +988138380709 +988138282807
| | - Zahra Taherinia
- Department of Chemistry, Faculty of Science, Ilam University Ilam Iran
| |
Collapse
|
2
|
Wu C, Deng C, Zhang JX, Pan W, Yang L, Pan K, Tan QG, Yue T, Miao AJ. Silica nanoparticles inhibit cadmium uptake by the protozoan Tetrahymena thermophila without the need for adsorption. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133569. [PMID: 38266583 DOI: 10.1016/j.jhazmat.2024.133569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/06/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
The simultaneous presence of nanoparticles (NPs) and heavy metals in the environment may affect their mutual biological uptake. Although previous studies showed that NPs could alter the cellular uptake of heavy metals by their adsorption of heavy metals, whether they could affect metal uptake without the need for adsorption is unknown. This study examined the effects of silica (SiO2) NPs on the uptake of Cd ion by the protozoan Tetrahymena thermophila. We found that, even with negligible levels of adsorption, SiO2 NPs at concentrations of 3 to 100 mg/L inhibited Cd uptake. This inhibitory effect decreased as the ambient Cd concentration increased from 1 to 100 μg/L, suggesting the involvement of at least two transporters with different affinities for Cd. The transporters were subsequently identified by the specific protein inhibitors amiloride and tariquidar as NCX and ABCB1, which are responsible for the uptake of Cd at low and high Cd levels, respectively. RT-qPCR and molecular dynamics simulation further showed that the inhibitory effects of SiO2 NPs were attributable to the down-regulated expression of the genes Ncx and Abcb1, steric hindrance of Cd uptake by NCX and ABCB1, and the shrinkage of the central channel pore of the transporters in the presence of SiO2 NPs. SiO2 NPs more strongly inhibited Cd transport by NCX than by ABCB1, due to the higher binding affinity of SiO2 NPs with NCX. Overall, our study sheds new light on a previously overlooked influence of NPs on metal uptake and the responsible mechanism.
Collapse
Affiliation(s)
- Chao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong Province 518060, China
| | - Chaofan Deng
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Jia-Xin Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Wei Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Ke Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong Province 518060, China
| | - Qiao-Guo Tan
- Key Laboratory of the Coastal and Wetland Ecosystems of Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Tongtao Yue
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province 266100, China.
| | - Ai-Jun Miao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China.
| |
Collapse
|
3
|
Wang J, Zhang K, Kavak S, Bals S, Meynen V. Modifying the Stöber Process: Is the Organic Solvent Indispensable? Chemistry 2023; 29:e202202670. [PMID: 36342820 DOI: 10.1002/chem.202202670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/29/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022]
Abstract
The Stöber method is one of the most important and fundamental processes for the synthesis of inorganic (nano)materials but has the drawback of using a large amount of organic solvent. Herein, ethanol was used as an example to explore if the organic solvent in a typical Stöber method can be omitted. It was found that ethanol increases the particle size of the obtained silica spheres and aids the formation of uniform silica particles rather than forming a gel. Nevertheless, the results indicated that an organic solvent in the initial synthesis mixture is not indispensable. An initially immiscible synthesis method was discovered, which can replace the organic solvent-based Stöber method to successfully synthesize silica particles with the same size ranges as the original Stöber process without addition of organic solvents. Moreover, this process can be of further value for the extension to synthesis processes of other materials based on the Stöber process.
Collapse
Affiliation(s)
- Jinxin Wang
- Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610, Antwerpen, Belgium
| | - Kaimin Zhang
- Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610, Antwerpen, Belgium
| | - Safiyye Kavak
- Department of Physics, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerpen, Belgium
| | - Sara Bals
- Department of Physics, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerpen, Belgium
| | - Vera Meynen
- Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610, Antwerpen, Belgium.,Flemish Institute for Technological Research, Boeretang 200, 2440, Mol, Belgium
| |
Collapse
|
4
|
Gosiamemang T, Heng JY. Sodium hydroxide catalysed silica sol-gel synthesis: Physicochemical properties of silica nanoparticles and their post-grafting using C8 and C18 alkyl-organosilanes. POWDER TECHNOL 2023. [DOI: 10.1016/j.powtec.2023.118237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
5
|
Gurung S, Gucci F, Cairns G, Chianella I, Leighton GJT. Hollow Silica Nano and Micro Spheres with Polystyrene Templating: A Mini-Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8578. [PMID: 36500076 PMCID: PMC9739639 DOI: 10.3390/ma15238578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/17/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Synthesis of monodisperse hollow silica nanospheres, especially using a hard template route, has been shown to be successful, but a high yield is needed for this strategy to be used on an industrial scale. On the other hand, there is a research gap in the synthesis of hollow silica microspheres due to the popularity and easiness of the synthesis of silica nanospheres despite the larger spheres being beneficial in some fields. In this review, current trends in producing hollow silica nanospheres using hard templates, especially polystyrene, are briefly presented. Soft templates have also been used to make highly polydisperse hollow silica spheres, and complex designs have improved polydispersity. The effect of the main parameters on the coating is presented here to provide a basic understanding of the interactions between the silica and template surface in the absence or presence of surfactants. Surface charge, surface modification, parameters in the sol-gel method and interaction between the silica and templates need to be further improved to have a uniform coating and better control over the size, dispersity, wall thickness and porosity. As larger organic templates will have lower surface energy, the efficiency of the micro sphere synthesis needs to be improved. Control over the physical structure of hollow silica spheres will open up many opportunities for them to be extensively used in fields ranging from waste removal to energy storage.
Collapse
Affiliation(s)
- Siddharth Gurung
- Surface Engineering and Precision Centre, Department of Manufacturing and Materials, Cranfield University, Bedfordshire MK43 0AL, UK
| | - Francesco Gucci
- Surface Engineering and Precision Centre, Department of Manufacturing and Materials, Cranfield University, Bedfordshire MK43 0AL, UK
| | - Gareth Cairns
- Atomic Weapons Establishment, Reading, Berkshire RG7 4PR, UK
| | - Iva Chianella
- Surface Engineering and Precision Centre, Department of Manufacturing and Materials, Cranfield University, Bedfordshire MK43 0AL, UK
| | | |
Collapse
|
6
|
Khudkham T, Channei D, Pinchaipat B, Chotima R. Degradation of Methylene Blue with a Cu(II)-Quinoline Complex Immobilized on a Silica Support as a Photo-Fenton-Like Catalyst. ACS OMEGA 2022; 7:33258-33265. [PMID: 36157765 PMCID: PMC9494654 DOI: 10.1021/acsomega.2c03770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
A Cu(II)-quinoline complex immobilized on a silica support was prepared to enhance the degradation of dyes. Mesoporous silica functionalized with this Cu(II) complex was turned into a photo-Fenton-like catalyst. Various techniques were used to characterize the resulting material, and the catalytic activity was determined by the degradation of methylene blue (MB) under UV light irradiation. The Cu(II) ion was successfully coordinated to the quinoline ligand on a silica support. The dye degradation investigation has shown that 95% of the dye was degraded in 2.5 h. The active radical species involved in the reaction were OH• and O2 •-, suggesting that a peroxo complex intermediate might be formed during degradation processes.
Collapse
|
7
|
Choi S, Vazquez-Duhalt R, Graeve OA. Nonlinear charge regulation for the deposition of silica nanoparticles on polystyrene spherical surfaces. J Colloid Interface Sci 2022; 613:747-763. [PMID: 35066233 DOI: 10.1016/j.jcis.2022.01.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 11/27/2022]
Abstract
HYPOTHESIS We describe the deposition behavior of monodispersed silica nanoparticles on polystyrene spherical particles by using modified pairwise DLVO (Derjaguin-Landau-Verwey-Overbeek) interaction force profiles at pH values between two and twelve. Our modified model contains a new nonlinear charge regulation parameter that considers redistribution of ions, which allows us to realistically express the electrical double layer (EDL) interaction forces. EXPERIMENTS Silanol-terminated silica nanoparticles (7.6 ± 0.4 nm), l-lysine-covered silica nanoparticles (7.8 ± 0.4 nm), and polyallylamine hydrochloride-covered polystyrene (PAH/PS) particles (348 ± 1 nm) were synthesized. Then, each type of silica nanoparticle was deposited on the PAH/PS particles at a range of pH values. FINDINGS Our new regulation parameter describes the realistic redistribution of charges governed by pH, total salt concentration, ionic strength of solution, and separation distance of particles. We find that this regulation parameter can be roughly approximated from the absolute values of theoretically calculated surface charge density and potential distributions, as well as experimentally measured ζ-potentials. Morphological analysis using electron microscopy of the experimental systems shows that the modified pairwise DLVO interaction forces exceptionally describe the deposition behavior of the silica nanoparticles physically adsorbed on the PAH/PS particle substrates.
Collapse
Affiliation(s)
- Seongcheol Choi
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Drive - MC 0411, La Jolla, CA 92093-0411, USA
| | - Rafael Vazquez-Duhalt
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Carretera Tijuana-Ensenada Km. 107, C.P. 22860, Ensenada, B.C., México
| | - Olivia A Graeve
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Drive - MC 0411, La Jolla, CA 92093-0411, USA.
| |
Collapse
|
8
|
Insights into the synthesis optimization of Fe@SiO2 Core-Shell nanostructure as a highly efficient nano-heater for magnetic hyperthermia treatment. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2021.11.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Varshney S, Nigam A, Pawar SJ, Mishra N. An overview on biomedical applications of versatile silica nanoparticles, synthesized via several chemical and biological routes: A review. PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2021.2017434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Shagun Varshney
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, Prayagraj, Uttar Pradesh, India
| | - Abhishek Nigam
- Department of Applied Mechanics, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, India
| | - S. J. Pawar
- Department of Applied Mechanics, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, India
| | - Nidhi Mishra
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, Prayagraj, Uttar Pradesh, India
| |
Collapse
|
10
|
Hao T, Wang Y, Liu Z, Li J, Shan L, Wang W, Liu J, Tang J. Emerging Applications of Silica Nanoparticles as Multifunctional Modifiers for High Performance Polyester Composites. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2810. [PMID: 34835575 PMCID: PMC8622537 DOI: 10.3390/nano11112810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022]
Abstract
Nano-modification of polyester has become a research hotspot due to the growing demand for high-performance polyester. As a functional carrier, silica nanoparticles show large potential in improving crystalline properties, enhancing strength of polyester, and fabricating fluorescent polyester. Herein, we briefly traced the latest literature on synthesis of silica modifiers and the resultant polyester nanocomposites and presented a review. Firstly, we investigated synthesis approaches of silica nanoparticles for modifying polyester including sol-gel and reverse microemulsion technology, and their surface modification methods such as grafting silane coupling agent or polymer. Then, we summarized processing technics of silica-polyester nanocomposites, like physical blending, sol-gel processes, and in situ polymerization. Finally, we explored the application of silica nanoparticles in improving crystalline, mechanical, and fluorescent properties of composite materials. We hope the work provides a guideline for the readers working in the fields of silica nanoparticles as well as modifying polyester.
Collapse
Affiliation(s)
- Tian Hao
- National Center of International Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Science & Technology Cooperation, Qingdao University, Qingdao 266071, China; (T.H.); (Z.L.); (J.L.); (L.S.); (W.W.)
| | - Yao Wang
- National Center of International Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Science & Technology Cooperation, Qingdao University, Qingdao 266071, China; (T.H.); (Z.L.); (J.L.); (L.S.); (W.W.)
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Zhipeng Liu
- National Center of International Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Science & Technology Cooperation, Qingdao University, Qingdao 266071, China; (T.H.); (Z.L.); (J.L.); (L.S.); (W.W.)
| | - Jie Li
- National Center of International Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Science & Technology Cooperation, Qingdao University, Qingdao 266071, China; (T.H.); (Z.L.); (J.L.); (L.S.); (W.W.)
| | - Liangang Shan
- National Center of International Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Science & Technology Cooperation, Qingdao University, Qingdao 266071, China; (T.H.); (Z.L.); (J.L.); (L.S.); (W.W.)
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Wenchao Wang
- National Center of International Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Science & Technology Cooperation, Qingdao University, Qingdao 266071, China; (T.H.); (Z.L.); (J.L.); (L.S.); (W.W.)
| | - Jixian Liu
- National Center of International Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Science & Technology Cooperation, Qingdao University, Qingdao 266071, China; (T.H.); (Z.L.); (J.L.); (L.S.); (W.W.)
| | - Jianguo Tang
- National Center of International Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Science & Technology Cooperation, Qingdao University, Qingdao 266071, China; (T.H.); (Z.L.); (J.L.); (L.S.); (W.W.)
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| |
Collapse
|
11
|
Nguyen TKM, Ki MR, Son RG, Kim KH, Hong J, Pack SP. Synthesis of sub-50 nm bio-inspired silica particles using a C-terminal-modified ferritin template with a silica-forming peptide. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Camacho-Fernández JC, González-Quijano GK, Séverac C, Dague E, Gigoux V, Santoyo-Salazar J, Martinez-Rivas A. Nanobiomechanical behavior of Fe 3O 4@SiO 2and Fe 3O 4@SiO 2-NH 2nanoparticles over HeLa cells interfaces. NANOTECHNOLOGY 2021; 32:385702. [PMID: 34111853 DOI: 10.1088/1361-6528/ac0a13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
In this work, we studied the impact of magnetic nanoparticles (MNPs) interactions with HeLa cells when they are exposed to high frequency alternating magnetic field (AMF). Specifically, we measured the nanobiomechanical properties of cell interfaces by using atomic force microscopy (AFM). Magnetite (Fe3O4) MNPs were synthesized by coprecipitation and encapsulated with silica (SiO2): Fe3O4@SiO2and functionalized with amino groups (-NH2): Fe3O4@SiO2-NH2, by sonochemical processing. HeLa cells were incubated with or without MNPs, and then exposed to AMF at 37 °C. A biomechanical analysis was then performed through AFM, providing the Young's modulus and stiffness of the cells. The statistical analysis (p < 0.001) showed that AMF application or MNPs interaction modified the biomechanical behavior of the cell interfaces. Interestingly, the most significant difference was found for HeLa cells incubated with Fe3O4@SiO2-NH2and exposed to AMF, showing that the local heat of these MNPs modified their elasticity and stiffness.
Collapse
Affiliation(s)
- Juan Carlos Camacho-Fernández
- ENCB, Instituto Politécnico Nacional (IPN), Av. Wilfrido Massieu, Unidad Adolfo López Mateos, 07738, Mexico City, Mexico
| | | | | | - Etienne Dague
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Véronique Gigoux
- LPCNO, ERL 1226 INSERM, Université de Toulouse, CNRS, INSA, UPS, 135 avenue de Rangueil, F-31077 Toulouse, France
| | - Jaime Santoyo-Salazar
- Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, Zacatenco, 07360, Mexico City, Mexico
| | - Adrian Martinez-Rivas
- ENCB, Instituto Politécnico Nacional (IPN), Av. Wilfrido Massieu, Unidad Adolfo López Mateos, 07738, Mexico City, Mexico
- CIC, Instituto Politécnico Nacional (IPN), Av. Juan de Dios Bátiz, Nueva Industrial Vallejo, 07738, Mexico City, Mexico
| |
Collapse
|
13
|
A novel and facile green synthesis of SiO2 nanoparticles for removal of toxic water pollutants. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01898-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Curley R, Banta RA, Garvey S, Holmes JD, Flynn EJ. Biomimetic spherical silica production using phosphatidylcholine and soy lecithin. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01839-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Zhang J, Wang T, Xu W, Yang X, Zuo X, Cheng W, Zhou C. Thermochromic VO 2-SiO 2composite coating from ammonium citrato-oxovanadate(IV). NANOTECHNOLOGY 2021; 32:225402. [PMID: 33556930 DOI: 10.1088/1361-6528/abe43a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Vanadium dioxide (VO2) coating plays an important role in energy saving and environmental protection due to its unique reversible phase transition. To solve the daylighting issue of VO2coating, a VO2(M)-silicon dioxide (SiO2) composite coating is fabricated from ammonium citrato-oxovanadate(IV) by a SiO2-assisted coating method. The VO2(M)-SiO2composite coating possesses excellent thermochromic properties that have produced varying results, i.e. 49.2% of visible transmittance, 52.3% of transmittance reduction at 2000 nm wavelength, 12% of solar energy modulation (ΔTsol) and a phase transition temperature of 56.0 °C. Our findings may pave the way to extending the large-scale application of smart windows based on thermochromic VO2.
Collapse
Affiliation(s)
- Jing Zhang
- School of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, People's Republic of China
| | - Tengfei Wang
- School of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, People's Republic of China
| | - Weiwei Xu
- College of Mechanical and Electronic Engineering, Guizhou Minzu University, Guiyang 550025, People's Republic of China
| | - Xiaohui Yang
- School of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, People's Republic of China
| | - Xiaoling Zuo
- School of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, People's Republic of China
| | - Weiwei Cheng
- School of Information Science and Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Chaobiao Zhou
- College of Mechanical and Electronic Engineering, Guizhou Minzu University, Guiyang 550025, People's Republic of China
| |
Collapse
|
16
|
Collantes C, González
Pedro V, Bañuls MJ, Maquieira Á. Monodispersed CsPb 2Br 5@SiO 2 Core-Shell Nanoparticles as Luminescent Labels for Biosensing. ACS APPLIED NANO MATERIALS 2021; 4:2011-2018. [PMID: 34993423 PMCID: PMC8721593 DOI: 10.1021/acsanm.0c03340] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/03/2021] [Indexed: 06/14/2023]
Abstract
Despite the rising advances in the field of metal halide perovskite nanocrystals (NCs), the exploitation of such nanoparticles as luminescent labels for ex vivo imaging and biosensing is still unclear and in the early stages of investigation. One of the major challenges toward the implementation of metal halide perovskite NCs in biosensing applications is to produce monodispersed nanoparticles with desired surface characteristics and compatible with aqueous environments. Here, we report the synthesis of monodispersed spherical CsPb2Br5@SiO2 core-shell nanoparticles by post-synthetic chemical transformation of 3D CsPbBr3 NCs in the presence of tetraethyl orthosilicate and a critical water/ammonia ratio. This method involves an ammonia-mediated and ammonia-induced "top-down" transformation of as-synthesized 3D CsPbBr3 NCs to smaller CsPb2Br5 nanoclusters (ca. 2-3 nm), which trigger a seed-mediated silica growth, yielding monodispersed spherical blue luminescent (λemission = 432 nm) CsPb2Br5@SiO2 perovskite nanoparticles. By adjusting the reaction conditions, core-shell nanoparticles of a 36.1 ± 4.5 nm diameter, which preserve their optical properties in water, were obtained. Besides that, the viability of the developed nanoparticles as a luminescent label for biosensing has been proven by specific biorecognition of the IgG protein in a direct immunoassay. Our work sheds light on the chemical processes and transformations involved in the silica nucleation mechanism in the presence of perovskite nanoparticles and opens the way for the future rational design of the next generation of semiconductor NC luminescent biological labels.
Collapse
Affiliation(s)
- Cynthia Collantes
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València-Universitat de València, Camino de Vera s/n, E46022 València, Spain
| | - Victoria González
Pedro
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València-Universitat de València, Camino de Vera s/n, E46022 València, Spain
| | - María-José Bañuls
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València-Universitat de València, Camino de Vera s/n, E46022 València, Spain
- Departamento
de Química, Universitat Politècnica
de València, Camino de Vera s/n, E46022 València, Spain
| | - Ángel Maquieira
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València-Universitat de València, Camino de Vera s/n, E46022 València, Spain
- Departamento
de Química, Universitat Politècnica
de València, Camino de Vera s/n, E46022 València, Spain
| |
Collapse
|
17
|
Rodrigues A, Sena da Fonseca B, Ferreira Pinto AP, Piçarra S, Montemor MF. Exploring alkaline routes for production of TEOS-based consolidants for carbonate stones using amine catalysts. NEW J CHEM 2021. [DOI: 10.1039/d0nj04677a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
TEOS-based sols following basic catalysis routes were explored and showed high potential and important advantages for consolidation of soft limestone.
Collapse
Affiliation(s)
- Alexandra Rodrigues
- Escola Superior de Tecnologia do Barreiro
- Instituto Politécnico de Setúbal
- 2839-001 Lavradio
- Portugal
| | - Bruno Sena da Fonseca
- Centro de Química Estrutural-CQE
- DEQ
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
| | - Ana Paula Ferreira Pinto
- CERIS
- Department of Civil Engineering
- Architecture and Georesources
- Instituto Superior Técnico
- Universidade de Lisboa
| | - Susana Piçarra
- Escola Superior de Tecnologia do Barreiro
- Instituto Politécnico de Setúbal
- 2839-001 Lavradio
- Portugal
| | - M. Fátima Montemor
- Centro de Química Estrutural-CQE
- DEQ
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
| |
Collapse
|
18
|
Ngoi KH, Xiang L, Wong JC, Chia CH, Jin KS, Ree M. Morphology details and size distribution characteristics of single-pot-synthesized silica nanoparticles. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Zhou S, Maeda M, Tanabe E, Kubo M, Shimada M. Bioinspired One-Step Synthesis of Pomegranate-like Silica@Gold Nanoparticles with Surface-Enhanced Raman Scattering Activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2553-2562. [PMID: 32097558 DOI: 10.1021/acs.langmuir.0c00334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Gold-silica (Au-SiO2) nanohybrids are of great technological importance, and it is crucial to develop facile synthetic protocols to prepare Au-SiO2 nanohybrids with novel structures. Here we report the bioinspired synthesis of pomegranate-like SiO2@Au nanoparticles (P-SiO2@Au NPs) via one-step aqueous synthesis from chloroauric acid and tetraethyl orthosilicate mediated by a basic amino acid, arginine. Effects of chloroauric acid, tetraethyl orthosilicate, and arginine on the morphology and optical property of the products are investigated in detail. The P-SiO2@Au NPs achieve tunable plasmon resonance depending on the amount of chloroauric acid, which affects the size and shape of the P-SiO2@Au NPs. Finite-difference time-domain simulations are performed, revealing that the plasmon peak red-shifts with increasing particle size. Arginine serves as the reducing and capping agents for Au as well as the catalyst for SiO2 formation and also promotes the combination of Au and SiO2. Formation process of the P-SiO2@Au NPs is clarified through time-course analysis. The P-SiO2@Au NPs show good sensitivity for both colloidal and paper-based surface-enhanced Raman scattering measurements. They achieve enhancement factors of 4.3 × 107-8.5 × 107 and a mass detection limit of ca. 1 ng using thiophenol as the model analyte.
Collapse
Affiliation(s)
- Shujun Zhou
- Department of Chemical Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Makoto Maeda
- Natural Science Center for Basic Research and Development, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Eishi Tanabe
- Western Region Industrial Research Center, Hiroshima Prefectural Technology Research Institute, 3-13-26 Kagamiyama, Higashi-Hiroshima 739-0046, Japan
| | - Masaru Kubo
- Department of Chemical Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Manabu Shimada
- Department of Chemical Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| |
Collapse
|
20
|
Xu Z, Yang T, Chu X, Su H, Wang Z, Chen N, Gu B, Zhang H, Deng W, Zhang H, Yang W. Strong Lewis Acid-Base and Weak Hydrogen Bond Synergistically Enhancing Ionic Conductivity of Poly(ethylene oxide)@SiO 2 Electrolytes for a High Rate Capability Li-Metal Battery. ACS APPLIED MATERIALS & INTERFACES 2020; 12:10341-10349. [PMID: 32048824 DOI: 10.1021/acsami.9b20128] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Solid-state composite polymer electrolytes (CPEs) usually suffer from intrinsic low ionic conductivity and a solid-solid interface, badly inhibiting their widespread commercial application in all-solid-state Li-metal battery (ASSLMB) energy storage. Herein, a synergetic strategy using strong Lewis acid-base and weak hydrogen bonds was employed for self-assembly in situ construction of three-dimensional (3D) network-structured poly(ethylene oxide) (PEO) and SiO2 CPEs (PEO@SiO2). Ascribed to this synergistically rigid-flexible coupling dynamic strategy, a harmonious incorporation of monodispersed SiO2 nanoparticles into PEO could remarkably reduce crystallinity of PEO, significantly enhancing the ionic conductivity (∼1.1 × 10-4 S cm-1 at 30 °C) and dramatically facilitating solid electrolyte interface stabilization (electrochemical stability window > 4.8 V at 90 °C). Moreover, the PEO@SiO2-based ASSLMBs possess excellent rate capability over a wide temperature range (∼105 mA h g-1 under 2 C at 90 °C), high temperature cycling capacity (retaining 90 mA h g-1 after 100 cycles at 90 °C), and high specific capacity (146 mA h g-1 under 0.3 C at 90 °C). Unambiguously, these high ionic conductivity CPEs along with excellent flexibility and safety can be one of the most promising candidates for high-performance ASSLMBs, evidently revealing that this synergistically rigid-flexible coupling dynamic strategy will open up a way to exploit the novel high ionic conductivity solid-state electrolytes.
Collapse
Affiliation(s)
- Zhong Xu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Tao Yang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Xiang Chu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Hai Su
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin Key Laboratory of Composite and Functional Materials and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, PR China
| | - Zixing Wang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Ningjun Chen
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Bingni Gu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Hepeng Zhang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Weili Deng
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Haitao Zhang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Weiqing Yang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
- State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, PR China
| |
Collapse
|
21
|
Gubala V, Giovannini G, Kunc F, Monopoli MP, Moore CJ. Dye-doped silica nanoparticles: synthesis, surface chemistry and bioapplications. Cancer Nanotechnol 2020. [DOI: 10.1186/s12645-019-0056-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Abstract
Background
Fluorescent silica nanoparticles have been extensively utilised in a broad range of biological applications and are facilitated by their predictable, well-understood, flexible chemistry and apparent biocompatibility. The ability to couple various siloxane precursors with fluorescent dyes and to be subsequently incorporated into silica nanoparticles has made it possible to engineer these fluorophores-doped nanomaterials to specific optical requirements in biological experimentation. Consequently, this class of nanomaterial has been used in applications across immunodiagnostics, drug delivery and human-trial bioimaging in cancer research.
Main body
This review summarises the state-of-the-art of the use of dye-doped silica nanoparticles in bioapplications and firstly accounts for the common nanoparticle synthesis methods, surface modification approaches and different bioconjugation strategies employed to generate biomolecule-coated nanoparticles. The use of dye-doped silica nanoparticles in immunoassays/biosensing, bioimaging and drug delivery is then provided and possible future directions in the field are highlighted. Other non-cancer-related applications involving silica nanoparticles are also briefly discussed. Importantly, the impact of how the protein corona has changed our understanding of NP interactions with biological systems is described, as well as demonstrations of its capacity to be favourably manipulated.
Conclusions
Dye-doped silica nanoparticles have found success in the immunodiagnostics domain and have also shown promise as bioimaging agents in human clinical trials. Their use in cancer delivery has been restricted to murine models, as has been the case for the vast majority of nanomaterials intended for cancer therapy. This is hampered by the need for more human-like disease models and the lack of standardisation towards assessing nanoparticle toxicity. However, developments in the manipulation of the protein corona have improved the understanding of fundamental bio–nano interactions, and will undoubtedly assist in the translation of silica nanoparticles for disease treatment to the clinic.
Collapse
|
22
|
Qiao X, Sun T, Tang Q, Zhou S. Synthesis of polystyrene@silica@organosilica hierarchical hybrid particles through seeded emulsion polymerization. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.09.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
23
|
Tiwari I, Mahanwar PA. Polyacrylate/silica hybrid materials: A step towards multifunctional properties. J DISPER SCI TECHNOL 2018. [DOI: 10.1080/01932691.2018.1489276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Ingita Tiwari
- Department of Polymer and Surface Engineering, Institute of Chemical Technology , Mumbai , India
| | - P. A. Mahanwar
- Department of Polymer and Surface Engineering, Institute of Chemical Technology , Mumbai , India
| |
Collapse
|
24
|
Qiao XG, Dugas PY, Veyre L, Bourgeat-Lami E. l-Arginine-Catalyzed Synthesis of Nanometric Organosilica Particles through a Waterborne Sol-Gel Process and Their Porous Structure Analysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6784-6796. [PMID: 29775316 DOI: 10.1021/acs.langmuir.8b00042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We report an efficient and easy-to-implement waterborne sol-gel process for the synthesis of nanometric organosilica particles. In this process, tetraethyl orthosilicate (TEOS) and 3-(methacryloxy)propyl trimethoxy silane (γ-MPS), employed as silica sources, were heterogeneously delivered in an aqueous solution of l-arginine, a basic amino acid used as a catalyst, from a top organic layer. Co-condensation of TEOS with γ-MPS led to the formation of organosilica particles with diameters between 30 and 230 nm when increasing the γ-MPS content from 0 to 10.1 mol % in the silica source. Nitrogen sorption analyses confirmed the microporous nature of the obtained particles after calcination. The Brunauer-Emmett-Teller (BET) surface areas increased from 27 (before calcination) to 684 m2 g-1 (after calcination) for the organosilica particles containing 10.1 mol % of γ-MPS. Fourier transform infrared spectroscopy and 29Si NMR were employed to analyze the chemical structure of the organosilica spheres and provide insight into the mechanism of particle formation. In the second part, hybrid organosilica particles with a core-shell morphology were synthesized through the combination of Pickering emulsion and the sol-gel process. γ-MPS emulsion droplets stabilized by tiny silica particles (formed in a separate step) were first generated and used as seeds to grow a silica shell on their surface through TEOS addition from the top organic layer. Transmission electron microscopy and pore size analyses of the resulting particles after calcination revealed a unique dual-porosity structure with a mesoporous inner core and a micro/mesoporous silica shell with ink-bottle-type pores.
Collapse
Affiliation(s)
- X G Qiao
- University of Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5265, Chemistry, Catalysis, Polymers and Processes (C2P2) , 43 Bvd. du 11 Novembre 1918 , F-69616 Villeurbanne , France
- College of Chemistry and Chemical Engineering, and Henan Key laboratory of Function-Oriented Porous Materials , Luoyang Normal University , Luoyang 471934 , China
| | - P-Y Dugas
- University of Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5265, Chemistry, Catalysis, Polymers and Processes (C2P2) , 43 Bvd. du 11 Novembre 1918 , F-69616 Villeurbanne , France
| | - L Veyre
- University of Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5265, Chemistry, Catalysis, Polymers and Processes (C2P2) , 43 Bvd. du 11 Novembre 1918 , F-69616 Villeurbanne , France
| | - E Bourgeat-Lami
- University of Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5265, Chemistry, Catalysis, Polymers and Processes (C2P2) , 43 Bvd. du 11 Novembre 1918 , F-69616 Villeurbanne , France
| |
Collapse
|
25
|
Lian Y, Ding LJ, Zhang W, Zhang XA, Zhang YL, Lin ZZ, Wang XD. Synthesis of highly stable cyanine-dye-doped silica nanoparticle for biological applications. Methods Appl Fluoresc 2018; 6:034002. [PMID: 29570093 DOI: 10.1088/2050-6120/aab930] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cyanine dyes are widely used in biological labeling and imaging because of their narrow near infrared emission, good brightness and high flexibility in functionalization, which not only enables multiplex analysis and multi-color imaging, but also greatly reduces autofluorescence from biological matter and increases signal-to-noise ratio. Unfortunately, their poor chemical- and photo-stability strongly limits their applications. The incorporation of cyanine dyes in silica nanoparticles provides a solution to the problem. On one hand, the incorporation of cyanine dyes in silica matrix can enhance their chemical- and photo-stability and increase brightness of the nanomaterials. On the other hand, silica matrix provides an optimized condition to host the dye, which helps to maintain their fluorescent properties during application. In addition, the well-established silane technique provides numerous functionalities for diverse applications. However, commercially available cyanine dyes are not very stable at high alkaline conditions, which will gradually lose their fluorescence over time. Our results showed that cyanine dyes are very vulnerable in the reverse micelle system, in which they will lose their fluorescence in less than half an hour. The existence of surfactant could greatly promote degradation of cyanine dyes. Fluorescent silica nanoparticles cannot be obtained at the high alkaline condition with the existence of surfactant. In contrast, the cyanine dyes are relatively stable in Stöber media. Owing to the fast formation of silica particles in Stöber media, the exposure time of cyanine dye in alkaline solution was greatly reduced, and highly fluorescent particles with good morphology and size distribution could be obtained via Stöber approach. However, the increasing water content in the Stöber could reduce the stability of cyanine dyes, which should be avoided. This research here provides a clear guidance on how to successfully synthesize cyanine dye-doped silica nanoparticles with good morphology, size distribution, stability and brightness.
Collapse
Affiliation(s)
- Ying Lian
- Department of Chemistry, Fudan University, 200433 Shanghai, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
26
|
Rampazzo E, Genovese D, Palomba F, Prodi L, Zaccheroni N. NIR-fluorescent dye doped silica nanoparticles forin vivoimaging, sensing and theranostic. Methods Appl Fluoresc 2018; 6:022002. [DOI: 10.1088/2050-6120/aa8f57] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Kao T, Kohle F, Ma K, Aubert T, Andrievsky A, Wiesner U. Fluorescent Silica Nanoparticles with Well-Separated Intensity Distributions from Batch Reactions. NANO LETTERS 2018; 18:1305-1310. [PMID: 29293346 DOI: 10.1021/acs.nanolett.7b04978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Silica chemistry provides pathways to uniquely tunable nanoparticle platforms for biological imaging. It has been a long-standing problem to synthesize fluorescent silica nanoparticles (SNPs) in batch reactions with high and low fluorescence intensity levels for reliable use as an intensity barcode, which would greatly increase the number of molecular species that could be tagged intracellularly and simultaneously observed in conventional fluorescence microscopy. Here, employing an amino-acid catalyzed growth, highly fluorescent SNP probes were synthesized with sizes <40 nm and well-separated intensity distributions, as mapped by single-particle imaging techniques. A seeded growth approach was used to minimize the rate of secondary particle formation. Organic fluorescent dye affinity for the SNP during shell growth was tuned using specifics of the organosilane linker chemistry. This work highlights design considerations in the development of fluorescent probes with well-separated intensity distributions synthesized in batch reactions for single-particle imaging and sensing applications, where heterogeneities across the nanoparticle ensemble are critical factors in probe performance.
Collapse
Affiliation(s)
- Teresa Kao
- Department of Materials Science and Engineering, Cornell University , Ithaca, New York 14853, United States
| | - Ferdinand Kohle
- Department of Materials Science and Engineering, Cornell University , Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Kai Ma
- Department of Materials Science and Engineering, Cornell University , Ithaca, New York 14853, United States
| | - Tangi Aubert
- Department of Materials Science and Engineering, Cornell University , Ithaca, New York 14853, United States
- Department of Chemistry, Ghent University , Ghent 9000, Belgium
| | - Alexander Andrievsky
- Department of Materials Science and Engineering, Cornell University , Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Ulrich Wiesner
- Department of Materials Science and Engineering, Cornell University , Ithaca, New York 14853, United States
| |
Collapse
|
28
|
Facal Marina PA, Delcheva I, Beattie DA. Multi-modal stabilisation of emulsions using a combination of hydrophilic particles and an amino acid. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.11.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Mebert AM, Baglole CJ, Desimone MF, Maysinger D. Nanoengineered silica: Properties, applications and toxicity. Food Chem Toxicol 2017; 109:753-770. [DOI: 10.1016/j.fct.2017.05.054] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 05/26/2017] [Indexed: 02/06/2023]
|
30
|
Han Y, Lu Z, Teng Z, Liang J, Guo Z, Wang D, Han MY, Yang W. Unraveling the Growth Mechanism of Silica Particles in the Stöber Method: In Situ Seeded Growth Model. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:5879-5890. [PMID: 28514596 DOI: 10.1021/acs.langmuir.7b01140] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In this work, we investigated the kinetic balance between ammonia-catalyzed hydrolysis of tetraethyl orthosilicate (TEOS) and subsequent condensation over the growth of silica particles in the Stöber method. Our results reveal that, at the initial stage, the reaction is dictated by TEOS hydrolysis to form silanol monomers, which is denoted as pathway I and is responsible for nucleation and growth of small silica particles via condensation of neighboring silanol monomers and siloxane network clusters derived thereafter. Afterward, the reaction is dictated by condensation of newly formed silanol monomers onto the earlier formed silica particles, which is denoted as pathway II and is responsible for the enlargement in size of silica particles. When TEOS hydrolysis is significantly promoted, either at high ammonia concentration (≥0.95 M) or at low ammonia concentration in the presence of LiOH as secondary catalyst, temporal separation of pathways I and II makes the Stöber method reminiscent of in situ seeded growth. This knowledge advance enables us not only to reconcile the most prevailing aggregation-only and monomer-addition models in literature into one consistent framework to interpret the Stöber process but also to grow monodisperse silica particles with sizes in the range 15-230 nm simply but precisely regulated by the ammonia concentration with the aid of LiOH.
Collapse
Affiliation(s)
- Yandong Han
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University , Changchun 130012, China
| | - Ziyang Lu
- Department of Chemical and Environmental Engineering, RMIT University , Melbourne, Victoria 3001, Australia
| | - Zhaogang Teng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University , Changchun 130012, China
| | - Jinglun Liang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University , Changchun 130012, China
| | - Zilong Guo
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University , Changchun 130012, China
| | - Dayang Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University , Changchun 130012, China
- Department of Chemical and Environmental Engineering, RMIT University , Melbourne, Victoria 3001, Australia
| | - Ming-Yong Han
- Institute of Materials Research and Engineering , 2 Fusionopolis Way, Singapore 138634
| | - Wensheng Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University , Changchun 130012, China
| |
Collapse
|
31
|
Al-Dhrub AHA, Sahin S, Ozmen I, Tunca E, Bulbul M. Immobilization and characterization of human carbonic anhydrase I on amine functionalized magnetic nanoparticles. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.03.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
32
|
Ortiz R, Chen JL, Stuckey DC, Steele TWJ. Poly(methyl methacrylate) Surface Modification for Surfactant-Free Real-Time Toxicity Assay on Droplet Microfluidic Platform. ACS APPLIED MATERIALS & INTERFACES 2017; 9:13801-13811. [PMID: 28375597 DOI: 10.1021/acsami.7b02682] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Microfluidic droplet reactors have many potential uses, from analytical to synthesis. Stable operation requires preferential wetting of the channel surface by the continuous phase which is often not fulfilled by materials commonly used for lab-on-chip devices. Here we show that a silica nanoparticle (SiNP) layer coated onto a Poly(methyl methacrylate) (PMMA) and other thermoplastics surface enhances its wetting properties by creating nanoroughness, and allows simple grafting of hydrocarbon chains through silane chemistry. Using the unusual stability of silica sols at their isoelectric point, a dense SiNP layer is adsorbed onto PMMA and renders the surface superhydrophilic. Subsequently, a self-assembled dodecyltrichlorosilane (DTS) monolayer yields a superhydrophobic surface that allows the repeatable generation of aqueous droplets in a hexadecane continuous phase without surfactant addition. A SiNP-DTS modified chip has been used to monitor bacterial viability with a resazurin assay. The whole process involving sequential reagents injection, and multiplexed droplet fluorescence intensity monitoring is carried out on chip. Metabolic inhibition of the anaerobe Enterococcus faecalis by 30 mg L-1 of NiCl2 was detected in 5 min.
Collapse
Affiliation(s)
- Raphael Ortiz
- School of Materials Science & Engineering, College of Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University , 637141, Singapore
| | - Jian Lin Chen
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University , 637141, Singapore
| | - David C Stuckey
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University , 637141, Singapore
- Chemical Engineering Department, Imperial College London , London SW7 2AZ, United Kingdom
| | - Terry W J Steele
- School of Materials Science & Engineering, College of Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
33
|
Tavernaro I, Cavelius C, Peuschel H, Kraegeloh A. Bright fluorescent silica-nanoparticle probes for high-resolution STED and confocal microscopy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:1283-1296. [PMID: 28690964 PMCID: PMC5496580 DOI: 10.3762/bjnano.8.130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/16/2017] [Indexed: 05/05/2023]
Abstract
In recent years, fluorescent nanomaterials have gained high relevance in biological applications as probes for various fluorescence-based spectroscopy and imaging techniques. Among these materials, dye-doped silica nanoparticles have demonstrated a high potential to overcome the limitations presented by conventional organic dyes such as high photobleaching, low stability and limited fluorescence intensity. In the present work we describe an effective approach for the preparation of fluorescent silica nanoparticles in the size range between 15 and 80 nm based on L-arginine-controlled hydrolysis of tetraethoxysilane in a biphasic cyclohexane-water system. Commercially available far-red fluorescent dyes (Atto647N, Abberior STAR 635, Dy-647, Dy-648 and Dy-649) were embedded covalently into the particle matrix, which was achieved by aminosilane coupling. The physical particle attributes (particle size, dispersion, degree of agglomeration and stability) and the fluorescence properties of the obtained particles were compared to particles from commonly known synthesis methods. As a result, the spectroscopic characteristics of the presented monodisperse dye-doped silica nanoparticles were similar to those of the free uncoupled dyes, but indicate a much higher photostability and brightness. As revealed by dynamic light scattering and ζ-potential measurements, all particle suspensions were stable in water and cell culture medium. In addition, uptake studies on A549 cells were performed, using confocal and stimulated emission depletion (STED) microscopy. Our approach allows for a step-by-step formation of dye-doped silica nanoparticles in the form of dye-incorporated spheres, which can be used as versatile fluorescent probes in confocal and STED imaging.
Collapse
Affiliation(s)
- Isabella Tavernaro
- INM - Leibniz Institute for New Materials, Nano Cell Interactions Group, Campus D2 2, D-66123 Saarbrücken, Germany
| | | | - Henrike Peuschel
- INM - Leibniz Institute for New Materials, Nano Cell Interactions Group, Campus D2 2, D-66123 Saarbrücken, Germany
| | - Annette Kraegeloh
- INM - Leibniz Institute for New Materials, Nano Cell Interactions Group, Campus D2 2, D-66123 Saarbrücken, Germany
| |
Collapse
|
34
|
Salimi K, Usta DD, Koçer İ, Çelik E, Tuncel A. Highly selective magnetic affinity purification of histidine-tagged proteins by Ni2+ carrying monodisperse composite microspheres. RSC Adv 2017. [DOI: 10.1039/c6ra27736e] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A magnetic sorbent based on monodisperse-porous silica microspheres was developed for His-tagged protein purification by immobilized metal affinity chromatography.
Collapse
Affiliation(s)
- Kouroush Salimi
- Chemical Engineering Department
- Hacettepe University
- Ankara
- Turkey
| | - Duygu Deniz Usta
- Department of Medical Biology and Genetics
- Gazi University
- Ankara
- Turkey
- Department of Medical Biology
| | - İlkay Koçer
- Chemical Engineering Department
- Hacettepe University
- Ankara
- Turkey
| | - Eda Çelik
- Chemical Engineering Department
- Hacettepe University
- Ankara
- Turkey
- Institute of Science
| | - Ali Tuncel
- Chemical Engineering Department
- Hacettepe University
- Ankara
- Turkey
- Division of Nanotechnology and Nanomedicine
| |
Collapse
|
35
|
Chai Z, Wang Z, Zhang C, Bi X, Lang J, Wang X. Regenerated CO anti-poisoning ability by anchoring highly oxidized platinum on oxygen-functionalized carbon spheres in one-step & two-phase synthesis for methanol electro-oxidation. CrystEngComm 2017. [DOI: 10.1039/c7ce00894e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A Pt@C–O catalyst with oxidized species of carbon and platinum obtained in two-phase synthesis exhibits regenerated CO anti-poisoning ability for MOR.
Collapse
Affiliation(s)
- Zhanli Chai
- Chemistry and Chemical Engineering Department
- Inner Mongolia University
- People's Republic of China
| | - Zhanzhong Wang
- Chemistry and Chemical Engineering Department
- Inner Mongolia University
- People's Republic of China
| | - Caixia Zhang
- Chemistry and Chemical Engineering Department
- Inner Mongolia University
- People's Republic of China
| | - Xi Bi
- Chemistry and Chemical Engineering Department
- Inner Mongolia University
- People's Republic of China
| | - Junyu Lang
- Chemistry and Chemical Engineering Department
- Inner Mongolia University
- People's Republic of China
| | - Xiaojing Wang
- Chemistry and Chemical Engineering Department
- Inner Mongolia University
- People's Republic of China
| |
Collapse
|
36
|
Cendrowski K, Sikora P, Horszczaruk E, Mijowska E. Waste-free synthesis of silica nanospheres and silica nanocoatings from recycled ethanol–ammonium solution. CHEMICAL PAPERS 2016. [DOI: 10.1007/s11696-016-0099-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
37
|
|
38
|
Oliva-Chatelain BL, Barron AR. The effect of concentration and post-deposition annealing on silica coated germanium quantum dot thin films grown by vertical deposition. MAIN GROUP CHEMISTRY 2016. [DOI: 10.3233/mgc-160207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
| | - Andrew R. Barron
- Department of Chemistry, Rice University, Houston, TX, USA
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX, USA
- Energy Safety Research Institute (ESRI), College of Engineering, Swansea University, Swansea, Wales, UK
| |
Collapse
|
39
|
Ding T, Yao L, Liu C. Kinetically-controlled synthesis of ultra-small silica nanoparticles and ultra-thin coatings. NANOSCALE 2016; 8:4623-4627. [PMID: 26847842 DOI: 10.1039/c5nr08224b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The understanding of silica as a polymer-like globule allows us to synthesize ultra-small silica nanoparticles (NPs) via a kinetic controlled process. The synthetic system is quite simple with Tetraethyl orthosilicate (TESO) as the precursor and H2O as the solvent and reactant. The reaction conditions are gentle with a temperature of around 35 to 60 °C with an incubation time of 7-12 hours. The final product of the silica NPs is very uniform and could be as small as 10 nm. The silica NPs can further grow up to 18 nm under the controlled addition of the precursors. Also, these silica NPs can be used as seeds to generate larger silica NPs with sizes ranging from 20 to 100 nm, which can be a useful supplement to the size range made by the traditional Stöber method. Moreover, these ultra-small Au NPs can be used as a depletion reagent or as building blocks for an ultrathin silica coating, which has significant applications in fine-tuning the plasmons of AuNPs and thin spacers for surface enhanced spectroscopies.
Collapse
Affiliation(s)
- Tao Ding
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, Singapore.
| | - Lin Yao
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, Singapore.
| | - Cuicui Liu
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, Singapore.
| |
Collapse
|
40
|
Lin D, Liu W, Liu Y, Lee HR, Hsu PC, Liu K, Cui Y. High Ionic Conductivity of Composite Solid Polymer Electrolyte via In Situ Synthesis of Monodispersed SiO2 Nanospheres in Poly(ethylene oxide). NANO LETTERS 2016; 16:459-65. [PMID: 26595277 DOI: 10.1021/acs.nanolett.5b04117] [Citation(s) in RCA: 280] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
High ionic conductivity solid polymer electrolyte (SPE) has long been desired for the next generation high energy and safe rechargeable lithium batteries. Among all of the SPEs, composite polymer electrolyte (CPE) with ceramic fillers has garnered great interest due to the enhancement of ionic conductivity. However, the high degree of polymer crystallinity, agglomeration of ceramic fillers, and weak polymer-ceramic interaction limit the further improvement of ionic conductivity. Different from the existing methods of blending preformed ceramic particles with polymers, here we introduce an in situ synthesis of ceramic filler particles in polymer electrolyte. Much stronger chemical/mechanical interactions between monodispersed 12 nm diameter SiO2 nanospheres and poly(ethylene oxide) (PEO) chains were produced by in situ hydrolysis, which significantly suppresses the crystallization of PEO and thus facilitates polymer segmental motion for ionic conduction. In addition, an improved degree of LiClO4 dissociation can also be achieved. All of these lead to good ionic conductivity (1.2 × 10(-3) S cm(-1) at 60 °C, 4.4 × 10(-5) S cm(-1) at 30 °C). At the same time, largely extended electrochemical stability window up to 5.5 V can be observed. We further demonstrated all-solid-state lithium batteries showing excellent rate capability as well as good cycling performance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yi Cui
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory , 2575 Sand Hill Road, Menlo Park, California 94025, United States
| |
Collapse
|
41
|
Hoshino T, Sato K, Oaki Y, Sugawara-Narutaki A, Shimizu K, Ozaki N, Imai H. Plant opal-mimetic bunching silica nanoparticles mediated by long-chain polyethyleneimine. RSC Adv 2016. [DOI: 10.1039/c5ra25742e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Plant opal-mimetic structures of bunching silica nanoparticles were produced through polymer-mediated polycondensation of hydrolyzed silicate species in a matrix of long-chain branched polyethyleneimine.
Collapse
Affiliation(s)
- Tomomi Hoshino
- Department of Applied Chemistry
- Faculty of Science and Technology
- Keio University
- Yokohama
- Japan
| | - Kanako Sato
- Department of Applied Chemistry
- Faculty of Science and Technology
- Keio University
- Yokohama
- Japan
| | - Yuya Oaki
- Department of Applied Chemistry
- Faculty of Science and Technology
- Keio University
- Yokohama
- Japan
| | - Ayae Sugawara-Narutaki
- Department of Crystalline Materials Science
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Katsuhiko Shimizu
- Organization for Regional Industrial Academic Cooperation
- Tottori University
- Japan
- Japan Organization for Regional Industrial Academic Cooperation
- Tottori University
| | - Noriaki Ozaki
- Department of Biotechnology
- Faculty of Bioresource Sciences
- Akita Prefectural University
- Japan
| | - Hiroaki Imai
- Department of Applied Chemistry
- Faculty of Science and Technology
- Keio University
- Yokohama
- Japan
| |
Collapse
|
42
|
Luminescent Silica Nanoparticles Featuring Collective Processes for Optical Imaging. Top Curr Chem (Cham) 2016; 370:1-28. [DOI: 10.1007/978-3-319-22942-3_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
43
|
Hristov DR, Mahon E, Dawson KA. Controlling aqueous silica nanoparticle synthesis in the 10-100 nm range. Chem Commun (Camb) 2015; 51:17420-3. [PMID: 26468508 DOI: 10.1039/c5cc06598d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe the control of size and homogeneity in silica nanoparticle dispersions, prepared by a two-phase arginine catalysed aqueous method, through varying the upper organic solvent phase. The final particle dispersion characteristics can be controlled by varying features including solvent type and interfacial area, related to the rate of monomer transfer at the TEOS/water interface.
Collapse
Affiliation(s)
- Delyan R Hristov
- Center for BioNano Interactions, School of Chemsitry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | |
Collapse
|
44
|
Tian Y, Kong Y, Li X, Wu J, Ko ACT, Xing M. Light- and pH-activated intracellular drug release from polymeric mesoporous silica nanoparticles. Colloids Surf B Biointerfaces 2015; 134:147-55. [DOI: 10.1016/j.colsurfb.2015.04.069] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/14/2015] [Accepted: 04/16/2015] [Indexed: 12/18/2022]
|
45
|
Mesoporous silica with monodispersed pores synthesized from the controlled self-assembly of silica nanoparticles. KOREAN J CHEM ENG 2015. [DOI: 10.1007/s11814-014-0270-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Xiong L, Du X, Shi B, Bi J, Kleitz F, Qiao SZ. Tunable stellate mesoporous silica nanoparticles for intracellular drug delivery. J Mater Chem B 2015; 3:1712-1721. [PMID: 32262444 DOI: 10.1039/c4tb01601g] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stellate mesoporous silica nanoparticles with special radial pore morphology were easily synthesized using triethanolamine as the base catalyst in a wide range of synthesis conditions. By adjusting the surfactant composition, reaction temperature and time, and reagent ratio, the particle size of the material could be tailored continuously ranging from 50 to 140 nm and the pore size from 2 to 20 nm. By analyzing the effects of different synthesis parameters, it is concluded that the particles are formed following a nucleation-growth mechanism and the reaction kinetics play an important role in determining the particle size and pore structure. These stellate MSNs can be conveniently functionalized with a nontoxic low molecular weight poly(ethylene imine) (PEI, 800 Da) by a delayed condensation method. The resulting nanocomposites not only possess auto-fluorescence for suitable particle tracking but also demonstrate good potential for intracellular delivery of the anticancer doxorubicin drug.
Collapse
Affiliation(s)
- Lin Xiong
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | | | | | | | | | | |
Collapse
|
47
|
Wu L, Glebe U, Böker A. Surface-initiated controlled radical polymerizations from silica nanoparticles, gold nanocrystals, and bionanoparticles. Polym Chem 2015. [DOI: 10.1039/c5py00525f] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review summarizes recent progress in surface-initiated controlled radical polymerizations from silica nanoparticles, gold nanocrystals, and bionanoparticles.
Collapse
Affiliation(s)
- Lei Wu
- Fraunhofer Institute for Applied Polymer Research IAP
- 14476 Potsdam-Golm
- Germany
- DWI – Leibniz Institute for Interactive Materials e.V
- Lehrstuhl für Makromolekulare Materialien und Oberflächen
| | - Ulrich Glebe
- Fraunhofer Institute for Applied Polymer Research IAP
- 14476 Potsdam-Golm
- Germany
| | - Alexander Böker
- Fraunhofer Institute for Applied Polymer Research IAP
- 14476 Potsdam-Golm
- Germany
- Lehrstuhl für Polymermaterialien und Polymertechnologie
- Universität Potsdam
| |
Collapse
|
48
|
Singh LP, Bhattacharyya SK, Kumar R, Mishra G, Sharma U, Singh G, Ahalawat S. Sol-Gel processing of silica nanoparticles and their applications. Adv Colloid Interface Sci 2014; 214:17-37. [PMID: 25466691 DOI: 10.1016/j.cis.2014.10.007] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/29/2014] [Accepted: 10/29/2014] [Indexed: 11/17/2022]
Abstract
Recently, silica nanoparticles (SNPs) have drawn widespread attention due to their applications in many emerging areas because of their tailorable morphology. During the last decade, remarkable efforts have been made on the investigations for novel processing methodologies to prepare SNPs, resulting in better control of the size, shape, porosity and significant improvements in the physio-chemical properties. A number of techniques available for preparing SNPs namely, flame spray pyrolysis, chemical vapour deposition, micro-emulsion, ball milling, sol-gel etc. have resulted, a number of publications. Among these, preparation by sol-gel has been the focus of research as the synthesis is straightforward, scalable and controllable. Therefore, this review focuses on the recent progress in the field of synthesis of SNPs exhibiting ordered mesoporous structure, their distribution pattern, morphological attributes and applications. The mesoporous silica nanoparticles (MSNPs) with good dispersion, varying morphology, narrow size distribution and homogeneous porous structure have been successfully prepared using organic and inorganic templates. The soft template assisted synthesis using surfactants for obtaining desirable shapes, pores, morphology and mechanisms proposed has been reviewed. Apart from single template, double and mixed surfactants, electrolytes, polymers etc. as templates have also been intensively discussed. The influence of reaction conditions such as temperature, pH, concentration of reagents, drying techniques, solvents, precursor, aging time etc. have also been deliberated. These MSNPs are suitable for a variety of applications viz., in the drug delivery systems, high performance liquid chromatography (HPLC), biosensors, cosmetics as well as construction materials. The applications of these SNPs have also been briefly summarized.
Collapse
Affiliation(s)
- Lok P Singh
- CSIR-Central Building Research Institute, Roorkee, 247667, India.
| | | | - Rahul Kumar
- CSIR-Central Building Research Institute, Roorkee, 247667, India
| | - Geetika Mishra
- CSIR-Central Building Research Institute, Roorkee, 247667, India
| | - Usha Sharma
- CSIR-Central Building Research Institute, Roorkee, 247667, India
| | - Garima Singh
- CSIR-Central Building Research Institute, Roorkee, 247667, India
| | - Saurabh Ahalawat
- CSIR-Central Building Research Institute, Roorkee, 247667, India
| |
Collapse
|
49
|
Khanadeev VA, Khlebtsov BN, Klimova SA, Tsvetkov MY, Bagratashvili VN, Sukhorukov GB, Khlebtsov NG. Large-scale high-quality 2D silica crystals: dip-drawing formation and decoration with gold nanorods and nanospheres for SERS analysis. NANOTECHNOLOGY 2014; 25:405602. [PMID: 25213290 DOI: 10.1088/0957-4484/25/40/405602] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
High-quality colloidal crystals (CCs) are important for use in photonic research and as templates for large-scale plasmonic SERS substrates. We investigated how variations in temperature, colloid concentration, and dip-drawing parameters (rate, incubation time, etc) affect the structure of 2D CCs formed by highly monodisperse silica nanoparticles (SiNPs) synthesized in an l-arginine solution and regrown by a modified Stöber method. The best quality 2D CCs were obtained with aqueous 12 wt% colloids at a temperature of 25 °C, an incubation time of 1 min, and a drawing rate of 50 mm min(-1). Assembling of gold nanorods (GNRs) on 2D CCs resulted in the formation of ring-like chains with a preferential tail-to-tail orientation along the hexagonal boundaries. To the best of our knowledge, this is the first time that such nanostructures have been prepared. Owing to the preferential tail-to-tail packing of GNRs, 2D SiNP CC + GNR substrates demonstrated an analytical SERS enhancement of about 8000, which was 10 to 15 times higher than that for self-assembled GNRs on a silicon wafer. In addition, the analytical SERS enhancement was almost 60 times lower after replacing the nanorods in 2D SiNP CC + GNR substrates with 25 nm gold nanospheres.
Collapse
Affiliation(s)
- Vitaly A Khanadeev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russia. Saratov State University, 83 Ulitsa Astrakhanskaya, Saratov 410012, Russia
| | | | | | | | | | | | | |
Collapse
|
50
|
Ewing CS, Bhavsar S, Veser G, McCarthy JJ, Johnson JK. Accurate amorphous silica surface models from first-principles thermodynamics of surface dehydroxylation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:5133-5141. [PMID: 24793021 DOI: 10.1021/la500422p] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Accurate atomically detailed models of amorphous materials have been elusive to-date due to limitations in both experimental data and computational methods. We present an approach for constructing atomistic models of amorphous silica surfaces encountered in many industrial applications (such as catalytic support materials). We have used a combination of classical molecular modeling and density functional theory calculations to develop models having predictive capabilities. Our approach provides accurate surface models for a range of temperatures as measured by the thermodynamics of surface dehydroxylation. We find that a surprisingly small model of an amorphous silica surface can accurately represent the physics and chemistry of real surfaces as demonstrated by direct experimental validation using macroscopic measurements of the silanol number and type as a function of temperature. Beyond accurately predicting the experimentally observed trends in silanol numbers and types, the model also allows new insights into the dehydroxylation of amorphous silica surfaces. Our formalism is transferrable and provides an approach to generating accurate models of other amorphous materials.
Collapse
Affiliation(s)
- Christopher S Ewing
- Department of Chemical and Petroleum Engineering, ‡Mascaro Center for Sustainable Innovation, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | | | | | | | | |
Collapse
|