1
|
Muszyński M, Nowicki J, Krasuska A, Nowakowska-Bogdan E, Bartoszewicz M, Woszczyński P, Zygadło M, Dudek G. Synthesis of Bis(isodecyl Terephthalate) from Waste Poly(ethylene Terephthalate) Catalyzed by Lewis Acid Catalysts. Int J Mol Sci 2024; 25:12953. [PMID: 39684664 DOI: 10.3390/ijms252312953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Increasing plastic waste generation has become a pressing environmental problem. One of the most produced waste plastics originates from post-consumer packaging, of which PET constitutes a significant portion. Despite increasing recycling rates, its accumulation has created a need for the development of new recycling methods that can further expand the possibilities of recycling. In this paper, we present the application of Lewis acid catalysts for the depolymerization of PET waste. The obtained results show the formation of diisodecyl terephthalate (DIDTP), which is used as a PVC plasticizer. For this purpose, several Lewis acid catalysts were tested, including tin, cobalt, manganese, zirconium, zinc, and calcium derivatives, alongside zinc acetate and potassium hydroxide, which were used as reference catalysts. Our results show that tin (II) oxalate is the most effective catalyst, and it was then used to synthesize two application samples (crude and purified). The physicochemical properties of PVC mixtures with the obtained samples were determined and compared to commercial plasticizers, where both plasticizers had similar plasticizing properties to PVC plasticization.
Collapse
Affiliation(s)
- Marcin Muszyński
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, PhD School, Silesian University of Technology, ks. M. Strzody 9, 44-100 Gliwice, Poland
- Łukasiewicz Research Network-Institute of Heavy Organic Synthesis "Blachownia", Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland
| | - Janusz Nowicki
- Łukasiewicz Research Network-Institute of Heavy Organic Synthesis "Blachownia", Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland
| | - Agata Krasuska
- Łukasiewicz Research Network-Institute of Heavy Organic Synthesis "Blachownia", Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland
| | - Ewa Nowakowska-Bogdan
- Łukasiewicz Research Network-Institute of Heavy Organic Synthesis "Blachownia", Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland
| | - Maria Bartoszewicz
- Łukasiewicz Research Network-Institute of Heavy Organic Synthesis "Blachownia", Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland
| | - Piotr Woszczyński
- Łukasiewicz Research Network-Institute of Heavy Organic Synthesis "Blachownia", Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland
| | - Mateusz Zygadło
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Chemistry Students Research Society ks. M. Strzody 9, 44-100 Gliwice, Poland
| | - Gabriela Dudek
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, ks. M. Strzody 9, 44-100 Gliwice, Poland
| |
Collapse
|
2
|
Xu J, Zhou K, Qin L, Tan Z, Huang S, Duan P, Kang S. One-Pot Tandem Alcoholysis-Hydrogenation of Polylactic Acid to 1,2-Propanediol. Polymers (Basel) 2023; 15:polym15020413. [PMID: 36679291 PMCID: PMC9864359 DOI: 10.3390/polym15020413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
The chemical recycling of end-of-life polylactic acid (PLA) plays roles in mitigating environmental pressure and developing circular economy. In this regard, one-pot tandem alcoholysis and hydrogenation of PLA was carried out to produce 1,2-propanediol, which is a bulk chemical in polymer chemistry. In more detail, the commercially available Raney Co was employed as the catalyst, and transformation was conducted in ethanol, which acted as nucleophilic reagent and solvent. Single-factor analysis and Box-Behnken design were used to optimize the reaction conditions. Under the optimized condition, three kinds of PLA materials were subjected to degradation. Additionally, 74.8 ± 5.5%, 76.5 ± 6.2%, and 71.4 ± 5.7% of 1,2-propanediol was yielded from PLA powder, particle, and straws, respectively, which provided a recycle protocol to convert polylactic acid waste into value-added chemicals.
Collapse
Affiliation(s)
- Jialin Xu
- Engineering Research Center of None-Food Biomass Efficient Pyrolysis and Utilization Technology of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory of Distributed Energy Systems, Dongguan University of Technology, Dongguan 523808, China
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Kuo Zhou
- Department of Chemistry, Lishui University, Lishui 323000, China
| | - Linlin Qin
- Engineering Research Center of None-Food Biomass Efficient Pyrolysis and Utilization Technology of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory of Distributed Energy Systems, Dongguan University of Technology, Dongguan 523808, China
| | - Zaiming Tan
- Engineering Research Center of None-Food Biomass Efficient Pyrolysis and Utilization Technology of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory of Distributed Energy Systems, Dongguan University of Technology, Dongguan 523808, China
| | - Shijing Huang
- Engineering Research Center of None-Food Biomass Efficient Pyrolysis and Utilization Technology of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory of Distributed Energy Systems, Dongguan University of Technology, Dongguan 523808, China
| | - Peigao Duan
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Shimin Kang
- Engineering Research Center of None-Food Biomass Efficient Pyrolysis and Utilization Technology of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory of Distributed Energy Systems, Dongguan University of Technology, Dongguan 523808, China
- Correspondence:
| |
Collapse
|
3
|
Feng L, Cui C, Li Z, Zhang M, Zhang Q, Wu Y, Ge Z, Cheng Y, Zhang Y. Kinetics of catalyzed thermal degradation of polylactide and its application as sacrificial templates. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Li Feng
- School of Chemistry, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Chenhui Cui
- School of Chemistry, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Zhen Li
- School of Chemistry, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Mengyuan Zhang
- School of Chemistry, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Qiang Zhang
- School of Chemistry, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Youshen Wu
- School of Chemistry, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Zhishen Ge
- School of Chemistry, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Yilong Cheng
- School of Chemistry, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Yanfeng Zhang
- School of Chemistry, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| |
Collapse
|
4
|
Li LG, Wang QY, Zheng QY, Du FS, Li ZC. Tough and Thermally Recyclable Semiaromatic Polyesters by Ring-Opening Polymerization of Benzo-thia-caprolactones. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00497] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ling-Gao Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qi-Yuan Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qiu-Yang Zheng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Fu-Sheng Du
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zi-Chen Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Garg M, White SR, Sottos NR. Rapid Degradation of Poly(lactic acid) with Organometallic Catalysts. ACS APPLIED MATERIALS & INTERFACES 2019; 11:46226-46232. [PMID: 31774644 DOI: 10.1021/acsami.9b17599] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Poly(lactic acid) (PLA) is an effective sacrificial material for the creation of vascular networks in thermoset polymers and composites. The high thermal stability of PLA limits its applications as an embedded sacrificial template in high-temperature-resistant thermoset matrices. Here, we demonstrate faster and more efficient PLA degradation at temperatures lower than previously reported using two organometallic catalysts: tin(II) oxalate (Sn(Oxa)) and tin(II) acetate (Sn(Ac)2). We process Sn(Oxa) by two separate methods to obtain a significant difference in the specific surface area (SSA) of the catalyst particles and compare PLA degradation performance in a thermogravimetric analysis (TGA) instrument. Changing the SSA of Sn(Oxa) by a factor of ∼20 reduces the PLA degradation onset temperature by 37 °C. The total degradation time of PLA films also decreases after blending with Sn(Oxa) having a higher SSA. We also find Sn(Ac)2 lowers the degradation onset of PLA by 53 °C compared to Sn(Oxa) with a similar SSA. In addition, Sn(Ac)2 decreases the time for complete degradation of PLA films by an order of magnitude compared to Sn(Oxa) at 200 °C. Films with a significantly lower Sn(Ac)2 concentration compared to Sn(Oxa) degrade much faster at lower temperatures up to 160 °C. Finally, PLA films with different loadings of Sn(Ac)2 are embedded in an epoxy thermoset matrix and subsequently vascularized at elevated temperatures in a vacuum oven. Microchannel formation is observed at 170 °C using Sn(Ac)2, reducing the temperature required for vaporization of embedded sacrificial polymer compared to Sn(Oxa) catalyst. Sn(Ac)2 can potentially reduce the energy, time, and amount of catalyst required for degrading PLA into volatile products for sacrificial applications.
Collapse
|
6
|
Schmid ED, Robinson MJ, Cross WM, Salem DR. Tensile, flexure, and compression properties of anisotropic microchannel epoxy foams. J Appl Polym Sci 2019. [DOI: 10.1002/app.47945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Eric D. Schmid
- Composites and Polymer Engineering Laboratory South Dakota School of Mines and Technology Rapid City South Dakota 57701
- Nanoscience and Nanoengineering Graduate Program South Dakota School of Mines and Technology Rapid City South Dakota 57701
| | - Marc J. Robinson
- Civil and Environmental Engineering Department South Dakota School of Mines and Technology Rapid City South Dakota 57701
| | - William M. Cross
- Materials and Metallurgical Engineering Department South Dakota School of Mines and Technology Rapid City South Dakota 57701
| | - David R. Salem
- Composites and Polymer Engineering Laboratory South Dakota School of Mines and Technology Rapid City South Dakota 57701
- Nanoscience and Nanoengineering Graduate Program South Dakota School of Mines and Technology Rapid City South Dakota 57701
- Materials and Metallurgical Engineering Department South Dakota School of Mines and Technology Rapid City South Dakota 57701
| |
Collapse
|
7
|
Dean LM, Krull BP, Li KR, Fedonina YI, White SR, Sottos NR. Enhanced Mixing of Microvascular Self-Healing Reagents Using Segmented Gas-Liquid Flow. ACS APPLIED MATERIALS & INTERFACES 2018; 10:32659-32667. [PMID: 30209942 DOI: 10.1021/acsami.8b09966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Microvascular self-healing systems have previously been demonstrated to restore large-scale damage and achieve repeated healing of multiple damage events in polymers. However, the healing performance of these systems is often limited because the laminar nature of flow in microchannels results in poor mixing of two-part self-healing reagents. In this paper, we introduce segmented gas-liquid flow (SGLF) to enhance the mixing of reagents in microvascular self-healing systems. In SGLF, discrete liquid slugs containing self-healing reagents are separated by gas bubbles while flowing through a single microchannel. Recirculating streamlines within the liquid slugs can enhance the mixing of miscible liquids such as healing reagents. We investigate the effect of SGLF on mixing and healing for a two-stage chemistry used to restore large-scale damage in thermoset polymers. Additionally, we employ SGLF to deliver an epoxy-thiol chemistry, enabling the repeated recovery of fracture toughness in glass fiber-reinforced composites. In both systems, the mixing of healing agents delivered by SGLF is enhanced compared to alternative microvascular delivery strategies. For the two-stage chemistry, SGLF increases the maximum damage size that can be healed by 25% compared to laminar single-phase flow. Furthermore, there are concomitant increases in the extent of polymerization and the mechanical properties of the restored material, including a fivefold increase in the peak load sustained during a push-out test. For the epoxy-thiol chemistry, SGLF enables multiple healing cycles with healing efficiency above 100%. On the basis of these results, we envision that SGLF could improve performance for a variety of microvascular self-healing systems with different host materials, damage modes, and healing chemistries.
Collapse
|
8
|
Catalytic Systems for the Production of Poly(lactic acid). SYNTHESIS, STRUCTURE AND PROPERTIES OF POLY(LACTIC ACID) 2017. [DOI: 10.1007/12_2017_20] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Saeed MU, Li BB, Chen ZF. Mechanical effects of microchannels on fiber-reinforced composite structure. COMPOSITE STRUCTURES 2016; 154:129-141. [DOI: 10.1016/j.compstruct.2016.07.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
10
|
Wang Y, Pham DT, Zhang Z, Li J, Ji C, Liu Y, Leng J. Sustainable self-healing at ultra-low temperatures in structural composites incorporating hollow vessels and heating elements. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160488. [PMID: 27703711 PMCID: PMC5043331 DOI: 10.1098/rsos.160488] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/17/2016] [Indexed: 05/30/2023]
Abstract
Self-healing composites are able to restore their properties automatically. Impressive healing efficiencies can be achieved when conditions are favourable. On the other hand, healing might not be possible under adverse circumstances such as very low ambient temperature. Here, we report a structural composite able to maintain its temperature to provide a sustainable self-healing capability-similar to that in the natural world where some animals keep a constant body temperature to allow enzymes to stay active. The composite embeds three-dimensional hollow vessels with the purpose of delivering and releasing healing agents, and a porous conductive element to provide heat internally to defrost and promote healing reactions. A healing efficiency over 100% at around -60°C was obtained. The effects of the sheets on the interlaminar and tensile properties have been investigated experimentally. The proposed technique can be implemented in a majority of extrinsic self-healing composites to enable automatic recovery at ultra-low temperatures.
Collapse
Affiliation(s)
- Yongjing Wang
- Department of Mechanical Engineering, School of Engineering, University of Birmingham, Edgbaston, Birmingham, UK
| | - Duc Truong Pham
- Department of Mechanical Engineering, School of Engineering, University of Birmingham, Edgbaston, Birmingham, UK
| | - Zhichun Zhang
- Center for Composite Materials and Structures, Harbin Institute of Technology, Science Park, Harbin, People's Republic of China
| | - Jinjun Li
- Applied Science Faculty, Delft University of Technology, Delft, The Netherlands
| | - Chunqian Ji
- Department of Mechanical Engineering, School of Engineering, University of Birmingham, Edgbaston, Birmingham, UK
| | - Yanju Liu
- Department of Aerospace Science and Mechanics, Harbin Institute of Technology, Science Park, Harbin, People's Republic of China
| | - Jinsong Leng
- Center for Composite Materials and Structures, Harbin Institute of Technology, Science Park, Harbin, People's Republic of China
| |
Collapse
|
11
|
Abstract
Self-healing is a natural process common to all living organisms which provides increased longevity and the ability to adapt to changes in the environment. Inspired by this fitness-enhancing functionality, which was tuned by billions of years of evolution, scientists and engineers have been incorporating self-healing capabilities into synthetic materials. By mimicking mechanically triggered chemistry as well as the storage and delivery of liquid reagents, new materials have been developed with extended longevity that are capable of restoring mechanical integrity and additional functions after being damaged. This Review describes the fundamental steps in this new field of science, which combines chemistry, physics, materials science, and mechanical engineering.
Collapse
Affiliation(s)
- Charles E Diesendruck
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa 32000 (Israel)
| | - Nancy R Sottos
- Department of Materials Science and Engineering and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Matthews Ave. Urbana, IL 61801 (USA)
| | - Jeffrey S Moore
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Matthews Ave. Urbana, IL 61801 (USA)
| | - Scott R White
- Department of Aerospace Engineering and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Matthews Ave. Urbana, IL 61801 (USA).
| |
Collapse
|
12
|
|
13
|
Britner J, Ritter H. Self-Activation of Poly(methylenelactide) through Neighboring-Group Effects: A Sophisticated Type of Reactive Polymer. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Judita Britner
- Institute of Organic Chemistry
and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Helmut Ritter
- Institute of Organic Chemistry
and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
14
|
Olejniczak J, Chan M, Almutairi A. Light-Triggered Intramolecular Cyclization in Poly(lactic-co-glycolic acid)-Based Polymers for Controlled Degradation. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00455] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jason Olejniczak
- Department
of Chemistry and Biochemistry, ‡Skaggs School of Pharmacy and Pharmaceutical
Sciences, and §Departments of Bioengineering, NanoEngineering, and Materials Science
and Engineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Minnie Chan
- Department
of Chemistry and Biochemistry, ‡Skaggs School of Pharmacy and Pharmaceutical
Sciences, and §Departments of Bioengineering, NanoEngineering, and Materials Science
and Engineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Adah Almutairi
- Department
of Chemistry and Biochemistry, ‡Skaggs School of Pharmacy and Pharmaceutical
Sciences, and §Departments of Bioengineering, NanoEngineering, and Materials Science
and Engineering, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
15
|
Liu L, Zachariah MR, Stoliarov SI, Li J. Enhanced thermal decomposition kinetics of poly(lactic acid) sacrificial polymer catalyzed by metal oxide nanoparticles. RSC Adv 2015. [DOI: 10.1039/c5ra19303f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Poly Lactic Acid (PLA) and 1 wt% PLA/Fe2O3, PLA/CuO, PLA/Bi2O3 composites are prepared by solvent evaporation casting and their enhanced thermal decomposition kinetics catalyzed by low loading metal oxide nanoparticles are studied.
Collapse
Affiliation(s)
- Lu Liu
- Department of Chemistry and Biochemistry
- University of Maryland
- College Park
- USA
| | - Michael R. Zachariah
- Department of Chemistry and Biochemistry
- University of Maryland
- College Park
- USA
- Department of Chemical and Biomolecule Engineering
| | | | - Jing Li
- Department of Fire Science & Professional Studies
- Henry C. Lee College of Criminal Justice and Forensic Sciences
- University of New Haven
- West Haven
- USA
| |
Collapse
|
16
|
Phillips ST, Robbins JS, DiLauro AM, Olah MG. Amplified responses in materials using linear polymers that depolymerize from end-to-end when exposed to specific stimuli. J Appl Polym Sci 2014. [DOI: 10.1002/app.40992] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Scott T. Phillips
- Department of Chemistry; The Pennsylvania State University, University Park; State College Pennsylvania 16802
| | - Jessica S. Robbins
- Department of Chemistry; The Pennsylvania State University, University Park; State College Pennsylvania 16802
| | - Anthony M. DiLauro
- Department of Chemistry; The Pennsylvania State University, University Park; State College Pennsylvania 16802
| | - Michael G. Olah
- Department of Chemistry; The Pennsylvania State University, University Park; State College Pennsylvania 16802
| |
Collapse
|
17
|
Nguyen DT, Kleiman M, Ryu KA, Hiew S, Brubaker K, Mughnetsyan R, Truong R, Dolan B, Tackett E, Esser-Kahn AP. Three-dimensional conformal coatings through the entrapment of polymer membrane precursors. ACS APPLIED MATERIALS & INTERFACES 2014; 6:2830-2835. [PMID: 24437474 DOI: 10.1021/am4053943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We report a technique to coat polymers onto 3D surfaces distinct from traditional spray, spin, or dip coating. In our technique, the surface of a template structure composed of poly(lactic acid) swells and entraps a soluble polymer precursor. Once entrapped, the precursor is cured, resulting in a thin, conformal membrane. The thickness of each coating depends on the coating solution composition, residence time, and template size. Thicknesses ranged from 400 nm to 4 μm within the experimental conditions we explored. The coating method was compatible with a range of polymers. Complicated 3D structures and microstructures of 10 μm thickness and separation were coated using this technique. The templates can also be selectively removed, leaving behind a hollow membrane structure in the shape of the original printed, extruded, or microporous template structures. This technique may be useful in applications that benefit from three-dimensional membrane topologies, including catalysis, separations, and potentially tissue engineering.
Collapse
Affiliation(s)
- Du T Nguyen
- Department of Chemistry, ‡Department of Physics and Astronomy, and §Rapid Tech, University of California , Irvine, California 92697, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Qu M, Tu H, Amarante M, Song YQ, Zhu SS. Zinc oxide nanoparticles catalyze rapid hydrolysis of poly(lactic acid) at low temperatures. J Appl Polym Sci 2013. [DOI: 10.1002/app.40287] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Meng Qu
- Mechanics and Materials Department; Schlumberger-Doll Research; Cambridge Massachusetts 02139
| | - Huilin Tu
- Mechanics and Materials Department; Schlumberger-Doll Research; Cambridge Massachusetts 02139
| | - Miranda Amarante
- Mechanics and Materials Department; Schlumberger-Doll Research; Cambridge Massachusetts 02139
| | - Yi-Qiao Song
- Mechanics and Materials Department; Schlumberger-Doll Research; Cambridge Massachusetts 02139
| | - S. Sherry Zhu
- Mechanics and Materials Department; Schlumberger-Doll Research; Cambridge Massachusetts 02139
| |
Collapse
|
19
|
Guo SZ, Gosselin F, Guerin N, Lanouette AM, Heuzey MC, Therriault D. Solvent-cast three-dimensional printing of multifunctional microsystems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:4118-22. [PMID: 23824963 DOI: 10.1002/smll.201300975] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 04/14/2013] [Indexed: 05/05/2023]
Abstract
The solvent-cast direct-write fabrication of microstructures is shown using a thermoplastic polymer solution ink. The method employs the robotically controlled microextrusion of a filament combined with a rapid solvent evaporation. Upon drying, the increased rigidity of the extruded filament enables the creation of complex freeform 3D shapes.
Collapse
Affiliation(s)
- Shuang-Zhuang Guo
- Laboratory of Multiscale Mechanics, Mechanical Engineering Department, Center for Applied Research on Polymers and composites (CREPEC), École Polytechnique de Montréal, C.P. 6079, succ. Centre-Ville, Montreal, QC H3C 3A7, Canada
| | | | | | | | | | | |
Collapse
|
20
|
Pratama PA, Sharifi M, Peterson AM, Palmese GR. Room temperature self-healing thermoset based on the Diels-Alder reaction. ACS APPLIED MATERIALS & INTERFACES 2013; 5:12425-12431. [PMID: 24215583 DOI: 10.1021/am403459e] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A self-healing epoxy-amine thermoset based on the compatible functionalization of the thermoset and encapsulated healing agent has been successfully developed. Healing of the thermoset resulted from the reaction of furans in the thermoset and multimaleimides (MMIs) in the healing agent solution. The healing agent, MMI dissolved in phenyl acetate, was encapsulated using a urea-formaldehyde encapsulation method. Autonomic healing of the thermoset was achieved by incorporating microcapsules filled with the healing agent solution within a furan-functionalized epoxy-amine thermoset. The resulting self-healing thermoset recovered 71% of its initial load after fracture.
Collapse
Affiliation(s)
- Purnomo A Pratama
- Department of Chemical & Biological Engineering, Drexel University , 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | | | | | | |
Collapse
|
21
|
Nguyen DT, Leho YT, Esser-Kahn AP. Process of making three-dimensional microstructures using vaporization of a sacrificial component. J Vis Exp 2013:e50459. [PMID: 24300342 PMCID: PMC3969899 DOI: 10.3791/50459] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Vascular structures in natural systems are able to provide high mass transport through high surface areas and optimized structure. Few synthetic material fabrication techniques are able to mimic the complexity of these structures while maintaining scalability. The Vaporization of a Sacrificial Component (VaSC) process is able to do so. This process uses sacrificial fibers as a template to form hollow, cylindrical microchannels embedded within a matrix. Tin (II) oxalate (SnOx) is embedded within poly(lactic) acid (PLA) fibers which facilitates the use of this process. The SnOx catalyzes the depolymerization of the PLA fibers at lower temperatures. The lactic acid monomers are gaseous at these temperatures and can be removed from the embedded matrix at temperatures that do not damage the matrix. Here we show a method for aligning these fibers using micromachined plates and a tensioning device to create complex patterns of three-dimensionally arrayed microchannels. The process allows the exploration of virtually any arrangement of fiber topologies and structures.
Collapse
Affiliation(s)
- Du T Nguyen
- Department of Physics, University of California, Irvine
| | | | | |
Collapse
|
22
|
Gualandi C, Zucchelli A, Fernández Osorio M, Belcari J, Focarete ML. Nanovascularization of polymer matrix: generation of nanochannels and nanotubes by sacrificial electrospun fibers. NANO LETTERS 2013; 13:5385-5390. [PMID: 24144429 DOI: 10.1021/nl402930x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Several methods for creating vascular structures, made of either discrete or interconnected channels have been developed. The currently employed methods enable the formation of channels with diameters in the millimetric and micrometric scale. However, the formation of an interconnected three-dimensional (3D) vasculature by using a rapid and scalable process is a challenge and largely limits the fields of applicability of these innovative materials. Here, we propose the use of electrospun nonwoven mats as sacrificial fibers to easily generate 3D macroscale vascularized composites containing interconnected networks with channels and tubes having submicrometric and nanometric diameters. The novel approach has the potentialities to give rise to a novel generation of composites potentially displaying new and enhanced functionalities thanks to the nanoscale features of the cavities.
Collapse
Affiliation(s)
- Chiara Gualandi
- Advanced Mechanics and Materials - Interdepartmental Center for Industrial Research, (AMM ICIR) and ‡Department of Industrial Engineering (DIN), University of Bologna , viale Risorgimento 2, 40136, Bologna, Italy
| | | | | | | | | |
Collapse
|
23
|
de Gracia Lux C, Olejniczak J, Fomina N, Viger ML, Almutairi A. Intramolecular cyclization assistance for fast degradation of ornithine-based poly(ester amide)s. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.26788] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Caroline de Gracia Lux
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego; La Jolla California 92093
| | - Jason Olejniczak
- Department of Chemistry and Biochemistry, University of California at San Diego; La Jolla California 92093
| | - Nadezda Fomina
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego; La Jolla California 92093
| | - Mathieu L. Viger
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego; La Jolla California 92093
| | - Adah Almutairi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego; La Jolla California 92093
- Department of NanoEngineering, University of California at San Diego; La Jolla California 92093
- Department of Materials Science and Engineering, University of California at San Diego; La Jolla California 92093
| |
Collapse
|