1
|
Sato T, Dunderdale GJ, Hozumi A. Threshold of Surface Initiator Concentration for Polymer Brush Growth by Surface-Initiated Atom Transfer Radical Polymerization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:480-488. [PMID: 38127729 DOI: 10.1021/acs.langmuir.3c02756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The surface modification of various materials by grafting functional molecules has attracted much attention from fundamental research to practical applications because of its ability to impart various physical and chemical properties to the surfaces. One promising approach is the use of polymer brushes synthesized by atom transfer radical polymerization (ATRP) from surface-tethered initiators (SIs). In this study, for the purpose of controlling the grafting amounts/densities of polymer brushes, we developed a facile method to precisely regulate SI concentrations of SI layers (SILs) by serial dilution based on a sol-gel method. By simply mixing organosilanes terminated with and without an initiator group ((p-chloromethyl) phenyltrimethoxysilane (CMPTMS) and phenyltrimethoxysilane (PTMS), respectively) with tetraethoxysilane (TEOS), SI concentrations of SILs could be arbitrarily tuned precisely by varying dilution factors of (CMPTMS + PTMS)/CMPTMS (DFs, 1-107). The resulting SILs prepared at different DFs were highly smooth and transparent. X-ray photoelectron spectroscopy (XPS) also confirmed that the SIs were homogeneously distributed at the topmost surface of the SILs and their concentrations were proven to be accurately and precisely controlled from high to extremely low, comparable to theoretical values. Subsequent SI-ATRP in air ("paint-on" SI-ATRP) of two different types of monomers (hydrophobic/nonionic (2,3,4,5,6-pentafluorostyrene) and hydrophilic/ionic (sodium 4-styrenesulfonate)) demonstrated that polymer brushes with different grafting amounts/densities were successfully grafted only from SILs with DFs of 1-104 (theoretical SI concentrations: 3.9 × 10-4 ∼ 3.5 units/nm2), while at DFs of 105 and above (theoretical SI concentrations: <3.9 × 10-5 units/nm2), no sign of polymer brush growth was confirmed by thickness, XPS, and water contact angle data. Therefore, we are the first to gather evidence that the approximate threshold of SI concentration required for "paint-on" SI-ATRP might be on the order of 10-4 ∼ 10-5 units/nm2.
Collapse
Affiliation(s)
- Tomoya Sato
- National Institute of Advanced Industrial Science and Technology (AIST), 4-205, Sakurazaka, Moriyama, Nagoya 463-8560, Japan
| | - Gary J Dunderdale
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, U.K
| | - Atsushi Hozumi
- National Institute of Advanced Industrial Science and Technology (AIST), 4-205, Sakurazaka, Moriyama, Nagoya 463-8560, Japan
| |
Collapse
|
2
|
Xu B, Feng C, Lv Y, Lin S, Lu G, Huang X. Biomimetic Asymmetric Polymer Brush Coatings Bearing Fencelike Conformation Exhibit Superior Protection and Antifouling Performance. ACS APPLIED MATERIALS & INTERFACES 2020; 12:1588-1596. [PMID: 31840506 DOI: 10.1021/acsami.9b19230] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Antifouling surfaces with optimized conformation and compositional heterogeneities are presented with the goal of improving the efficacy of surface protection. The approach exploits the adhesive group (thiol or catechol chain end) to anchor asymmetric polymer brushes (APBs) bearing amphiphilic side chains with synergistic nonfouling and fouling-release abilities onto the surface. The conformation of the APB surface is close to the fencelike structure, which mimics lubricating protein lubricin, endowing the surface with capacity of enhanced protection and antiadhesivity, even facing the high compression of fouling. By utilizing a poly(Br-acrylate-alkyne) macroagent comprising alkynyl and 2-bromopropionate groups, we prepared a series of APB surfaces based on polyacrylate-g-poly(ethylene oxide)/poly(pentafluorophenyl methacrylate) (PA-g-PEO/PPFMA) APBs to explore the influence of the content of the fluorinated segment and bioinspired topological polymer chemistry on their antifouling performance. The APB surfaces can not only provide compositional heterogeneities of PEO and fluorinated segments in each side chain but also give a high surface coverage because of the characteristic of high grafting density of macromolecular brushes. It was found for the first time, as far as we are aware, the fencelike APB surface shows excellent antifouling performance with less protein adsorption (up to 91% off) and cell adhesion (up to 84% off) in comparison with the controlled substrate under relatively long incubation time.
Collapse
Affiliation(s)
- Binbin Xu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , People's Republic of China
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , People's Republic of China
| | - Chun Feng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , People's Republic of China
| | - Yisheng Lv
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , People's Republic of China
| | - Shaoliang Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , People's Republic of China
| | - Guolin Lu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , People's Republic of China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , People's Republic of China
| |
Collapse
|
3
|
Zhao H, Sha J, Wang X, Jiang Y, Chen T, Wu T, Chen X, Ji H, Gao Y, Xie L, Ma Y. Spatiotemporal control of polymer brush formation through photoinduced radical polymerization regulated by DMD light modulation. LAB ON A CHIP 2019; 19:2651-2662. [PMID: 31250865 DOI: 10.1039/c9lc00419j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Spatially arranged polymer brushes provide the essential capability of precisely regulating the surface physicochemical and functional properties of various substrates. A novel and flexible polymer brush patterning methodology, which is based on employing a digital mirror device (DMD)-based light modulation technique to spatiotemporally regulate a surface-initiated photoinduced atom transfer radical polymerization (photo-ATRP) process, is presented. Various characterization techniques confirm that the spatially and/or temporally controlled brush formation results in complex PEG-derived brush patterns in accordance with a customized digital image design. A series of step-and-exposure strategies, including in situ multiple exposure, dynamic multiple exposure and dynamic sequential exposure, are developed to implement spatiotemporal regulation of the photo-ATRP process, leading to complex patterned and gradient brushes featuring binary functionalities, pyramid nanostructures and radial directional chemical gradients. Moreover, tunable and radial directional concentration gradients of various biomacromolecules (e.g., streptavidin) are obtained through preparation of height gradients of azido-functionalized brushes and subsequent orthogonal chemical activation aimed at specific protein immobilization. Finally, a unidirectional concentration gradient of fibronectin, surrounded by non-fouling PEG brushes, is fabricated and applied for human umbilical vein endothelial cell (HUVEC) adhesion experiments, whose preliminary results indicate gradient-dependent cell adhesion behavior in response to the concentration gradient of fibronectin. The presented fabrication technique could be integrated with microfluidic devices for sensors and bio-reactors, paving the way for novel approaches for lab-on-a-chip technologies.
Collapse
Affiliation(s)
- Haili Zhao
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, China.
| | - Jin Sha
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, China.
| | - Xiaofeng Wang
- National Center for International Joint Research of Micro-nano Molding Technology, School of Mechanics and Engineering Sciences, Zhengzhou University, Zhengzhou, China
| | - Yongchao Jiang
- National Center for International Joint Research of Micro-nano Molding Technology, School of Mechanics and Engineering Sciences, Zhengzhou University, Zhengzhou, China
| | - Tao Chen
- School of Physics and Astronomy, Yunnan University, Kunming, China
| | - Tong Wu
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xin Chen
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, China.
| | - Huajian Ji
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, China.
| | - Yang Gao
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, China.
| | - Linsheng Xie
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, China.
| | - Yulu Ma
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
4
|
Sato T, Dunderdale GJ, Urata C, Hozumi A. Sol–Gel Preparation of Initiator Layers for Surface-Initiated ATRP: Large-Scale Formation of Polymer Brushes Is Not a Dream. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b02234] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Tomoya Sato
- National Institute of Advanced Industrial
Science and Technology (AIST), 2266-98, Anagahora,
Shimoshidami, Moriyama, Nagoya 463-8560, Japan
| | - Gary J. Dunderdale
- National Institute of Advanced Industrial
Science and Technology (AIST), 2266-98, Anagahora,
Shimoshidami, Moriyama, Nagoya 463-8560, Japan
| | - Chihiro Urata
- National Institute of Advanced Industrial
Science and Technology (AIST), 2266-98, Anagahora,
Shimoshidami, Moriyama, Nagoya 463-8560, Japan
| | - Atsushi Hozumi
- National Institute of Advanced Industrial
Science and Technology (AIST), 2266-98, Anagahora,
Shimoshidami, Moriyama, Nagoya 463-8560, Japan
| |
Collapse
|
5
|
Shen D, Xu B, Huang X, Zhuang Q, Lin S. (PtBA-co-PPEGMEMA-co-PDOMA)-g-PPFA polymer brushes synthesized by sequential RAFT polymerization and ATRP. Polym Chem 2018. [DOI: 10.1039/c8py00470f] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This article reports the synthesis of semi-fluorinated (PtBA-co-PPEGMEMA-co-PDOMA)-g-PPFA polymer brushes for self-cleaning anti-fouling surfaces.
Collapse
Affiliation(s)
- Dingfeng Shen
- Shanghai Key Laboratory of Advanced Polymeric Materials
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Binbin Xu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| | - Qixin Zhuang
- Shanghai Key Laboratory of Advanced Polymeric Materials
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Shaoliang Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| |
Collapse
|
6
|
Shi Y, Menzies DJ, Tsang KM, Del Borgo MP, Easton CD, Aguilar M, Perlmutter P, Truong VX, Forsythe JS. A versatile and rapid coating method via a combination of plasma polymerization and surface‐initiated SET‐LRP for the fabrication of low‐fouling surfaces. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28646] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yue Shi
- Department of Material Science and EngineeringMonash Institute of Medical Engineering, Monash UniversityVictoria3800 Australia
| | | | - Kelly M. Tsang
- Department of Material Science and EngineeringMonash Institute of Medical Engineering, Monash UniversityVictoria3800 Australia
| | - Mark P. Del Borgo
- Department of Biochemistry & Molecular BiologyMonash Biomedicine Discovery Institute, Monash UniversityVictoria3800 Australia
| | | | - Marie‐Isabel Aguilar
- Department of Biochemistry & Molecular BiologyMonash Biomedicine Discovery Institute, Monash UniversityVictoria3800 Australia
| | | | - Vinh X. Truong
- Department of Material Science and EngineeringMonash Institute of Medical Engineering, Monash UniversityVictoria3800 Australia
| | - John S. Forsythe
- Department of Material Science and EngineeringMonash Institute of Medical Engineering, Monash UniversityVictoria3800 Australia
| |
Collapse
|
7
|
Xu B, Liu Y, Sun X, Hu J, Shi P, Huang X. Semifluorinated Synergistic Nonfouling/Fouling-Release Surface. ACS APPLIED MATERIALS & INTERFACES 2017; 9:16517-16523. [PMID: 28417636 DOI: 10.1021/acsami.7b03258] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The preparation of a fluorine-containing synergistic nonfouling/fouling-release surface, using a b-PFMA-PEO asymmetric molecular brush possessing both poly(ethylene glycol) (PEO) and poly(2,2,2-trifluoroethyl methacrylate) (PFMA) side chains densely distributed on the same repeat unit along the polymeric backbone, is reported. On the basis of the poly(Br-acrylate-alkyne) macroagent comprising two functionalities (alkynyl and 2-bromopropionate), which is prepared by reversible addition-fragmentation chain transfer homopolymerization of a new trifunctional acrylate monomer of Br-acrylate-alkyne, b-PFMA-PEO asymmetric molecular brushes are obtained by concurrent atom transfer radical polymerization and Cu-catalyzed azide/alkyne cycloaddition "click" reaction in a one-shot system. A spin-cast thin film of the b-PFMA-PEO asymmetric molecular brush exhibits a synergistic antifouling property, in which PEO side chains endow the surface with a nonfouling characteristic, whereas PFMA side chains display the fouling-release functionality because of their low surface energy. Both protein adsorption and cell adhesion tests provided estimates of the antifouling activity of the asymmetric molecular brush surfaces, which was demonstrated to be influenced by the degree of polymerization of the backbone and the length of the PEO and PFMA side chains. With compositional heterogeneities, all asymmetric molecular brush surfaces show considerable antifouling performance with much less protein adsorption (at least 45% off, up to 75% off) and cell adhesion (at least 70% off, up to 90% off) in comparison with a bare surface.
Collapse
Affiliation(s)
- Binbin Xu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Yajing Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Xiaowen Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , 220 Handan Road, Shanghai 200433, People's Republic of China
| | - Jianhua Hu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , 220 Handan Road, Shanghai 200433, People's Republic of China
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Road, Shanghai 200032, People's Republic of China
| |
Collapse
|
8
|
Zoppe JO, Ataman NC, Mocny P, Wang J, Moraes J, Klok HA. Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chem Rev 2017; 117:1105-1318. [PMID: 28135076 DOI: 10.1021/acs.chemrev.6b00314] [Citation(s) in RCA: 603] [Impact Index Per Article: 86.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The generation of polymer brushes by surface-initiated controlled radical polymerization (SI-CRP) techniques has become a powerful approach to tailor the chemical and physical properties of interfaces and has given rise to great advances in surface and interface engineering. Polymer brushes are defined as thin polymer films in which the individual polymer chains are tethered by one chain end to a solid interface. Significant advances have been made over the past years in the field of polymer brushes. This includes novel developments in SI-CRP, as well as the emergence of novel applications such as catalysis, electronics, nanomaterial synthesis and biosensing. Additionally, polymer brushes prepared via SI-CRP have been utilized to modify the surface of novel substrates such as natural fibers, polymer nanofibers, mesoporous materials, graphene, viruses and protein nanoparticles. The last years have also seen exciting advances in the chemical and physical characterization of polymer brushes, as well as an ever increasing set of computational and simulation tools that allow understanding and predictions of these surface-grafted polymer architectures. The aim of this contribution is to provide a comprehensive review that critically assesses recent advances in the field and highlights the opportunities and challenges for future work.
Collapse
Affiliation(s)
- Justin O Zoppe
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Nariye Cavusoglu Ataman
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Piotr Mocny
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Jian Wang
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - John Moraes
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| |
Collapse
|
9
|
Xu B, Sun X, Wu C, Hu J, Huang X. Construction of catechol-containing semi-fluorinated asymmetric polymer brush via successive RAFT polymerization and ATRP. Polym Chem 2017. [DOI: 10.1039/c7py01794d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article reports the synthesis of a semi-fluorinated compositional heterogeneous polymer brush for anti-fouling surface.
Collapse
Affiliation(s)
- Binbin Xu
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- People's Republic of China
| | - Xiaowen Sun
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- People's Republic of China
| | - Chaoqun Wu
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- People's Republic of China
| | - Jianhua Hu
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- People's Republic of China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| |
Collapse
|
10
|
Cao E, Prouzet E, Héroguez V. Harnessing the power of latex solutions based on titania particles − using si-ATRP towards larger surface modification for applications in gas separation membranes. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.04.066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Xiang T, Lu T, Xie Y, Zhao WF, Sun SD, Zhao CS. Zwitterionic polymer functionalization of polysulfone membrane with improved antifouling property and blood compatibility by combination of ATRP and click chemistry. Acta Biomater 2016; 40:162-171. [PMID: 27039977 DOI: 10.1016/j.actbio.2016.03.044] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 02/26/2016] [Accepted: 03/30/2016] [Indexed: 11/15/2022]
Abstract
The chemical compositions are very important for designing blood-contacting membranes with good antifouling property and blood compatibility. In this study, we propose a method combining ATRP and click chemistry to introduce zwitterionic polymer of poly(sulfobetaine methacrylate) (PSBMA), negatively charged polymers of poly(sodium methacrylate) (PNaMAA) and/or poly(sodium p-styrene sulfonate) (PNaSS), to improve the antifouling property and blood compatibility of polysulfone (PSf) membranes. Attenuated total reflectance-Fourier transform infrared spectra, X-ray photoelectron spectroscopy and water contact angle results confirmed the successful grafting of the functional polymers. The antifouling property and blood compatibility of the modified membranes were systematically investigated. The zwitterionic polymer (PSBMA) grafted membranes showed good resistance to protein adsorption and bacterial adhesion; the negatively charged polymer (PNaSS or PNaMAA) grafted membranes showed improved blood compatibility, especially the anticoagulant property. Moreover, the PSBMA/PNaMAA modified membrane showed both antifouling property and anticoagulant property, and exhibited a synergistic effect in inhibiting blood coagulation. The functionalization of membrane surfaces by a combination of ATRP and click chemistry is demonstrated as an effective route to improve the antifouling property and blood compatibility of membranes in blood-contact.
Collapse
Affiliation(s)
- Tao Xiang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Ting Lu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yi Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Wei-Feng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China; Fiber and Polymer Technology, School of Chemical Science and Engineering, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden.
| | - Shu-Dong Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Chang-Sheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
12
|
Styan KE, Easton CD, Weaver LG, Meagher L. One-Reactant Photografting of ATRP Initiators for Surface-Initiated Polymerization. Macromol Rapid Commun 2016; 37:1079-86. [PMID: 27145108 DOI: 10.1002/marc.201600059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/14/2016] [Indexed: 01/26/2023]
Abstract
Self-initiated photografting polymerization is used to couple the polymerizable initiator monomer 2-(2-chloropropanoyloxy)ethyl acrylate to a range of polymeric substrates. The technique requires only UV light to couple the initiator to surfaces. The initiator surface density can be varied by inclusion of a diluent monomer or via selection of initiator and irradiation parameters. The functionality of the initiator surface is demonstrated by subsequent surface-initiated atom transfer radical polymerization. Surfaces are characterized by x-ray photoelectron spectroscopy (XPS), ellipsometry, and atomic force microscopy (AFM), and UV-induced changes to the initiator are assessed by (1) H NMR and gel permeation chromatography (GPC). This is the first time this one-reactant one-step technique has been demonstrated for creating an initiator surface of variable density.
Collapse
Affiliation(s)
- Katie E Styan
- CSIRO Manufacturing, Bayview Ave, Clayton, VIC, 3168, Australia.,Cooperative Research Centre for Polymers, Notting Hill, VIC, 3168, Australia
| | | | - Lucy G Weaver
- CSIRO Food and Nutrition, 671 Sneydes Road, Werribee, VIC, 3030, Australia
| | - Laurence Meagher
- Monash Institute of Medical Engineering and the Department of Materials Science and Engineering, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
13
|
Xu B, Feng C, Hu J, Shi P, Gu G, Wang L, Huang X. Spin-Casting Polymer Brush Films for Stimuli-Responsive and Anti-Fouling Surfaces. ACS APPLIED MATERIALS & INTERFACES 2016; 8:6685-6692. [PMID: 26905980 DOI: 10.1021/acsami.5b12820] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Surfaces modified with amphiphilic polymers can dynamically alter their physicochemical properties in response to changes of their environmental conditions; meanwhile, amphiphilic polymer coatings with molecular hydrophilic and hydrophobic patches, which can mitigate biofouling effectively, are being actively explored as advanced coatings for antifouling materials. Herein, a series of well-defined amphiphilic asymmetric polymer brushes containing hetero side chains, hydrophobic polystyrene (PS) and hydrophilic poly(ethylene glycol) (PEG), was employed to prepare uniform thin films by spin-casting. The properties of these films were investigated by water contact angle, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and quartz crystal microbalance (QCM). AFM showed smooth surfaces for all films with the roughness less than 2 nm. The changes in water contact angle and C/O ratio (XPS) evidenced the enrichment of PEG or PS chains at film surface after exposed to selective solvents, indicative of stimuli- responsiveness. The adsorption of proteins on PEG functionalized surface was quantified by QCM and the results verified that amphiphilic polymer brush films bearing PEG chains could lower or eliminate protein-material interactions and resist to protein adsorption. Cell adhesion experiments were performed by using HaCaT cells and it was found that polymer brush films possess good antifouling ability.
Collapse
Affiliation(s)
- Binbin Xu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Chun Feng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Jianhua Hu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , 220 Handan Road, Shanghai 200433, People's Republic of China
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Guangxin Gu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , 220 Handan Road, Shanghai 200433, People's Republic of China
| | - Lei Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , 220 Handan Road, Shanghai 200433, People's Republic of China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Road, Shanghai 200032, People's Republic of China
| |
Collapse
|
14
|
Couturaud B, Mas A, Robin JJ. Surface-initiated reversible addition–fragmentation chain transfer polymerization from “clickable” polypropylene surface modified by iodine plasma activation. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.07.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Rodda AE, Ercole F, Nisbet DR, Forsythe JS, Meagher L. Optimization of Aqueous SI-ATRP Grafting of Poly(Oligo(Ethylene Glycol) Methacrylate) Brushes from Benzyl Chloride Macroinitiator Surfaces. Macromol Biosci 2015; 15:799-811. [DOI: 10.1002/mabi.201400512] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/15/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Andrew E. Rodda
- Department of Materials Engineering; Monash University; Wellington Rd Clayton 3800 Victoria Australia
- CSIRO Materials Science and Engineering, Bayview Avenue, Clayton 3168, Victoria, Australia; and Cooperative Research Centre for Polymers; 8 Redwood Drive Notting Hill 3168 Victoria Australia
| | - Francesca Ercole
- Department of Materials Engineering; Monash University; Wellington Rd Clayton 3800 Victoria Australia
| | - David R. Nisbet
- School of Engineering; The Australian National University; Canberra 0200 Australian Capital Territory Australia
| | - John S. Forsythe
- Department of Materials Engineering; Monash University; Wellington Rd Clayton 3800 Victoria Australia
| | - Laurence Meagher
- CSIRO Materials Science and Engineering, Bayview Avenue, Clayton 3168, Victoria, Australia; and Cooperative Research Centre for Polymers; 8 Redwood Drive Notting Hill 3168 Victoria Australia
| |
Collapse
|
16
|
Hou J, Shi Q, Ye W, Fan Q, Shi H, Wong SC, Xu X, Yin J. Construction of 3D micropatterned surfaces with wormlike and superhydrophilic PEG brushes to detect dysfunctional cells. ACS APPLIED MATERIALS & INTERFACES 2014; 6:20868-20879. [PMID: 25375822 DOI: 10.1021/am506983q] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Detection of dysfunctional and apoptotic cells plays an important role in clinical diagnosis and therapy. To develop a portable and user-friendly platform for dysfunctional and aging cell detection, we present a facile method to construct 3D patterns on the surface of styrene-b-(ethylene-co-butylene)-b-styrene elastomer (SEBS) with poly(ethylene glycol) brushes. Normal red blood cells (RBCs) and lysed RBCs (dysfunctional cells) are used as model cells. The strategy is based on the fact that poly(ethylene glycol) brushes tend to interact with phosphatidylserine, which is in the inner leaflet of normal cell membranes but becomes exposed in abnormal or apoptotic cell membranes. We demonstrate that varied patterned surfaces can be obtained by selectively patterning atom transfer radical polymerization (ATRP) initiators on the SEBS surface via an aqueous-based method and growing PEG brushes through surface-initiated atom transfer radical polymerization. The relatively high initiator density and polymerization temperature facilitate formation of PEG brushes in high density, which gives brushes worm-like morphology and superhydrophilic property; the tendency of dysfunctional cells adhered on the patterned surfaces is completely different from well-defined arrays of normal cells on the patterned surfaces, providing a facile method to detect dysfunctional cells effectively. The PEG-patterned surfaces are also applicable to detect apoptotic HeLa cells. The simplicity and easy handling of the described technique shows the potential application in microdiagnostic devices.
Collapse
Affiliation(s)
- Jianwen Hou
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Bhairamadgi NS, Pujari SP, van Rijn CJM, Zuilhof H. Adhesion and friction properties of fluoropolymer brushes: on the tribological inertness of fluorine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:12532-12540. [PMID: 25313839 DOI: 10.1021/la501802b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The effects of fluorination on the adhesion and friction properties of covalently bound poly(fluoroalkyl methacrylate) polymer brushes (thickness ∼80 nm) were systematically investigated. Si(111) surfaces were functionalized with a covalently bound initiator via a thiol-yne click reaction to have a high surface coverage for initiator immobilization. Surface-initiated atom-transfer radical polymerization (SI-ATRP) was employed for the synthesis of four different fluoropolymer brushes (SPFx, where x = 0, 3, 7, or 17 F atoms per monomer), based on fluoroalkyl methacrylates. All polymer brushes were characterized with static contact angle measurements, X-ray photoelectron spectroscopy (XPS), and infrared absorption reflection spectroscopy (IRRAS). The polymer brushes exhibited an excellent hydrophobicity, with static water contact angles of up to 121° depending on the number of fluorine atoms per side chain in fluoroalkyl methacrylate. The degree of swelling was precisely studied by using ellipsometry in different solvents such as acetone, hexadecane, hexafluoroisopropanol, nonafluorobutyl methyl ether, and Fluorinert FC-40. The polymer brushes have shown nanoscale swelling behavior in all solvents except hexadecane. The grafting density decreased upon increasing fluorine content in polymer brushes from 0.65 chains/nm(2) (SPF0) to 0.10 chains/nm(2) (SPF17) as observed in Fluorinert FC-40 as a good solvent. Adhesion and friction force measurements were conducted with silica colloidal probe atomic force microscopy (CP-AFM) under ambient, dry (argon), and lubricating fluid conditions. SPF17 showed the lowest coefficient of friction 0.005 under ambient condition (RH = 44 ± 2%) and a further decrease with 50% under fluidic conditions. These polymer brushes also showed adhesion forces as low as 6.9 nN under ambient conditions, which further went down to 0.003 nN under fluidic conditions (Fluorinert FC-40 and hexadecane) at 10 nN force.
Collapse
Affiliation(s)
- Nagendra S Bhairamadgi
- Laboratory of Organic Chemistry, Wageningen University , Dreijenplein 8, 6703HB, Wageningen, The Netherlands
| | | | | | | |
Collapse
|
18
|
Popelka Š, Houska M, Havlíková J, Proks V, Kučka J, Šturcová A, Bačáková L, Rypáček F. Poly(ethylene oxide) brushes prepared by the “grafting to” method as a platform for the assessment of cell receptor–ligand binding. Eur Polym J 2014. [DOI: 10.1016/j.eurpolymj.2014.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Coad BR, Bilgic T, Klok HA. Polymer brush gradients grafted from plasma-polymerized surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:8357-8365. [PMID: 24967529 DOI: 10.1021/la501380m] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A new method for generating a surface density gradient of polymer chains is presented. A substrate-independent polymer deposition technique was used to coat materials with a chemical gradient based on plasma copolymerization of 1,7-octadiene and allylamine. This provided a uniform chemical gradient to which initiators for atom transfer radical polymerization (ATRP) were immobilized. After surface-initiated atom transfer radical polymerization (SI-ATRP), poly(2-hydroxyethyl methacrylate) (PHEMA) chains were grafted from the surface and the measured thickness profiles provided direct evidence for how surface crowding provides an entropic driving force resulting in chain extension away from the surface. Film thicknesses were found to increase with the position along the gradient surface, reflecting the gradual transition from collapsed to more extended surface-tethered polymer chains as the grafting density increased. The method described is novel in that the approach provides covalent linkages from the polymer coating to the substrate and is not limited to a particular surface chemistry of the starting material.
Collapse
Affiliation(s)
- Bryan R Coad
- Mawson Institute, University of South Australia , Mawson Lakes, SA 5095, Australia
| | | | | |
Collapse
|
20
|
Rodda AE, Meagher L, Nisbet DR, Forsythe JS. Specific control of cell–material interactions: Targeting cell receptors using ligand-functionalized polymer substrates. Prog Polym Sci 2014. [DOI: 10.1016/j.progpolymsci.2013.11.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Coad BR, Styan KE, Meagher L. One step ATRP initiator immobilization on surfaces leading to gradient-grafted polymer brushes. ACS APPLIED MATERIALS & INTERFACES 2014; 6:7782-7789. [PMID: 24783968 DOI: 10.1021/am501052d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A method is described that allows potentially any surface to be functionalized covalently with atom transfer radical polymerization (ATRP) initiators derived from ethyl-2-bromoisobutyrl bromide in a single step. In addition, the initiator surface density was variable and tunable such that the thickness of polymer chain grafted from the surface varied greatly on the surfaces providing examples, across the surface of a substrate, of increased chain stretching due to the entropic nature of crowded polymer chains leading toward polymer brushes. An initiator gradient of increasing surface density was deposited by plasma copolymerization of an ATRP initiator (ethyl 2-bromoisobutyrate) and a non-ATRP reactive diluent molecule (ethanol). The deposited plasma polymer retained its chemical ability to surface-initiate polymerization reactions as exemplified by N,N'-dimethyl acrylamide and poly(ethylene glycol) methyl ether methacrylate polymerizations, illustrating linear and bottle-brush-like chains, respectively. A large variation in graft thickness was observed from the low to high chain-density side suggesting that chains were forced to stretch away from the surface interface--a consequence of entropic effects resulting from increased surface crowding. The tert-butyl bromide group of ethyl 2-bromoisobutyrate is a commonly used initiator in ATRP, so a method for covalent linkage to any substrate in a single step desirably simplifies the multistep surface activation procedures currently used.
Collapse
Affiliation(s)
- Bryan R Coad
- Mawson Institute, University of South Australia , Mawson Lakes SA 5095, Australia
| | | | | |
Collapse
|
22
|
Nagase K, Kobayashi J, Kikuchi A, Akiyama Y, Kanazawa H, Okano T. Monolithic Silica Rods Grafted with Thermoresponsive Anionic Polymer Brushes for High-Speed Separation of Basic Biomolecules and Peptides. Biomacromolecules 2014; 15:1204-15. [DOI: 10.1021/bm401779r] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kenichi Nagase
- Institute
of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, TWIns, 8-1 Kawadacho, Shinjuku,
Tokyo 162-8666, Japan
| | - Jun Kobayashi
- Institute
of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, TWIns, 8-1 Kawadacho, Shinjuku,
Tokyo 162-8666, Japan
| | - Akihiko Kikuchi
- Department
of Materials Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan
| | - Yoshikatsu Akiyama
- Institute
of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, TWIns, 8-1 Kawadacho, Shinjuku,
Tokyo 162-8666, Japan
| | - Hideko Kanazawa
- Faculty
of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan
| | - Teruo Okano
- Institute
of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, TWIns, 8-1 Kawadacho, Shinjuku,
Tokyo 162-8666, Japan
| |
Collapse
|
23
|
Bhairamadgi NS, Pujari SP, Leermakers FAM, van Rijn CJM, Zuilhof H. Adhesion and friction properties of polymer brushes: fluoro versus nonfluoro polymer brushes at varying thickness. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:2068-2076. [PMID: 24555721 DOI: 10.1021/la404915k] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A series of different thicknesses of fluoro poly(2,2,2-trifluoroethyl methacrylate) and its analogous nonfluoro poly(ethyl methacrylate) polymer brushes were prepared via surface-initiated ATRP (SI-ATRP) on Si(111) surfaces. The thiol-yne click reaction was used to immobilize the SI-ATRP initiator with a high surface coverage, in order to achieve denser polymer brushes (grafting density from ~0.1 to 0.8 chains/nm(2)). All polymer brushes were characterized by static water contact angle measurements, infrared absorption reflection spectroscopy, and X-ray photoelectron spectroscopy. Adhesion and friction force measurements were conducted with silica colloidal probe atomic force microscopy (CP-AFM) under ambient and dry (argon) conditions. The fluoro poly(2,2,2-trifluoroethyl methacrylate) polymer showed a decrease in adhesion and friction with increasing thickness. The analogous nonfluoro poly(ethyl methacrylate) polymer brushes showed high adhesion and friction under ambient conditions. Friction coefficients down to 0.0057 (ambient conditions) and 0.0031 (dry argon) were obtained for poly(2,2,2-trifluoroethyl methacrylate) polymer brushes with 140 nm thickness, which are the lowest among these types of polymer brushes.
Collapse
Affiliation(s)
- Nagendra S Bhairamadgi
- Laboratory of Organic Chemistry and ‡Laboratory of Physical Chemistry and Colloid Science, Wageningen University and Research Center , Dreijenplein 8, 6703 HB Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
24
|
Ercole F, Rodda AE, Meagher L, Forsythe JS, Dove AP. Surface grafted poly(ε-caprolactone) prepared using organocatalysed ring-opening polymerisation followed by SI-ATRP. Polym Chem 2014. [DOI: 10.1039/c3py01701j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The controlled ring-opening polymerisation (ROP) of an ATRP initiator-containing lactone, γ-BMPCL, and its copolymerisation with ε-caprolactone is reported. One resulting copolymer was successfully used as a substrate for surface initiated ATRP to produce surface-grafted poly(oligo(ethylene glycol) methacrylate) brushes.
Collapse
Affiliation(s)
- Francesca Ercole
- Department of Materials Engineering
- Monash University
- Clayton
- Australia
| | - Andrew E. Rodda
- Department of Materials Engineering
- Monash University
- Clayton
- Australia
- CSIRO
| | - Laurence Meagher
- CSIRO
- Materials Science and Engineering
- Clayton
- Australia
- Cooperative Research Centre for Polymers (CRCP)
| | - John S. Forsythe
- Department of Materials Engineering
- Monash University
- Clayton
- Australia
| | - Andrew P. Dove
- Department of Materials Engineering
- Monash University
- Clayton
- Australia
- Department of Chemistry
| |
Collapse
|
25
|
Lambshead JW, Meagher L, O'Brien C, Laslett AL. Defining synthetic surfaces for human pluripotent stem cell culture. CELL REGENERATION 2013; 2:7. [PMID: 25408879 PMCID: PMC4230363 DOI: 10.1186/2045-9769-2-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 11/19/2013] [Indexed: 12/29/2022]
Abstract
Human pluripotent stem cells (hPSCs) are able to self-renew indefinitely and to differentiate into all adult cell types. hPSCs therefore show potential for application to drug screening, disease modelling and cellular therapies. In order to meet this potential, culture conditions must be developed that are consistent, defined, scalable, free of animal products and that facilitate stable self-renewal of hPSCs. Several culture surfaces have recently been reported to meet many of these criteria although none of them have been widely implemented by the stem cell community due to issues with validation, reliability and expense. Most hPSC culture surfaces have been derived from extracellular matrix proteins (ECMPs) and their cell adhesion molecule (CAM) binding motifs. Elucidating the CAM-mediated cell-surface interactions that are essential for the in vitro maintenance of pluripotency will facilitate the optimisation of hPSC culture surfaces. Reports indicate that hPSC cultures can be supported by cell-surface interactions through certain CAM subtypes but not by others. This review summarises the recent reports of defined surfaces for hPSC culture and focuses on the CAMs and ECMPs involved.
Collapse
Affiliation(s)
- Jack W Lambshead
- CSIRO Materials Science and Engineering, Clayton, Victoria 3168 Australia ; Australian Regenerative Medicine Institute, Monash University, Kragujevac, Victoria 3800 Australia
| | - Laurence Meagher
- CSIRO Materials Science and Engineering, Clayton, Victoria 3168 Australia
| | - Carmel O'Brien
- CSIRO Materials Science and Engineering, Clayton, Victoria 3168 Australia ; Australian Regenerative Medicine Institute, Monash University, Kragujevac, Victoria 3800 Australia
| | - Andrew L Laslett
- CSIRO Materials Science and Engineering, Clayton, Victoria 3168 Australia ; Australian Regenerative Medicine Institute, Monash University, Kragujevac, Victoria 3800 Australia ; Department of Zoology, University of Melbourne, Parkville, Victoria 3101 Australia
| |
Collapse
|
26
|
Zhang Y, Carbonell RG, Rojas OJ. Bioactive Cellulose Nanofibrils for Specific Human IgG Binding. Biomacromolecules 2013; 14:4161-8. [DOI: 10.1021/bm4007979] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | | | - Orlando J. Rojas
- School
of Science and Technology, Department of Forest Products Technology, Aalto University, 00076 Aalto, Finland
| |
Collapse
|
27
|
Grafting of zwitterion from polysulfone membrane via surface-initiated ATRP with enhanced antifouling property and biocompatibility. J Memb Sci 2013. [DOI: 10.1016/j.memsci.2013.06.029] [Citation(s) in RCA: 248] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Zhang Y, Islam N, Carbonell RG, Rojas OJ. Specificity and regenerability of short peptide ligands supported on polymer layers for immunoglobulin G binding and detection. ACS APPLIED MATERIALS & INTERFACES 2013; 5:8030-8037. [PMID: 23834414 DOI: 10.1021/am4021186] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We demonstrate the specificity, regenerability, and excellent storage stability of short peptide-based systems for detection of immunoglobulin G (IgG). The bioactive component consisted of acetylated-HWRGWVA (Ac-HWRGWVA), a peptide with high IgG binding affinity, which was immobilized onto copolymer matrixes of poly(2-aminoethyl methacrylate hydrochloride-co-2-hydroxyethyl methacrylate) (poly(AMA-co-HEMA)). Surface plasmon resonance (SPR) and quartz crystal microgravimetry (QCM) were utilized with other complementary techniques to systematically investigate interfacial activities, mainly IgG binding performance as a function of the graft density and degree of polymerization of the poly(AMA-co-HEMA) support layer. Results from sodium dodecyl sulfate polyacrylamide gel electrophoresis and fluorescence microscopy indicate that the bioactive system is highly specific to IgG and resistant to nonspecific interactions when tested in mixed protein solutions.
Collapse
Affiliation(s)
- Yanxia Zhang
- Department of Forest Biomaterials, North Carolina State University, Raleigh, North Carolina 27695, USA.
| | | | | | | |
Collapse
|
29
|
Lilge I, Schönherr H. Covalently cross-linked poly(acrylamide) brushes on gold with tunable mechanical properties via surface-initiated atom transfer radical polymerization. Eur Polym J 2013. [DOI: 10.1016/j.eurpolymj.2013.02.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Dworak A, Utrata-Wesołek A, Szweda D, Kowalczuk A, Trzebicka B, Anioł J, Sieroń AL, Klama-Baryła A, Kawecki M. Poly[tri(ethylene glycol) ethyl ether methacrylate]-coated surfaces for controlled fibroblasts culturing. ACS APPLIED MATERIALS & INTERFACES 2013; 5:2197-207. [PMID: 23448307 DOI: 10.1021/am3031882] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Well-defined thermosensitive poly[tri(ethylene glycol) monoethyl ether methacrylate] (P(TEGMA-EE)) brushes were synthesized on a solid substrate by the surface-initiated atom transfer radical polymerization of TEGMA-EE. The polymerization reaction was initiated by 2-bromo-2-methylpropionate groups immobilized on the surface of the wafers. The changes in the surface composition, morphology, philicity, and thickness that occurred at each step of wafer functionalization confirmed that all surface modification procedures were successful. Both the successful modification of the surface and bonding of the P(TEGMA-EE) layer were confirmed by X-ray photoelectron spectroscopy (XPS) measurements. The thickness of the obtained P(TEGMA-EE) layers increased with increasing polymerization time. The increase of environmental temperature above the cloud point temperature of P(TEGMA-EE) caused the changes of surface philicity. A simultaneous decrease in the polymer layer thickness confirmed the thermosensitive properties of these P(TEGMA-EE) layers. The thermosensitive polymer surfaces obtained were evaluated for the growth and harvesting of human fibroblasts (basic skin cells). At 37 °C, seeded cells adhered to and spread well onto the P(TEGMA-EE)-coated surfaces. A confluent cell sheet was formed within 24 h of cell culture. Lowering the temperature to an optimal value of 17.5 °C (below the cloud point temperature of the polymer, TCP, in cell culture medium) led to the separation of the fibroblast sheet from the polymer layer. These promising results indicate that the surfaces produced may successfully be used as substrate for engineering of skin tissue, especially for delivering cell sheets in the treatment of burns and slow-healing wounds.
Collapse
Affiliation(s)
- Andrzej Dworak
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, Zabrze 41-819, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|