1
|
Jayachandran A, Parween S, Asthana A, Kar S. Microfluidics-Based Blood Typing Devices: An In-Depth Overview. ACS APPLIED BIO MATERIALS 2024; 7:59-79. [PMID: 38115212 DOI: 10.1021/acsabm.3c00995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Identification of correct blood types holds paramount importance in understanding the pathophysiological parameters of patients, therapeutic interventions, and blood transfusion. Considering the wide applications of blood typing, the requirement of centralized laboratory facilities is not well suited on many occasions. In this context, there has been a significant development of such blood typing devices on different microfluidic platforms. The advantages of these microfluidic devices offer easy, rapid test protocols, which could potentially be adapted in resource-limited settings and thereby can truly lead to the decentralization of testing facilities. The advantages of pump-free liquid transport (i.e., low power consumption) and biodegradability of paper substrates (e.g., reduction in medical wastes) make it a more preferred platform in comparison to other microfluidic devices. However, these devices are often coupled with some inherent challenges, which limit their potential to be used on a mass commercial scale. In this context, our Review offers a succinct summary of the recent development, especially to understand the importance of underlying facets for long-term sustainability. Our Review also delineates the role of integration with digital technologies to minimize errors in interpreting the readouts.
Collapse
Affiliation(s)
- Arjun Jayachandran
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Shahila Parween
- MNR Foundation for Research & Innovations (MNR-FRI), MNR Medical College & Hospital, MNR Nagar, Narsapur Road, Sangareddy 502294, India
| | - Amit Asthana
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Shantimoy Kar
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| |
Collapse
|
2
|
Al-Tamimi M, El-sallaq M, Altarawneh S, Qaqish A, Ayoub M. Development of Novel Paper-Based Assay for Direct Serum Separation. ACS OMEGA 2023; 8:20370-20378. [PMID: 37332822 PMCID: PMC10268636 DOI: 10.1021/acsomega.3c00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/12/2023] [Indexed: 06/20/2023]
Abstract
Background: Many conventional laboratory tests require serum separation using a clot activator/gel tube, followed by centrifugation in an equipped laboratory. The aim of this study is development of novel, equipment-free, paper-based assay for direct and efficient serum separation. Methods: Fresh blood was directly applied to wax-channeled filter paper treated with clotting activator/s and then observed for serum separation. The purity, efficiency, recovery, reproducibility, and applicability of the assay were validated after optimization. Results: Serum was successfully separated using activated partial thromboplastin time (APTT) reagent and calcium chloride-treated wax-channeled filter paper within 2 min. The assay was optimized using different coagulation activators, paper types, blood collection methods, and incubation conditions. Confirmation of serum separation from cellular components was achieved by direct visualization of the yellow serum band, microscopic imaging of the pure serum band, and absence of blood cells in recovered serum samples. Successful clotting was evaluated by the absence of clotting of recovered serum by prolonged prothrombin time and APTT, absence of fibrin degradation products, and absence of Staphylococcus aureus-induced coagulation. Absence of hemolysis was confirmed by undetectable hemoglobin from recovered serum bands. The applicability of serum separated in paper was tested directly by positive color change on paper using bicinchoninic acid protein reagent, on recovered serum samples treated with Biuret and Bradford reagents in tubes, or measurement of thyroid-stimulating hormone and urea compared to standard serum samples. Serum was separated using the paper-based assay from 40 voluntary donors and from the same donor for 15 days to confirm reproducibility. Dryness of coagulants in paper prevents serum separation that can be re-stored by a re-wetting step. Conclusions: Paper-based serum separation allows for development of sample-to-answer paper-based point-of-care tests or simple and direct blood sampling for routine diagnostic tests.
Collapse
Affiliation(s)
- Mohammad Al-Tamimi
- Department
of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Mariam El-sallaq
- Department
of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Shahed Altarawneh
- Department
of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Arwa Qaqish
- Department
of Biology and Biotechnology, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Mai Ayoub
- Department
of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| |
Collapse
|
3
|
Zhang H, Chen Z, Dai J, Zhang W, Jiang Y, Zhou A. A low-cost mobile platform for whole blood glucose monitoring using colorimetric method. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105814] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
4
|
Tan W, Zhang L, Doery JCG, Shen W. Three-dimensional microfluidic tape-paper-based sensing device for blood total bilirubin measurement in jaundiced neonates. LAB ON A CHIP 2020; 20:394-404. [PMID: 31853529 DOI: 10.1039/c9lc00939f] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
More than 60% newborns experience hyperbilirubinemia and jaundice within the initial week after birth due to the accumulation of total bilirubin in blood. Left untreated high levels of bilirubin may result in brain impairment. Simple, fast, accurate, low-cost and timely point-of-care (POC) analysis of total bilirubin is an unmet need especially in resource-limited areas. This work introduces a novel sensing device, named a "tape-paper sensor", capable of separating plasma from whole blood and measuring total bilirubin by a colorimetric diazotization method. The tape-paper sensing method overcomes non-homogeneous color distribution caused by the "coffee stain" effect, which improves the accuracy of colorimetric evaluation on paper-based analytical devices. The level of hemolysis in the plasma extracted by the device is evaluated, confirming no interference in the detection of total bilirubin. The accuracy of the tape-paper sensing approach for neonatal blood sample measurement is verified by comparison with the hospital pathology laboratory method. The small volume of samples and reagents, minimal equipment (an office scanner), fast detection (<10 min) and low fabrication cost (∼A$ 0.6) reveal the suitability of the device for POC use and in resource-limited settings. The tape-paper sensor is a low-cost, fast, and user-friendly device for measurement of blood total bilirubin levels in neonatal jaundice diagnostics.
Collapse
Affiliation(s)
- Weirui Tan
- Department of Chemical Engineering, Monash University, Wellington Road, Clayton, VIC 3800, Australia.
| | - Liyuan Zhang
- Department of Chemical Engineering, Monash University, Wellington Road, Clayton, VIC 3800, Australia. and National Local Joint Engineering Laboratory for Advanced Textile Processing and Clean Production, Science and Technology Institute, Wuhan Textile University, Wuhan 430200, China
| | - James C G Doery
- Monash Pathology, Monash Health, Clayton Road, VIC 3168, Australia and Department of Medicine, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Wei Shen
- Department of Chemical Engineering, Monash University, Wellington Road, Clayton, VIC 3800, Australia.
| |
Collapse
|
5
|
Jeevarathinam AS, Pai N, Huang K, Hariri A, Wang J, Bai Y, Wang L, Hancock T, Keys S, Penny W, Jokerst JV. A cellulose-based photoacoustic sensor to measure heparin concentration and activity in human blood samples. Biosens Bioelectron 2018; 126:831-837. [PMID: 30602265 DOI: 10.1016/j.bios.2018.11.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 01/05/2023]
Abstract
Heparin is an indispensable drug in anticoagulation therapy but with a narrow therapeutic window, which dictates regular testing and dose adjustment. However, current monitoring tools have a long turnaround time or are operator intensive. In this work, we describe a cellulose-based photoacoustic sensor for heparin. The sensors have a turnaround time of 6 min for whole blood samples and 3 min for plasma samples regardless of heparin concentration. These sensors have a limit of detection of 0.28 U/ml heparin in human plasma and 0.29 U/ml in whole blood with a linear response (Pearson's r = 0.99) from 0 to 2 U/ml heparin in plasma and blood samples. The relative standard deviation was < 12.5% in plasma and < 17.5% in whole blood. This approach was validated with heparin-spiked whole human blood and had a linear correlation with the activated partial thromboplastin time (aPTT) (r = 0.99). We then studied 16 sets of clinical samples-these had a linear correlation with the activated clotting time (ACT) (Pearson's r = 0.86, P < 0.0001). The photoacoustic signal was also validated against the cumulative heparin dose (Pearson's r = 0.71, P < 0.0001). This approach could have applications in bed-side heparin assays for continuous heparin monitoring.
Collapse
Affiliation(s)
| | - Navin Pai
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, United States
| | - Kevin Huang
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, United States
| | - Ali Hariri
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, United States
| | - Junxin Wang
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, United States
| | - Yuting Bai
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, United States
| | - Lu Wang
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, United States
| | - Tiffany Hancock
- Cardiology Unit, VA Healthcare System, San Diego, La Jolla, CA 92161, United States
| | - Stanley Keys
- Cardiology Unit, VA Healthcare System, San Diego, La Jolla, CA 92161, United States
| | - William Penny
- Cardiology Unit, VA Healthcare System, San Diego, La Jolla, CA 92161, United States
| | - Jesse V Jokerst
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, United States; Materials Science Program and Department of Radiology, University of California San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
6
|
Henderson CA, McLiesh H, Then WL, Garnier G. Activity and Longevity of Antibody in Paper-Based Blood Typing Diagnostics. Front Chem 2018; 6:193. [PMID: 29900168 PMCID: PMC5988841 DOI: 10.3389/fchem.2018.00193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/14/2018] [Indexed: 11/13/2022] Open
Abstract
Paper-based diagnostics provide a low-cost, reliable and easy to use mode of blood typing. The shelf-life of such products, however, can be limited due to the reduced activity of reagent antibodies sorbed on the paper cellulose fibers. This study explores the effects of aging on antibody activity for periods up to 12 months on paper and in solution under different aging and drying conditions-air-dried, lyophilized, and kept as a liquid. Paper kept wet with undiluted antibody is shown to have the longest shelf-life and the clearest negatives. Antibody diluted with bovine serum albumin (BSA) protects against the lyophilization process, however, beyond 9 months aging, false positives are seen. Paper with air-dried antibodies is not suitable for use after 1 month aging. These results inform preparation and storage conditions for the development of long shelf-life blood grouping paper-based diagnostics.
Collapse
Affiliation(s)
- Clare A Henderson
- Department of Chemical Engineering, Bioresource Processing Research Institute of Australia, Monash University, Clayton, VIC, Australia
| | - Heather McLiesh
- Department of Chemical Engineering, Bioresource Processing Research Institute of Australia, Monash University, Clayton, VIC, Australia
| | - Whui L Then
- Department of Chemical Engineering, Bioresource Processing Research Institute of Australia, Monash University, Clayton, VIC, Australia.,Haemokinesis Pty Ltd., Hallam, VIC, Australia
| | - Gil Garnier
- Department of Chemical Engineering, Bioresource Processing Research Institute of Australia, Monash University, Clayton, VIC, Australia
| |
Collapse
|
7
|
Tan W, Zhang L, Shen W. Low-Cost Chemical-Responsive Adhesive Sensing Chips. ACS APPLIED MATERIALS & INTERFACES 2017; 9:42366-42371. [PMID: 29115817 DOI: 10.1021/acsami.7b14122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Chemical-responsive adhesive sensing chip is a new low-cost analytical platform that uses adhesive tape loaded with indicator reagents to detect or quantify the target analytes by directly sticking the tape to the samples of interest. The chemical-responsive adhesive sensing chips can be used with paper to analyze aqueous samples; they can also be used to detect and quantify solid, particulate, and powder analytes. The colorimetric indicators become immediately visible as the contact between the functionalized adhesives and target samples is made. The chemical-responsive adhesive sensing chip expands the capability of paper-based analytical devices to analyze solid, particulate, or powder materials via one-step operation. It is also a simpler alternative way, to the covalent chemical modification of paper, to eliminate indicator leaching from the dipstick-style paper sensors. Chemical-responsive adhesive chips can display analytical results in the form of colorimetric dot patterns, symbols, and texts, enabling clear understanding of assay results by even nonprofessional users. In this work, we demonstrate the analyses of heavy metal salts in silica powder matrix, heavy metal ions in water, and bovine serum albumin in an aqueous solution. The detection is one-step, specific, sensitive, and easy-to-operate.
Collapse
Affiliation(s)
- Weirui Tan
- Department of Chemical Engineering, Monash University , Wellington Road, Clayton, VIC 3800, Australia
| | - Liyuan Zhang
- Department of Chemical Engineering, Monash University , Wellington Road, Clayton, VIC 3800, Australia
| | - Wei Shen
- Department of Chemical Engineering, Monash University , Wellington Road, Clayton, VIC 3800, Australia
| |
Collapse
|
8
|
Ding J, Li B, Chen L, Qin W. A Three-Dimensional Origami Paper-Based Device for Potentiometric Biosensing. Angew Chem Int Ed Engl 2016; 55:13033-13037. [DOI: 10.1002/anie.201606268] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Indexed: 01/11/2023]
Affiliation(s)
- Jiawang Ding
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation; Yantai Institute of Coastal Zone Research (YIC); Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Environmental Processes; YICCAS; Yantai Shandong 264003 P.R. China
| | - Bowei Li
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation; Yantai Institute of Coastal Zone Research (YIC); Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Environmental Processes; YICCAS; Yantai Shandong 264003 P.R. China
| | - Lingxin Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation; Yantai Institute of Coastal Zone Research (YIC); Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Environmental Processes; YICCAS; Yantai Shandong 264003 P.R. China
| | - Wei Qin
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation; Yantai Institute of Coastal Zone Research (YIC); Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Environmental Processes; YICCAS; Yantai Shandong 264003 P.R. China
| |
Collapse
|
9
|
Ding J, Li B, Chen L, Qin W. A Three-Dimensional Origami Paper-Based Device for Potentiometric Biosensing. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606268] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jiawang Ding
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation; Yantai Institute of Coastal Zone Research (YIC); Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Environmental Processes; YICCAS; Yantai Shandong 264003 P.R. China
| | - Bowei Li
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation; Yantai Institute of Coastal Zone Research (YIC); Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Environmental Processes; YICCAS; Yantai Shandong 264003 P.R. China
| | - Lingxin Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation; Yantai Institute of Coastal Zone Research (YIC); Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Environmental Processes; YICCAS; Yantai Shandong 264003 P.R. China
| | - Wei Qin
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation; Yantai Institute of Coastal Zone Research (YIC); Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Environmental Processes; YICCAS; Yantai Shandong 264003 P.R. China
| |
Collapse
|
10
|
Tomazelli Coltro WK, Cheng CM, Carrilho E, de Jesus DP. Recent advances in low-cost microfluidic platforms for diagnostic applications. Electrophoresis 2014; 35:2309-24. [DOI: 10.1002/elps.201400006] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/14/2014] [Accepted: 03/15/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Wendell Karlos Tomazelli Coltro
- Instituto de Química; Universidade Federal de Goiás; Goiânia-GO Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica; Campinas-SP Brazil
| | - Chao-Min Cheng
- Institute of Nanoengineering and Microsystems; National Tsing Hua University; Hsinchu Taiwan
| | - Emanuel Carrilho
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica; Campinas-SP Brazil
- Instituto de Química de São Carlos; Universidade de São Paulo; São Carlos-SP Brazil
| | - Dosil Pereira de Jesus
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica; Campinas-SP Brazil
- Institute of Chemistry; University of Campinas; UNICAMP; Campinas-SP Brazil
| |
Collapse
|
11
|
Abstract
The immobilization of biomolecules onto cellulose paper turns this environmentally friendly material into a platform for diagnostic devices.
Collapse
Affiliation(s)
- Julie Credou
- CEA Saclay
- IRAMIS
- NIMBE
- LICSEN (Laboratory of Innovation in Surface Chemistry and Nanosciences)
- F-91191 Gif sur Yvette, France
| | - Thomas Berthelot
- CEA Saclay
- IRAMIS
- NIMBE
- LICSEN (Laboratory of Innovation in Surface Chemistry and Nanosciences)
- F-91191 Gif sur Yvette, France
| |
Collapse
|
12
|
Song L, Zhao J, Luan S, Ma J, Liu J, Xu X, Yin J. Fabrication of a detection platform with boronic-acid-containing zwitterionic polymer brush. ACS APPLIED MATERIALS & INTERFACES 2013; 5:13207-13215. [PMID: 24299274 DOI: 10.1021/am404206v] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Development of technologies for biomedical detection platform is critical to meet the global challenges of various disease diagnoses, especially for point-of-use applications. Because of its natural simplicity, effectiveness, and easy repeatability, random covalent-binding technique is widely adopted in antibody immobilization. However, its antigen-binding capacity is relatively low when compared to site-specific immobilization of antibody. Herein, we report that a detection platform modified with boronic acid (BA)-containing sulfobetaine-based polymer brush. Mainly because of the advantage of oriented immobilization of antibody endowed with BA-containing three-dimensional polymer brush architecture, the platform had a high antigen-binding capacity. Notably, nonspecific protein adsorption was also suppressed by the zwitterionic pendants, thus greatly enhanced signal-to-noise (S/N) values for antigen recognition. Furthermore, antibodies captured by BA pendants could be released in dissociation media. This new platform is promising for potential applications in immunoassays.
Collapse
Affiliation(s)
- Lingjie Song
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | | | | | | | | | | | | |
Collapse
|
13
|
Paper-based analytical devices for point-of-care infectious disease testing. Eur J Clin Microbiol Infect Dis 2013; 33:147-56. [DOI: 10.1007/s10096-013-1945-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/29/2013] [Indexed: 12/25/2022]
|
14
|
Electrochemical detection of glucose from whole blood using paper-based microfluidic devices. Anal Chim Acta 2013; 788:39-45. [PMID: 23845479 DOI: 10.1016/j.aca.2013.06.021] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/06/2013] [Accepted: 06/16/2013] [Indexed: 11/22/2022]
Abstract
Electrochemical paper-based analytical devices (ePADs) with integrated plasma isolation for determination of glucose from whole blood samples have been developed. A dumbbell shaped ePAD containing two blood separation zones (VF2 membranes) with a middle detection zone was fabricated using the wax dipping method. The dumbbell shaped device was designed to separate plasma while generating homogeneous flow to the middle detection zone of the ePAD. The proposed ePADs work with whole blood samples with 24-60% hematocrit without dilution, and the plasma was completely separated within 4 min. Glucose in isolated plasma separated was detected using glucose oxidase immobilized on the middle of the paper device. The hydrogen peroxide generated from the reaction between glucose and the enzyme pass through to a Prussian blue modified screen printed electrode (PB-SPEs). The currents measured using chronoamperometry at the optimal detection potential for H2O2 (-0.1 V versus Ag/AgCl reference electrode) were proportional to glucose concentrations in the whole blood. The linear range for glucose assay was in the range 0-33.1 mM (r(2)=0.987). The coefficients of variation (CVs) of currents were 6.5%, 9.0% and 8.0% when assay whole blood sample containing glucose concentration at 3.4, 6.3, and 15.6mM, respectively. Because each sample displayed intra-individual variation of electrochemical signal, glucose assay in whole blood samples were measured using the standard addition method. Results demonstrate that the ePAD glucose assay was not significantly different from the spectrophotometric method (p=0.376, paired sample t-test, n=10).
Collapse
|