1
|
McNaughter PD, Moore J, Yeates SG, Lewis DJ. Semiconductor Deposition via Laser Printing of a Bespoke Toner Containing Metal Xanthate Complexes. ACS APPLIED ENGINEERING MATERIALS 2024; 2:1225-1233. [PMID: 38808267 PMCID: PMC11129185 DOI: 10.1021/acsaenm.3c00709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 05/30/2024]
Abstract
A methodology to use laser printing, a form of electrophotography, to print metal chalcogenide complexes on paper, is described. After fusing the toner to paper, a heating step is used to cause the printed metal xanthate complexes to thermolyze within the toner and form three target metal chalcogenides: CuS, SnS, and ZnS. To achieve this, we synthesize a poly(styrene-co-n-butyl acrylate) thermopolymer that emulates the thermal properties of a commercial toner and is also solution processable with the metal xanthate complexes used: [Zn(S2COEt)2], [Cu(S2COEt)·(PPh3)2], and [Sn(S2COEt)2]. We demonstrate through energy dispersive X-ray mapping that the toner is deposited following printing and that thermolysis of the metal xanthate complexes occurs in the fused toner, demonstrating the first example of laser printing of inorganic complexes and, in turn, semiconductors.
Collapse
Affiliation(s)
- Paul D. McNaughter
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Joshua Moore
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Stephen G. Yeates
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - David J. Lewis
- Department
of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| |
Collapse
|
2
|
Kim D, Lee SB, Kim MJ, Lee J, Chung S, Ok E, Lee G, Min J, Cho K, Kang B. Low-Temperature Alignment of Conjugated Polymers by Plasticizer-Aided Physical Rubbing. SMALL METHODS 2023; 7:e2300256. [PMID: 37350484 DOI: 10.1002/smtd.202300256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/04/2023] [Indexed: 06/24/2023]
Abstract
Rubbing-induced alignment of conjugated polymers is systematically investigated in terms of intra- and inter-molecular interaction. Various polymer films with a broad range of polymer chain rigidity are rubbed, and the degree of polymer chain alignment is quantitatively characterized. The rubbing technique effectively aligns crystalline domains in conjugated polymer films when the temperature approaches the critical rubbing temperature (T r c $T_{\mathrm{r}}^{\mathrm{c}}$ ), at which the rearrangement and the slip of polymer chains are possible. A polymer with significant intra-/inter-molecular interactions exhibits higherT r c $T_{\mathrm{r}}^{\mathrm{c}}$ , though quantitative analysis reveals an intermediately aligned state at temperature Tr ' lower thanT r c $T_{\mathrm{r}}^{\mathrm{c}}$ . This state originates from polymer chain aggregation in an amorphous domain. The intermediately aligned state can be controlled by plasticizer, which enables low-temperature alignment of high-mobility polymer film by reducing Tr ' to near 100 °C, increases the crystallinity, and improves the alignment effect at this state comparable to that of the completely aligned state obtained at extremely high temperatures.
Collapse
Affiliation(s)
- Daegun Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Seon Baek Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Min-Jae Kim
- SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nano Science and Technology, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea
| | - Jiyun Lee
- SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nano Science and Technology, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea
| | - Sein Chung
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Eunsol Ok
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Giwon Lee
- Department of Chemical Engineering, Kwangwoon University, Seoul, 01897, South Korea
| | - Jiwoo Min
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Kilwon Cho
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Boseok Kang
- SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nano Science and Technology, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea
- Department of Nano Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea
| |
Collapse
|
3
|
Priyadarshini B, Stango AX, Balasubramanian M, Vijayalakshmi U. In situ fabrication of cerium-incorporated hydroxyapatite/magnetite nanocomposite coatings with bone regeneration and osteosarcoma potential. NANOSCALE ADVANCES 2023; 5:5054-5076. [PMID: 37705779 PMCID: PMC10496897 DOI: 10.1039/d3na00235g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/02/2023] [Indexed: 09/15/2023]
Abstract
With the ultimate goal of providing a novel platform able to inhibit bacterial adhesion, biofilm formation, and anticancer properties, cerium-doped hydroxyapatite films enhanced with magnetite were developed via spin-coating. The unique aspect of the current study is the potential for creating cerium-doped hydroxyapatite/Fe3O4 coatings on a titanium support to enhance the functionality of bone implants. To assure an increase in the bioactivity of the titanium surface, alkali pretreatment was done before deposition of the apatite layer. Scanning electron microscopy (SEM) in conjunction with energy-dispersive X-ray (EDX) spectroscopy, X-ray diffraction (XRD) analysis, and Fourier transform-infrared (FTIR) spectroscopy were used to evaluate coatings. Coatings demonstrated good efficacy against Staphylococcus aureus and Escherichia coli, with the latter showing the highest efficacy. In vitro bioactivity in simulated body fluid solution showed this material to be proficient for bone-like apatite formation on the implant surface. Electrochemical impedance spectroscopy was undertaken on intact coatings to examine the barrier properties of composites. We found that spin-coating at 4000 rpm could greatly increase the total resistance. After seeding with osteoblastic populations, Ce-HAP/Fe3O4 materials the adhesion and proliferation of cells. The heating capacity of the Ce-HAP/Fe3O4 film was optimal at 45 °C at 15 s at a frequency of 318 kHz. Osseointegration depends on many more parameters than hydroxyapatite production, so these coatings have significant potential for use in bone healing and bone-cancer therapy.
Collapse
Affiliation(s)
- B Priyadarshini
- Department of Chemistry, School of Advanced Sciences, VIT Vellore 632 014 Tamil Nadu India +91-416-224 3092 +91-416-2202464
- Dept of Metallurgical and Materials Engineering Indian Institute of Technology-Madras (IIT Madras) Chennai 600 036 India
| | - Arul Xavier Stango
- Department of Chemistry, Kalasalingam Academy of Research and Education Krishnankoil Srivilliputhur Tamil Nadu 626126 India
| | - M Balasubramanian
- Dept of Metallurgical and Materials Engineering Indian Institute of Technology-Madras (IIT Madras) Chennai 600 036 India
| | - U Vijayalakshmi
- Department of Chemistry, School of Advanced Sciences, VIT Vellore 632 014 Tamil Nadu India +91-416-224 3092 +91-416-2202464
| |
Collapse
|
4
|
Trinh CK, Oh HS, Lee H. The solvent effect on the morphology and molecular ordering of benzothiadiazole-based small molecule for inkjet-printed thin-film transistors. RSC Adv 2023; 13:14210-14216. [PMID: 37180007 PMCID: PMC10170492 DOI: 10.1039/d3ra02036c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
A small molecule organic semiconductor, D(D'-A-D')2 comprising benzothiadiazole as an acceptor, 3-hexylthiophene, and thiophene as donors, was successfully synthesized. X-ray diffraction and atomic force microscopy were used to investigate the effect of a dual solvent system with varying ratios of chloroform and toluene on film crystallinity and film morphology via inkjet printing. The film prepared with a chloroform to toluene ratio of 1.5 : 1 showed better performance with improved crystallinity and morphology due to having enough time to control the arrangement of molecules. In addition, by optimizing ratios of CHCl3 to toluene, the inkjet-printed TFT based on 3HTBTT using a CHCl3 and toluene ratio of 1.5 : 1 was successfully fabricated and exhibited a hole mobility of 0.01 cm2 V-1 s-1 due to the improved molecular ordering of the 3HTBTT film.
Collapse
Affiliation(s)
- Cuc Kim Trinh
- Chemical Engineering in Advanced Materials and Renewable Energy Research Group, School of Technology, Van Lang University Ho Chi Minh City Vietnam
- Faculty of Applied Technology, School of Technology, Van Lang University Ho Chi Minh City Vietnam
| | - Ha Som Oh
- Department of Chemistry, Myongji University 116 Myongji Ro Yongin Gyeonggi-do Republic of Korea
| | - Hanleem Lee
- Department of Chemistry, Myongji University 116 Myongji Ro Yongin Gyeonggi-do Republic of Korea
- The Natural Science Research Institute, Myongji University 116 Myongji Ro Yongin Gyeonggi-do South Korea
| |
Collapse
|
5
|
Yu T, Liu Z, Wang Y, Zhang L, Hou S, Wan Z, Yin J, Gao X, Wu L, Xia Y, Liu Z. Deep-trap dominated degradation of the endurance characteristics in OFET memory with polymer charge-trapping layer. Sci Rep 2023; 13:5865. [PMID: 37041232 PMCID: PMC10090149 DOI: 10.1038/s41598-023-32959-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 04/05/2023] [Indexed: 04/13/2023] Open
Abstract
Organic field-effect transistors (OFETs) with polymer charge-trapping dielectric, which exhibit many advantages over Si-based memory devices such as low cost, light weight, and flexibility, still suffer challenges in practical application due to the unsatisfied endurance characteristics and even the lack of fundamental of behind mechanism. Here, we revealed that the degradation of endurance characteristics of pentacene OFET with poly(2-vinyl naphthalene) (PVN) as charge-storage layer is dominated by the deep hole-traps in PVN by using the photo-stimulated charge de-trapping technique with the fiber-coupled monochromatic-light probes. The depth distribution of hole-traps in PVN film of pentacene OFET is also provided.
Collapse
Affiliation(s)
- Tianpeng Yu
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Zhenliang Liu
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Yiru Wang
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023, People's Republic of China
| | - Lunqiang Zhang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Shuyi Hou
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Zuteng Wan
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Jiang Yin
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, People's Republic of China.
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023, People's Republic of China.
| | - Xu Gao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.
| | - Lei Wu
- College of Electrical Engineering, Nanjing Vocational University of Industry Technology, Nanjing, 210023, People's Republic of China
| | - Yidong Xia
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Zhiguo Liu
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, People's Republic of China
| |
Collapse
|
6
|
Zhang X, Pu Z, Su X, Li C, Zheng H, Li D. Flexible organic field-effect transistors-based biosensors: progress and perspectives. Anal Bioanal Chem 2023; 415:1607-1625. [PMID: 36719440 PMCID: PMC9888355 DOI: 10.1007/s00216-023-04553-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 02/01/2023]
Abstract
Organic field-effect transistors (OFETs) have been proposed beyond three decades while becoming a research hotspot again in recent years because of the fast development of flexible electronics. Many novel flexible OFETs-based devices have been reported in these years. Among these devices, flexible OFETs-based sensors made great strides because of the extraordinary sensing capability of FET. Most of these flexible OFETs-based sensors were designed for biological applications due to the advantages of flexibility, reduced complexity, and lightweight. This paper reviews the materials, fabrications, and applications of flexible OFETs-based biosensors. Besides, the challenges and opportunities of the flexible OFETs-based biosensors are also discussed.
Collapse
Affiliation(s)
- Xingguo Zhang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, China
| | - Zhihua Pu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, China.
| | - Xiao Su
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, China
| | - Chengcheng Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, China
| | - Hao Zheng
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, China
| | - Dachao Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, China.
| |
Collapse
|
7
|
Diketopyrrolopyrrole-based Conjugated Polymers as Representative Semiconductors for High-Performance Organic Thin-Film Transistors and Circuits. CHINESE JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1007/s10118-023-2943-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
8
|
Kim S, Jo SB, Cho JH. Graphene barristors for de novo optoelectronics. Chem Commun (Camb) 2023; 59:974-988. [PMID: 36607612 DOI: 10.1039/d2cc05886c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Graphene-based vertical Schottky-barrier transistors (SBTs), renowned as graphene barristors, have emerged as a feasible candidate to fundamentally expand the horizon of conventional transistor technology. The remote tunability of graphene's electronic properties could endorse multi-stimuli responsive functionalities for a broad range of electronic and optoelectronic applications of transistors, with the capability of incorporating nanochannel architecture with dramatically reduced footprints from the vertical integrations. In this Feature Article, we provide a comprehensive overview of the progress made in the field of SBTs over the last 10 years, starting from the operating principles, materials evolution, and processing developments. Depending on the types of stimuli such as electrical, optical, and mechanical stresses, various fields of applications from conventional digital logic circuits to sensory technologies are highlighted. Finally, more advanced applications toward beyond-Moore electronics are discussed, featuring recent advancements in neuromorphic devices based on SBTs.
Collapse
Affiliation(s)
- Seongchan Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Korea.,Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sae Byeok Jo
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea. .,SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jeong Ho Cho
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
9
|
Minowa Y, Yabuuchi Y, Nagano S, Nagamatsu S, Fujii A, Ozaki M. Fast-Coating Process Based on Elongated Rodlike Preaggregate for Highly Oriented Thin Film of Donor-Acceptor π-Conjugated Polymer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50112-50119. [PMID: 36283002 DOI: 10.1021/acsami.2c13516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A fast meniscus-guided coating for ultrahighly oriented thin films of a typical donor-acceptor π-conjugated polymer, poly[2,5-(2-octyldodecyl)-3,6-diketopyrrolopyrrole-alt-5,5-(2,5-di(thien-2-yl)thieno[3,2-b]thiophene)](PDPP-DTT) was realized. A coating speed higher than 100 mm/s, which was regarded as a Landau-Levich regime, was applicable. The 2D order parameter (S2) of the thin films changed by selecting the solvent and adjusting the initial concentration of the solution, and the large elongated rodlike preaggregates formed particularly in chlorobenzene contributed to the high orientation in the solid film state, resulting in the highest value of S2 = 0.87. Focused on the PDPP-DTT preaggregate formation in the solution, the SAXS analysis was carried out to investigate the shape and size of the preaggregates. The mechanism of the molecular orientation was discussed by taking the preaggregates and the solution flow under the coating process into account.
Collapse
Affiliation(s)
- Yu Minowa
- Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka565-0871, Japan
| | - Yuta Yabuuchi
- Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka565-0871, Japan
| | - Shusaku Nagano
- College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo171-8501, Japan
| | - Shuichi Nagamatsu
- Department of Physics and Information Technology, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka820-8502, Japan
| | - Akihiko Fujii
- Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka565-0871, Japan
| | - Masanori Ozaki
- Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka565-0871, Japan
| |
Collapse
|
10
|
Günder D, Diez-Cabanes V, Huttner A, Breuer T, Lemaur V, Cornil J, Witte G. F-Center-Mediated Growth of Patterned Organic Semiconductor Films on Alkali Halides. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46086-46094. [PMID: 36191090 DOI: 10.1021/acsami.2c13934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Organic semiconductors combine flexible tailoring of their optoelectronic properties by synthetic means with strong light-matter coupling, which is advantageous for organic electronic device applications. Although spatially selective deposition has been demonstrated, lateral patterning of organic films with simultaneous control of molecular and crystalline orientation is lacking as traditional lithography is not applicable. Here, a new patterning approach based on surface-localized F-centers (halide vacancies) generated by electron irradiation of alkali halides is presented, which allows structural control of molecular adlayers. Combining optical and atomic force microscopy, X-ray diffraction, and density functional theory (DFT) calculations, it is shown that dinaphthothienothiophene (DNTT) molecules adopt an upright orientation on pristine KCl surfaces, while the F-centers stabilize a recumbent orientation, and that these orientations are maintained in thicker films. This specific nucleation results also in different crystallographic morphologies, namely, densely packed islands and jagged fibers, each epitaxially aligned on the KCl surface. Spatially selective surface irradiation can also be used to create patterns of F-centers and thus laterally patterned DNTT films, which can be further transferred to any (including elastomer) substrate due to the water solubility of the alkali halide growth templates.
Collapse
Affiliation(s)
- Darius Günder
- Fachbereich Physik, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Valentin Diez-Cabanes
- Laboratory for Chemistry of Novel Materials, University of Mons (UMONS), BE-7000 Mons, Belgium
- Laboratoire de Physique et Chimie Théoriques (LPCT), Université de Lorraine & CNRS, F-54000 Nancy, France
| | - Andrea Huttner
- Fachbereich Physik, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Tobias Breuer
- Fachbereich Physik, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Vincent Lemaur
- Laboratory for Chemistry of Novel Materials, University of Mons (UMONS), BE-7000 Mons, Belgium
| | - Jérôme Cornil
- Laboratory for Chemistry of Novel Materials, University of Mons (UMONS), BE-7000 Mons, Belgium
| | - Gregor Witte
- Fachbereich Physik, Philipps-Universität Marburg, 35032 Marburg, Germany
| |
Collapse
|
11
|
Lee H, Moon B, Kim MJ, Kim HS, Hwang DH, Kang B, Cho K. Fluorination-Induced Charge Trapping and Operational Instability in Conjugated-Polymer Field-Effect Transistors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39098-39108. [PMID: 35972221 DOI: 10.1021/acsami.2c04643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fluorination of a conjugated polymer backbone is an effective strategy to control the microstructure and electronic structure of a conjugated polymer. Although fluorination has been widely reported to increase charge carrier mobility, its effect on the operational stability of electronic devices has not been extensively investigated. Here, the effect of fluorination of a conjugated polymer backbone on charge trapping and the operational stability of organic field-effect transistors is investigated. The results show that the device based on a fluorinated conjugated polymer exhibits relatively poor operational stability despite its greater charge carrier mobility compared with that in the device based on its nonfluorinated polymer counterpart. Experimental results reveal that the low stability originates from the greater degree of shallow trapping of charge carriers within the fluorinated polymer thin film and that the shallow trapping is closely related to the presence of minority charge carriers. A mechanism of charge trapping is proposed.
Collapse
Affiliation(s)
- Hansol Lee
- Department of Chemical and Biological Engineering, Gachon University, Seongnam 13120, Korea
| | - Byungho Moon
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Min-Jae Kim
- SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nano Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Hee Su Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Do-Hoon Hwang
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Boseok Kang
- SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nano Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Kilwon Cho
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
| |
Collapse
|
12
|
Wang X, Liu S, Ren C, Cao L, Zhang W, Wu T. Synthesis, Characterization, and Field-Effect Transistor Properties of Naphthalene Diimide-Based Conjugated Polymers with Fluorine-Containing Branched Side Chains. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xuran Wang
- Laboratory of Optoelectronic and Information Marking Materials, Key Laboratory of Printing & Packaging Material and Technology, Beijing Institute of Graphic Communication, Beijing 102600, P. R. China
| | - Shengzhen Liu
- Laboratory of Optoelectronic and Information Marking Materials, Key Laboratory of Printing & Packaging Material and Technology, Beijing Institute of Graphic Communication, Beijing 102600, P. R. China
| | - Chunxing Ren
- Laboratory of Optoelectronic and Information Marking Materials, Key Laboratory of Printing & Packaging Material and Technology, Beijing Institute of Graphic Communication, Beijing 102600, P. R. China
| | - Long Cao
- Laboratory of Optoelectronic and Information Marking Materials, Key Laboratory of Printing & Packaging Material and Technology, Beijing Institute of Graphic Communication, Beijing 102600, P. R. China
| | - Weimin Zhang
- Laboratory of Optoelectronic and Information Marking Materials, Key Laboratory of Printing & Packaging Material and Technology, Beijing Institute of Graphic Communication, Beijing 102600, P. R. China
| | - Ti Wu
- Laboratory of Optoelectronic and Information Marking Materials, Key Laboratory of Printing & Packaging Material and Technology, Beijing Institute of Graphic Communication, Beijing 102600, P. R. China
| |
Collapse
|
13
|
Microstructural Control of Soluble Acene Crystals for Field-Effect Transistor Gas Sensors. NANOMATERIALS 2022; 12:nano12152564. [PMID: 35893530 PMCID: PMC9331709 DOI: 10.3390/nano12152564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 12/07/2022]
Abstract
Microstructural control during the solution processing of small-molecule semiconductors (namely, soluble acene) is important for enhancing the performance of field-effect transistors (FET) and sensors. This focused review introduces strategies to enhance the gas-sensing properties (sensitivity, recovery, selectivity, and stability) of soluble acene FET sensors by considering their sensing mechanism. Defects, such as grain boundaries and crystal edges, provide diffusion pathways for target gas molecules to reach the semiconductor-dielectric interface, thereby enhancing sensitivity and recovery. Representative studies on grain boundary engineering, patterning, and pore generation in the formation of soluble acene crystals are reviewed. The phase separation and microstructure of soluble acene/polymer blends for enhancing gas-sensing performance are also reviewed. Finally, flexible gas sensors using soluble acenes and soluble acene/polymer blends are introduced, and future research perspectives in this field are suggested.
Collapse
|
14
|
Kang SH, Lee D, Choi W, Oh JH, Yang C. Usefulness of Polar and Bulky Phosphonate Chain-End Solubilizing Groups in Polymeric Semiconductors. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- So-Huei Kang
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, Republic of Korea
- Department of Chemistry, McGill University, 801 Sherbrooke St West, Montreal, QC H3A 0B8, Canada
| | - Doyoung Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Wonbin Choi
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Joon Hak Oh
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Changduk Yang
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, Republic of Korea
| |
Collapse
|
15
|
Park GS, Ho DH, Lyu B, Jeon S, Ryu DY, Kim DW, Lee N, Kim S, Song YJ, Jo SB, Cho JH. Comb-type polymer-hybridized MXene nanosheets dispersible in arbitrary polar, nonpolar, and ionic solvents. SCIENCE ADVANCES 2022; 8:eabl5299. [PMID: 35353563 PMCID: PMC8967220 DOI: 10.1126/sciadv.abl5299] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Solution-based processing of two-dimensional (2D) nanomaterials is highly desirable, especially for the low-temperature large-area fabrication of flexible multifunctional devices. MXenes, an emerging family of 2D materials composed of transition metal carbides, carbonitrides, or nitrides, provide excellent electrical and electrochemical properties through aqueous processing. Here, we further expand the horizon of MXene processing by introducing a polymeric superdispersant for MXene nanosheets. Segmented anchor-spacer structures of a comb-type polymer, polycarboxylate ether (PCE), provide polymer grafting-like steric spacings over the van der Waals range of MXene surfaces, thereby reducing the colloidal interactions by the order of 103, regardless of solvent. An unprecedented broad dispersibility window for Ti3C2Tx MXene, covering polar, nonpolar, and even ionic solvents, was achieved. Furthermore, close PCE entanglements in MXene@PCE composite films resulted in highly robust properties upon prolonged mechanical and humidity stresses.
Collapse
Affiliation(s)
- Gyeong Seok Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Korea
| | - Dong Hae Ho
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Korea
| | - Benzheng Lyu
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Korea
| | - Seungbae Jeon
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Korea
| | - Du Yeol Ryu
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Korea
| | - Dae Woo Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Korea
| | - Namkon Lee
- Department of Structure Research, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang, Gyonggi-Do 10223, Korea
| | - Sungwook Kim
- Department of Structure Research, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang, Gyonggi-Do 10223, Korea
| | - Young Jae Song
- SKKU Advanced Institute of Nanotechnology (SAINT), Departments of Nano Engineering and Physics, Sungkyunkwan University, Suwon, Gyeonggi-Do 440-746, Korea
| | - Sae Byeok Jo
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Jeong Ho Cho
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
16
|
Wang Z, Gao M, He C, Shi W, Deng Y, Han Y, Ye L, Geng Y. Unraveling the Molar Mass Dependence of Shearing-Induced Aggregation Structure of a High-Mobility Polymer Semiconductor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108255. [PMID: 34850998 DOI: 10.1002/adma.202108255] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Aggregation-structure formation of conjugated polymers is a fundamental problem in the field of organic electronics and remains poorly understood. Herein, the molar mass dependence of the aggregation structure of a high-mobility conjugated copolymer (TDPP-Se) comprising thiophene-flanked diketopyrrolopyrrole and selenophene is thoroughly shown. Five batches of TDPP-Se are prepared with the number-average molecular weights (Mn ) varied greatly from 21 to 135 kg mol-1 . Small-angle neutron scattering and transmission electron microscopy are combined to probe the solution structure of these polymers, consistently using a deuterated solvent. All the polymers adopt 1D rod-like aggregation structures and the radius of the 1D rods is not sensitive to the Mn , while the length increases monotonically with Mn . By utilizing the ordered packing of the aggregated structure in solution, a highly aligned and ordered film is prepared and, thereafter, a reliable hole mobility of 13.8 cm2 V-1 s-1 is realized in organic thin-film transistors with the moderate Mn batch via bar coating. The hole mobility is among the highest values reported for diketopyrrolopyrrole-based polymers. This work paves the way to visualize the real aggregated structure of polymer semiconductors in solution and sheds light on the microstructure control of high-performance electronic devices.
Collapse
Affiliation(s)
- Zhongli Wang
- School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300350, China
| | - Mengyuan Gao
- School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300350, China
| | - Chunyong He
- China Spallation Neutron Source (CSNS), Spallation Neutron Source Science Centre, Dongguan, 523803, China
| | - Weichao Shi
- Key Laboratory of Functional Polymer Materials (Ministry of Education) and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yunfeng Deng
- School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300350, China
| | - Yang Han
- School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300350, China
| | - Long Ye
- School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300350, China
| | - Yanhou Geng
- School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300350, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
17
|
Kwon J, Baek S, Lee Y, Tokito S, Jung S. Layout-to-Bitmap Conversion and Design Rules for Inkjet-Printed Large-Scale Integrated Circuits. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10692-10701. [PMID: 34468155 DOI: 10.1021/acs.langmuir.1c01296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Digital inkjet printing (IJP) can greatly reduce the manufacturing cost and waste of flexible large-area electronics by adding micro-fine patterns onto plastic foils. Advanced system design using IJP has been limited by the lack of an electronic design automation (EDA) approach. An EDA approach based on a vector-based layout drawing requires parameterized IJP design rules. This study proposes a layout-to-bitmap (L2B) conversion procedure and line-based design rules that leverage the existing circuit layout EDA tools for advanced IJP designs. The L2B conversion is accomplished by optimizing the parameters of the horizontal and vertical lines by varying the drop spacings and platen temperatures. Next, the line-based layouts are converted to bitmap files which are used as IJP input data for printing multiple metal layers. This study systematically investigated the development of an IJP process employing Ag nanoparticles. The physical characteristics of the proposed process were evaluated based on theories concerning inkjet-printed bead formation. The design rules for fabricating printed thin-film transistor (TFT) circuits were documented. Documentation is the first step in creating an IJP process design kit for advanced electronics design. Using the optimized L2B conversion procedure and the design rules, a 10 × 10 array of printed organic TFTs was fabricated to demonstrate the reliability of the developed process. Additionally, the fabricated printed organic TFTs indicated that the proposed process could be extended to large-scale system designs.
Collapse
Affiliation(s)
- Jimin Kwon
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Sanghoon Baek
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Yongwoo Lee
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Shizuo Tokito
- Research Center for Organic Electronics (ROEL), Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Sungjune Jung
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| |
Collapse
|
18
|
Hasan MM, Hossain MM. Nanomaterials-patterned flexible electrodes for wearable health monitoring: a review. JOURNAL OF MATERIALS SCIENCE 2021; 56:14900-14942. [PMID: 34219807 PMCID: PMC8237560 DOI: 10.1007/s10853-021-06248-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
ABSTRACT Electrodes fabricated on a flexible substrate are a revolutionary development in wearable health monitoring due to their lightweight, breathability, comfort, and flexibility to conform to the curvilinear body shape. Different metallic thin-film and plastic-based substrates lack comfort for long-term monitoring applications. However, the insulating nature of different polymer, fiber, and textile substrates requires the deposition of conductive materials to render interactive functionality to substrates. Besides, the high porosity and flexibility of fiber and textile substrates pose a great challenge for the homogenous deposition of active materials. Printing is an excellent process to produce a flexible conductive textile electrode for wearable health monitoring applications due to its low cost and scalability. This article critically reviews the current state of the art of different textile architectures as a substrate for the deposition of conductive nanomaterials. Furthermore, recent progress in various printing processes of nanomaterials, challenges of printing nanomaterials on textiles, and their health monitoring applications are described systematically.
Collapse
Affiliation(s)
- Md Mehdi Hasan
- Department of Textile Engineering, Khulna University of Engineering & Technology, Khulna, 9203 Bangladesh
- UNAM – National Nanotechnology Research Center and, Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800 Turkey
| | - Md Milon Hossain
- Department of Textile Engineering, Khulna University of Engineering & Technology, Khulna, 9203 Bangladesh
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, 27606 USA
| |
Collapse
|
19
|
Iervolino F, Suriano R, Scolari M, Gelmi I, Castoldi L, Levi M. Inkjet Printing of a Benzocyclobutene-Based Polymer as a Low-k Material for Electronic Applications. ACS OMEGA 2021; 6:15892-15902. [PMID: 34179633 PMCID: PMC8223404 DOI: 10.1021/acsomega.1c01488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/14/2021] [Indexed: 05/07/2023]
Abstract
Polymeric materials with a low dielectric constant are widely used in the electronic industry due to their properties. In particular, polymer adhesives can be used in many applications such as wafer bonding and three-dimensional integration. Benzocyclobutene (BCB) is a very interesting material thanks to its excellent bonding behavior and dielectric properties. Usually, BCB is applied by spin-coating, although this technology does not allow the fabrication of complex patterns. To obtain complex patterns, it is necessary to use a printing technology, such as inkjet printing. However, inkjet printing of BCB-based inks has not yet been investigated. Here, we show the feasibility of printing complex patterns with a BCB-based ink, reaching a resolution of 130 μm. We demonstrate that with a proper dilution, BCB-based inks enter the printability window and drop ejection is achieved without the formation of satellite drops. In addition, we present the conditions in which there is an appearance of the coffee ring effect. Inks that feature a too high interaction with the substrate are more likely to show the coffee ring effect, deteriorating the printing quality. We also observe that it is possible to achieve a better film uniformity by increasing the number of printed layers, due to redissolution of the BCB-based polymer that helps to level possible inhomogeneities. Our work represents the starting point for an in-depth study of BCB-based polymer fabrication using jet printing technologies, as a comparison of the bonding quality obtained with different materials and different technologies could give more information and broaden the perspective regarding this field.
Collapse
Affiliation(s)
- Filippo Iervolino
- Department
of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan 20133, Italy
| | - Raffaella Suriano
- Department
of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan 20133, Italy
| | - Martina Scolari
- STMicroelectronics, Via Camillo Olivetti, 2, Agrate Brianza 20864, Monza and Brianza, Italy
| | - Ilaria Gelmi
- STMicroelectronics, Via Camillo Olivetti, 2, Agrate Brianza 20864, Monza and Brianza, Italy
| | - Laura Castoldi
- STMicroelectronics, Via Camillo Olivetti, 2, Agrate Brianza 20864, Monza and Brianza, Italy
| | - Marinella Levi
- Department
of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan 20133, Italy
| |
Collapse
|
20
|
Lee JI, Kim M, Park JH, Kang B, Lee CY, Park YD. Metal-Organic Framework as a Functional Analyte Channel of Organic-Transistor-Based Air Pollution Sensors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24005-24012. [PMID: 33999613 DOI: 10.1021/acsami.1c04570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Air pollution sensors based on organic transistors have attracted much interest recently; however, the devices suffer from low responsivity and slow response and recovery rates for gas analytes. These shortcomings are attributed to the low charge-carrier mobility of organic semiconductors and to a structural limitation resulting from the use of a thick and continuous active layer. In the present work, we investigated the material properties of a multiscale porous zeolitic imidazolate framework, [Zn(2-methylimidazole)2]n (ZIF-8), and examined its potential as an analyte channel material inserted at an organic-transistor active layer. A series of carbonized zeolitic imidazolate frameworks (ZIFs) were prepared by thermal conversion of ZIF-8 and also studied for comparison. The microstructures, morphologies, and optical/electrical characteristics of polythiophene/ZIF-8 hybrid films were systematically investigated. Organic-transistor-type nitrogen dioxide sensors based on the polythiophene/ZIF-8 hybrid films showed substantially improved sensing properties, including responsivity, response rate, and recovery rate. The electrical conductivity of the carbonized ZIF-8s enhanced the field-effect mobility of the organic transistors; however, the sensing performance was not improved, because of the closed pore structures resulting from the carbonization. These results provide invaluable information and useful insights into the design of transistor-type gas sensors based on organic semiconductor/metal-organic framework hybrid films.
Collapse
Affiliation(s)
- Jeong Ik Lee
- Department of Energy and Chemical Engineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Miyeon Kim
- Department of Energy and Chemical Engineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Jun Hwa Park
- Department of Energy and Chemical Engineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Boseok Kang
- SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nano Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Chang Yeon Lee
- Department of Energy and Chemical Engineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Yeong Don Park
- Department of Energy and Chemical Engineering, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
21
|
Effects of MEH-PPV Molecular Ordering in the Emitting Layer on the Luminescence Efficiency of Organic Light-Emitting Diodes. Molecules 2021; 26:molecules26092512. [PMID: 33923106 PMCID: PMC8123485 DOI: 10.3390/molecules26092512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 11/25/2022] Open
Abstract
We investigated the effects of molecular ordering on the electro-optical characteristics of organic light-emitting diodes (OLEDs) with an emission layer (EML) of poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV). The EML was fabricated by a solution process which can make molecules ordered. The performance of the OLED devices with the molecular ordering method was compared to that obtained through fabrication by a conventional spin coating method. The turn-on voltage and the luminance of the conventional OLEDs were 5 V and 34.75 cd/m2, whereas those of the proposed OLEDs were 4.5 V and 120.3 cd/m2, respectively. The underlying mechanism of the higher efficiency with ordered molecules was observed by analyzing the properties of the EML layer using AFM, SE, XRD, and an LCR meter. We confirmed that the electrical properties of the organic thin film can be improved by controlling the molecular ordering of the EML, which plays an important role in the electrical characteristics of the OLED.
Collapse
|
22
|
Saito K, McGehee K, Manabe K, Norikane Y. Facile fabrication of self-assembled nanostructures of vertically aligned gold nanorods by using inkjet printing. RSC Adv 2021; 11:22376-22380. [PMID: 35480796 PMCID: PMC9034222 DOI: 10.1039/d1ra03900h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/16/2021] [Indexed: 11/22/2022] Open
Abstract
We demonstrated that the vertically aligned gold nanorods (AuNRs) were quickly and easily formed by using inkjet printing when aqueous dispersion of AuNRs containing a small amount of ethylene glycol (EG) was employed as an ink. It was observed that the content of EG in water suppressed rapid drying and convection in the droplets, which is favorable for the formation of the nanostructures. Slow evaporation of a droplet of water/ethylene glycol (EG) mixture allows the fabrication of vertically aligned gold nanorods using inkjet printing.![]()
Collapse
Affiliation(s)
- Koichiro Saito
- Research Institute for Advanced Electronics and Photonics
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba
- Japan
| | - Keegan McGehee
- Research Institute for Advanced Electronics and Photonics
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba
- Japan
| | - Kengo Manabe
- Research Institute for Advanced Electronics and Photonics
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba
- Japan
| | - Yasuo Norikane
- Research Institute for Advanced Electronics and Photonics
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba
- Japan
- Department of Chemistry
| |
Collapse
|
23
|
Kang B, Lee YS, Hwa J, Dongbo Z, Cho K, Kim YH. Structural influence of a dichalcogenopheno-1,3,4-chalcogenodiazole comonomer on the optoelectronic properties of diketopyrrolopyrrole-based conjugated polymers. Polym Chem 2021. [DOI: 10.1039/d0py01710h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dichalcogenopheno-1,3,4-chalcogenodiazole units are newly designed and introduced into dithienyl diketopyrrolopyrrole-based copolymers showing promising optoelectronic characteristics.
Collapse
Affiliation(s)
- Boseok Kang
- SKKU Advanced Institute of Nanotechnology and Department of Nano Engineering
- Sungkyunkwan University (SKKU)
- Suwon 16419
- Korea
| | - Ye Seul Lee
- Department of Chemistry and RIGET
- Gyeongsang National University
- Jinju
- Korea
| | - JunHo Hwa
- Department of Chemistry and RIGET
- Gyeongsang National University
- Jinju
- Korea
| | - Zhang Dongbo
- Department of Materials Engineering and Convergence Technology and ERI
- Gyeongsang National University
- Jinju
- Korea
| | - Kilwon Cho
- Department of Chemical Engineering
- Pohang University of Science and Technology
- Pohang 37673
- Korea
| | - Yun-Hi Kim
- Department of Chemistry and RIGET
- Gyeongsang National University
- Jinju
- Korea
| |
Collapse
|
24
|
Cho S, Kim D, Yun Y, Lee J, Earmme T, Seo S, Kim C. Solid cross linked-poly(ethylene oxide) electrolyte gate dielectrics for organic thin-film transistors. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
25
|
Higashino T, Kuribara K, Toda N, Uemura S, Tachibana H, Azumi R. Direct Preparation of Mixed Self-assembled Monolayers Based on Common-substructure-tailored Phosphonic Acids for Fine Control of Surface Wettability. CHEM LETT 2020. [DOI: 10.1246/cl.200460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Toshiki Higashino
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Kazunori Kuribara
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Naoya Toda
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Sei Uemura
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Hiroaki Tachibana
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Reiko Azumi
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
26
|
Hassan K, Nine MJ, Tung TT, Stanley N, Yap PL, Rastin H, Yu L, Losic D. Functional inks and extrusion-based 3D printing of 2D materials: a review of current research and applications. NANOSCALE 2020; 12:19007-19042. [PMID: 32945332 DOI: 10.1039/d0nr04933f] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Graphene and related 2D materials offer an ideal platform for next generation disruptive technologies and in particular the potential to produce printed electronic devices with low cost and high throughput. Interest in the use of 2D materials to create functional inks has exponentially increased in recent years with the development of new ink formulations linked with effective printing techniques, including screen, gravure, inkjet and extrusion-based printing towards low-cost device manufacturing. Exfoliated, solution-processed 2D materials formulated into inks permits additive patterning onto both rigid and conformable substrates for printed device design with high-speed, large-scale and cost-effective manufacturing. Each printing technique has some sort of clear advantages over others that requires characteristic ink formulations according to their individual operational principles. Among them, the extrusion-based 3D printing technique has attracted heightened interest due to its ability to create three-dimensional (3D) architectures with increased surface area facilitating the design of a new generation of 3D devices suitable for a wide variety of applications. There still remain several challenges in the development of 2D material ink technologies for extrusion printing which must be resolved prior to their translation into large-scale device production. This comprehensive review presents the current progress on ink formulations with 2D materials and their broad practical applications for printed energy storage devices and sensors. Finally, an outline of the challenges and outlook for extrusion-based 3D printing inks and their place in the future printed devices ecosystem is presented.
Collapse
Affiliation(s)
- Kamrul Hassan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia. and ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Md Julker Nine
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia. and ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Tran Thanh Tung
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia. and ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Nathan Stanley
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia. and ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Pei Lay Yap
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia. and ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Hadi Rastin
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia. and ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Le Yu
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia. and ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Dusan Losic
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia. and ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
27
|
Peglow TJ, Bartz RH, Martins CC, Belladona AL, Luchese C, Wilhelm EA, Schumacher RF, Perin G. Synthesis of 2-Organylchalcogenopheno[2,3-b]pyridines from Elemental Chalcogen and NaBH 4 /PEG-400 as a Reducing System: Antioxidant and Antinociceptive Properties. ChemMedChem 2020; 15:1741-1751. [PMID: 32667720 DOI: 10.1002/cmdc.202000358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/13/2020] [Indexed: 12/29/2022]
Abstract
An alternative method to prepare 2-organylchalcogenopheno[2,3-b]pyridines was developed by the insertion of chalcogen species (selenium, sulfur or tellurium), generated in situ, into 2-chloro-3-(organylethynyl)pyridines by using the NaBH4 /PEG-400 reducing system, followed by an intramolecular cyclization. It was possible to obtain a series of compounds with up to 93 % yield in short reaction times. Among the synthesized products, 2-organyltelluropheno[2,3-b]pyridines have not been described in the literature so far. Moreover, the compounds 2-phenylthieno[2,3-b]pyridine (3 b) and 2-phenyltelluropheno[2,3-b]pyridine (3 c) exhibited significant antioxidant potential in different in vitro assays. Further studies demonstrated that compound 3 b exerted an antinociceptive effect in acute inflammatory and non-inflammatory pain models, thus indicating the involvement of the central and peripheral nervous systems on its pharmacological action. More specifically, our results suggest that the intrinsic antioxidant property of compound 3 b might contribute to attenuating the nociception and inflammatory process on local injury induced by complete Freund's adjuvant (CFA).
Collapse
Affiliation(s)
- Thiago J Peglow
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Ricardo H Bartz
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Carolina C Martins
- LaFarBio-CCQFA, Universidade Federal de Pelotas - UFPel, 96010-900, Pelotas, RS, Brazil
| | - Andrei L Belladona
- CCNE, Universidade Federal de Santa Maria - UFSM, 97105-900, Santa Maria, RS, Brazil
| | - Cristiane Luchese
- LaFarBio-CCQFA, Universidade Federal de Pelotas - UFPel, 96010-900, Pelotas, RS, Brazil
| | - Ethel A Wilhelm
- LaFarBio-CCQFA, Universidade Federal de Pelotas - UFPel, 96010-900, Pelotas, RS, Brazil
| | - Ricardo F Schumacher
- CCNE, Universidade Federal de Santa Maria - UFSM, 97105-900, Santa Maria, RS, Brazil
| | - Gelson Perin
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| |
Collapse
|
28
|
Advanced Nanomaterials, Printing Processes, and Applications for Flexible Hybrid Electronics. MATERIALS 2020; 13:ma13163587. [PMID: 32823736 PMCID: PMC7475884 DOI: 10.3390/ma13163587] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/16/2022]
Abstract
Recent advances in nanomaterial preparation and printing technologies provide unique opportunities to develop flexible hybrid electronics (FHE) for various healthcare applications. Unlike the costly, multi-step, and error-prone cleanroom-based nano-microfabrication, the printing of nanomaterials offers advantages, including cost-effectiveness, high-throughput, reliability, and scalability. Here, this review summarizes the most up-to-date nanomaterials, methods of nanomaterial printing, and system integrations to fabricate advanced FHE in wearable and implantable applications. Detailed strategies to enhance the resolution, uniformity, flexibility, and durability of nanomaterial printing are summarized. We discuss the sensitivity, functionality, and performance of recently reported printed electronics with application areas in wearable sensors, prosthetics, and health monitoring implantable systems. Collectively, the main contribution of this paper is in the summary of the essential requirements of material properties, mechanisms for printed sensors, and electronics.
Collapse
|
29
|
Dikcal F, Topal S, Unal M, Ozturk T. Synthesis, Characterization and Electrochemical Properties of Polymers Based on Dithienothiophene and Bithiazole. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fatma Dikcal
- Department of Chemistry Faculty of Science & LettersIstanbul Technical University Istanbul Turkey
- Istanbul Sisli Vocational School Istanbul Turkey
| | - Sebahat Topal
- Department of Chemistry Faculty of Science & LettersIstanbul Technical University Istanbul Turkey
| | - Murat Unal
- Department of Chemistry Faculty of Science & LettersIstanbul Technical University Istanbul Turkey
| | - Turan Ozturk
- Department of Chemistry Faculty of Science & LettersIstanbul Technical University Istanbul Turkey
- TUBITAK-UMEChemistry Group Laboratories Kocaeli Turkey
| |
Collapse
|
30
|
Vegiraju S, Amelenan Torimtubun AA, Lin PS, Tsai HC, Lien WC, Chen CS, He GY, Lin CY, Zheng D, Huang YF, Wu YC, Yau SL, Lee GH, Tung SH, Wang CL, Liu CL, Chen MC, Facchetti A. Solution-Processable Quinoidal Dithioalkylterthiophene-Based Small Molecules Pseudo-Pentathienoacenes via an Intramolecular S···S Lock for High-Performance n-Type Organic Field-Effect Transistors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:25081-25091. [PMID: 32340439 DOI: 10.1021/acsami.0c03477] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
A new organic small-molecule family comprising tetracyanoquinodimethane-substituted quinoidal dithioalky(SR)terthiophenes (DSTQs) (DSTQ-6 (1); SR = SC6H13, DSTQ-10 (2); SR = SC10H21, DSTQ-14 (3); SR = SC10H21) was synthesized and contrasted with a nonthioalkylated analogue (DRTQ-14 (4); R = C14H29). The physical, electrochemical, and electrical properties of these new compounds are thoroughly investigated. Optimized geometries obtained from density functional theory calculations and single-crystal X-ray diffraction reveal the planarity of the SR-containing DSTQ core. DSTQs pack in a slipped π-π stacked two-dimensional arrangement, with a short intermolecular stacking distance of 3.55 Å and short intermolecular S···N contacts of 3.56 Å. Thin-film morphological analysis by grazing incident X-ray diffraction reveals that all DSTQ molecules are packed in an edge-on fashion on the substrate. The favorable molecular packing, the high core planarity, and very low lowest unoccupied molecular orbital (LUMO) energy level (-4.2 eV) suggest that DSTQs could be electron-transporting semiconductors. Organic field-effect transistors based on solution-sheared DSTQ-14 exhibit the highest electron mobility of 0.77 cm2 V-1 s-1 with good ambient stability, which is the highest value reported to date for such a solution process terthiophene-based small molecular semiconductor. These results demonstrate that the device performance of solution-sheared DSTQs can be improved by side chain engineering.
Collapse
Affiliation(s)
- Sureshraju Vegiraju
- Department of Chemistry and Research Center of New Generation Light Driven Photovoltaic Module, National Central University, Taoyuan 32001, Taiwan
| | - Alfonsina Abat Amelenan Torimtubun
- Department of Chemical and Materials Engineering and Research Center of New Generation Light Driven Photovoltaic Module, National Central University, Taoyuan 32001, Taiwan
| | - Po-Shen Lin
- Department of Chemical and Materials Engineering and Research Center of New Generation Light Driven Photovoltaic Module, National Central University, Taoyuan 32001, Taiwan
| | - Hsin-Chia Tsai
- Department of Chemistry and Research Center of New Generation Light Driven Photovoltaic Module, National Central University, Taoyuan 32001, Taiwan
| | - Wei-Chieh Lien
- Department of Chemistry and Research Center of New Generation Light Driven Photovoltaic Module, National Central University, Taoyuan 32001, Taiwan
| | - Cheng-Shiun Chen
- Department of Chemistry and Research Center of New Generation Light Driven Photovoltaic Module, National Central University, Taoyuan 32001, Taiwan
| | - Guan-Yu He
- Department of Chemical and Materials Engineering and Research Center of New Generation Light Driven Photovoltaic Module, National Central University, Taoyuan 32001, Taiwan
| | - Chih-Yu Lin
- Department of Chemical and Materials Engineering and Research Center of New Generation Light Driven Photovoltaic Module, National Central University, Taoyuan 32001, Taiwan
| | - Ding Zheng
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yi-Fan Huang
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Yi-Ching Wu
- Department of Chemistry and Research Center of New Generation Light Driven Photovoltaic Module, National Central University, Taoyuan 32001, Taiwan
| | - Shueh-Lin Yau
- Department of Chemistry and Research Center of New Generation Light Driven Photovoltaic Module, National Central University, Taoyuan 32001, Taiwan
| | - Gene-Hsiang Lee
- Instrumentation Center, National Taiwan University, Taipei 10617, Taiwan
| | - Shih-Huang Tung
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chien-Lung Wang
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Cheng-Liang Liu
- Department of Chemical and Materials Engineering and Research Center of New Generation Light Driven Photovoltaic Module, National Central University, Taoyuan 32001, Taiwan
| | - Ming-Chou Chen
- Department of Chemistry and Research Center of New Generation Light Driven Photovoltaic Module, National Central University, Taoyuan 32001, Taiwan
| | - Antonio Facchetti
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
31
|
Lim DU, Kim S, Choi YJ, Jo SB, Cho JH. Percolation-Limited Dual Charge Transport in Vertical p -n Heterojunction Schottky Barrier Transistors. NANO LETTERS 2020; 20:3585-3592. [PMID: 32343583 DOI: 10.1021/acs.nanolett.0c00523] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Solution-processed, high-speed, and polarity-selective organic vertical Schottky barrier (SB) transistors and logic gates are presented. The organic layer, which is a bulk heterojunction (BHJ) composed of PBDB-T and PC71BM, is employed to simultaneously realize vertical electron and hole transports through the separate p-channel and n-channel. The gate-modulated graphene work functions enable broad modulation of SB heights at both the graphene-PBDB-T and graphene-PC71BM heterointerfaces. Interestingly, the fine-tuned energy-level alignment enables an exclusive injection of holes or electrons unlike conventional BHJ-based ambipolar transistors, leading to a clear transition between p-channel and n-channel single-carrier-like transistor characteristics. Furthermore, the improved percolation-limited dual charge transport in vertical architecture results in high charge carrier density and high-speed on-off switching characteristics, providing a high on-off current ratio exceeding 105 and an operation speed of 100 kHz. Solution-based on-substrate fabrications of low-power complementary logic gates such as NOT, NOR, and NAND are also successfully performed.
Collapse
Affiliation(s)
- Dong Un Lim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Korea
| | - Seongchan Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746, Korea
| | - Young Jin Choi
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746, Korea
| | - Sae Byeok Jo
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195-2120, United States
| | - Jeong Ho Cho
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
32
|
Sun J, Li Y, Liu G, Chen S, Zhang Y, Chen C, Chu F, Song Y. Fabricating High-Resolution Metal Pattern with Inkjet Printed Water-Soluble Sacrificial Layer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22108-22114. [PMID: 32320207 DOI: 10.1021/acsami.0c01138] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The metal pattern plays a crucial role in various optoelectronic devices. However, fabrication of high-resolution metal patterns has serious problems including complicated techniques and high cost. Herein, an inkjet printed water-soluble sacrificial layer was proposed to fabricate a high-resolution metal pattern. The water-soluble sacrificial layer was inkjet printed on a polyethylene glycol terephthalate (PET) surface, and then the printed surface was deposited with a metal layer by evaporating deposition. When the deposited surface was rinsed by water, the metal layer deposited on the water-soluble sacrificial layer could be removed. Various high-resolution metal patterns were prepared, which could be used in electroluminescent displays, strain sensors, and 3D switches. This facile method could be a promising approach for fabricating high-resolution metal patterns.
Collapse
Affiliation(s)
- Jiazhen Sun
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Key Laboratory of Pulp, Paper, Printing & Packaging of China National Light Industry, Key Laboratory of Green Printing & Packaging Materials and Technology in Universities of Shandong Province, School of Light Industry Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yang Li
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Guangping Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Key Laboratory of Pulp, Paper, Printing & Packaging of China National Light Industry, Key Laboratory of Green Printing & Packaging Materials and Technology in Universities of Shandong Province, School of Light Industry Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Shuoran Chen
- Research Centre for Green Printing Nanophotonic Materials, Jiangsu Key Laboratory for Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yang Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Key Laboratory of Pulp, Paper, Printing & Packaging of China National Light Industry, Key Laboratory of Green Printing & Packaging Materials and Technology in Universities of Shandong Province, School of Light Industry Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Chen Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Key Laboratory of Pulp, Paper, Printing & Packaging of China National Light Industry, Key Laboratory of Green Printing & Packaging Materials and Technology in Universities of Shandong Province, School of Light Industry Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Fuqiang Chu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Key Laboratory of Pulp, Paper, Printing & Packaging of China National Light Industry, Key Laboratory of Green Printing & Packaging Materials and Technology in Universities of Shandong Province, School of Light Industry Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| |
Collapse
|
33
|
Schweicher G, Garbay G, Jouclas R, Vibert F, Devaux F, Geerts YH. Molecular Semiconductors for Logic Operations: Dead-End or Bright Future? ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905909. [PMID: 31965662 DOI: 10.1002/adma.201905909] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/18/2019] [Indexed: 05/26/2023]
Abstract
The field of organic electronics has been prolific in the last couple of years, leading to the design and synthesis of several molecular semiconductors presenting a mobility in excess of 10 cm2 V-1 s-1 . However, it is also started to recently falter, as a result of doubtful mobility extractions and reduced industrial interest. This critical review addresses the community of chemists and materials scientists to share with it a critical analysis of the best performing molecular semiconductors and of the inherent charge transport physics that takes place in them. The goal is to inspire chemists and materials scientists and to give them hope that the field of molecular semiconductors for logic operations is not engaged into a dead end. To the contrary, it offers plenty of research opportunities in materials chemistry.
Collapse
Affiliation(s)
- Guillaume Schweicher
- Laboratoire de chimie des polymères, Faculté des Sciences, Université Libre de Bruxelles (ULB) Boulevard du Triomphe, Brussels, 1050, Belgium
- Optoelectronics Group, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Guillaume Garbay
- Laboratoire de chimie des polymères, Faculté des Sciences, Université Libre de Bruxelles (ULB) Boulevard du Triomphe, Brussels, 1050, Belgium
| | - Rémy Jouclas
- Laboratoire de chimie des polymères, Faculté des Sciences, Université Libre de Bruxelles (ULB) Boulevard du Triomphe, Brussels, 1050, Belgium
| | - François Vibert
- Laboratoire de chimie des polymères, Faculté des Sciences, Université Libre de Bruxelles (ULB) Boulevard du Triomphe, Brussels, 1050, Belgium
| | - Félix Devaux
- Laboratoire de chimie des polymères, Faculté des Sciences, Université Libre de Bruxelles (ULB) Boulevard du Triomphe, Brussels, 1050, Belgium
| | - Yves H Geerts
- Laboratoire de chimie des polymères, Faculté des Sciences, Université Libre de Bruxelles (ULB) Boulevard du Triomphe, Brussels, 1050, Belgium
| |
Collapse
|
34
|
Velusamy A, Yu C, Afraj SN, Lin C, Lo W, Yeh C, Wu Y, Hsieh H, Chen J, Lee G, Tung S, Liu C, Chen M, Facchetti A. Thienoisoindigo (TII)-Based Quinoidal Small Molecules for High-Performance n-Type Organic Field Effect Transistors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 8:2002930. [PMID: 33437584 PMCID: PMC7788596 DOI: 10.1002/advs.202002930] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/15/2020] [Indexed: 05/26/2023]
Abstract
A novel quinoidal thienoisoindigo (TII)-containing small molecule family with dicyanomethylene end-capping units and various alkyl chains is synthesized as n-type organic small molecules for solution-processable organic field effect transistors (OFETs). The molecular structure of the 2-hexyldecyl substituted derivative, TIIQ-b16, is determined via single-crystal X-ray diffraction and shows that the TIIQ core is planar and exhibits molecular layers stacked in a "face-to-face" arrangement with short core intermolecular distances of 3.28 Å. The very planar core structure, shortest intermolecular N···H distance (2.52 Å), existence of an intramolecular non-bonded contact between sulfur and oxygen atom (S···O) of 2.80 Å, and a very low-lying LUMO energy level of -4.16 eV suggest that TIIQ molecules should be electron transporting semiconductors. The physical, thermal, and electrochemical properties as well as OFET performance and thin film morphologies of these new TIIQs are systematically studied. Thus, air-processed TIIQ-b16 OFETs exhibit an electron mobility up to 2.54 cm2 V-1 s-1 with a current ON/OFF ratio of 105-106, which is the first demonstration of TII-based small molecules exhibiting unipolar electron transport characteristics and enhanced ambient stability. These results indicate that construction of quinoidal molecule from TII moiety is a successful approach to enhance n-type charge transport characteristics.
Collapse
Affiliation(s)
- Arulmozhi Velusamy
- Department of Chemistry and Research Center of New Generation Light Driven Photovoltaic ModulesNational Central UniversityTaoyuan32001Taiwan
| | - Chih‐Hsin Yu
- Department of Chemical and Materials EngineeringNational Central UniversityTaoyuan32001Taiwan
| | - Shakil N. Afraj
- Department of Chemistry and Research Center of New Generation Light Driven Photovoltaic ModulesNational Central UniversityTaoyuan32001Taiwan
| | - Chia‐Chi Lin
- Department of Chemical and Materials EngineeringNational Central UniversityTaoyuan32001Taiwan
| | - Wei‐Yu Lo
- Department of Chemistry and Research Center of New Generation Light Driven Photovoltaic ModulesNational Central UniversityTaoyuan32001Taiwan
| | - Chia‐Jung Yeh
- Department of Chemistry and Research Center of New Generation Light Driven Photovoltaic ModulesNational Central UniversityTaoyuan32001Taiwan
| | - Ya‐Wen Wu
- Department of Chemistry and Research Center of New Generation Light Driven Photovoltaic ModulesNational Central UniversityTaoyuan32001Taiwan
| | - Hsin‐Chun Hsieh
- Department of Chemistry and Research Center of New Generation Light Driven Photovoltaic ModulesNational Central UniversityTaoyuan32001Taiwan
| | - Jianhua Chen
- Department of Chemistry and the Materials Research CenterNorthwestern UniversityEvanstonIL60208USA
| | - Gene‐Hsiang Lee
- Instrumentation CenterNational Taiwan UniversityTaipei10617Taiwan
| | - Shih‐Huang Tung
- Institute of Polymer Science and EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Cheng‐Liang Liu
- Department of Materials Science and EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Ming‐Chou Chen
- Department of Chemistry and Research Center of New Generation Light Driven Photovoltaic ModulesNational Central UniversityTaoyuan32001Taiwan
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research CenterNorthwestern UniversityEvanstonIL60208USA
| |
Collapse
|
35
|
Lee SB, Kang B, Kim D, Park C, Kim S, Lee M, Lee WB, Cho K. Motion-Programmed Bar-Coating Method with Controlled Gap for High-Speed Scalable Preparation of Highly Crystalline Organic Semiconductor Thin Films. ACS APPLIED MATERIALS & INTERFACES 2019; 11:47153-47161. [PMID: 31762265 DOI: 10.1021/acsami.9b17044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Solution-processed organic semiconductor thin films with high charge carrier mobility are necessary for development of next-generation electronic applications, but the rapid processing speed demanded for the industrial-scale production of these thin films poses a challenge to control of their thin-film properties, such as crystallinity, morphology, and film-to-film uniformity. Here, we show a new solution coating method that is compatible with a roll-to-roll printing process at a rate of 2 mm s-1 by using a gap-controllable wire bar, motion-programming strategy, and blended active inks. We demonstrate that the coating bar, the horizontal motion of which is repeatedly brought to an intermittent standstill, results in an improved vertically self-stratified structure and a high crystallinity for organic active inks comprising a semiconducting small molecule and a semiconducting polymer. Furthermore, organic transistors prepared by the developed method show superior hole mobility with high operational stability (hysteresis and kink-free transfer characteristics), high uniformity over a large area of a 4 in. wafer, good reproducibility, and superior electromechanical stabilities on a flexible plastic substrate. The bar-coating approach demonstrated here will be a step toward developing industrial-scale practical organic electronics applications.
Collapse
Affiliation(s)
- Seon Baek Lee
- Department of Chemical Engineering and Center for Advanced Soft Electronics , Pohang University of Science and Technology , 77 Cheongam-Ro , Nam-gu, Pohang 37673 , Korea
| | - Boseok Kang
- Department of Chemical Engineering and Center for Advanced Soft Electronics , Pohang University of Science and Technology , 77 Cheongam-Ro , Nam-gu, Pohang 37673 , Korea
- SKKU Advanced Institute of Nanotechnology and Department of Nano Engineering , Sungkyunkwan University (SKKU) , Suwon 16419 , Korea
| | - Daegun Kim
- Department of Chemical Engineering and Center for Advanced Soft Electronics , Pohang University of Science and Technology , 77 Cheongam-Ro , Nam-gu, Pohang 37673 , Korea
| | - Chaneui Park
- Department of Chemical Engineering and Center for Advanced Soft Electronics , Pohang University of Science and Technology , 77 Cheongam-Ro , Nam-gu, Pohang 37673 , Korea
| | - Seulwoo Kim
- School of Chemical and Biological Engineering , Seoul National University , 1 Gwanak-Ro , Gwanak-gu, Seoul 08826 , Korea
| | - Minhwan Lee
- School of Chemical and Biological Engineering , Seoul National University , 1 Gwanak-Ro , Gwanak-gu, Seoul 08826 , Korea
| | - Won Bo Lee
- School of Chemical and Biological Engineering , Seoul National University , 1 Gwanak-Ro , Gwanak-gu, Seoul 08826 , Korea
| | - Kilwon Cho
- Department of Chemical Engineering and Center for Advanced Soft Electronics , Pohang University of Science and Technology , 77 Cheongam-Ro , Nam-gu, Pohang 37673 , Korea
| |
Collapse
|
36
|
Suh YH, Shin DW, Chun YT. Micro-to-nanometer patterning of solution-based materials for electronics and optoelectronics. RSC Adv 2019; 9:38085-38104. [PMID: 35541771 PMCID: PMC9075859 DOI: 10.1039/c9ra07514c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/12/2019] [Indexed: 12/03/2022] Open
Abstract
Technologies for micro-to-nanometer patterns of solution-based materials (SBMs) contribute to a wide range of practical applications in the fields of electronics and optoelectronics. Here, state-of-the-art micro-to-nanometer scale patterning technologies of SBMs are disseminated. The utilisation of patterning for a wide-range of SBMs leads to a high level of control over conventional solution-based film fabrication processes that are not easily accessible for the control and fabrication of ordered micro-to-nanometer patterns. In this review, various patterning procedures of SBMs, including modified photolithography, direct-contact patterning, and inkjet printing, are briefly introduced with several strategies for reducing their pattern size to enhance the electronic and optoelectronic properties of SBMs explained. We then conclude with comments on future research directions in the field.
Collapse
Affiliation(s)
- Yo-Han Suh
- Electrical Engineering Division, Department of Engineering, University of Cambridge 9 JJ Thomson Avenue Cambridge CB3 0FA UK
| | - Dong-Wook Shin
- Electrical Engineering Division, Department of Engineering, University of Cambridge 9 JJ Thomson Avenue Cambridge CB3 0FA UK
| | - Young Tea Chun
- Electrical Engineering Division, Department of Engineering, University of Cambridge 9 JJ Thomson Avenue Cambridge CB3 0FA UK
| |
Collapse
|
37
|
Kim HS, Park JH, Lee WH, Kim HH, Park YD. Tailoring the crystallinity of solution-processed 6,13-bis(triisopropylsilylethynyl)pentacene via controlled solidification. SOFT MATTER 2019; 15:7369-7373. [PMID: 31468035 DOI: 10.1039/c9sm01159e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Solution processing is one of the most important techniques for producing large-area, uniform films for printed electronics via a low-cost process. Herein, we propose a time-controlled spin-coating method to improve the crystallinity of films of the solution-processable organic small-molecule semiconductor 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene). A key factor in this process was to halt spinning before drying had begun. We used microscopic and spectroscopic analyses to systematically investigate the effect of spinning time on the evaporation rate of solvent at different spinning rates. We found that the crystallinity of the TIPS-pentacene thin films was substantially enhanced when the spinning time was limited to a few seconds, without post-treatment. We fabricated field-effect transistors using thin films deposited by this method and found that the field-effect mobility was enhanced ∼100-fold compared with that of a device fabricated using a film deposited by the conventional spin-coating method.
Collapse
Affiliation(s)
- Hye Su Kim
- Department of Energy and Chemical Engineering, Innovation Center for Chemical Engineering, Incheon National University, Incheon 22012, Republic of Korea.
| | | | | | | | | |
Collapse
|
38
|
Importance of Blade-Coating Temperature for Diketopyrrolopyrrole-based Thin-Film Transistors. CRYSTALS 2019. [DOI: 10.3390/cryst9070346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this work, the effect of blade-coating temperature on the electrical properties of a conjugated donor–acceptor copolymer containing diketopyrrolopyrrole (DPP)-based thin-film transistors (TFTs) was systematically analyzed. The organic semiconductor (OSC) layers were blade-coated at various blade-coating temperatures from room temperature (RT) to 80 °C. No remarkable changes were observed in the thickness, surface morphology, and roughness of the OSC films as the blade-coating temperature increased. DPP-based TFTs exhibited two noticeable tendencies in the magnitude of field-effect mobility with increasing blade-coating temperatures. As the temperature increased up to 40 °C, the field-effect mobility increased to 148% compared to the RT values. On the contrary, when the temperature was raised to 80 °C, the field-effect mobility significantly reduced to 20.9% of the mobility at 40 °C. These phenomena can be explained by changes in the crystallinity of DPP-based films. Therefore, the appropriate setting of the blade-coating temperature is essential in obtaining superior electrical characteristics for TFTs. A blade-coating temperature of 40 °C was found to be the optimum condition in terms of electrical performance for DPP-based TFTs.
Collapse
|
39
|
Yu H, Chen Y, Wei H, Gong J, Xu W. High-k polymeric gate insulators for organic field-effect transistors. NANOTECHNOLOGY 2019; 30:202002. [PMID: 30669134 DOI: 10.1088/1361-6528/ab00a4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gate insulators play a role as important as that of the semiconductor in high performance OFETs, with a high on/off current ratio, low hysteresis, and device stability. The essential requirements for gate dielectrics include high capacitance, high dielectric breakdown strength, solution-processibility, and flexibility. In this paper we review progress in recent years in developing high-k gate polymeric insulators for modern organic electronic applications. After a general introduction to OFETs, three types of high-k polymeric gate insulating materials are enumerated in achieving high-quality OFETs, including polymer gate insulators, polymer-inorganic gate composites or bilayers, and ion gel electrolytes. Especially, we emphasize the significance, implementation and development of high-k polymeric gate insulators used in OFETs for future low voltage operated and flexible electronics. Finally, a brief summary and outlook are presented.
Collapse
Affiliation(s)
- Haiyang Yu
- Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China. Tianjin Key Laboratory of Photoelectronic Thin Film Devices and Technology, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | | | | | | | | |
Collapse
|
40
|
A Potential Field Description for Gravity-Driven Film Flow over Piece-Wise Planar Topography. FLUIDS 2019. [DOI: 10.3390/fluids4020082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Models based on a potential field description and corresponding first integral formulation, embodying a reduction of the associated dynamic boundary condition at a free surface to one of a standard Dirichlet-Neumann type, are used to explore the problem of continuous gravity-driven film flow down an inclined piece-wise planar substrate in the absence of inertia. Numerical solutions of the first integral equations are compared with analytical ones from a linearised form of a reduced equation set resulting from application of the long-wave approximation. The results obtained are shown to: (i) be in very close agreement with existing, comparable experimental data and complementary numerical predictions for isolated step-like topography available in the open literature; (ii) exhibit the same qualitative behaviour for a range of Capillary numbers and step heights/depths, becoming quantitively similar when both are small. A novel outcome of the formulation adopted is identification of an analytic criteria enabling a simple classification procedure for specifying the characteristic nature of the free surface disturbance formed; leading subsequently to the generation of a related, practically relevant, characteristic parameter map in terms of the substrate inclination angle and the Capillary number of the associated flow.
Collapse
|
41
|
Higashino T, Ishida K, Sakurai T, Seki S, Konishi T, Kamada K, Kamada K, Imahori H. Pluripotent Features of Doubly Thiophene‐Fused Benzodiphospholes as Organic Functional Materials. Chemistry 2019; 25:6425-6438. [DOI: 10.1002/chem.201900661] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/07/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Tomohiro Higashino
- Department of Molecular EngineeringGraduate School of EngineeringKyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Keiichi Ishida
- Department of Molecular EngineeringGraduate School of EngineeringKyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Tsuneaki Sakurai
- Department of Molecular EngineeringGraduate School of EngineeringKyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Shu Seki
- Department of Molecular EngineeringGraduate School of EngineeringKyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Tatsuki Konishi
- Inorganic Functional Materials Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST) 1-8-31 Midorigaoka, Ikeda Osaka 563-8577 Japan
- Department of ChemistrySchool of Science and TechnologyKwansei Gakuin University Sanda Hyogo 669-1337 Japan
| | - Kenji Kamada
- Inorganic Functional Materials Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST) 1-8-31 Midorigaoka, Ikeda Osaka 563-8577 Japan
| | - Kenji Kamada
- Department of ChemistrySchool of Science and TechnologyKwansei Gakuin University Sanda Hyogo 669-1337 Japan
| | - Hiroshi Imahori
- Department of Molecular EngineeringGraduate School of EngineeringKyoto University Nishikyo-ku Kyoto 615-8510 Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS)Kyoto University Sakyo-ku Kyoto 606-8501 Japan
| |
Collapse
|
42
|
Kwon J, Takeda Y, Shiwaku R, Tokito S, Cho K, Jung S. Three-dimensional monolithic integration in flexible printed organic transistors. Nat Commun 2019; 10:54. [PMID: 30604747 PMCID: PMC6318314 DOI: 10.1038/s41467-018-07904-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 12/06/2018] [Indexed: 11/09/2022] Open
Abstract
Direct printing of thin-film transistors has enormous potential for ubiquitous and lightweight wearable electronic applications. However, advances in printed integrated circuits remain very rare. Here we present a three-dimensional (3D) integration approach to achieve technology scaling in printed transistor density, analogous to Moore's law driven by lithography, as well as enhancing device performance. To provide a proof of principle for the approach, we demonstrate the scalable 3D integration of dual-gate organic transistors on plastic foil by printing with high yield, uniformity, and year-long stability. In addition, the 3D stacking of three complementary transistors enables us to propose a programmable 3D logic array as a new route to design printed flexible digital circuitry essential for the emerging applications. The 3D monolithic integration strategy demonstrated here is applicable to other emerging printable materials, such as carbon nanotubes, oxide semiconductors and 2D semiconducting materials.
Collapse
Affiliation(s)
- Jimin Kwon
- Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Yasunori Takeda
- Research Center for Organic Electronics (ROEL), Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Rei Shiwaku
- Research Center for Organic Electronics (ROEL), Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Shizuo Tokito
- Research Center for Organic Electronics (ROEL), Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan.
| | - Kilwon Cho
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea.
| | - Sungjune Jung
- Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea. .,Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea.
| |
Collapse
|
43
|
Sizov AS, Trul AA, Chekusova V, Borshchev OV, Vasiliev AA, Agina EV, Ponomarenko SA. Highly Sensitive Air-Stable Easily Processable Gas Sensors Based on Langmuir-Schaefer Monolayer Organic Field-Effect Transistors for Multiparametric H 2S and NH 3 Real-Time Detection. ACS APPLIED MATERIALS & INTERFACES 2018; 10:43831-43841. [PMID: 30465602 DOI: 10.1021/acsami.8b15427] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A combination of low limit of detection, low power consumption, and portability makes organic field-effect transistor (OFET) chemical sensors promising for various applications in the areas of industrial safety control, food spoilage detection, and medical diagnostics. However, the OFET sensors typically lack air stability and restoration capability at room temperature. Here, we report on a new design of highly sensitive gas sensors based on Langmuir-Schaefer monolayer organic field-effect transistors (LS OFETs) prepared from organosilicon derivative of [1]benzothieno[3,2- b][1]-benzothiophene. The devices fabricated are able to operate in air and allow an ultrafast detection of different analytes at low concentrations down to tens of parts per billion. The sensors are reusable and can be utilized in real-time air-quality monitoring systems. We show that a direct current response of the LS OFET can be split into the alteration of various transistor parameters, responsible for the interactions with different toxic gases. The sensor response acquiring approach developed allows distinguishing two different gases, H2S and NH3, with a single sensing device. The results reported open new perspectives for the OFET-based gas-sensing technology and pave the way for easy detection of the other types of gases, enabling the development of complex air analysis systems based on a single sensor.
Collapse
Affiliation(s)
- Alexey S Sizov
- Enikolopov Institute of Synthetic Polymeric Materials of the Russian Academy of Sciences , Profsoyuznaya st. 70 , Moscow 117393 , Russia
- Printed Electronics Technologies LLC , Profsoyuznaya st. 70 , Office 410, Moscow 117393 , Russia
| | - Askold A Trul
- Enikolopov Institute of Synthetic Polymeric Materials of the Russian Academy of Sciences , Profsoyuznaya st. 70 , Moscow 117393 , Russia
- Printed Electronics Technologies LLC , Profsoyuznaya st. 70 , Office 410, Moscow 117393 , Russia
| | - Viktoriya Chekusova
- Enikolopov Institute of Synthetic Polymeric Materials of the Russian Academy of Sciences , Profsoyuznaya st. 70 , Moscow 117393 , Russia
- Printed Electronics Technologies LLC , Profsoyuznaya st. 70 , Office 410, Moscow 117393 , Russia
| | - Oleg V Borshchev
- Enikolopov Institute of Synthetic Polymeric Materials of the Russian Academy of Sciences , Profsoyuznaya st. 70 , Moscow 117393 , Russia
- Printed Electronics Technologies LLC , Profsoyuznaya st. 70 , Office 410, Moscow 117393 , Russia
| | - Alexey A Vasiliev
- Printed Electronics Technologies LLC , Profsoyuznaya st. 70 , Office 410, Moscow 117393 , Russia
- NRC Kurchatov Institute, Kurchatov Complex of Physical and Chemical Technologies , Akademika Kurchatova pl. 1 , Moscow 123182 , Russia
| | - Elena V Agina
- Enikolopov Institute of Synthetic Polymeric Materials of the Russian Academy of Sciences , Profsoyuznaya st. 70 , Moscow 117393 , Russia
- Printed Electronics Technologies LLC , Profsoyuznaya st. 70 , Office 410, Moscow 117393 , Russia
| | - Sergei A Ponomarenko
- Enikolopov Institute of Synthetic Polymeric Materials of the Russian Academy of Sciences , Profsoyuznaya st. 70 , Moscow 117393 , Russia
- Chemistry Department , Lomonosov Moscow State University , Leninskie Gory 1-3 , Moscow 119991 , Russia
| |
Collapse
|
44
|
Jo YJ, Kwon KY, Khan ZU, Crispin X, Kim TI. Gelatin Hydrogel-Based Organic Electrochemical Transistors and Their Integrated Logic Circuits. ACS APPLIED MATERIALS & INTERFACES 2018; 10:39083-39090. [PMID: 30360103 DOI: 10.1021/acsami.8b11362] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We suggest gelatin hydrogel as an electrolyte and demonstrate organic electrochemical transistors (OECTs) based on a sheet of gelatin. We also modulate electrical characteristics of the OECT with respect to pH condition of the gelatin hydrogel from acid to base and analyze its characteristics based on the electrochemical theory. Moreover, we extend the gelatin-based OECT to electrochemical logic circuits, for example, NOT, NOR, and NAND gates.
Collapse
Affiliation(s)
| | | | - Zia Ullah Khan
- Laboratory of Organic Electronics, Department of Science and Technology , Linköping University , S-60174 Norrköping , Sweden
| | - Xavier Crispin
- Laboratory of Organic Electronics, Department of Science and Technology , Linköping University , S-60174 Norrköping , Sweden
| | | |
Collapse
|
45
|
Sun J, Yun C, Cui B, Li P, Liu G, Wang X, Chu F. A Facile Approach for Fabricating Microstructured Surface Based on Etched Template by Inkjet Printing Technology. Polymers (Basel) 2018; 10:E1209. [PMID: 30961134 PMCID: PMC6290637 DOI: 10.3390/polym10111209] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 12/04/2022] Open
Abstract
Microstructures are playing an important role in manufacturing functional devices, due to their unique properties, such as wettability or flexibility. Recently, various microstructured surfaces have been fabricated to realize functional applications. To achieve the applications, photolithography or printing technology is utilized to produce the microstructures. However, these methods require preparing templates or masks, which are usually complex and expensive. Herein, a facile approach for fabricating microstructured surfaces was studied based on etched template by inkjet printing technology. Precured polydimethylsiloxane substrate was etched by inkjet printing water-soluble polyacrylic acid solution. Then, the polydimethylsiloxane substrate was cured and rinsed, which could be directly used as template for fabricating microstructured surfaces. Surfaces with raised dots, lines, and squares, were facilely obtained using the etched templates by inkjet printing technology. Furthermore, controllable anisotropic wettability was exhibited on the raised line microstructured surface. This work provides a flexible and scalable way to fabricate various microstructured surfaces. It would bring about excellent performance, which could find numerous applications in optoelectronic devices, biological chips, microreactors, wearable products, and related fields.
Collapse
Affiliation(s)
- Jiazhen Sun
- Key Laboratory of Pulp, Paper, Printing & Packaging of China National Light Industry, Key Laboratory of Printing & Packaging Materials and Technology of Shandong Province, School of Light Industry and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Chenghu Yun
- Key Laboratory of Pulp, Paper, Printing & Packaging of China National Light Industry, Key Laboratory of Printing & Packaging Materials and Technology of Shandong Province, School of Light Industry and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Bo Cui
- Key Laboratory of Pulp, Paper, Printing & Packaging of China National Light Industry, Key Laboratory of Printing & Packaging Materials and Technology of Shandong Province, School of Light Industry and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Pingping Li
- Key Laboratory of Pulp, Paper, Printing & Packaging of China National Light Industry, Key Laboratory of Printing & Packaging Materials and Technology of Shandong Province, School of Light Industry and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Guangping Liu
- Key Laboratory of Pulp, Paper, Printing & Packaging of China National Light Industry, Key Laboratory of Printing & Packaging Materials and Technology of Shandong Province, School of Light Industry and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xin Wang
- Key Laboratory of Pulp, Paper, Printing & Packaging of China National Light Industry, Key Laboratory of Printing & Packaging Materials and Technology of Shandong Province, School of Light Industry and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Fuqiang Chu
- Key Laboratory of Pulp, Paper, Printing & Packaging of China National Light Industry, Key Laboratory of Printing & Packaging Materials and Technology of Shandong Province, School of Light Industry and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
46
|
Chen S, Wang M, Jiang X. Pd-Catalyzed C-S Cyclization via C-H Functionalization Strategy: Access to Sulfur-containing Benzoheterocyclics. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201800242] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shihao Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering; East China Normal University; 3663 North Zhongshan Road, Shanghai 200062 China
| | - Ming Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering; East China Normal University; 3663 North Zhongshan Road, Shanghai 200062 China
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering; East China Normal University; 3663 North Zhongshan Road, Shanghai 200062 China
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences; 345 Lingling Road, Shanghai 200032 China
| |
Collapse
|
47
|
Tong S, Sun J, Yang J. Printed Thin-Film Transistors: Research from China. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25902-25924. [PMID: 29494132 DOI: 10.1021/acsami.7b16413] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Thin-film transistors (TFTs) have experienced tremendous development during the past decades and show great promising applications in flat displays, sensors, radio frequency identification tags, logic circuit, and so on. The printed TFTs are the key components for rapid development and commercialization of printed electronics. The researchers in China play important roles to accelerate the development and commercialization of printed TFTs. In this review, we comprehensively summarize the research progress of printed TFTs on rigid and flexible substrates from China. The review will focus on printing techniques of TFTs, printed TFT components including semiconductors, dielectrics and electrodes, as well as fully printed TFTs and printed flexible TFTs. Furthermore, perspectives on the remaining challenges and future developments are proposed.
Collapse
Affiliation(s)
- Sichao Tong
- Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics , Central South University , Changsha 410083 , Hunan , China
| | - Jia Sun
- Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics , Central South University , Changsha 410083 , Hunan , China
| | - Junliang Yang
- Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics , Central South University , Changsha 410083 , Hunan , China
| |
Collapse
|
48
|
Printable Nanomaterials for the Fabrication of High-Performance Supercapacitors. NANOMATERIALS 2018; 8:nano8070528. [PMID: 30011866 PMCID: PMC6070950 DOI: 10.3390/nano8070528] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/03/2018] [Accepted: 07/10/2018] [Indexed: 12/26/2022]
Abstract
In recent years, supercapacitors are attracting great attention as one kind of electrochemical energy storage device, which have a high power density, a high energy density, fast charging and discharging, and a long cycle life. As a solution processing method, printing technology is widely used to fabricate supercapacitors. Printable nanomaterials are critical to the fabrication of high-performance supercapacitors by printing technology. In this work, the advantages of printing technology are summarized. Moreover, various nanomaterials used to fabricate supercapacitors by printing technology are presented. Finally, the remaining challenges and broad research as well as application prospects in printing high-performance supercapacitors with nanomaterials are proposed.
Collapse
|
49
|
A Ladder-Type Organosilicate Copolymer Gate Dielectric Materials for Organic Thin-Film Transistors. COATINGS 2018. [DOI: 10.3390/coatings8070236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
50
|
Printed 5-V organic operational amplifiers for various signal processing. Sci Rep 2018; 8:8980. [PMID: 29895859 PMCID: PMC5997680 DOI: 10.1038/s41598-018-27205-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/30/2018] [Indexed: 12/05/2022] Open
Abstract
The important concept of printable functional materials is about to cause a paradigm shift that we will be able to fabricate electronic devices by printing methods in air at room temperature. One of the promising applications of the printed electronics is a disposable electronic patch sensing system which can monitor the health conditions without any restraint. Operational amplifiers (OPAs) are an essential component for such sensing system, since an OPA enables a wide variety of signal processing. Here we demonstrate printed OPAs based on complementary organic semiconductor technology. They can be operated with a standard safe power source of 5 V with a minimal power consumption of 150 nW, and used as amplifiers, a variety of mathematical operators, signal converters, and oscillators. The printed micropower organic OPAs with the low voltage operation and the high versatility will open up the disposable electronic patch sensing system in near future.
Collapse
|