1
|
A double anti-fouling mechanism established by self-assembly of TiO2 on F127 chains for improving the hydrophilicity of PES membrane based on RTIPS method. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117742] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
2
|
Feng Y, Guo N, Ren S, Xie X, Xu J, Wang Y. AgNPs@ZIF‐8 Hybrid Material‐Modified Polyethersulfone Microfiltration Membranes for Antibiofouling Property and Permeability Improvement. Chem Eng Technol 2020. [DOI: 10.1002/ceat.202000417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yue Feng
- Shandong University Shandong Key Laboratory of Water Pollution Control and Resource Reuse School of Environmental Science and Engineering 266237 Qingdao China
- Shandong University of Science and Technology College of Mining and Safety Engineering 266590 Qingdao Shandong China
| | - Ning Guo
- Shandong University Shandong Key Laboratory of Water Pollution Control and Resource Reuse School of Environmental Science and Engineering 266237 Qingdao China
- Shandong Jianzhu University School of Municipal and Environmental Engineering 250101 Jinan China
| | - Shaojie Ren
- Shandong University Shandong Key Laboratory of Water Pollution Control and Resource Reuse School of Environmental Science and Engineering 266237 Qingdao China
| | - Xuan Xie
- IHE Delft Institute for Water Education 2622 HD Delft The Netherlands
| | - Juan Xu
- East China Normal University Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration School of Ecological and Environmental Sciences Shanghai China
| | - Yunkun Wang
- Shandong University Shandong Key Laboratory of Water Pollution Control and Resource Reuse School of Environmental Science and Engineering 266237 Qingdao China
| |
Collapse
|
3
|
Zhang X, Liang Y, Ni C, Li Y. Anti-biofouling microfiltration membranes based on 1-vinyl-3-butylimidazolium chloride grafted PVDF with improved bactericidal properties and vitro biocompatibility. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111411. [PMID: 33255013 DOI: 10.1016/j.msec.2020.111411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/06/2020] [Accepted: 08/19/2020] [Indexed: 11/18/2022]
Abstract
Polyvinylidene fluoride (PVDF) porous membranes have been widely used as the filtration and separation industry. Herein, novel microfiltration membranes based on 1-vinyl-3-butylimidazolium chloride ([VBIm][Cl]) grafted PVDF (PVDF-g-[VBIm][Cl]) were prepared via the non-solvent induced phase separation method. The chemical composition and microstructure of PVDF-g-[VBIm][Cl] membranes were characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, Scanning electron microscopy and Water contact angle measurements. The results showed that an increasing in [VBIm][Cl] grafting content leads to the increasing hydrophilicity and wetting capacity of the PVDF-g-[VBIm][Cl] porous membranes. The anti-biofouling properties of membranes were evaluated by measuring the water flux before and after Bovine serum albumin solution treatment. It was found that the modified membranes presented a good anti-biofouling property. The degree of irreversible flux loss caused by protein adsorption dramatically reduced from 42.1% to 2.9% compared with the pristine hydrophobic PVDF membranes. Meanwhile, these PVDF-g-[VBIm][Cl] membranes also exhibited excellent bactericidal properties against both gram-positive bacteria Staphylococcus saureus and gram-negative bacteria Escherichia coli, while PVDF membranes did not show any antibacterial activity. The vitro biocompatibility of the modified membranes was studied by hemolysis analysis, the platelet adhesion observation, thromboelastography assay and cytotoxicity assay. It was found that the incorporation of [VBIm][Cl] into PVDF membranes has less effect on the hemolysis and cytotoxicity of PVDF membranes. Furthermore, both hydrophilicity and charges of the membrane surface played important role in the adhesion and activation of platelet cells, which consequently affected the clotting process of whole blood. The membrane with appropriate [VBIm][Cl] grafting ratio (2.94 wt.%) exhibited good hemocompatibility with less blood coagulation effect. As an ultrafiltration membrane, PVDF-g-[VBIm][Cl] membranes have potential applications in the biomedical field due to the improved antibacterial property and biocompatibility.
Collapse
Affiliation(s)
- Xiaowei Zhang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| | - Yuanyuan Liang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, People's Republic of China.
| | - Chunjun Ni
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| | - Yongjin Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, People's Republic of China.
| |
Collapse
|
4
|
In situ synthesizing silver nanoparticels by bio-derived gallic acid to enhance antimicrobial performance of PVDF membrane. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
5
|
Preparation of antibiofouling nanocomposite PVDF/Ag-SiO2 membrane and long-term performance evaluation in the MBR system fed by real pharmaceutical wastewater. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116938] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Peng S, Chen Y, Jin X, Lu W, Gou M, Wei X, Xie J. Polyimide with half encapsulated silver nanoparticles grafted ceramic composite membrane: Enhanced silver stability and lasting anti‒biofouling performance. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118340] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
A regenerable antifouling membrane bearing a photoresponsive crosslinked polyethylenimine layer. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117955] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Tang Q, Wang K, Ren X, Zhang Q, Lei W, Jiang T, Shi D. Preparation of porous antibacterial polyamide 6 (PA6) membrane with zinc oxide (ZnO) nanoparticles selectively localized at the pore walls via reactive extrusion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:137018. [PMID: 32041003 DOI: 10.1016/j.scitotenv.2020.137018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/20/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Antibacterial polymer membranes have been widely used in many fields of our daily life. In this study, porous PA6 membrane with ZnO nanoparticles attaching on to the surface of inner pore walls is prepared. Firstly, SMA (styrene maleic anhydride copolymer) is used to graft onto the surface of ZnO nanoparticle in DMF (dimethylformamide). Then the pre-treated ZnO nanoparticles (ZnO-SMA) are added into SEBS (Styrene-ethylene-butylene-styrene copolymer)/PA6 (60/40 wt/wt) blends with co-continuous morphology. The effects of SMA molecular structure (molecular weight and maleic anhydride content) used for ZnO-SMA nanoparticles on their dispersion states in SEBS/PA6/ZnO-SMA nanocomposites are investigated. When SMA3 (MAH = 8 wt%, Mn = 250,000 g mol-1), which has relatively higher molecular weight and lower MAH content, is used as the pre-treating agent, ZnO-SMA3 nanoparticles tend to be dispersed at the phase interface in SEBS/PA6/ZnO-SMA nanocomposites. However, when SMA2 (MAH = 23 wt%, Mn = 110,000 g mol-1) with relatively lower molecular weight and higher MAH content is used, no ZnO-SMA2 nanoparticles locate at the interface but stay within PA6 phase. Porous PA6 membranes are obtained by selectively etching SEBS phase out with xylene. It can be found that porous PA6 membrane containing ZnO-SMA3 nanoparticles still exhibits much better antibacterial property (R = 3.76) toward S. aureus even at a very low ZnO content (0.5 wt%). This result should be ascribed to almost all the ZnO-SMA3 nanoparticles being exposed to the surface of inner pore walls of PA6 membrane. This work proposes an effective method to prepare porous polymer membrane with functional nanoparticles selectively located at the inner pore walls.
Collapse
Affiliation(s)
- Qi Tang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China
| | - Kang Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China
| | - Xiaoming Ren
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China
| | - Qunchao Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China.
| | - Weiwei Lei
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China
| | - Tao Jiang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China
| | - Dean Shi
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|
9
|
Ma S, Lin L, Wang Q, Zhang Y, Zhang H, Gao Y, Pan F, Zhang Y. A new strategy to simultaneously improve the permeability and antifouling properties of EVAL membranes via surface segregation of macrocyclic supra-amphiphiles. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
10
|
Wang Z, Tang Y, Wang T, Liang K. Nano CuAl 2O 4 spinel mineral as a novel antibacterial agent for PVDF membrane modification with minimized copper leachability. JOURNAL OF HAZARDOUS MATERIALS 2019; 368:421-428. [PMID: 30708343 DOI: 10.1016/j.jhazmat.2019.01.081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 01/03/2019] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
The employment of copper-containing antibacterial agents for membrane modification can constrain undesirable bacterial adhesion and growth in an effective and economical way. However, copper ion may be leached out and cause further toxicity after applying those materials for membrane processes. Therefore, in this study, nano CuAl2O4 spinel was synthesized as a novel copper-containing material which was expected to have good antibacterial activity and simultaneously stabilize copper ions by its intrinsic structure. The obtained nano spinel was applied for membrane modification via both doping and coating methods. Results show that the addition of nano CuAl2O4 spinel during doping process can change polyvinylidene fluoride (PVDF) membrane properties (crystallization, tensile strength, porosity, pore size distribution, permeate flux and bovine serum albumin (BSA) rejection) obviously, but no obvious change was observed for the coated membrane except increased hydrophilicity and permeate flux. Most importantly, the amount of bacteria attachment was found to reduce significantly (˜68%) on the membrane coated with nano spinel, which indicates the successful application of nano CuAl2O4 spinel as a novel antibacterial agent for membrane modification without extra concern of copper toxicity.
Collapse
Affiliation(s)
- Ziyi Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuanyuan Tang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Tao Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kun Liang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
11
|
Sri Abirami Saraswathi MS, Rana D, Alwarappan S, Gowrishankar S, Kanimozhi P, Nagendran A. Cellulose acetate ultrafiltration membranes customized with bio-inspired polydopamine coating and in situ immobilization of silver nanoparticles. NEW J CHEM 2019. [DOI: 10.1039/c8nj04511a] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Schematic representation of the surface modification of cellulose acetate membranes with self-polymerized dopamine and in situ immobilization of AgNPs.
Collapse
Affiliation(s)
| | - Dipak Rana
- Department of Chemical and Biological Engineering
- University of Ottawa
- Ottawa
- Canada
| | - Subbiah Alwarappan
- CSIR-Central Electrochemical Research Institute (CSIR-CECRI)
- Karaikudi – 630003
- India
| | | | - Paramasivam Kanimozhi
- Polymeric Materials Research Lab
- PG & Research Department of Chemistry
- Alagappa Government Arts College
- Karaikudi – 630 003
- India
| | - Alagumalai Nagendran
- Polymeric Materials Research Lab
- PG & Research Department of Chemistry
- Alagappa Government Arts College
- Karaikudi – 630 003
- India
| |
Collapse
|
12
|
Remanan S, Bose M, Das AK, Das NC. Preparation and characterization of a unique low-cost microfiltration membrane from a technologically compatible poly(ethylene-co-methyl acrylate)/poly(vinylidene fluoride) blend for water filtration application. J Appl Polym Sci 2018. [DOI: 10.1002/app.47218] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- S. Remanan
- Rubber Technology Centre; Indian Institute of Technology; Kharagpur 732302 India
| | - M. Bose
- Department of Biotechnology; Indian Institute of Technology; Kharagpur 721302 India
| | - A. K. Das
- Department of Biotechnology; Indian Institute of Technology; Kharagpur 721302 India
| | - N. C. Das
- Rubber Technology Centre; Indian Institute of Technology; Kharagpur 732302 India
| |
Collapse
|
13
|
Woo ST, Yun T, Kwak SY. Fouling-resistant microfiltration membrane modified with magnetite nanoparticles by reversible conjunction. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Liu M, Wang Y, Hu X, He W, Gong Y, Hu X, Liu M, Luo G, Xing M, Wu J. Janus N, N-dimethylformamide as a solvent for a gradient porous wound dressing of poly(vinylidene fluoride) and as a reducer for in situ nano-silver production: anti-permeation, antibacterial and antifouling activities against multi-drug-resistant bacteria both in vitro and in vivo. RSC Adv 2018; 8:26626-26639. [PMID: 35541086 PMCID: PMC9083098 DOI: 10.1039/c8ra03234c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/06/2018] [Indexed: 11/29/2022] Open
Abstract
The requirements for anti-permeation, anti-infection and antifouling when treating a malicious wound bed raise new challenges for wound dressing. The present study used N,N-dimethylformamide to treat poly(vinylidene fluoride) (PVDF) in order to obtain a dressing impregnated with in situ generated nano-silver particles (NS) via an immersion phase inversion method. Scanning electron microscopy (SEM) images showed that the film was characterized by a two-layer asymmetric structure with different pore sizes (top layer: ∼0.4 μm; bottom layer: ∼1.8 μm). The moisture permeability test indicated that the film had an optimal water vapor transmission rate (WVTR: ∼2500 g m-2 per day). TEM images revealed the successful formation of spherical NS, and Fourier-transform infrared spectroscopy (FTIR) demonstrated the integration of PVDF and NS (i.e., PVDF/NS). Correspondingly, the water contact angle measurements confirmed increased membrane surface hydrophobicity after NS integration. The inductively coupled plasma (ICP) spectrometry showed that the PVDF/NS displayed a continuous and safe release of silver ions. Moreover, in vitro experiments indicated that PVDF/NS films possessed satisfactory anti-permeation, antibacterial and antifouling activities against A. baumannii and E. coli bacteria, while they exhibited no obvious cytotoxicity toward mammalian HaCaT cells. Finally, the in vivo results showed that the nanoporous top layer of film could serve as a physical barrier to prevent bacterial penetration, whereas the microporous bottom layer could efficiently prevent bacterial infection caused by biofouling, leading to fast re-epithelialization via the enhancement of keratinocyte proliferation. Collectively, the results show that the PVDF/NS25 film has a promising application in wound treatment, especially for wounds infected by multi-drug-resistant bacteria such as A. baumannii.
Collapse
Affiliation(s)
- Menglong Liu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University) Chongqing 400038 China +86-23-65461677 +86-23-68754173
| | - Ying Wang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University) Chongqing 400038 China +86-23-65461677 +86-23-68754173
| | - Xiaodong Hu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University Chengdu 610065 China
| | - Weifeng He
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University) Chongqing 400038 China +86-23-65461677 +86-23-68754173
| | - Yali Gong
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University) Chongqing 400038 China +86-23-65461677 +86-23-68754173
| | - Xiaohong Hu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University) Chongqing 400038 China +86-23-65461677 +86-23-68754173
| | - Meixi Liu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University) Chongqing 400038 China +86-23-65461677 +86-23-68754173
| | - Gaoxing Luo
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University) Chongqing 400038 China +86-23-65461677 +86-23-68754173
| | - Malcolm Xing
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University) Chongqing 400038 China +86-23-65461677 +86-23-68754173
- Department of Mechanical Engineering, University of Manitoba Winnipeg MB R3T 2N2 Canada
| | - Jun Wu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University) Chongqing 400038 China +86-23-65461677 +86-23-68754173
- Department of Burns, The First Affiliated Hospital, SunYat-Sen University Guangzhou 510080 China
| |
Collapse
|
15
|
Zhang DY, Xiong S, Shi YS, Zhu J, Hu QL, Liu J, Wang Y. Antifouling enhancement of polyimide membrane by grafting DEDA-PS zwitterions. CHEMOSPHERE 2018; 198:30-39. [PMID: 29421743 DOI: 10.1016/j.chemosphere.2018.01.120] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 01/20/2018] [Accepted: 01/23/2018] [Indexed: 06/08/2023]
Abstract
In order to improve the water flux and antifouling property of polyimide (PI) membrane, zwitterions are grafted on PI membrane surface via a two-step modification route by reactions with N,N-diethylethylenediamine (DEDA) and 1,3-propane sultone (PS) sequentially. The reaction mechanism and physicochemical properties of membranes are confirmed via various characterization techniques. The anti-biofouling performance of the zwitterion-grafted PI membranes is evaluated by bacterial suspension immersion tests in Escherichia coli (E. coli) and staphylococcus aureus (S. aureus) solutions. The antifouling property is assessed via the filtration test using the bovine serum albumin (BSA) and dodecyl trimethyl ammonium bromide (DTAB) aqueous feed solutions. The effect of the reaction time with DEDA in the zwitterion-grafted process on the antifouling property is further investigated systematically. The results show that both the anti-biofouling and antifouling performances of zwitterion-grafted PI membranes are significantly improved.
Collapse
Affiliation(s)
- Dong Yan Zhang
- State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430074, China
| | - Shu Xiong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430074, China
| | - Yu Sheng Shi
- State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Jun Zhu
- State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Qiao Li Hu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Jie Liu
- State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China.
| | - Yan Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430074, China; Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
16
|
Khajouei M, Jahanshahi M, Peyravi M. Biofouling mitigation of TFC membrane by in-situ grafting of PANI/Cu couple nanoparticle. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.01.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Zhu J, Hou J, Zhang Y, Tian M, He T, Liu J, Chen V. Polymeric antimicrobial membranes enabled by nanomaterials for water treatment. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.12.071] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
18
|
Liu SH, Liu M, Xu ZL, Wei YM. A polyethersulfone-bisphenol sulfuric acid hollow fiber ultrafiltration membrane fabricated by a reverse thermally induced phase separation process. RSC Adv 2018; 8:7800-7809. [PMID: 35539127 PMCID: PMC9078466 DOI: 10.1039/c7ra12602f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/12/2018] [Indexed: 11/21/2022] Open
Abstract
A novel antifouling polyethersulfone (PES) hollow fiber membrane was modified by the addition of bisphenol sulfuric acid (BPA-PS) using a reverse thermally induced phase separation (RTIPS) process. BPA-PS was synthesized by click chemistry and was blended to improve the hydrophilicity of PES hollow fiber membranes. The performance of PES/BPA-PS hollow fiber membranes, prepared with different contents of BPA-PS and at different temperatures of the coagulation water bath, was characterized by scanning electron microscopy (SEM), pure water flux (J w), BSA rejection rate (R), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and water contact angle measurements. SEM morphologies revealed that a finger-like cross-section emerged in the hollow fiber membrane by a non-solvent induced phase separation (NIPS) mechanism while a sponge-like cross-section appeared in the hollow fiber membrane via the RTIPS method. Both FTIR and XPS analysis indicated that the sulfate group in BPA-PS was successfully blended with the PES membranes. The results from AFM and water contact angle measurements showed that the surface roughness increased and the hydrophilicity of the PES/BPA-PS hollow fiber membrane was improved with the addition of BPA-PS. The results demonstrated that the PES/BPA-PS membrane with 1 wt% BPA-PS via RTIPS exhibited optimal properties.
Collapse
Affiliation(s)
- Sheng-Hui Liu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, East China University of Science and Technology (ECUST) 130 Meilong Road Shanghai 200237 China
| | - Min Liu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, ECUST 130 Meilong Road Shanghai 200237 China +86-21-64252989 +86-21-64253670
| | - Zhen-Liang Xu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, East China University of Science and Technology (ECUST) 130 Meilong Road Shanghai 200237 China
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, ECUST 130 Meilong Road Shanghai 200237 China +86-21-64252989 +86-21-64253670
| | - Yong-Ming Wei
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, East China University of Science and Technology (ECUST) 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
19
|
Zhang R, Liu Y, He M, Su Y, Zhao X, Elimelech M, Jiang Z. Antifouling membranes for sustainable water purification: strategies and mechanisms. Chem Soc Rev 2018; 45:5888-5924. [PMID: 27494001 DOI: 10.1039/c5cs00579e] [Citation(s) in RCA: 609] [Impact Index Per Article: 101.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One of the greatest challenges to the sustainability of modern society is an inadequate supply of clean water. Due to its energy-saving and cost-effective features, membrane technology has become an indispensable platform technology for water purification, including seawater and brackish water desalination as well as municipal or industrial wastewater treatment. However, membrane fouling, which arises from the nonspecific interaction between membrane surface and foulants, significantly impedes the efficient application of membrane technology. Preparing antifouling membranes is a fundamental strategy to deal with pervasive fouling problems from a variety of foulants. In recent years, major advancements have been made in membrane preparation techniques and in elucidating the antifouling mechanisms of membrane processes, including ultrafiltration, nanofiltration, reverse osmosis and forward osmosis. This review will first introduce the major foulants and the principal mechanisms of membrane fouling, and then highlight the development, current status and future prospects of antifouling membranes, including antifouling strategies, preparation techniques and practical applications. In particular, the strategies and mechanisms for antifouling membranes, including passive fouling resistance and fouling release, active off-surface and on-surface strategies, will be proposed and discussed extensively.
Collapse
Affiliation(s)
- Runnan Zhang
- Key Laboratory for Green Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yanan Liu
- Key Laboratory for Green Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Mingrui He
- Key Laboratory for Green Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yanlei Su
- Key Laboratory for Green Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Xueting Zhao
- Key Laboratory for Green Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, USA
| | - Zhongyi Jiang
- Key Laboratory for Green Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
20
|
Liu Y, Su Y, Cao J, Guan J, Zhang R, He M, Fan L, Zhang Q, Jiang Z. Antifouling, high-flux oil/water separation carbon nanotube membranes by polymer-mediated surface charging and hydrophilization. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.08.018] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Iron-tannin-framework complex modified PES ultrafiltration membranes with enhanced filtration performance and fouling resistance. J Colloid Interface Sci 2017. [DOI: 10.1016/j.jcis.2017.06.067] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
22
|
Tylkowski B, Trojanowska A, Nowak M, Marciniak L, Jastrzab R. Applications of silver nanoparticles stabilized and/or immobilized by polymer matrixes. PHYSICAL SCIENCES REVIEWS 2017. [DOI: 10.1515/psr-2017-0024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractNanomaterials frequently possess unique and noticeably changed physical, chemical and biological properties compared to their macro scaled corresponding item. Utilization of nanoparticles habitually requires the construction of integrated chemical systems. Most popular of these are polymer-supported nanoparticles. In this review, we provide the reader with the last developments and breakthrough technologies concerning silver nanoparticles (AgNPs), one of the most comprehensively studied nanomaterials, considering the polymer types and processes used for the nanocomposite membranes preparation.
Collapse
|
23
|
A novel gravity-driven nanofibrous membrane for point-of-use water disinfection: polydopamine-induced in situ silver incorporation. Sci Rep 2017; 7:2334. [PMID: 28539615 PMCID: PMC5443768 DOI: 10.1038/s41598-017-02452-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/10/2017] [Indexed: 11/25/2022] Open
Abstract
We report a facile method for preparing silver-loaded membranes for point-of-use disinfection and disaster relief applications. A bio-inspired material, polydopamine, was coated onto a highly porous nanofibrous polyacrylonitrile substrate. We then take advantage of the redox properties of polydopamine to form silver nanoparticles in situ. These nanoparticles were uniformly distributed on the surface of nanofibers with no apparent agglomeration at a silver loading up to 4.36 wt.% (cPAN-Ag1.5). The silver-incorporated membrane cPAN-Ag1.5 achieved a high pure water flux of 130 Lm−2 h−1 at 10-cm water head, demonstrating the feasibility of energy-efficient gravity-driven filtration and eliminating the need for electrical power. The strong anti-bacterial activity and high physical rejection of the membrane led to an excellent disinfection power, with no viable bacterial cells detected in its permeate water. The membrane exhibited >7 log reduction for E. coli and >6 log reduction for B. subtilis. The strategy reported here provides an efficient and green route to synthesize point-of-use membranes. Combining their excellent permeability and disinfection effectiveness, these membranes offer an ideal solution to water supply in disaster-affected areas.
Collapse
|
24
|
Cruz-Tato P, Ortiz-Quiles EO, Vega-Figueroa K, Santiago-Martoral L, Flynn M, Díaz-Vázquez LM, Nicolau E. Metalized Nanocellulose Composites as a Feasible Material for Membrane Supports: Design and Applications for Water Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4585-4595. [PMID: 28318247 DOI: 10.1021/acs.est.6b05955] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Herein, we study the feasibility of using nanocellulose (NC)-based composites with silver and platinum nanoparticles as additive materials to fabricate the support layer of thin film composite (TFC) membranes for water purification applications. In brief, the NC surface was chemically modified and then was decorated with silver and platinum nanoparticles, respectively, by chemical reduction. These metalized nanocellulose composites (MNC) were characterized by several techniques including: FTIR, XPS, TGA, XRD, and XANES to probe their integrity. Thereafter, we fabricated the MNC-TFC membranes and the support layer was modified to improve the membrane properties. The membranes were thoroughly characterized, and the performance was evaluated in forward osmosis (FO) mode with various feed solutions: nanopure water, urea, and wastewater samples. The fabricated membranes exhibited finger-like pore morphologies and varying pore sizes. Interestingly, higher water fluxes and solute rejection was obtained with the MNC-TFC membranes with wastewater samples. The overall approach of this work provides an effort to fabricated membranes with high water flux and enhanced selectivity.
Collapse
Affiliation(s)
- Perla Cruz-Tato
- Department of Chemistry, University of Puerto Rico , Rio Piedras Campus, PO Box 23346, San Juan, Puerto Rico 00931-3346, United States
- Molecular Sciences Research Center, University of Puerto Rico , 1390 Ponce De Leon Ave, Suite 2, San Juan, Puerto Rico 00931-3346, United States
| | - Edwin O Ortiz-Quiles
- Department of Chemistry, University of Puerto Rico , Rio Piedras Campus, PO Box 23346, San Juan, Puerto Rico 00931-3346, United States
- Molecular Sciences Research Center, University of Puerto Rico , 1390 Ponce De Leon Ave, Suite 2, San Juan, Puerto Rico 00931-3346, United States
| | - Karlene Vega-Figueroa
- Department of Chemistry, University of Puerto Rico , Rio Piedras Campus, PO Box 23346, San Juan, Puerto Rico 00931-3346, United States
- Molecular Sciences Research Center, University of Puerto Rico , 1390 Ponce De Leon Ave, Suite 2, San Juan, Puerto Rico 00931-3346, United States
| | - Liz Santiago-Martoral
- Department of Chemistry, University of Puerto Rico , Rio Piedras Campus, PO Box 23346, San Juan, Puerto Rico 00931-3346, United States
- Molecular Sciences Research Center, University of Puerto Rico , 1390 Ponce De Leon Ave, Suite 2, San Juan, Puerto Rico 00931-3346, United States
| | - Michael Flynn
- NASA Ames Research Center , Bioengineering Branch, Moffett Field, California 94036, United States
| | - Liz M Díaz-Vázquez
- Department of Chemistry, University of Puerto Rico , Rio Piedras Campus, PO Box 23346, San Juan, Puerto Rico 00931-3346, United States
| | - Eduardo Nicolau
- Department of Chemistry, University of Puerto Rico , Rio Piedras Campus, PO Box 23346, San Juan, Puerto Rico 00931-3346, United States
- Molecular Sciences Research Center, University of Puerto Rico , 1390 Ponce De Leon Ave, Suite 2, San Juan, Puerto Rico 00931-3346, United States
| |
Collapse
|
25
|
Díez B, Roldán N, Martín A, Sotto A, Perdigón-Melón JA, Arsuaga J, Rosal R. Fouling and biofouling resistance of metal-doped mesostructured silica/polyethersulfone ultrafiltration membranes. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2016.12.051] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Sharma M, Remanan S, Madras G, Bose S. Crystallization Induced Phase Separation: Unique Tool to Design Microfiltration Membranes with High Flux and Sustainable Antibacterial Surface. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.6b04064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Maya Sharma
- Center
for Nano Science and Engineering, ‡Department of Materials Engineering, §Department of Chemical
Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Sanjay Remanan
- Center
for Nano Science and Engineering, ‡Department of Materials Engineering, §Department of Chemical
Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Giridhar Madras
- Center
for Nano Science and Engineering, ‡Department of Materials Engineering, §Department of Chemical
Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Suryasarathi Bose
- Center
for Nano Science and Engineering, ‡Department of Materials Engineering, §Department of Chemical
Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
27
|
Zhang DY, Liu J, Shi YS, Wang Y, Liu HF, Hu QL, Su L, Zhu J. Antifouling polyimide membrane with surface-bound silver particles. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.06.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Antimicrobial polysulfone blended ultrafiltration membranes prepared with Ag/Cu2O hybrid nanowires. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.02.035] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
29
|
Immobilization of silver nanoparticle-decorated silica particles on polyamide thin film composite membranes for antibacterial properties. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2015.09.060] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Huang L, Zhao S, Wang Z, Wu J, Wang J, Wang S. In situ immobilization of silver nanoparticles for improving permeability, antifouling and anti-bacterial properties of ultrafiltration membrane. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2015.10.055] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
Sharma M, Padmavathy N, Remanan S, Madras G, Bose S. Facile one-pot scalable strategy to engineer biocidal silver nanocluster assembly on thiolated PVDF membranes for water purification. RSC Adv 2016. [DOI: 10.1039/c6ra03143a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Biofouling, due to bacterial growth and colonization, is a significant obstacle in water treatment that severely affects the membrane performance.
Collapse
Affiliation(s)
- Maya Sharma
- Center for Nano Science and Engineering
- Indian Institute of Science
- Bangalore-560012
- India
| | - Nagarajan Padmavathy
- Department of Materials Engineering
- Indian Institute of Science
- Bangalore-560012
- India
| | - Sanjay Remanan
- Department of Materials Engineering
- Indian Institute of Science
- Bangalore-560012
- India
| | - Giridhar Madras
- Department of Chemical Engineering
- Indian Institute of Science
- Bangalore-560012
- India
| | - Suryasarathi Bose
- Department of Materials Engineering
- Indian Institute of Science
- Bangalore-560012
- India
| |
Collapse
|
32
|
Park SY, Kim YJ, Kwak SY. Versatile surface charge-mediated anti-fouling UF/MF membrane comprising charged hyperbranched polyglycerols (HPGs) and PVDF membranes. RSC Adv 2016. [DOI: 10.1039/c6ra19020k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We develop a charge-modified PVDF UF/MF membrane that restricts membrane fouling derived from charged water contaminants.
Collapse
Affiliation(s)
- S. Y. Park
- Department of Materials Science and Engineering
- Seoul National University
- Gwanak-gu
- Korea
| | - Y. J. Kim
- Department of Materials Science and Engineering
- Seoul National University
- Gwanak-gu
- Korea
| | - S.-Y. Kwak
- Department of Materials Science and Engineering
- Seoul National University
- Gwanak-gu
- Korea
| |
Collapse
|
33
|
Zhan X, Zhang G, Chen X, He R, Zhang Q, Chen F. Improvement of Antifouling and Antibacterial Properties of Poly(ether sulfone) UF Membrane by Blending with a Multifunctional Comb Copolymer. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b03416] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Xiaoli Zhan
- College of Chemical and Biochemical
Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guangfa Zhang
- College of Chemical and Biochemical
Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xi Chen
- College of Chemical and Biochemical
Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ren He
- College of Chemical and Biochemical
Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qinghua Zhang
- College of Chemical and Biochemical
Engineering, Zhejiang University, Hangzhou 310027, China
| | - Fengqiu Chen
- College of Chemical and Biochemical
Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
34
|
Park SY, Chung JW, Kwak SY. Regenerable anti-fouling active PTFE membrane with thermo-reversible “peel-and-stick” hydrophilic layer. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2015.05.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
35
|
Sulfonated nanocellulose for the efficient dispersive micro solid-phase extraction and determination of silver nanoparticles in food products. J Chromatogr A 2015; 1428:352-8. [PMID: 26116191 DOI: 10.1016/j.chroma.2015.06.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/10/2015] [Accepted: 06/12/2015] [Indexed: 11/21/2022]
Abstract
This paper reports a simple approach to Analytical Nanoscience and Nanotechnology (AN&N) that integrates the nanotool, sulfonated nanocellulose (s-NC), and nanoanalyte, silver nanoparticles (AgNPs), in the same analytical process by using an efficient, environmentally friendly dispersive micro solid-phase extraction (D-μSPE) capillary electrophoresis (CE) method with s-NC as sorbent material. Introducing negatively charged sulfate groups onto the surface of cellulose enhances its surface chemistry and enables the extraction and preconcentration of AgNPs of variable diameter (10, 20 and 60nm) and shell composition (citrate and polyvinylpyrrolidone coatings) from complex matrices into a cationic surfactant. In this way, AgNPs of diverse nature were successfully extracted onto the s-NC sorbent and then desorbed into an aqueous solution containing thiotic acid (TA) prior to CE without the need for any labor-intensive cleanup. The ensuing eco-friendly D-μSPE method exhibited a linear response to AgNPs with a limit of detection (LOD) of 20μg/L. Its ability to specifically recognize AgNPs of different sizes was checked in orange juice and mussels, which afforded recoveries of 70.9-108.4%. The repeatability of the method at the limit of quantitation (LOQ) level was 5.6%. Based on the results, sulfonated nanocellulose provides an efficient, cost-effective analytical nanotool for the extraction of AgNPs from food products.
Collapse
|
36
|
Qin A, Li X, Zhao X, Liu D, He C. Engineering a Highly Hydrophilic PVDF Membrane via Binding TiO₂Nanoparticles and a PVA Layer onto a Membrane Surface. ACS APPLIED MATERIALS & INTERFACES 2015; 7:8427-8436. [PMID: 25806418 DOI: 10.1021/acsami.5b00978] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A highly hydrophilic PVDF membrane was fabricated through chemically binding TiO2 nanoparticles and a poly(vinyl alcohol) (PVA) layer onto a membrane surface simultaneously. The chemical composition of the modified membrane surface was determined by X-ray photoelectron spectroscopy, and the binding performance of TiO2 nanoparticles and the PVA layer was investigated by a rinsing test. The results indicated that the TiO2 nanoparticles were uniformly and strongly tailored onto the membrane surface, while the PVA layer was firmly attached onto the surface of TiO2 nanoparticles and the membrane by adsorption-cross-linking. The possible mechanisms during the modification process and filtration performance, i.e., water permeability and bovine serum albumin (BSA) rejection, were investigated as well. Furthermore, antifouling property was discussed through multicycles of BSA solution filtration tests, where the flux recovery ratio was significantly increased from 20.0% for pristine PVDF membrane to 80.5% for PVDF/TiO2/PVA-modified membrane. This remarkable promotion is mainly ascribed to the improvement of surface hydrophilicity, where the water contact angle of the membrane surface was decreased from 84° for pristine membrane to 24° for PVDF/TiO2/PVA membrane. This study presents a novel and varied strategy for immobilization of nanoparticles and PVA layer on substrate surface, which could be easily adapted for a variety of materials for surface modification.
Collapse
Affiliation(s)
- Aiwen Qin
- The State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering Donghua University, Shanghai, 201620, People's Republic of China
| | - Xiang Li
- The State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering Donghua University, Shanghai, 201620, People's Republic of China
| | - Xinzhen Zhao
- The State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering Donghua University, Shanghai, 201620, People's Republic of China
| | - Dapeng Liu
- The State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering Donghua University, Shanghai, 201620, People's Republic of China
| | - Chunju He
- The State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering Donghua University, Shanghai, 201620, People's Republic of China
| |
Collapse
|
37
|
Anti-scaling ultrafiltration/microfiltration (UF/MF) polyvinylidene fluoride (PVDF) membranes with positive surface charges for Ca2+/silica-rich wastewater treatment. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2015.01.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
|
39
|
Dang Y, Xing CM, Quan M, Wang YB, Zhang SP, Shi SQ, Gong YK. Substrate independent coating formation and anti-biofouling performance improvement of mussel inspired polydopamine. J Mater Chem B 2015; 3:4181-4190. [DOI: 10.1039/c5tb00341e] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Anti-biofouling performance of mussel inspired polydopamine coating can be improved significantly by simple coordination, oxidation, heating or grafting treatment.
Collapse
Affiliation(s)
- Yuan Dang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
- P. R. China
| | - Cheng-Mei Xing
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
- P. R. China
| | - Miao Quan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
- P. R. China
| | - Yan-Bing Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
- P. R. China
| | - Shi-Ping Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
- P. R. China
| | - Su-Qing Shi
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
- P. R. China
| | - Yong-Kuan Gong
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
- P. R. China
| |
Collapse
|
40
|
Madhavan P, Hong PY, Sougrat R, Nunes SP. Silver-enhanced block copolymer membranes with biocidal activity. ACS APPLIED MATERIALS & INTERFACES 2014; 6:18497-18501. [PMID: 25286186 DOI: 10.1021/am505594c] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Silver nanoparticles were deposited on the surface and pore walls of block copolymer membranes with highly ordered pore structure. Pyridine blocks constitute the pore surfaces, complexing silver ions and promoting a homogeneous distribution. Nanoparticles were then formed by reduction with sodium borohydride. The morphology varied with the preparation conditions (pH and silver ion concentration), as confirmed by field emission scanning and transmission electron microscopy. Silver has a strong biocide activity, which for membranes can bring the advantage of minimizing the growth of bacteria and formation of biofilm. The membranes with nanoparticles prepared under different pH values and ion concentrations were incubated with Pseudomonas aeruginosa and compared with the control. The strongest biocidal activity was achieved with membranes containing membranes prepared under pH 9. Under these conditions, the best distribution with small particle size was observed by microscopy.
Collapse
Affiliation(s)
- Poornima Madhavan
- Water Desalination and Reuse Center and ‡Imaging and Characterization Lab, King Abdullah University of Science and Technology , 23955-6900 Thuwal, Kingdom of Saudi Arabia
| | | | | | | |
Collapse
|
41
|
Self-assembly of TiO2 nanoparticles around the pores of PES ultrafiltration membrane for mitigating organic fouling. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2014.05.036] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|