1
|
Wang X, Ding T. A Review on the Current State of Microcapsule-Based Self-Healing Dental Composites. J Funct Biomater 2024; 15:165. [PMID: 38921538 PMCID: PMC11204524 DOI: 10.3390/jfb15060165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Resin-based dental composites, commonly used in dentistry, offer several advantages including minimally invasive application, esthetically pleasing appearance, and good physical and mechanical properties. However, these dental composites can be susceptible to microcracks due to various factors in the complex oral environment. These microcracks can potentially lead to clinical restoration failure. Conventional materials and methods are inadequate for detecting and repairing these microcracks in situ. Consequently, incorporating self-healing properties into dental composites has become a necessity. Recent years have witnessed rapid advancements in self-healing polymer materials, drawing inspiration from biological bionics. Microcapsule-based self-healing dental composites (SHDCs) represent some of the most prevalent types of self-healing materials utilized in this domain. In this article, we undertake a comprehensive review of the most recent literature, highlighting key insights and findings related to microcapsule-based SHDCs. Our discussion centers particularly on the preparation techniques, application methods, and the promising future of self-healing microcapsules in the field of dentistry.
Collapse
Affiliation(s)
| | - Tian Ding
- School of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan 250012, China;
| |
Collapse
|
2
|
Zhao J, Li C, Sui J, Jiang S, Zhao W, Zhang S, Wu R, Li J, Chen X. A Novel One-Step Reactive Extrusion Process for High-Performance Rigid Crosslinked PVC Composite Fabrication Using Triazine Crosslinking Agent@Melamine-Formaldehyde Microcapsules. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4600. [PMID: 37444914 DOI: 10.3390/ma16134600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/26/2023] [Accepted: 06/06/2023] [Indexed: 07/15/2023]
Abstract
In this work, we propose, for the first time, a simple, fast, and efficient strategy to fabricate high-performance rigid crosslinked PVC composites by continuous extrusion. This strategy improves the poor processing fluidity of composites and solves the impossibility of conducting extrusion in one step via using microcapsule-type crosslinking agents prepared by in situ polymerization to co-extrude with PVC blends. The results demonstrate that the PVC/microcapsule composites were successfully prepared. Within the studied parameters, the properties of crosslinked PVC gradually increased with the addition of microcapsules, and its Vicat softening temperature increased from 79.3 °C to 86.2 °C compared with pure PVC. This study shows the possibility for the industrial scale-up of the extrusion process for rigid crosslinked PVC.
Collapse
Affiliation(s)
- Jinshun Zhao
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Chun Li
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiayang Sui
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Shuai Jiang
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Weizhen Zhao
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Henan University, Zhengzhou 450046, China
| | - Shihao Zhang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Rong Wu
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jintong Li
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuhuang Chen
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
3
|
Comprehensive evaluation on the encapsulation performances of melamine-formaldehyde microcapsules affected by core oils. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Baiocco D, Zhang Z, He Y, Zhang Z. Relationship between the Young's Moduli of Whole Microcapsules and Their Shell Material Established by Micromanipulation Measurements Based on Diametric Compression between Two Parallel Surfaces and Numerical Modelling. MICROMACHINES 2023; 14:123. [PMID: 36677184 PMCID: PMC9867421 DOI: 10.3390/mi14010123] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Micromanipulation is a powerful technique to measure the mechanical properties of microparticles including microcapsules. For microparticles with a homogenous structure, their apparent Young's modulus can be determined from the force versus displacement data fitted by the classical Hertz model. Microcapsules can consist of a liquid core surrounded by a solid shell. Two Young's modulus values can be defined, i.e., the one is that determined using the Hertz model and another is the intrinsic Young's modulus of the shell material, which can be calculated from finite element analysis (FEA). In this study, the two Young's modulus values of microplastic-free plant-based microcapsules with a core of perfume oil (hexyl salicylate) were calculated using the aforementioned approaches. The apparent Young's modulus value of the whole microcapsules determined by the classical Hertz model was found to be EA = 0.095 ± 0.014 GPa by treating each individual microcapsule as a homogeneous solid spherical particle. The previously obtained simulation results from FEA were utilised to fit the micromanipulation data of individual core-shell microcapsules, enabling to determine their unique shell thickness to radius ratio (h/r)FEA = 0.132 ± 0.009 and the intrinsic Young's modulus of their shell (EFEA = 1.02 ± 0.13 GPa). Moreover, a novel theoretical relationship between the two Young's modulus values has been derived. It is found that the ratio of the two Young's module values (EA/EFEA) is only a function on the ratio of the shell thickness to radius (h/r) of the individual microcapsule, which can be fitted by a third-degree polynomial function of h/r. Such relationship has proven applicable to a broad spectrum of microcapsules (i.e., non-synthetic, synthetic, and double coated shells) regardless of their shell chemistry.
Collapse
Affiliation(s)
- Daniele Baiocco
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Zhihua Zhang
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Changzhou Institute of Advanced Manufacturing Technology, Changzhou 213164, China
| | - Yanping He
- School of Chemical Engineering, Kunming University of Science and Technology, Chenggong Campus, Kunming 650504, China
| | - Zhibing Zhang
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
5
|
Dong L, Ren Y, Zhang W, Liu Y, Liu M, Hong C, Wang M, Zhan B, Ding X, Wang X. A painless and flexible bi-directional blood glucose-regulating system inspired by an inverter air conditioner. Biomater Sci 2022; 10:5318-5325. [PMID: 35920281 DOI: 10.1039/d2bm00920j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2025]
Abstract
Pursuing painless and flexible blood glucose regulation has been a century-long arduous mission. The current therapeutic systems can only regulate blood glucose unidirectionally (reduce), and the adjustment range is large, which is prone to the risk of hypoglycemia. Herein, inspired by the temperature fluctuation range controlled by the inverter air conditioner, we report a new bi-directional blood glucose-regulating drug delivery system (BDRS) consisting of glucose-loaded pressure-responsive nano-vesicles (Glu@PRNV), insulin-loaded black phosphorus nanosheets (Insulin@BPNs), hydrogel, and a painless blood sugar monitor patch. At first, BDRS could monitor blood glucose in real-time through visible color changes. Afterward, according to different requirements, BDRS could release glucose with the guidance of external pressure, or supplement insulin under near-infrared (NIR) irradiation, through which, the blood glucose level of diabetics could be accurately accommodated within a reasonable fluctuation range, thus minifying the likelihood of sudden hyperglycemia or hypoglycemia. Collectively, the supply-demand balance of blood glucose could be maintained via this real-time bi-directional drug delivery system, thereby improving the quality of life of diabetics. We have also verified the universality of this technique through a similar bi-directional sleep regulation.
Collapse
Affiliation(s)
- Lina Dong
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518055, China
| | - Yingzi Ren
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin 300072, China
| | - Wei Zhang
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, 330088, China
| | - Yu Liu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, China
| | - Mingzhuo Liu
- Department of Burns, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Can Hong
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, China
| | - ManYu Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, China
| | - Bowen Zhan
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, China
| | - Xingwei Ding
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, China
| | - Xiaolei Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, China
| |
Collapse
|
6
|
Trachsel A, Paret N, Berthier D, Herrmann A. Light‐Induced Fragrance Release from 2‐Oxoacetates: Impact of Compound Mixtures on the Efficiency of the Norrish Type II Photoreaction in Solution and in Encapsulation Systems. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Alain Trachsel
- Firmenich SA Division Recherche & Développement SWITZERLAND
| | - Nicolas Paret
- Firmenich SA Division Recherche & Développement SWITZERLAND
| | | | - Andreas Herrmann
- Firmenich SA Division Recherche et Développement Rue de la Bergère 7 1242 Satigny SWITZERLAND
| |
Collapse
|
7
|
Peng G, Hu Y, Dou G, Sun Y, Huan Y, Kang SH, Piao Z. Enhanced mechanical properties of epoxy composites embedded with MF/TiO2 hybrid shell microcapsules containing n-octadecane. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.03.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Allahdini A, Jafari R, Momen G. Development of a dual capsule self‐healing silicone composite using silicone chemistry and poly(melamine‐urea‐formaldehyde) shells. J Appl Polym Sci 2022. [DOI: 10.1002/app.51670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Anahita Allahdini
- Department of Applied Sciences University of Quebec in Chicoutimi (UQAC) Chicoutimi Québec Canada
| | - Reza Jafari
- Department of Applied Sciences University of Quebec in Chicoutimi (UQAC) Chicoutimi Québec Canada
| | - Gelareh Momen
- Department of Applied Sciences University of Quebec in Chicoutimi (UQAC) Chicoutimi Québec Canada
| |
Collapse
|
9
|
Huang YH, Salmon F, Kamble A, Xu AX, Michelon M, Leopercio BC, Carvalho MS, Frostad JM. Models for the mechanical characterization of core-shell microcapsules under uniaxial deformation. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
10
|
Enhancing the stability of synthesized curcumin by spray-drying microencapsulation with soy lecithin and gum Arabic. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1007/s43153-021-00124-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Efficient encapsulation of water soluble inorganic and organic actives in melamine formaldehyde based microcapsules for control release into an aqueous environment. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Mamusa M, Sofroniou C, Resta C, Murgia S, Fratini E, Smets J, Baglioni P. Tuning the Encapsulation of Simple Fragrances with an Amphiphilic Graft Copolymer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:28808-28818. [PMID: 32463649 PMCID: PMC8007072 DOI: 10.1021/acsami.0c05892] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
The encapsulation of poorly water-soluble compounds such as perfumes, flavors, and bioactive molecules is a key step in the formulation of a large variety of consumer products in the fields of household care and personal care. We study the encapsulation ability of an amphiphilic poly(ethylene glycol)-graft-poly(vinyl acetate) (PEG-g-PVAc) graft copolymer, extending the focus to the entire phase diagram of polymer/perfume/water systems with three common natural fragrances. The three perfume molecules (2-phenyl ethanol, L-carvone, and α-pinene) possess different water affinities, as expressed by their octanol/water partition coefficients. The investigation of the polymorphism of PEG-g-PVAc in these systems is carried out by means of dynamic light scattering, small-angle X-ray scattering, NMR spectroscopy, and confocal laser scanning microscopy. The results presented here demonstrate that the choice of fragrance can dramatically affect the supramolecular structures formed by the polymer in aqueous solution, with important consequences on formulations of industrial interest such as the demixing of complex perfume blends when one or more of the components have no chemical affinity for any of the polymer blocks.
Collapse
Affiliation(s)
- Marianna Mamusa
- Department
of Chemistry “Ugo Schiff” and CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Constantina Sofroniou
- Department
of Chemistry “Ugo Schiff” and CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Claudio Resta
- Department
of Chemistry “Ugo Schiff” and CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Sergio Murgia
- Dipartimento
di Scienze Chimiche e Geologiche, Università
degli Studi di Cagliari, S.S. 554 Bivio per Sestu, 09042 Monserrato, Italy
| | - Emiliano Fratini
- Department
of Chemistry “Ugo Schiff” and CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Johan Smets
- The
Procter & Gamble Company, Temselaan 100, 1853 Strombeek-Bever, Belgium
| | - Piero Baglioni
- Department
of Chemistry “Ugo Schiff” and CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
13
|
Yang N, Su C, Zhang Y, Jia J, Leheny RL, Nishinari K, Fang Y, Phillips GO. In situ nanomechanical properties of natural oil bodies studied using atomic force microscopy. J Colloid Interface Sci 2020; 570:362-374. [PMID: 32182477 DOI: 10.1016/j.jcis.2020.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 01/15/2020] [Accepted: 03/04/2020] [Indexed: 12/21/2022]
Abstract
Natural oil bodies (OBs) from plant organs represent an important category of functional ingredients and materials in a variety of industrial sectors. Their applications are closely related to the membrane mechanical properties on a single droplet level, which remain difficult to determine. In this research, the mechanical properties of the membranes of OBs from soybean, sesame, and peanut were investigated in-situ by atomic force microscopy (AFM). Different regions of the force-deformation curves obtained during compression were analyzed to extract the stiffness Kb or Young's modulus of the OB membranes using Hooke's law, Reissner theory, and the elastic membrane theory. At higher strains (ε = 0.15-0.20), the elastic membrane theory breaks down. We propose an extension of the theory that includes a contribution to the force from interfacial tension based on the Gibbs energy, allowing effective determination of Young's modulus and interfacial tension of the OB membranes in the water environment simultaneously. The mechanical properties of the OBs of different sizes and species, as well as a comparison with other phospholipid membrane materials, are discussed and related to their membrane compositions and structures. It was found that the natural OBs are soft droplets but do not rupture and can fully recover following compressive strains as large as 0.3. The OBs with higher protein/oil ratio, have smaller size and stronger mechanical properties, and thus are more stable. The low interfacial tension due to the existence of phospholipid-protein membrane also contributes to the stability of the OBs. This is the first report measuring the mechanical properties of OB membranes in-situ directly.
Collapse
Affiliation(s)
- Nan Yang
- Glyn O. Phillips Hydrocolloid Research Centre, 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Chunxia Su
- Glyn O. Phillips Hydrocolloid Research Centre, 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Yuemei Zhang
- Glyn O. Phillips Hydrocolloid Research Centre, 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Junji Jia
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Robert L Leheny
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Katsuyoshi Nishinari
- Glyn O. Phillips Hydrocolloid Research Centre, 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Yapeng Fang
- Glyn O. Phillips Hydrocolloid Research Centre, 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China; Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Glyn O Phillips
- Glyn O. Phillips Hydrocolloid Research Centre, 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
14
|
Ren Y, Abbas N, Zhu G, Tang J. Synthesis and mechanical properties of large size silica shell microcapsules for self-healing cementitious materials. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124347] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Liu Y, Liu K, Zhao M, Wang S, Zhou Z, Shen Y, Jiang L. A pH-responsive fragrance release system based on pseudopeptide polymeric micelles. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.09.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
16
|
Sui C, Preece JA, Yu SH, Zhang Z. Novel encapsulation of water soluble inorganic or organic ingredients in melamine formaldehyde microcapsules to achieve their sustained release in an aqueous environment. RSC Adv 2018; 8:29495-29498. [PMID: 35547310 PMCID: PMC9085263 DOI: 10.1039/c8ra05533e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/05/2018] [Indexed: 11/21/2022] Open
Abstract
A novel type of melamine formaldehyde microcapsule with a desirable barrier has been used to encapsulate water soluble ingredients, including potassium chloride (KCl) and allura red (dye) as models of an inorganic salt and organic molecule, respectively, via a facile method, and it has shown a sustained release of KCl and allura red for 12 h and 10 days in aqueous environment, respectively. A novel type of melamine formaldehyde microcapsule has been used to encapsulate water-soluble ingredients: potassium chloride (KCl) and allura red (dye), which achieved a sustained release for 12 h and 10 days in aqueous environment respectively.![]()
Collapse
Affiliation(s)
- Cong Sui
- School of Chemical Engineering, University of Birmingham UK .,Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation of Suzhou Nano Science and Technology, Department of Chemistry, CAS Centre for Excellence in Nanoscience, Hefei Science Centre of CAS, University of Science and Technology of China Hefei 230026 China
| | - Jon A Preece
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Shu-Hong Yu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation of Suzhou Nano Science and Technology, Department of Chemistry, CAS Centre for Excellence in Nanoscience, Hefei Science Centre of CAS, University of Science and Technology of China Hefei 230026 China
| | - Zhibing Zhang
- School of Chemical Engineering, University of Birmingham UK
| |
Collapse
|
17
|
Coughlan ACH, Torres-Diaz I, Jerri HA, Bevan MA. Direct Measurements of kT-Scale Capsule-Substrate Interactions and Deposition Versus Surfactants and Polymer Additives. ACS APPLIED MATERIALS & INTERFACES 2018; 10:27444-27453. [PMID: 30024154 DOI: 10.1021/acsami.8b06987] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We report a novel approach to directly measure the interactions and deposition behavior of functional capsule delivery systems on glass substrates versus the concentration of an anionic surfactant sodium lauryl ether sulfate (SLES) and a cationic acrylamide-acrylamidopropyltrimonium copolymer (AAC). Analyses of three-dimensional optical microscopy trajectories were used to quantify lateral diffusive dynamics, deposition lifetimes, and potentials of mean force for different solution conditions. In the absence of additives, negatively charged capsule surfaces yield electrostatic repulsion with the negatively charged substrate, which inhibits deposition. With an increasing SLES concentration below the critical micelle concentration (CMC), capsule-substrate electrostatic repulsion is mediated by the charged surfactant solution that decreases the Debye length. Above the SLES CMC, depletion attraction causes enhanced deposition until eventually depletion repulsion inhibits deposition at concentrations ∼10 wt %. Addition of an ACC causes deposition via capsule-substrate bridging at all concentrations; the weakest deposition occurs at intermediate AAC concentrations from a competition of steric repulsion and attraction via a few extended bridges. The novel measurements and models of capsule interactions and deposition on substrates in this work provide a basis to fundamentally understand and rationally design complex rinse-off cleansing formulations with optimal characteristics.
Collapse
Affiliation(s)
- Anna C H Coughlan
- Chemical & Biomolecular Engineering , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Isaac Torres-Diaz
- Chemical & Biomolecular Engineering , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Huda A Jerri
- R&D Division , Firmenich Inc. , Plainsboro , New Jersey 08536 , United States
| | - Michael A Bevan
- Chemical & Biomolecular Engineering , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| |
Collapse
|
18
|
Niu Y, Qi L, Zhang F, Zhao Y. Geometric screening of core/shell hydrogel microcapsules using a tapered microchannel with interdigitated electrodes. Biosens Bioelectron 2018; 112:162-169. [PMID: 29704784 DOI: 10.1016/j.bios.2018.04.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/30/2018] [Accepted: 04/17/2018] [Indexed: 10/17/2022]
Abstract
Core/shell hydrogel microcapsules attract increasing research attention due to their potentials in tissue engineering, food engineering, and drug delivery. Current approaches for generating core/shell hydrogel microcapsules suffer from large geometric variations. Geometrically defective core/shell microcapsules need to be removed before further use. High-throughput geometric characterization of such core/shell microcapsules is therefore necessary. In this work, a continuous-flow device was developed to measure the geometric properties of microcapsules with a hydrogel shell and an aqueous core. The microcapsules were pumped through a tapered microchannel patterned with an array of interdigitated microelectrodes. The geometric parameters (the shell thickness and the diameter) were derived from the displacement profiles of the microcapsules. The results show that this approach can successfully distinguish all unencapsulated microparticles. The geometric properties of core/shell microcapsules can be determined with high accuracy. The efficacy of this method was demonstrated through a drug releasing experiment where the optimization of the electrospray process based on geometric screening can lead to controlled and extended drug releasing profiles. This method does not require high-speed optical systems, simplifying the system configuration and making it an indeed miniaturized device. The throughput of up to 584 microcapsules per minute was achieved. This study provides a powerful tool for screening core/shell hydrogel microcapsules and is expected to facilitate the applications of these microcapsules in various fields.
Collapse
Affiliation(s)
- Ye Niu
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, United States; Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Lin Qi
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Fen Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States
| | - Yi Zhao
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
19
|
Mettu S, Ye Q, Zhou M, Dagastine R, Ashokkumar M. Ultrasonically synthesized organic liquid-filled chitosan microcapsules: part 2: characterization using AFM (atomic force microscopy) and combined AFM-confocal laser scanning fluorescence microscopy. SOFT MATTER 2018; 14:3192-3201. [PMID: 29651482 DOI: 10.1039/c8sm00065d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Atomic Force Microscopy (AFM) is used to measure the stiffness and Young's modulus of individual microcapsules that have a chitosan cross-linked shell encapsulating tetradecane. The oil filled microcapsules were prepared using a one pot synthesis via ultrasonic emulsification of tetradecane and crosslinking of the chitosan shell in aqueous solutions of acetic acid. The concentration of acetic acid in aqueous solutions of chitosan was varied from 0.2% to 25% v/v. The effect of acetic acid concentration and size of the individual microcapsules on the strength was probed. The deformations and forces required to rupture the microcapsules were also measured. Three dimensional deformations of microcapsules under large applied loads were obtained by the combination of Laser Scanning Confocal Microscopy (LSCM) with Atomic Force Microscopy (AFM). The stiffness, and hence the modulus, of the microcapsules was found to decrease with an increase in size with the average stiffness ranging from 82 to 111 mN m-1 and average Young's modulus ranging from 0.4 to 6.5 MPa. The forces required to rupture the microcapsules varied from 150 to 250 nN with deformations of the microcapsules up to 62 to 110% relative to their radius, respectively. Three dimensional images obtained using laser scanning confocal microscopy showed that the microcapsules retained their structure and shape after being subjected to large deformations and subsequent removal of the loads. Based on the above observations, the oil filled chitosan crosslinked microcapsules are an ideal choice for use in the food and pharmaceutical industries as they would be able to withstand the process conditions encountered.
Collapse
Affiliation(s)
- Srinivas Mettu
- School of Chemistry, The University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia.
| | | | | | | | | |
Collapse
|
20
|
Relation between colour- and phase changes of a leuco dye-based thermochromic composite. Sci Rep 2018; 8:5511. [PMID: 29615711 PMCID: PMC5882991 DOI: 10.1038/s41598-018-23789-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 03/20/2018] [Indexed: 11/12/2022] Open
Abstract
Reversible colour change of leuco dye-based composites is in general closely related to their phase change, thus the two phenomena should occur at around the same temperature and should be influenced similarly. However, spatial confinement of the analysed sample affects the change in colour differently compared to its phase transition and the most pronounced effects can be observed during cooling. The bulk composite is coloured while still liquid and the colour hysteresis does not exhibit a loop. In an open-porous medium the colouration coincides well with the crystallization and the colour hysteresis widens to about 4 °C. Microencapsulated composite exhibits two crystallization processes, one of them taking place at the bulk crystallization temperature and the other one at about 20 °C lower. Under such conditions the composite is coloured just before the onset of the second crystallization, i.e. about 15 °C below crystallization in the bulk, and the corresponding colour hysteresis widens to 18 °C. The two crystallization forms are thermally independent and have the same crystalline structure. These effects should be taken into account when designing future applications where the phase-changing materials are implemented.
Collapse
|
21
|
Nguon O, Lagugné-Labarthet F, Brandys FA, Li J, Gillies ER. Microencapsulation by in situ Polymerization of Amino Resins. POLYM REV 2017. [DOI: 10.1080/15583724.2017.1364765] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Olivier Nguon
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
- 3M Canada Company, London, Ontario, Canada
| | | | | | - Jian Li
- 3M Canada Company, London, Ontario, Canada
| | - Elizabeth R. Gillies
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
22
|
Dardelle G, Jacquemond M, Erni P. Delivery Systems for Low Molecular Weight Payloads: Core/Shell Capsules with Composite Coacervate/Polyurea Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1606099. [PMID: 28370381 DOI: 10.1002/adma.201606099] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/15/2017] [Indexed: 06/07/2023]
Abstract
Composite polyurea/coacervate core/shell capsules are formed by coupling associative biopolymer phase separation with interfacial polymerization. They combine the excellent chemical stability of synthetic polymer barriers with the strong adhesive properties of protein-based complex coacervates, inspired by biological underwater glues. To encapsulate volatile oil droplets, a primary coacervate hydrogel capsule is formed by a protein and weak polyanion and is reinforced with a polyurea membrane synthesized in situ at the interface between the coacervate and the oil core. The polyurea layer provides an excellent permeability barrier against diffusion of small volatile molecules while the coacervate portion of the shell enhances adhesion on the targeted substrate.
Collapse
Affiliation(s)
- Gregory Dardelle
- Firmenich SA, Materials Science Department, Corporate Research Division, 1217, Meyrin 2, Geneva, Switzerland
| | - Marlène Jacquemond
- Firmenich SA, Materials Science Department, Corporate Research Division, 1217, Meyrin 2, Geneva, Switzerland
| | - Philipp Erni
- Firmenich SA, Materials Science Department, Corporate Research Division, 1217, Meyrin 2, Geneva, Switzerland
| |
Collapse
|
23
|
Wan W, Lu H, Shen S, Shen Y. Effect of alignment angle on the alignment accuracy of a miniature rotation robot for microscopy imaging. INT J ADV ROBOT SYST 2017. [DOI: 10.1177/1729881417703570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Wenfeng Wan
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Haojian Lu
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Shihui Shen
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Yajing Shen
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong
| |
Collapse
|
24
|
León G, Paret N, Fankhauser P, Grenno D, Erni P, Ouali L, Berthier DL. Formaldehyde-free melamine microcapsules as core/shell delivery systems for encapsulation of volatile active ingredients. RSC Adv 2017. [DOI: 10.1039/c7ra01413a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The release of volatile bioactive molecules, such as fragrances, can be controlled by microencapsulation in core–shell polymeric delivery systems.
Collapse
Affiliation(s)
- G. León
- Firmenich SA
- Corporate Research Division
- 1211 Genève 8
- Switzerland
| | - N. Paret
- Firmenich SA
- Corporate Research Division
- 1211 Genève 8
- Switzerland
| | - P. Fankhauser
- Firmenich SA
- Corporate Research Division
- 1211 Genève 8
- Switzerland
| | - D. Grenno
- Firmenich SA
- Corporate Research Division
- 1211 Genève 8
- Switzerland
| | - P. Erni
- Firmenich SA
- Corporate Research Division
- 1211 Genève 8
- Switzerland
| | - L. Ouali
- Firmenich SA
- Corporate Research Division
- 1211 Genève 8
- Switzerland
| | - D. L. Berthier
- Firmenich SA
- Corporate Research Division
- 1211 Genève 8
- Switzerland
| |
Collapse
|
25
|
Heidari H, Rivero G, Idrissi H, Ramachandran D, Cakir S, Egoavil R, Kurttepeli M, Crabbé AC, Hauffman T, Terryn H, Du Prez F, Schryvers D. Melamine-Formaldehyde Microcapsules: Micro- and Nanostructural Characterization with Electron Microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2016; 22:1222-1232. [PMID: 27998368 DOI: 10.1017/s1431927616012484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A systematic study has been carried out to compare the surface morphology, shell thickness, mechanical properties, and binding behavior of melamine-formaldehyde microcapsules of 5-30 μm diameter size with various amounts of core content by using scanning and transmission electron microscopy including electron tomography, in situ nanomechanical tensile testing, and electron energy-loss spectroscopy. It is found that porosities are present on the outside surface of the capsule shell, but not on the inner surface of the shell. Nanomechanical tensile tests on the capsule shells reveal that Young's modulus of the shell material is higher than that of bulk melamine-formaldehyde and that the shells exhibit a larger fracture strain compared with the bulk. Core-loss elemental analysis of microcapsules embedded in epoxy indicates that during the curing process, the microcapsule-matrix interface remains uniform and the epoxy matrix penetrates into the surface micro-porosities of the capsule shells.
Collapse
Affiliation(s)
- Hamed Heidari
- 1Electron Microscopy for Materials Science (EMAT),University of Antwerp,Groenenborgerlaan 171,2020 Antwerp,Belgium
| | - Guadalupe Rivero
- 2Department of Organic and Macromolecular Chemistry,Polymer Chemistry Research Group,Ghent University,Krijgslaan 281 S4,9000 Ghent,Belgium
| | - Hosni Idrissi
- 1Electron Microscopy for Materials Science (EMAT),University of Antwerp,Groenenborgerlaan 171,2020 Antwerp,Belgium
| | - Dhanya Ramachandran
- 1Electron Microscopy for Materials Science (EMAT),University of Antwerp,Groenenborgerlaan 171,2020 Antwerp,Belgium
| | - Seda Cakir
- 2Department of Organic and Macromolecular Chemistry,Polymer Chemistry Research Group,Ghent University,Krijgslaan 281 S4,9000 Ghent,Belgium
| | - Ricardo Egoavil
- 1Electron Microscopy for Materials Science (EMAT),University of Antwerp,Groenenborgerlaan 171,2020 Antwerp,Belgium
| | - Mert Kurttepeli
- 1Electron Microscopy for Materials Science (EMAT),University of Antwerp,Groenenborgerlaan 171,2020 Antwerp,Belgium
| | - Amandine C Crabbé
- 5Research Group Electrochemical and Surface Engineering (SURF),Department of Materials and Chemistry,Vrije Universiteit Brussel,Pleinlaan 2,1050 Brussels,Belgium
| | - Tom Hauffman
- 5Research Group Electrochemical and Surface Engineering (SURF),Department of Materials and Chemistry,Vrije Universiteit Brussel,Pleinlaan 2,1050 Brussels,Belgium
| | - Herman Terryn
- 5Research Group Electrochemical and Surface Engineering (SURF),Department of Materials and Chemistry,Vrije Universiteit Brussel,Pleinlaan 2,1050 Brussels,Belgium
| | - Filip Du Prez
- 2Department of Organic and Macromolecular Chemistry,Polymer Chemistry Research Group,Ghent University,Krijgslaan 281 S4,9000 Ghent,Belgium
| | - Dominique Schryvers
- 1Electron Microscopy for Materials Science (EMAT),University of Antwerp,Groenenborgerlaan 171,2020 Antwerp,Belgium
| |
Collapse
|
26
|
Mettu S, Zhou M, Tardy BL, Ashokkumar M, Dagastine RR. Temperature dependent mechanical properties of air, oil and water filled microcapsules studied by atomic force microscopy. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.02.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Ma W, Zhang W, Zhao Y, Wang S. Estimation of the mechanical properties of urea-formaldehyde microcapsules by compression tests and finite element analysis. J Appl Polym Sci 2016. [DOI: 10.1002/app.43414] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Wanpeng Ma
- Science and Technology on Remanufacturing Laboratory; Academy of Armored Forces Engineering; Beijing 100072 China
| | - Wei Zhang
- Science and Technology on Remanufacturing Laboratory; Academy of Armored Forces Engineering; Beijing 100072 China
| | - Yang Zhao
- Science and Technology on Remanufacturing Laboratory; Academy of Armored Forces Engineering; Beijing 100072 China
| | - Sijie Wang
- Science and Technology on Remanufacturing Laboratory; Academy of Armored Forces Engineering; Beijing 100072 China
| |
Collapse
|
28
|
Pan HM, Seuss M, Neubauer MP, Trau DW, Fery A. Tuning the Mechanical Properties of Hydrogel Core-Shell Particles by Inwards Interweaving Self-Assembly. ACS APPLIED MATERIALS & INTERFACES 2016; 8:1493-1500. [PMID: 26691168 DOI: 10.1021/acsami.5b10886] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Mechanical properties of hydrogel particles are of importance for their interactions with cells or tissue, apart from their relevance to other applications. While so far the majority of works aiming at tuning particle mechanics relied on chemical cross-linking, we report a novel approach using inwards interweaving self-assembly of poly(allylamine) (PA) and poly(styrenesulfonic acid) (PSSA) on agarose gel beads. Using this technique, shell thicknesses up to tens of micrometers can be achieved from single-polymer incubations and accurately controlled by varying the polymer concentration or incubation period. We quantified the changes in mechanical properties of hydrogel core-shell particles. The effective elastic modulus of core-shell particles was determined from force spectroscopy measurements using the colloidal probe-AFM (CP-AFM) technique. By varying the shell thickness between 10 and 24 μm, the elastic modulus of particles can be tuned in the range of 10-190 kPa and further increased by increasing the layer number. Through fluorescence quantitative measurements, the polymeric shell density was found to increase together with shell thickness and layer number, hence establishing a positive correlation between elastic modulus and shell density of core-shell particles. This is a valuable method for constructing multidensity or single-density shells of tunable thickness and is particularly important in mechanobiology as studies have reported enhanced cellular uptake of particles in the low-kilopascal range (<140 kPa). We anticipate that our results will provide the first steps toward the rational design of core-shell particles for the separation of biomolecules or systemic study of stiffness-dependent cellular uptake.
Collapse
Affiliation(s)
- Houwen Matthew Pan
- Department of Biomedical Engineering, National University of Singapore , 4 Engineering Drive 3, Singapore, S117583, Singapore
| | - Maximilian Seuss
- Department of Physical Chemistry II, University of Bayreuth , Universitätsstraße 30, 95447 Bayreuth, Germany
- Leibniz Institut für Polymerforschung Dresden e.V. , Hohe Straße 6, 01069 Dresden, Germany
| | - Martin P Neubauer
- Department of Physical Chemistry II, University of Bayreuth , Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Dieter W Trau
- Department of Biomedical Engineering, National University of Singapore , 4 Engineering Drive 3, Singapore, S117583, Singapore
| | - Andreas Fery
- Department of Physical Chemistry II, University of Bayreuth , Universitätsstraße 30, 95447 Bayreuth, Germany
- Leibniz Institut für Polymerforschung Dresden e.V. , Hohe Straße 6, 01069 Dresden, Germany
- Department of Physical Chemistry of Polymeric Materials, Technische Universität Dresden , Hohe Straße 6, 01069 Dresden, Germany
| |
Collapse
|
29
|
Wu Y, Shen J, Larcinese-Hafner V, Erni P, Ouali L. Hybrid microcapsules with tunable properties via Pickering emulsion templates for the encapsulation of bioactive volatiles. RSC Adv 2016. [DOI: 10.1039/c6ra21338c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hybrid microcapsules with tunable properties and low permeability were fabricated via Pickering emulsion templates for the encapsulation of bioactive volatiles.
Collapse
Affiliation(s)
- Yongtao Wu
- Firmenich Aromatics (China) Co., Ltd
- Shanghai 201108
- China
| | - Jiajun Shen
- Firmenich Aromatics (China) Co., Ltd
- Shanghai 201108
- China
| | | | - Philipp Erni
- Firmenich SA
- Cooperate Research Division
- CH-1211 Geneva 8
- Switzerland
| | - Lahoussine Ouali
- Firmenich SA
- Cooperate Research Division
- CH-1211 Geneva 8
- Switzerland
| |
Collapse
|
30
|
Multidirectional Image Sensing for Microscopy Based on a Rotatable Robot. SENSORS 2015; 15:31566-80. [PMID: 26694391 PMCID: PMC4721792 DOI: 10.3390/s151229872] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 12/03/2015] [Accepted: 12/10/2015] [Indexed: 11/17/2022]
Abstract
Image sensing at a small scale is essentially important in many fields, including microsample observation, defect inspection, material characterization and so on. However, nowadays, multi-directional micro object imaging is still very challenging due to the limited field of view (FOV) of microscopes. This paper reports a novel approach for multi-directional image sensing in microscopes by developing a rotatable robot. First, a robot with endless rotation ability is designed and integrated with the microscope. Then, the micro object is aligned to the rotation axis of the robot automatically based on the proposed forward-backward alignment strategy. After that, multi-directional images of the sample can be obtained by rotating the robot within one revolution under the microscope. To demonstrate the versatility of this approach, we view various types of micro samples from multiple directions in both optical microscopy and scanning electron microscopy, and panoramic images of the samples are processed as well. The proposed method paves a new way for the microscopy image sensing, and we believe it could have significant impact in many fields, especially for sample detection, manipulation and characterization at a small scale.
Collapse
|
31
|
Li Z, Yang T, Lin C, Li Q, Liu S, Xu F, Wang H, Cui X. Sonochemical Synthesis of Hydrophilic Drug Loaded Multifunctional Bovine Serum Albumin Nanocapsules. ACS APPLIED MATERIALS & INTERFACES 2015; 7:19390-19397. [PMID: 26271517 DOI: 10.1021/acsami.5b05558] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A facile sonochemical approach is designed to fabricate protein nanocapsules for hydrophilic drugs (HDs), and HD-loaded multifunctional bovine serum albumin (BSA) nanocapsules (MBNCs) have been prepared for the first time. The as-synthesized HD-loaded MBNCs have a satisfying size range and an excellent magnetic responsive ability. Moreover, high-dose hydrophilic drugs could be loaded into the MBNCs. As carriers, HD-loaded MBNCs also show attractive redox-responsive controlled release ability for hydrophilic drugs and could be internalized selectively by the tumor cells through the folate-mediated endocytosis.
Collapse
Affiliation(s)
- Zhanfeng Li
- College of Chemistry and ‡College of Life Sciences, Jilin University , Changchun 130012, China
| | - Ting Yang
- College of Chemistry and ‡College of Life Sciences, Jilin University , Changchun 130012, China
| | - Chunming Lin
- College of Chemistry and ‡College of Life Sciences, Jilin University , Changchun 130012, China
| | - Quanshun Li
- College of Chemistry and ‡College of Life Sciences, Jilin University , Changchun 130012, China
| | - Songfeng Liu
- College of Chemistry and ‡College of Life Sciences, Jilin University , Changchun 130012, China
| | - Fengzhi Xu
- College of Chemistry and ‡College of Life Sciences, Jilin University , Changchun 130012, China
| | - Hongyan Wang
- College of Chemistry and ‡College of Life Sciences, Jilin University , Changchun 130012, China
| | - Xuejun Cui
- College of Chemistry and ‡College of Life Sciences, Jilin University , Changchun 130012, China
| |
Collapse
|
32
|
Sánchez-Navarro MM, Pérez-Limiñana MÁ, Arán-Ais F, Orgilés-Barceló C. Scent properties by natural fragrance microencapsulation for footwear applications. POLYM INT 2015. [DOI: 10.1002/pi.4941] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
| | - M Ángeles Pérez-Limiñana
- Spanish Footwear Technology Institute; INESCOP, Pol. Industrial Campo Alto; 3600 Elda Alicante Spain
| | - Francisca Arán-Ais
- Spanish Footwear Technology Institute; INESCOP, Pol. Industrial Campo Alto; 3600 Elda Alicante Spain
| | - César Orgilés-Barceló
- Spanish Footwear Technology Institute; INESCOP, Pol. Industrial Campo Alto; 3600 Elda Alicante Spain
| |
Collapse
|
33
|
Charlon M, Trachsel A, Paret N, Frascotti L, Berthier DL, Herrmann A. “Old” chemistry in a new context: photocleavable 2-oxoacetate-containing latex dispersions and core–shell microcapsules for the controlled release of volatile compounds. Polym Chem 2015. [DOI: 10.1039/c5py00162e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2-Oxoacetates polymerised into nanoparticles or encapsulated in microcapsules are stable against hydrolysis and release fragrances on UVA irradiation.
Collapse
Affiliation(s)
- Marine Charlon
- Firmenich SA
- Materials Science
- Corporate R&D Division
- CH-1211 Genève 8
- Switzerland
| | - Alain Trachsel
- Firmenich SA
- Materials Science
- Corporate R&D Division
- CH-1211 Genève 8
- Switzerland
| | - Nicolas Paret
- Firmenich SA
- Materials Science
- Corporate R&D Division
- CH-1211 Genève 8
- Switzerland
| | - Laurence Frascotti
- Firmenich SA
- Materials Science
- Corporate R&D Division
- CH-1211 Genève 8
- Switzerland
| | - Damien L. Berthier
- Firmenich SA
- Materials Science
- Corporate R&D Division
- CH-1211 Genève 8
- Switzerland
| | - Andreas Herrmann
- Firmenich SA
- Materials Science
- Corporate R&D Division
- CH-1211 Genève 8
- Switzerland
| |
Collapse
|
34
|
Li Z, Zhang C, Wang B, Wang H, Chen X, Möhwald H, Cui X. Sonochemical fabrication of dual-targeted redox-responsive smart microcarriers. ACS APPLIED MATERIALS & INTERFACES 2014; 6:22166-22173. [PMID: 25478992 DOI: 10.1021/am5057097] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In the present study, the molecular and magnetic dual-targeted redox-responsive folic acid-cysteine-Fe3O4 microcapsules (FA-Cys-Fe3O4 MCs) have been synthesized via the sonochemical technique, and targeting molecule (folic acid) and Fe3O4 magnetic nanoparticles are introduced into the microcapsule shells successfully. The obtained FA-Cys-Fe3O4 MCs show excellent magnetic responsive ability by the oriented motion under an external magnetic field. The hydrophobic fluorescent dye (Coumarin 6) is successfully loaded into the FA-Cys-Fe3O4 MCs, demonstrating that it could be also easily realized to encapsulate hydrophobic drugs into the FA-Cys-Fe3O4 MCs when the drugs are dispersed into the oil phase before sonication. Cellular uptake demonstrates that FA-Cys-Fe3O4 MCs could target selectively the cells via folate-receptor-mediated endocytosis. Moreover, the FA-Cys-Fe3O4 MCs show their potential ability to be an attractive carrier for drug controlled release owing to the redox responsiveness of the disulfide in the microcapsule shells.
Collapse
Affiliation(s)
- Zhanfeng Li
- College of Chemistry, Jilin University , Changchun, 130012, P. R. China
| | | | | | | | | | | | | |
Collapse
|
35
|
Neubauer MP, Poehlmann M, Fery A. Microcapsule mechanics: from stability to function. Adv Colloid Interface Sci 2014; 207:65-80. [PMID: 24345731 DOI: 10.1016/j.cis.2013.11.016] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 11/18/2013] [Accepted: 11/21/2013] [Indexed: 01/22/2023]
Abstract
Microcapsules are reviewed with special emphasis on the relevance of controlled mechanical properties for functional aspects. At first, assembly strategies are presented that allow control over the decisive geometrical parameters, diameter and wall thickness, which both influence the capsule's mechanical performance. As one of the most powerful approaches the layer-by-layer technique is identified. Subsequently, ensemble and, in particular, single-capsule deformation techniques are discussed. The latter generally provide more in-depth information and cover the complete range of applicable forces from smaller than pN to N. In a theory chapter, we illustrate the physics of capsule deformation. The main focus is on thin shell theory, which provides a useful approximation for many deformation scenarios. Finally, we give an overview of applications and future perspectives where the specific design of mechanical properties turns microcapsules into (multi-)functional devices, enriching especially life sciences and material sciences.
Collapse
|
36
|
Dardelle G, Erni P. Three-phase interactions and interfacial transport phenomena in coacervate/oil/water systems. Adv Colloid Interface Sci 2014; 206:79-91. [PMID: 24268195 DOI: 10.1016/j.cis.2013.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 10/01/2013] [Indexed: 11/19/2022]
Abstract
Complex coacervation is an associative liquid/liquid phase separation resulting in the formation of two liquid phases: a polymer-rich coacervate phase and a dilute continuous solvent phase. In the presence of a third liquid phase in the form of disperse oil droplets, the coacervate phase tends to wet the oil/water interface. This affinity has long been known and used for the formation of core/shell capsules. However, while encapsulation by simple or complex coacervation has been used empirically for decades, there is a lack of a thorough understanding of the three-phase wetting phenomena that control the formation of encapsulated, compound droplets and the role of the viscoelasticity of the biopolymers involved. In this contribution, we review and discuss the interplay of wetting phenomena and fluid viscoelasticity in coacervate/oil/water systems from the perspective of colloid chemistry and fluid dynamics, focusing on aspects of rheology, interfacial tension measurements at the coacervate/solvent interface, and on the formation and fragmentation of three-phase compound drops.
Collapse
Affiliation(s)
- Gregory Dardelle
- Firmenich SA, Corporate Research Division, Materials Science Department, 1217 Meyrin, Geneva, Switzerland
| | - Philipp Erni
- Firmenich SA, Corporate Research Division, Materials Science Department, 1217 Meyrin, Geneva, Switzerland.
| |
Collapse
|
37
|
Poehlmann M, Grishenkov D, Kothapalli SVVN, Härmark J, Hebert H, Philipp A, Hoeller R, Seuss M, Kuttner C, Margheritelli S, Paradossi G, Fery A. On the interplay of shell structure with low- and high-frequency mechanics of multifunctional magnetic microbubbles. SOFT MATTER 2014; 10:214-26. [PMID: 24651844 DOI: 10.1039/c3sm51560e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Polymer-shelled magnetic microbubbles have great potential as hybrid contrast agents for ultrasound and magnetic resonance imaging. In this work, we studied US/MRI contrast agents based on air-filled poly(vinyl alcohol)-shelled microbubbles combined with superparamagnetic iron oxide nanoparticles (SPIONs). The SPIONs are integrated either physically or chemically into the polymeric shell of the microbubbles (MBs). As a result, two different designs of a hybrid contrast agent are obtained. With the physical approach, SPIONs are embedded inside the polymeric shell and with the chemical approach SPIONs are covalently linked to the shell surface. The structural design of hybrid probes is important, because it strongly determines the contrast agent's response in the considered imaging methods. In particular, we were interested how structural differences affect the shell's mechanical properties, which play a key role for the MBs' US imaging performance. Therefore, we thoroughly characterized the MBs' geometric features and investigated low-frequency mechanics by using atomic force microscopy (AFM) and high-frequency mechanics by using acoustic tests. Thus, we were able to quantify the impact of the used SPIONs integration method on the shell's elastic modulus, shear modulus and shear viscosity. In summary, the suggested approach contributes to an improved understanding of structure-property relations in US-active hybrid contrast agents and thus provides the basis for their sustainable development and optimization.
Collapse
Affiliation(s)
- Melanie Poehlmann
- Department of Physical Chemistry II, University of Bayreuth, Universitätsstraße 30, DE-95440 Bayreuth, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kuttner C, Maier PC, Kunert C, Schlaad H, Fery A. Direct thiol-ene photocoating of polyorganosiloxane microparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:16119-16126. [PMID: 24320891 DOI: 10.1021/la4039864] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This work presents the modification of polyorganosiloxane microparticles by surface-initiated thiol-ene photochemistry. By this photocoating, we prepared different core/shell particles with a polymeric shell within narrow size distributions (PDI = 0.041-0.12). As core particle, we used highly monodisperse spherical polyorganosiloxane particles prepared from (3-mercaptopropyl)trimethoxysilane (MPTMS) with a radius of 0.49 μm. We utilize the high surface coverage of mercaptopropyl functions to generate surface-localized radicals upon irradiation with UVA-light without additional photoinitiator. The continuous generation of radicals was followed by a dye degradation experiment (UV/vis spectroscopy). Surface-localized radicals were used as copolymer anchoring sites ("grafting-onto" deposition of different PB-b-PS diblock copolymers) and polymerization initiators ("grafting-from" polymerization of PS). Photocoated particles were characterized for their morphology (SEM, TEM), size, and size distribution (DLS). For PS-coated particles, the polymer content (up to 24% in 24 h) was controlled by the polymerization time upon UVA exposure. The coating thickness was evaluated by thermogravimetric analysis (TGA) using a simple analytical core/shell model. Raman spectroscopy was applied to directly follow the time-dependent consumption of thiols by photoinitiation.
Collapse
Affiliation(s)
- Christian Kuttner
- Department of Physical Chemistry II, University of Bayreuth , Bayreuth 95440, Germany
| | | | | | | | | |
Collapse
|
39
|
Ma S, Natoli M, Liu X, Neubauer MP, Watt FM, Fery A, Huck WTS. Monodisperse collagen-gelatin beads as potential platforms for 3D cell culturing. J Mater Chem B 2013; 1:5128-5136. [PMID: 32261104 DOI: 10.1039/c3tb20851f] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A droplet-based microfluidics technique is used to produce monodisperse, 80 μm collagen-gelatin beads with tunable mechanical properties in the range of 1-10 kPa after photo-crosslinking. The gel beads are porous, mechanically robust and stable in buffer, but can be degraded enzymatically. Encapsulated fibroblast cells maintain 70% viability after one-week encapsulation and preliminary results show that the degree of spreading of cells in gels is correlated with the stiffness of the material.
Collapse
Affiliation(s)
- Shaohua Ma
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | | | | | | | | | | | | |
Collapse
|
40
|
Best JP, Neubauer MP, Javed S, Dam HH, Fery A, Caruso F. Mechanics of pH-responsive hydrogel capsules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:9814-9823. [PMID: 23886008 DOI: 10.1021/la402111v] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
While soft hydrogel nano- and microstructures hold great potential for therapeutic treatments and in vivo applications, their nanomechanical characterization remains a challenge. In this paper, soft, single-component, supported hydrogel films were fabricated using pendant-thiol-modified poly(methacrylic acid) (PMASH). The influence of hydrogel architecture on deformation properties was studied by fabricating films on particle supports and producing free-standing capsules. The influence of the degree of thiol-based cross-linking on the mechanical properties of the soft hydrogel systems (core-shell and capsules) was studied using a colloidal-probe (CP) AFM technique. It was found that film mechanical properties, stability, and capsule swelling could be finely tuned by controlling the extent of poly(methacrylic acid) thiol modification. Furthermore, switching the pH from 7.4 to 4.0 led to film densification due to increased hydrogen bonding. Hydrogel capsule systems were found to have stiffness values ranging from 0.9 to 16.9 mN m(-1) over a thiol modification range of 5 to 20 mol %. These values are significantly greater than those for previously reported PMASH planar films of 0.7-5.7 mN m(-1) over the same thiol modification range (Best et al., Soft Matter 2013, 9, 4580-4584). Films on particle substrates had comparable mechanical properties to planar films, demonstrating that while substrate geometry has a negligible effect, membrane and tension effects may play an important role in capsule force resistance. Further, when transitioning from solid-supported films to free-standing capsules, simple predictions of shell stiffness based on modulus changes found for supported films are not valid. Rather, additional effects like diameter increases (geometrical changes) as well as tension buildup need to be taken into account. These results are important for research related to the characterization of soft hydrogel materials and control over their mechanical properties.
Collapse
Affiliation(s)
- James P Best
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | |
Collapse
|
41
|
Erni P, Dardelle G, Sillick M, Wong K, Beaussoubre P, Fieber W. Turning coacervates into biohybrid glass: core/shell capsules formed by silica precipitation in protein/polysaccharide scaffolds. Angew Chem Int Ed Engl 2013; 52:10334-8. [PMID: 23881535 DOI: 10.1002/anie.201303489] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Indexed: 11/05/2022]
Affiliation(s)
- Philipp Erni
- Research Division, Materials Science Department, Firmenich SA, 7 Rue de la Bergère, 1217 Meyrin 2 Genève (Switzerland).
| | | | | | | | | | | |
Collapse
|
42
|
Erni P, Dardelle G, Sillick M, Wong K, Beaussoubre P, Fieber W. Turning Coacervates into Biohybrid Glass: Core/Shell Capsules Formed by Silica Precipitation in Protein/Polysaccharide Scaffolds. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201303489] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
Mechanical double layer model for Saccharomyces Cerevisiae cell wall. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2013; 42:613-20. [DOI: 10.1007/s00249-013-0909-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 04/22/2013] [Accepted: 04/23/2013] [Indexed: 01/30/2023]
|
44
|
Pan X, Mercadé-Prieto R, York D, Preece JA, Zhang Z. Structure and Mechanical Properties of Consumer-Friendly PMMA Microcapsules. Ind Eng Chem Res 2013. [DOI: 10.1021/ie303451s] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Xuemiao Pan
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15
2TT, U.K
| | - Ruben Mercadé-Prieto
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15
2TT, U.K
| | - David York
- School of Process,
Environmental
and Materials Engineering, Engineering Building, University of Leeds, Leeds LS2 9JT, U.K
| | - Jon A. Preece
- School of Process,
Environmental
and Materials Engineering, Engineering Building, University of Leeds, Leeds LS2 9JT, U.K
| | - Zhibing Zhang
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15
2TT, U.K
| |
Collapse
|