1
|
Meng X, Xiong H, Ji F, Gao X, Han L, Wu Z, Jia L, Ren J. Facile surface treatment strategy to generate dense lysozyme layer on ultra-high molecular weight polyethylene enabling inhibition of bacterial biofilm formation. Colloids Surf B Biointerfaces 2023; 225:113243. [PMID: 36893665 DOI: 10.1016/j.colsurfb.2023.113243] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/14/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
Medical plastics such as those found in endotracheal tubes are widely used in intensive care units for the treatment of critically ill patients. Although commonplace in hospital environment, these catheters are at a high risk of bacterial contamination and have been found responsible for numerous health-care-associated infections. Antimicrobial coatings that can prevent harmful bacterial growth are required to reduce the occurrence of such infections. In this study, we introduce a facile surface treatment strategy that could form antimicrobial coatings on the surface of average medical plastics. The strategy involves treatment of activated surfaces with lysozyme, a natural antimicrobial enzyme presenting in human lacrimal gland secretions which is widely used for wound healing. Using ultra-high molecular weight polyethylene (UHMWPE) as the representative surface, oxygen/argon plasma treatment for 3 min led to the increase of surface roughness and the generation of negatively charged groups, with the zeta potential measured as -94.5 mV at pH 7. The activated surface could accommodate lysozyme with a density of up to 0.3 nmol/cm2 through electrostatic interaction. Antimicrobial activity of the resulting surface (UHMWPE@Lyz) was characterized with Escherichia coli and Pseudomonas sp. strains, and the treated surface significantly inhibited the bacterial colonization and the formation of biofilm compared to the untreated UHMWPE. This method of constructing an effective lysozyme-based antimicrobial coating is a generally applicable, simple and fast process for surface treatment with no adverse solvent and wastes involved.
Collapse
Affiliation(s)
- Xiao Meng
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China
| | - Hao Xiong
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China
| | - Fangling Ji
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China
| | - Xiaorong Gao
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China
| | - Lulu Han
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China
| | - Zhenlin Wu
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116023, PR China
| | - Lingyun Jia
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China
| | - Jun Ren
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China.
| |
Collapse
|
2
|
Prasanna Kumaar S, Sivasubramanian A. Analysis of BCB and SU 8 photonic waveguide in MZI architecture for point-of-care devices. SENSORS INTERNATIONAL 2023. [DOI: 10.1016/j.sintl.2022.100207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
|
3
|
Zheng X, Tang Y, Bai Y. UV-curable optical transparent, aging resistance, liquid-repellent coatings based on a novel photosensitive fluorinated polysiloxane with long perfluoroalkyl side chains. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
4
|
Kumar A, Nambiar S, Kallega R, Ranganath P, Ea P, Selvaraja SK. High-efficiency vertical fibre-to-polymer waveguide coupling scheme for scalable polymer photonic circuits. OPTICS EXPRESS 2021; 29:9699-9710. [PMID: 33820124 DOI: 10.1364/oe.412266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Polymer photonic circuits offer a versatile platform for various applications, including communication, sensing and optical signal processing. Though polymers offer broadband, linear and nonlinear optical properties, the coupling between an optical fibre and a polymer waveguide has been a challenge. In this work, we propose and demonstrate a wafer-scale vertical coupling scheme for polymer waveguides. The scheme uses a silicon nitride grating coupler with an inverse taper to couple between an optical fibre and a SU8 polymer waveguide. We demonstrate a maximum coupling efficiency of -3.55 dB in the C-band and -2.92 dB in the L-band with a 3-dB bandwidth of 74 and 80 nm, respectively. A detailed design and simulation, fabrication, and characterisation results are presented. The scheme demonstrates a scalable and efficient surface grating approach for polymer photonic integrated circuits.
Collapse
|
5
|
Abstract
Micro-optical gyroscopes (MOGs) are a type of high-accuracy gyroscope, which have the advantages of miniaturization, low cost, and satisfactory operating power. The quality factor (Q) of the waveguide ring resonators (WRRs) is very important to the performance of MOGs. This paper reviews various MOGs using WRRs made from different materials, including silica, indium phosphide, calcium fluoride, and polymer WRRs. The different architectures of the MOGs are reviewed, such as double-ring resonator MOGs and multiple-ring resonator MOGs. Candidate high-Q WRRs for MOGs, including silicon nitride, lithium niobite, calcium fluoride, and magnesium fluoride WRRs, are also reviewed. The manufacturing process, Q, and integration density values are compared. Summarizing the advanced WRRs and calculating the shot-noise-limited sensitivity are helpful processes in selecting suitable materials to fabricate MOGs.
Collapse
|
6
|
Noi K, Iwata A, Kato F, Ogi H. Ultrahigh-Frequency, Wireless MEMS QCM Biosensor for Direct, Label-Free Detection of Biomarkers in a Large Amount of Contaminants. Anal Chem 2019; 91:9398-9402. [PMID: 31264405 DOI: 10.1021/acs.analchem.9b01414] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Label-free biosensors, including conventional quartz-crystal-microbalance (QCM) biosensors, are seriously affected by nonspecific adsorption of contaminants involved in analyte solution, and it is exceptionally difficult to extract the sensor responses caused only by the targets. In this study, we reveal that this difficulty can be overcome with an ultrahigh-frequency, wireless QCM biosensor. The sensitivity of a QCM biosensor dramatically improves when the quartz resonator is thinned, which also makes the resonance frequency higher, causing high-speed surface movement. Contaminants weakly (nonspecifically) interact with the quartz surface, but they fail to follow the fast surface movement and cannot be detected as the loaded mass. The targets are, however, tightly captured by the receptor proteins immobilized on the surface, and they can move with the surface, contributing to the loaded mass and decreasing the resonant frequency. We have developed a MEMS QCM biosensor in which an AT-cut quartz resonator, 26 μm thick, is packaged without fixing, and we demonstrate this phenomenon by comparing the frequency changes of the fundamental (∼64 MHz) and ninth (∼576 MHz) modes. At ultrahigh-frequency operation with the ninth mode, the sensor response is independent of the amount of impurity proteins, and the binding affinity is unchanged. We then applied this method to the label-free and sandwich-free, direct detection of C-reactive protein (CRP) in serum and confirmed its applicability.
Collapse
Affiliation(s)
- Kentaro Noi
- Graduate School of Engineering , Osaka University , Suita , Osaka 565-0871 , Japan
| | - Arihiro Iwata
- Graduate School of Engineering Science , Osaka University , Toyonaka , Osaka 560-8531 , Japan
| | - Fumihito Kato
- Department of Mechanical Engineering , Nippon Institute of Technology , Saitama 345-8501 , Japan
| | - Hirotsugu Ogi
- Graduate School of Engineering , Osaka University , Suita , Osaka 565-0871 , Japan
| |
Collapse
|
7
|
Malviya N, Sonkar C, Ganguly R, Mukhopadhyay S. Cobalt Metallogel Interface for Selectively Sensing l-Tryptophan among Essential Amino Acids. Inorg Chem 2019; 58:7324-7334. [DOI: 10.1021/acs.inorgchem.9b00455] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Novina Malviya
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Chanchal Sonkar
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Rakesh Ganguly
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, Singapore 639798
| | - Suman Mukhopadhyay
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
- Discipline of Biosciences and Biomedical Engineering, School of Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| |
Collapse
|
8
|
Liravi F, Vlasea M. Data related to the experimental design for powder bed binder jetting additive manufacturing of silicone. Data Brief 2018. [PMID: 29904650 DOI: 10.1016/j.addma.2018.02.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
The data included in this article provides additional supporting information on our recent publication (Liravi et al., 2018 [1]) on a novel hybrid additive manufacturing (AM) method for fabrication of three-dimensional (3D) structures from silicone powder. A design of experiments (DoE) study has been carried out to optimize the geometrical fidelity of AM-made parts. This manuscript includes the details of a multi-level factorial DOE and the response optimization results. The variation in the temperature of powder-bed when exposed to heat is plotted as well. Furthermore, the effect of blending ratio of two parts of silicone binder on its curing speed was investigated by conducting DSC tests on a silicone binder with 100:2 precursor to curing agent ratio. The hardness of parts fabricated with non-optimum printing conditions are included and compared.
Collapse
Affiliation(s)
- Farzad Liravi
- Multi-Scale Additive Manufacturing Laboratory, Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, Canada N2L 3G1
| | - Mihaela Vlasea
- Multi-Scale Additive Manufacturing Laboratory, Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, Canada N2L 3G1
| |
Collapse
|
9
|
Han XY, Wu ZL, Yang SC, Shen FF, Liang YX, Wang LH, Wang JY, Ren J, Jia LY, Zhang H, Bo SH, Morthier G, Zhao MS. Recent Progress of Imprinted Polymer Photonic Waveguide Devices and Applications. Polymers (Basel) 2018; 10:E603. [PMID: 30966637 PMCID: PMC6404155 DOI: 10.3390/polym10060603] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 01/25/2023] Open
Abstract
Polymers are promising materials for fabricating photonic integrated waveguide devices. Versatile functional devices can be manufactured using a simple process, with low cost and potential mass-manufacturing. This paper reviews the recent progress of polymer photonic integrated devices fabricated using the UV imprinting technique. The passive polymer waveguide devices for wavelength filtering, power splitting, and light collecting, and the active polymer waveguide devices based on the thermal-optic tuning effect, are introduced. Then, the electro-optic (EO) modulators, by virtue of the high EO coefficient of polymers, are described. Finally, the photonic biosensors, which are based on low-cost and biocompatible polymer platforms, are presented.
Collapse
Affiliation(s)
- Xiu-You Han
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China.
| | - Zhen-Lin Wu
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China.
| | - Si-Cheng Yang
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China.
| | - Fang-Fang Shen
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China.
| | - Yu-Xin Liang
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China.
- Photonics Research Group, Department of Information Technology (INTEC), Ghent University-IMEC, 9000 Ghent, Belgium.
| | - Ling-Hua Wang
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350116, China.
| | - Jin-Yan Wang
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Jun Ren
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China.
| | - Ling-Yun Jia
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China.
| | - Hua Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Shu-Hui Bo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Geert Morthier
- Photonics Research Group, Department of Information Technology (INTEC), Ghent University-IMEC, 9000 Ghent, Belgium.
| | - Ming-Shan Zhao
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
10
|
Yang L, Han L, Liu Q, Xu Y, Jia L. Galloyl groups-regulated fibrinogen conformation: Understanding antiplatelet adhesion on tannic acid coating. Acta Biomater 2017; 64:187-199. [PMID: 28958718 DOI: 10.1016/j.actbio.2017.09.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/01/2017] [Accepted: 09/25/2017] [Indexed: 12/20/2022]
Abstract
Fibrinogen (Fgn) has been identified as the key protein in the process of biomaterial-induced platelet adhesion. We have recently reported a facile and effective method for constructing platelet-repellent surface using a natural polyphenol component tannic acid (TA). However, the mechanism by which the TA surface repels platelets was not fully understood. To address this issue, we investigated the adsorption of Fgn (amount and conformation) on four TA-functionalized surfaces with different amounts of galloyl groups and the potential for platelet adherence on these surfaces. The experimental results indicated that the four TA-functionalized surfaces adsorbed a similar amount of Fgn, but the conformation and bioactivity of the adsorbed Fgn and the subsequent platelet adherence were quite different among the surfaces. The TA surface with the most galloyl groups induced minimal changes in the conformation of Fgn, a result of the α and γ chains of the adsorbed Fgn being highly inactive on the surface, thus leading to an outstanding antiplatelet adhesion performance. With a decreased amount of galloyl groups, the activity of the α chain in the adsorbed Fgn remained unchanged, but the activity of the γ chain and the extent of platelet adhesion gradually increased. This work provided a new concept for controlling platelet adhesion on solid materials, and we envision that the TA film could have potential applications in the development of new blood-contacting biomaterials in the future. STATEMENT OF SIGNIFICANCE Reducing platelet adhesion on material surfaces is of tremendous scientific interest in the field of blood-contacting biomaterials, but it remains a big challenge due to the highly adhesive nature of the platelets. In this study, we demonstrated for the first time that tannic acid surface with abundant galloyl groups could induce minimal conformational changes of fibrinogen, eventually leading to an outstanding antiplatelet adhesion effect. In addition, the platelet adhesion response could be easily controlled through regulating the amount of galloyl groups on the surface. This work provided a new strategy for controlling platelet adhesion on solid materials, which was totally different from existing methods such as construction of physically patterned surfaces, modification of inert hydrophilic polymers or appending bioactive moieties to target surfaces.
Collapse
|
11
|
Mehrabani S, Maker AJ, Armani AM. Hybrid integrated label-free chemical and biological sensors. SENSORS (BASEL, SWITZERLAND) 2014; 14:5890-928. [PMID: 24675757 PMCID: PMC4029679 DOI: 10.3390/s140405890] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/10/2014] [Accepted: 03/14/2014] [Indexed: 12/13/2022]
Abstract
Label-free sensors based on electrical, mechanical and optical transduction methods have potential applications in numerous areas of society, ranging from healthcare to environmental monitoring. Initial research in the field focused on the development and optimization of various sensor platforms fabricated from a single material system, such as fiber-based optical sensors and silicon nanowire-based electrical sensors. However, more recent research efforts have explored designing sensors fabricated from multiple materials. For example, synthetic materials and/or biomaterials can also be added to the sensor to improve its response toward analytes of interest. By leveraging the properties of the different material systems, these hybrid sensing devices can have significantly improved performance over their single-material counterparts (better sensitivity, specificity, signal to noise, and/or detection limits). This review will briefly discuss some of the methods for creating these multi-material sensor platforms and the advances enabled by this design approach.
Collapse
Affiliation(s)
- Simin Mehrabani
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA.
| | - Ashley J Maker
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA.
| | - Andrea M Armani
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
12
|
Synergizing nucleic acid aptamers with 1-dimensional nanostructures as label-free field-effect transistor biosensors. Biosens Bioelectron 2013; 50:278-93. [PMID: 23872609 DOI: 10.1016/j.bios.2013.06.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 06/06/2013] [Accepted: 06/17/2013] [Indexed: 01/04/2023]
Abstract
Since the introduction by Gold et al. in 1990, nucleic acid aptamers had evolved to become a true contender in biosensors for protein and cell detections. Aptamers are short strands of synthetically designed DNA or RNA oligonucleotides that can be self-assembled into unique 3-dimensional structures and can bind to different proteins, cells or even small molecules at a high level of specificity and affinity. In recent years, there had been many reports in literature in using aptamers in place of conventional antibodies as capture biomolecules on the surface. This is mainly due to the better thermal stability properties and ease in production. Consequently, also these characteristics allowed the aptamers to find use in field effect transistors (FETs) based upon 1D nanostructured (1D-NS) as label-free biosensing. In terms of designing label-free platforms for biosensors applications, 1D-NS FET had been an attractive option due to reported high sensitivities toward protein targets arising from the large surface area for detection as well as to their label-free nature. Since the first aptamer-based 1D-NS FET biosensor had surfaced in 2005, there had been many more improvements in the overall design and sensitivity in recent years. In this review, the latest developments in synergizing these two interesting areas of research (aptamers and 1D-NS FET) will be discussed for a range of different nanowire types as well as for the detection results.
Collapse
|