1
|
Fang B, Li Y, Zhao X, Liu Y, Xu L, Wang Q, Liu X, Gong Z, Lai W. Supramolecular self-assembly of high-loaded horseradish peroxidase and biorecognized antibody into Au/polydopamine nanocomposites for sensitive immunoassay of E. coli O157:H7 in milk. J Dairy Sci 2025:S0022-0302(25)00033-5. [PMID: 39890072 DOI: 10.3168/jds.2024-25518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/19/2024] [Indexed: 02/03/2025]
Abstract
It is an urgent need of rapid and sensitive method for detection of Escherichia coli O157:H7 (E. coli O157:H7), a class of hazardous foodborne pathogens in food safety. The traditional enzyme-linked immunosorbent assay (ELISA), a dominant rapid detection technic, takes disadvantages of low test sensitivity due to the insufficient enzyme loading capacity. In this study, we successfully synthesized the self-assembled Au/polydopamine (PDA)/HRP nanocomposites with the high enzyme loading on the outer surface and in the inner space. The high catalytic activity of Au/PDA/HRP was maintained by virtue of its hyperbranched flexible structure. For E. coli O157:H7 detection in milk samples, the proposed immunoassay achieved a visual cut-off value of 103 cfu mL-1 and a low limit of detection (LOD) of 2.8 × 102 cfu mL-1, 33 and 46 times more sensitive than the traditional ELISA, respectively. The tremendous advantages of high sensitivity, excellent specificity and adequate recovery make it promising for sensitively monitoring various kinds of pathogenic bacteria in food safety.
Collapse
Affiliation(s)
- Bolong Fang
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yuzhi Li
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaole Zhao
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yan Liu
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lin Xu
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qiao Wang
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xin Liu
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Zhiyong Gong
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Weihua Lai
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| |
Collapse
|
2
|
Ke Q, Zhang Y, Qin Z, Meng Q, Huang X, Kou X, Zhang Y. Polydopamine-functionalized capsules: From design to applications. J Control Release 2025; 378:1114-1138. [PMID: 39724949 DOI: 10.1016/j.jconrel.2024.12.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
In recent years, polydopamine (PDA)-functionalized capsules have garnered significant interest from researchers in the field of materials, owing to its remarkable properties of adhesion, biocompatibility, photothermal conversion capabilities, chemical reactivity, and so on. At present, numerous studies have reported various structures and morphologies of PDA-functionalized capsules fabricated via diverse strategies, that have found applications across a broad spectrum of disciplines. However, there are few comprehensive and systematic reviews focusing on various preparation strategies of PDA-functionalized capsules with various structures. This paper systematically reviewed the preparation strategies and related applications of PDA-functionalized capsules. These strategies of PDA-functionalized capsules were discussed in detail from four parts including PDA-functionalized capsules based on hollow PDA, mesoporous PDA (MPDA), directly encapsulating emulsion, and surface modification of capsules. Then the review outlined the applications of PDA-functionalized capsules in biomedicine, energy, textiles, and the environment. Furthermore, this review summarized the current research findings on PDA-functionalized capsules and outlines their future development directions. Overall, we aim for this review to inspire researchers and offer valuable guidance for the synthesis and application of advanced PDA-functionalized capsules.
Collapse
Affiliation(s)
- Qinfei Ke
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China
| | - Yifei Zhang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China
| | - Zhaoyuan Qin
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China
| | - Qingran Meng
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China
| | - Xin Huang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China
| | - Xingran Kou
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China.
| | - Yunchong Zhang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China.
| |
Collapse
|
3
|
Song Y, Wang X, Tang J, Li GL. Dynamic Polymer/Metal-Organic Framework Hybrid Microcapsules for Self-Healing Anticorrosion Coatings. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68478-68486. [PMID: 39620943 DOI: 10.1021/acsami.4c16670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
An ideal microcapsule effectively preserves an active substance and can rapidly release it to elicit a self-healing anticorrosion effect. However, the development of highly efficient microcapsules remains a challenge. In this study, polymer/metal-organic framework hybrid microcapsules with dynamic properties were constructed as self-healing anticorrosion coatings. The shell of the microcapsule consisted of flexible polydopamine and a hard crystalline zeolitic imidazolate framework-8 (ZIF-8) layer. The corrosion inhibitor 8-hydroxyquinoline (8-HQ) was trapped in the microcapsules and remained unreleased because the ZIF-8 layer acted as a molecular sieve. When the coating was surrounded by an acidic environment, the ZIF-8 nanocrystals in the shell dissociated, followed by the release of 8-HQ. A dense protective layer was formed on the steel surface to suppress extensive corrosion propagation. The |Z|0.01Hz value of the self-healing coating increased from 1.9 × 104 Ω cm2 to 2.2 × 106 Ω cm2 within 48 h and remained at this level until 120 h post application. This value is 3 orders of magnitude higher than that of a pure epoxy coating under the same conditions. Compared with conventional coatings, the novel dynamic microcapsules enable the application of self-healing coatings that can withstand harsh acidic environments without human intervention.
Collapse
Affiliation(s)
- Yan Song
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xuhui Wang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Junjie Tang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guo Liang Li
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
4
|
Abdalbagemohammedabdalsadeg S, Xiao BL, Ma XX, Li YY, Wei JS, Moosavi-Movahedi AA, Yousefi R, Hong J. Catalase immobilization: Current knowledge, key insights, applications, and future prospects - A review. Int J Biol Macromol 2024; 276:133941. [PMID: 39032907 DOI: 10.1016/j.ijbiomac.2024.133941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Catalase (CAT), a ubiquitous enzyme in all oxygen-exposed organisms, effectively decomposes hydrogen peroxide (H2O2), a harmful by-product, into water and oxygen, mitigating oxidative stress and cellular damage, safeguarding cellular organelles and tissues. Therefore, CAT plays a crucial role in maintaining cellular homeostasis and function. Owing to its pivotal role, CAT has garnered considerable interest. However, many challenges arise when used, especially in multiple practical processes. "Immobilization", a widely-used technique, can help improve enzyme properties. CAT immobilization offers numerous advantages, including enhanced stability, reusability, and facilitated downstream processing. This review presents a comprehensive overview of CAT immobilization. It starts with discussing various immobilization mechanisms, support materials, advantages, drawbacks, and factors influencing the performance of immobilized CAT. Moreover, the review explores the application of the immobilized CAT in various industries and its prospects, highlighting its essential role in diverse fields and stimulating further research and investigation. Furthermore, the review highlights some of the world's leading companies in the field of the CAT industry and their substantial potential for economic contribution. This review aims to serve as a discerning, source of information for researchers seeking a comprehensive cutting-edge overview of this rapidly evolving field and have been overwhelmed by the size of publications.
Collapse
Affiliation(s)
| | - Bao-Lin Xiao
- School of Life Sciences, Henan University, 475000 Kaifeng, China
| | - Xin-Xin Ma
- School of Life Sciences, Henan University, 475000 Kaifeng, China
| | - Yang-Yang Li
- School of Life Sciences, Henan University, 475000 Kaifeng, China
| | - Jian-She Wei
- School of Life Sciences, Henan University, 475000 Kaifeng, China
| | | | - Reza Yousefi
- Institute of Biochemistry and Biophysics, University of Tehran, 1417614418 Tehran, Iran
| | - Jun Hong
- School of Life Sciences, Henan University, 475000 Kaifeng, China.
| |
Collapse
|
5
|
Song XC, Yu YL, Yang GY, Jiang AL, Ruan YJ, Fan SH. One-step emulsification for controllable preparation of ethyl cellulose microcapsules and their sustained release performance. Colloids Surf B Biointerfaces 2022; 216:112560. [PMID: 35636322 DOI: 10.1016/j.colsurfb.2022.112560] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/16/2022] [Accepted: 05/08/2022] [Indexed: 10/18/2022]
Abstract
A simple and versatile strategy for controlled production of monodisperse ethyl cellulose (EC) microcapsules by a single-stage emulsification method has been developed. Monodisperse oil-in-water emulsions, obtained by a microfluidic device, are used as templates for preparing EC microcapsules. Oil-soluble ethyl acetate (EA) is miscible with water, so the interfacial mass transfer between EA and water occurs sufficiently, which leads to water molecules pass through the phase interface and diffuse into emulsion interior. Water molecules aggregate at the interface, and some merge into a large water drop in the central position of the emulsion. After evaporation of EA solvent, monodisperse EC microcapsules create large numbers of pits on the surface with a hollow structure. Curcumin is used as a model drug and embedded in the hollow structure. EC microcapsules have good, sustained drug release efficacy in a simulated intestinal environment, and the release process of EC microcapsules containing 6.14% drug-loaded capacity is fully consistent with the vitro drug release model. Such simple techniques for making EC microcapsules may open a window to the controlled preparation of other multifunctional microcapsules. Besides, it offers theoretical guidance for the study of EC microcapsules as drug carriers and expanding clinical application of curcumin.
Collapse
Affiliation(s)
- Xu-Chun Song
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| | - Ya-Lan Yu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China; Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu 610500, PR China.
| | - Gui-Yuan Yang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| | - A-Li Jiang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| | - Ying-Jie Ruan
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| | - Shang-Hua Fan
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| |
Collapse
|
6
|
Lombardi V, Trande M, Back M, Patwardhan SV, Benedetti A. Facile Cellulase Immobilisation on Bioinspired Silica. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:626. [PMID: 35214956 PMCID: PMC8880491 DOI: 10.3390/nano12040626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 11/16/2022]
Abstract
Cellulases are enzymes with great potential for converting biomass to biofuels for sustainable energy. However, their commercial use is limited by their costs and low reusability. Therefore, the scientific and industrial sectors are focusing on finding better strategies to reuse enzymes and improve their performance. In this work, cellulase from Aspergillus niger was immobilised through in situ entrapment and adsorption on bio-inspired silica (BIS) supports. To the best of our knowledge, this green effect strategy has never been applied for cellulase into BIS. In situ entrapment was performed during support synthesis, applying a one-pot approach at mild conditions (room temperature, pH 7, and water solvent), while adsorption was performed after support formation. The loading efficiency was investigated on different immobilisation systems by Bradford assay and FTIR. Bovine serum albumin (BSA) was chosen as a control to optimize cellulase loading. The residual activity of cellulase was analysed by the dinitro salicylic acid (DNS) method. Activity of 90% was observed for the entrapped enzyme, while activity of ~55% was observed for the adsorbed enzyme. Moreover, the supported enzyme systems were recycled five times to evaluate their reuse potential. The thermal and pH stability tests suggested that both entrapment and adsorption strategies can increase enzyme activity. The results highlight that the entrapment in BIS is a potentially useful strategy to easily immobilise enzymes, while preserving their stability and recycle potential.
Collapse
Affiliation(s)
- Vincenzo Lombardi
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30172 Mestre, Italy;
| | - Matteo Trande
- Department of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK;
| | - Michele Back
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30172 Mestre, Italy;
| | - Siddharth V. Patwardhan
- Department of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
| | - Alvise Benedetti
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30172 Mestre, Italy;
| |
Collapse
|
7
|
Wei S, Zhou D, Qin J, Peng B, Zan X. Insight into the mechanism and formation process of bioinspired poly(amino acid)/polyphenol capsules engineered with fast pH switchable permeability. Colloids Surf B Biointerfaces 2021; 210:112234. [PMID: 34871819 DOI: 10.1016/j.colsurfb.2021.112234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 11/24/2022]
Abstract
Capsules have hollow cores and closed wall structures, and they have attracted considerable interest due to their wide applications and significance in life science. The engineering process of bioinspired capsules and related applications have earned heavy concerns. However, the mechanism of capsule formation is often ignored. Herein, based on polyornithine (POR) and tannic acid (TA), two facile strategies to engineer bioinspired capsules were proposed, and the formation mechanisms were deeply explored. We found that the oxidized state of TA had a profound influence not on the thickness or permeability of the formed capsule but on the mechanism and generation process. Compared to TA/POR capsules produced from TA without oxidization (TA/POR), capsules produced from TA with preoxidization (oTA/POR) had thicker shells with higher impermeability. The dominant construction mode in the shells of TA/POR capsules was electrostatic interactions but became Schiff base bonds in oTA/POR capsules. The permeability of oTA/POR displayed pH reversibility and strong pH dependence, with 100% permeability at lower pH and 100% impermeability at pH 7, completing loading/releasing kinetics in minutes at pH 4. We believe these findings contribute to knowledge of bioinspired capsules from engineering processes and formation mechanisms, extending their applications in various fields, such as in drug delivery, artificial cells, and sensors.
Collapse
Affiliation(s)
- Shaoyin Wei
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325035, PR China
| | - Daozhen Zhou
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325035, PR China
| | - Jianghui Qin
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325035, PR China
| | - Bo Peng
- Oujiang Laboratory, Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, No.1 Jinlian Road, Wenzhou 325001, PR China.
| | - Xingjie Zan
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325035, PR China; Oujiang Laboratory, Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, No.1 Jinlian Road, Wenzhou 325001, PR China.
| |
Collapse
|
8
|
Paul M, Mohapatra S, Kumar Das Mohapatra P, Thatoi H. Microbial cellulases - An update towards its surface chemistry, genetic engineering and recovery for its biotechnological potential. BIORESOURCE TECHNOLOGY 2021; 340:125710. [PMID: 34365301 DOI: 10.1016/j.biortech.2021.125710] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
The inherent resistance of lignocellulosic biomass makes it impervious for industrially important enzymes such as cellulases to hydrolyze cellulose. Further, the competitive absorption behavior of lignin and hemicellulose for cellulases, due to their electron-rich surfaces augments the inappropriate utilization of these enzymes. Hence, modification of the surface charge of the cellulases to reduce its non-specific binding to lignin and enhance its affinity for cellulose is an urgent necessity. Further, maintaining the stability of cellulases by the preservation of their secondary structures using immobilization techniques will also play an integral role in its industrial production. In silico approaches for increasing the catalytic activity of cellulase enzymes is also significant along with a range of substrate specificity. In addition, enhanced productivity of cellulases by tailoring the related genes through the process of genetic engineering and higher cellulase recovery after saccharification seems to be promising areas for efficient and large-scale enzyme production concepts.
Collapse
Affiliation(s)
- Manish Paul
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Takatpur, Baripada 757003, Odisha, India
| | - Sonali Mohapatra
- Department of Biotechnology, College of Engineering & Technology, Bhubaneswar 751003, Odisha, India
| | - Pradeep Kumar Das Mohapatra
- Department of Microbiology, Raiganj University, Raiganj - 733134, Uttar Dinajpur, West Bengal, India; PAKB Environment Conservation Centre, Raiganj University, Raiganj - 733134, Uttar Dinajpur, West Bengal, India
| | - Hrudayanath Thatoi
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Takatpur, Baripada 757003, Odisha, India.
| |
Collapse
|
9
|
Liu J, Liang J, Xue J, Liang K. Metal-Organic Frameworks as a Versatile Materials Platform for Unlocking New Potentials in Biocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100300. [PMID: 33949785 DOI: 10.1002/smll.202100300] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Biocatalysts immobilization with nanomaterials has promoted the development of biocatalysis significantly and made it an indispensable part of catalysis industries nowadays. Metal-organic frameworks (MOFs), constructed from organic linkers and metal ions or clusters, have raised significant interests for biocatalysts immobilization in recent years. The diversity of building units, molecular-scale tunability, and modular synthetic routes of MOFs greatly expand its ability as the host to integrate with biocatalysts. In this review, the general synthetic strategies of MOFs with biocatalysts are first summarized. Then, the recent progress of MOFs as a versatile host for a series of biocatalysts, including natural enzymes, nanozymes, and organism-based biocatalysts, followed by the introduction of MOFs themselves as biocatalysts, is discussed. Furthermore, the stimuli-responsive properties of MOFs themselves or the additional functionalization of protein, polymer, and peptide within/on MOF that enable the biocatalysts with the controllable and tunable behavior are also summarized, which could unlock new potentials in biocatalysis. Finally, a perspective of the upcoming challenges, potential impacts, and future directions of biocatalytic MOFs is provided.
Collapse
Affiliation(s)
- Jian Liu
- School of Chemical Engineering and Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jieying Liang
- School of Chemical Engineering and Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jueyi Xue
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Kang Liang
- School of Chemical Engineering and Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
10
|
Suo H, Li M, Liu R, Xu L. Enhancing bio-catalytic performance of lipase immobilized on ionic liquids modified magnetic polydopamine. Colloids Surf B Biointerfaces 2021; 206:111960. [PMID: 34224932 DOI: 10.1016/j.colsurfb.2021.111960] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/03/2021] [Accepted: 06/28/2021] [Indexed: 01/09/2023]
Abstract
In this study, imidazolium-based ionic liquid with [tf2N]- as the anion was successfully grafted to magnetic polydopamine nanoparticles (MPDA). The prepared materials were well characterized and used as supports for lipase immobilization. The immobilized lipase (PPL-ILs-MPDA) exhibited excellent activity and stability. The specific activity of PPL-ILs-MPDA was 2.15 and 1.49 folds higher than that of free PPL and PPL-MPDA. In addition, after 10 rounds of reuse, the residual activity of PPL-ILs-MPDA was 86.2 % higher than that of PPL-MPDA (75.4 %). Furthermore, the kinetic assay indicated that the affinity between PPL-ILs-MPDA and substrate had increased. Analysis of the secondary structure using circular dichroism was used to explain the mechanism underlying the improvement in the performance of PPL-ILs-MPDA. In addition, the immobilized lipase can be easily separated from the reaction system with a magnet. The observations regarding the development of new supports for lipase immobilization may provide new ideas regarding further studies in this field.
Collapse
Affiliation(s)
- Hongbo Suo
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252059, China
| | - Moju Li
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252059, China
| | - Renmin Liu
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252059, China.
| | - Lili Xu
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252059, China.
| |
Collapse
|
11
|
Zhao CP, Chen GY, Wang Y, Chen H, Yu JW, Yang FQ. Evaluation of Enzyme Inhibitory Activity of Flavonoids by Polydopamine-Modified Hollow Fiber-Immobilized Xanthine Oxidase. Molecules 2021; 26:molecules26133931. [PMID: 34203179 PMCID: PMC8271864 DOI: 10.3390/molecules26133931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 01/20/2023] Open
Abstract
In this study, a polydopamine (PDA)-modified hollow fiber-immobilized xanthine oxidase (XOD) was prepared for screening potential XOD inhibitors from flavonoids. Several parameters for the preparation of PDA-modified hollow fiber-immobilized XOD, including the dopamine concentration, modification time, XOD concentration and immobilization time, were optimized. The results show that the optimal conditions for immobilized XOD activity were a dopamine concentration of 2.0 mg/mL in 10.0 mM Tris-HCl buffer (pH 8.5), a modification time of 3.0 h, an XOD concentration of 1000 μg/mL in 10.0 mM phosphate buffer (pH 7.5) and an immobilization time of 3.0 h. Subsequently, the enzymatic reaction conditions such as the pH value and temperature were investigated, and the enzyme kinetics and inhibition parameters were determined. The results indicate that the optimal pH value (7.5) and temperature (37 °C) of the PDA-modified hollow fiber-immobilized XOD were consistent with the free enzyme. Moreover, the PDA-modified hollow fiber-immobilized XOD could still maintain above 50% of its initial immobilized enzyme activity after seven consecutive cycles. The Michaelis–Menten constant (Km) and the half-maximal inhibitory concentration (IC50) of allopurinol on the immobilized XOD were determined as 0.25 mM and 23.2 μM, respectively. Furthermore, the PDA-modified hollow fiber-immobilized XOD was successfully applied to evaluate the inhibitory activity of eight flavonoids. Quercetin, apigenin, puerarin and epigallocatechin showed a good inhibition effect, and their percentages of inhibition were (79.86 ± 3.50)%, (80.98 ± 0.64)%, (61.15 ± 6.26)% and (54.92 ± 0.41)%, respectively. Finally, molecular docking analysis further verified that these four active compounds could bind to the amino acid residues in the XOD active site. In summary, the PDA-modified hollow fiber-immobilized XOD is an efficient method for the primary screening of XOD inhibitors from natural products.
Collapse
Affiliation(s)
- Cong-Peng Zhao
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China; (C.-P.Z.); (G.-Y.C.); (Y.W.); (H.C.)
| | - Guo-Ying Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China; (C.-P.Z.); (G.-Y.C.); (Y.W.); (H.C.)
| | - Yuan Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China; (C.-P.Z.); (G.-Y.C.); (Y.W.); (H.C.)
| | - Hua Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China; (C.-P.Z.); (G.-Y.C.); (Y.W.); (H.C.)
| | - Jia-Wen Yu
- Taiji Group Chongqing Fuling Pharmaceutical Co., Ltd., Chongqing 408000, China
- Correspondence: (J.-W.Y.); (F.-Q.Y.); Tel.: +86-139-8330-0448 (J.-W.Y.); +86-136-1765-0637 (F.-Q.Y.)
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China; (C.-P.Z.); (G.-Y.C.); (Y.W.); (H.C.)
- Correspondence: (J.-W.Y.); (F.-Q.Y.); Tel.: +86-139-8330-0448 (J.-W.Y.); +86-136-1765-0637 (F.-Q.Y.)
| |
Collapse
|
12
|
Li J, Qiu H, Gong H, Tong W. Broad-Spectrum Reactive Oxygen Species Scavenging and Activated Macrophage-Targeting Microparticles Ameliorate Inflammatory Bowel Disease. Biomacromolecules 2021; 22:3107-3118. [PMID: 34160209 DOI: 10.1021/acs.biomac.1c00551] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Inflammatory bowel disease (IBD) is a refractory chronic inflammatory disease. An excessively high level of reactive oxygen species (ROS) in the colon is one of the characteristics and pathogenic factors of IBD. Therefore, scavenging excessive ROS is a feasible method to treat IBD. Because ROS include many types of species, scavenging a single kind of ROS is not enough to reduce the ROS level and cure IBD effectively. Herein, broad-spectrum ROS scavenging and activated macrophage-targeting microparticles (MPs) are successfully fabricated by coprecipitation of catalase (CAT) and bovine serum albumin into a MnCO3 template followed by deposition of polydopamine (PDA), assembly of targeting molecules on the surface, and finally removal of MnCO3. The CAT content of MPs is about 34.1%. The obtained MPs can effectively scavenge the broad spectrum of ROS and retain 88% of the radical scavenging activity even after the treatment of simulated gastric fluid. The surface-modified dextran sulfate endows MPs with the targeting ability toward activated macrophages, achieving a better therapeutic effect. The MPs with components mostly derived from natural substances exhibit good biocompatibility and can show excellent ROS scavenging ability in cell experiments. In animal experiments, oral administration of a proper dosage of MPs can substantially mitigate colonic inflammation, as evidenced by disease activity index scores reduced by ∼40%, reduced body weight loss, and the production of typical proinflammatory cytokines in the inflammatory colon. This kind of MP can also be utilized for the treatment of other inflammatory diseases.
Collapse
Affiliation(s)
- Jiawei Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Huiqiang Qiu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hengtai Gong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Weijun Tong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
13
|
Marin E, Tiwari N, Calderón M, Sarasua JR, Larrañaga A. Smart Layer-by-Layer Polymeric Microreactors: pH-Triggered Drug Release and Attenuation of Cellular Oxidative Stress as Prospective Combination Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:18511-18524. [PMID: 33861060 PMCID: PMC9161222 DOI: 10.1021/acsami.1c01450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/02/2021] [Indexed: 05/06/2023]
Abstract
Polymer capsules fabricated via the layer-by-layer (LbL) approach have emerged as promising biomedical systems for the release of a wide variety of therapeutic agents, owing to their tunable and controllable structure and the possibility to include several functionalities in the polymeric membrane during the fabrication process. However, the limitation of the capsules with a single functionality to overcome the challenges involved in the treatment of complex pathologies denotes the need to develop multifunctional capsules capable of targeting several mediators and/or mechanisms. Oxidative stress is caused by the accumulation of reactive oxygen species [e.g., hydrogen peroxide (H2O2), hydroxyl radicals (•OH), and superoxide anion radicals (•O2-)] in the cellular microenvironment and is a key modulator in the pathology of a broad range of inflammatory diseases. The disease microenvironment is also characterized by the presence of proinflammatory cytokines, increased levels of matrix metalloproteinases, and acidic pH, all of which could be exploited to trigger the release of therapeutic agents. In the present work, multifunctional capsules were fabricated via the LbL approach. Capsules were loaded with an antioxidant enzyme (catalase) and functionalized with a model drug (doxorubicin), which was conjugated to an amine-containing dendritic polyglycerol through a pH-responsive linker. These capsules efficiently scavenge H2O2 from solution, protecting cells from oxidative stress, and release the model drug in acidic microenvironments. Accordingly, in this work, a polymeric microplatform is presented as an unexplored combinatorial approach applicable for multiple targets of inflammatory diseases, in order to perform controlled spatiotemporal enzymatic reactions and drug release in response to biologically relevant stimuli.
Collapse
Affiliation(s)
- Edurne Marin
- Department
of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Faculty
of Engineering in Bilbao, University of
the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, 48013 Bilbao, Spain
| | - Neha Tiwari
- POLYMAT,
Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastian, Spain
| | - Marcelo Calderón
- POLYMAT,
Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastian, Spain
- IKERBASQUE,
Basque Foundation for Science, 48009 Bilbao, Spain
| | - Jose-Ramon Sarasua
- Department
of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Faculty
of Engineering in Bilbao, University of
the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, 48013 Bilbao, Spain
| | - Aitor Larrañaga
- Department
of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Faculty
of Engineering in Bilbao, University of
the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, 48013 Bilbao, Spain
| |
Collapse
|
14
|
Nguyen TT, Rahmatika AM, Miyauchi M, Cao KLA, Ogi T. Synthesis of High Specific Surface Area Macroporous Pectin Particles by Template-Assisted Spray Drying. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4256-4266. [PMID: 33780254 DOI: 10.1021/acs.langmuir.1c00232] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Many types of porous particles containing inorganic and organic substances, such as carbon, metals, metal oxides, inorganic-organic hybrids, and polymers, have been developed. However, natural polymer-derived particles are relatively rare. To our knowledge, this report describes the first synthetic method for obtaining meso-/macroporous particles made from pectin, which is a natural polymer with a wide range of biological activities suitable for active substance support applications. These porous particles were prepared using a template-assisted spray-drying method, followed by a chemical etching process. An organic template [i.e., poly(methyl methacrylate) (PMMA)] or an inorganic template [i.e., calcium carbonate (CaCO3)] was used to evaluate the resulting formation of macroporous structures in the pectin particles. Furthermore, the concentration of the templates in the precursor solution was varied to better understand the mechanism of porous pectin particle formation. The results showed that the final porous particles maintained the characteristic properties of pectin. The differences between the two templates resulted in two distinct types of porous particles that differed in their particle morphologies (i.e., spherical or wrinkled), particle sizes (ranging from 3 to 8 μm), pore sizes (ranging from 80 to 350 nm), and pore volume (ranging from 0.024 to 1.40 cm3 g-1). Especially, the porous pectin particles using the CaCO3 template have a significantly high specific surface area of 171.2 m2 g-1, which is 114 times higher than that of nonporous pectin particles. These data demonstrated the potential for using PMMA and CaCO3 templates to control and design desired porous materials.
Collapse
Affiliation(s)
- Tue Tri Nguyen
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan
| | - Annie M Rahmatika
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan
- Department of Bioresources Technology and Veterinary, Vocational College, Gadjah Mada University, Sekip Unit 1 Catur Tunggal, Depok Sleman, D.I. Yogyakarta 55281, Indonesia
| | - Masato Miyauchi
- Tobacco Science Research Center, Japan Tobacco Inc., 6-2 Umegaoka, Aoba-ku, Yokohama 227-8512, Japan
| | - Kiet Le Anh Cao
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan
| | - Takashi Ogi
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan
| |
Collapse
|
15
|
Wu D, Zhou J, Creyer MN, Yim W, Chen Z, Messersmith PB, Jokerst JV. Phenolic-enabled nanotechnology: versatile particle engineering for biomedicine. Chem Soc Rev 2021; 50:4432-4483. [PMID: 33595004 PMCID: PMC8106539 DOI: 10.1039/d0cs00908c] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phenolics are ubiquitous in nature and have gained immense research attention because of their unique physiochemical properties and widespread industrial use. In recent decades, their accessibility, versatile reactivity, and relative biocompatibility have catalysed research in phenolic-enabled nanotechnology (PEN) particularly for biomedical applications which have been a major benefactor of this emergence, as largely demonstrated by polydopamine and polyphenols. Therefore, it is imperative to overveiw the fundamental mechanisms and synthetic strategies of PEN for state-of-the-art biomedical applications and provide a timely and comprehensive summary. In this review, we will focus on the principles and strategies involved in PEN and summarize the use of the PEN synthetic toolkit for particle engineering and the bottom-up synthesis of nanohybrid materials. Specifically, we will discuss the attractive forces between phenolics and complementary structural motifs in confined particle systems to synthesize high-quality products with controllable size, shape, composition, as well as surface chemistry and function. Additionally, phenolic's numerous applications in biosensing, bioimaging, and disease treatment will be highlighted. This review aims to provide guidelines for new scientists in the field and serve as an up-to-date compilation of what has been achieved in this area, while offering expert perspectives on PEN's use in translational research.
Collapse
Affiliation(s)
- Di Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | | | | | | | | | | | | |
Collapse
|
16
|
Lai X, Zhang G, Zeng L, Xiao X, Peng J, Guo P, Zhang W, Lai W. Synthesis of PDA-Mediated Magnetic Bimetallic Nanozyme and Its Application in Immunochromatographic Assay. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1413-1423. [PMID: 33346647 DOI: 10.1021/acsami.0c17957] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Immunochromatographic assay (ICA) is widely applied in various fields. However, severe matrix interference and weak signal output present major challenges in achieving accurate and ultrasensitive detection in ICA. Here, a polydopamine (PDA)-mediated magnetic bimetallic nanozyme (Fe3O4@PDA@Pd/Pt) with peroxidase-like activity was synthesized and used as a probe in ICA. The magnetic property of Fe3O4@PDA@Pd/Pt enabled effective magnetic enrichment of targets, thereby reducing the matrix interference in the sample. PDA coating on the magnetic bimetallic nanozyme was employed as a mediator and a stabilizer. It improved the catalytic ability and stability of the magnetic bimetallic nanozyme by providing more coordination sites for Pd/Pt growth and functional groups (-NH and -OH). In addition, the Pd/Pt bimetallic synergistic effect could further enhance the catalytic ability of the nanozyme. A method was developed by integrating Fe3O4, PDA, and Pd/Pt into Fe3O4@PDA@Pd/Pt as a probe in ICA. With the proposed method, human chorionic gonadotropin and Escherichia coli O157:H7 were successfully detected to be as low as 0.0094 mIU/mL in human blood serum and 9 × 101 CFU/mL in the milk sample, respectively. This method may be readily adapted for accurate and ultrasensitive detection of other biomolecules in various fields.
Collapse
Affiliation(s)
- Xiaocui Lai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ganggang Zhang
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Lifeng Zeng
- Department of Clinical Laboratory, Jiangxi Provincial People's Hospital, Nanchang 330006, China
| | - Xiaoyue Xiao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Juan Peng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ping Guo
- Jiangxi Institute for Food Control, Nanchang 330001, China
| | - Wei Zhang
- Jiangxi Institute for Food Control, Nanchang 330001, China
| | - Weihua Lai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| |
Collapse
|
17
|
Wang J, Lv Y. An enzyme-loaded reactor using metal-organic framework-templated polydopamine microcapsule. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.07.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
18
|
Research Progress in Conversion of CO 2 to Valuable Fuels. Molecules 2020; 25:molecules25163653. [PMID: 32796612 PMCID: PMC7465062 DOI: 10.3390/molecules25163653] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/23/2022] Open
Abstract
Rapid growth in the world's economy depends on a significant increase in energy consumption. As is known, most of the present energy supply comes from coal, oil, and natural gas. The overreliance on fossil energy brings serious environmental problems in addition to the scarcity of energy. One of the most concerning environmental problems is the large contribution to global warming because of the massive discharge of CO2 in the burning of fossil fuels. Therefore, many efforts have been made to resolve such issues. Among them, the preparation of valuable fuels or chemicals from greenhouse gas (CO2) has attracted great attention because it has made a promising step toward simultaneously resolving the environment and energy problems. This article reviews the current progress in CO2 conversion via different strategies, including thermal catalysis, electrocatalysis, photocatalysis, and photoelectrocatalysis. Inspired by natural photosynthesis, light-capturing agents including macrocycles with conjugated structures similar to chlorophyll have attracted increasing attention. Using such macrocycles as photosensitizers, photocatalysis, photoelectrocatalysis, or coupling with enzymatic reactions were conducted to fulfill the conversion of CO2 with high efficiency and specificity. Recent progress in enzyme coupled to photocatalysis and enzyme coupled to photoelectrocatalysis were specially reviewed in this review. Additionally, the characteristics, advantages, and disadvantages of different conversion methods were also presented. We wish to provide certain constructive ideas for new investigators and deep insights into the research of CO2 conversion.
Collapse
|
19
|
Effect of graphene oxide with different morphological characteristics on properties of immobilized enzyme in the covalent method. Bioprocess Biosyst Eng 2020; 43:1847-1858. [PMID: 32448987 DOI: 10.1007/s00449-020-02375-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/08/2020] [Indexed: 01/08/2023]
Abstract
Although graphene oxide (GO) has great potential in the field of immobilized enzyme catalysts, the detailed effects of GO with different morphological structures on immobilized enzyme are not well understood. GOs were prepared from 8000 mesh and nanoscale graphite at different reaction temperatures, and used as carriers to immobilize alpha-amylase by cross-linking method. The properties of GOs were characterized through Atomic force microscope, Fourier-transformed infrared, X-ray photoelectron spectroscopy, Raman and UV-Vis. Furthermore, the dosage of cross-linking agent, cross-linking time, optimum temperature/pH, thermal/pH/storage stability, reusability and kinetic parameters of immobilized enzymes were investigated. The results showed that the loading of alpha-amylase on GOs was 162.3-274.2 mg g-1. The reusability experiments revealed high activity maintenance of immobilized alpha-amylase even after seven reaction cycles. Moreover, the storage stability of immobilized enzyme improved via immobilization in comparison with free one and it maintained over 70% of their initial activity after 20 days storage at 4 °C.
Collapse
|
20
|
Han P, Zhou X, You C. Efficient Multi-Enzymes Immobilized on Porous Microspheres for Producing Inositol From Starch. Front Bioeng Biotechnol 2020; 8:380. [PMID: 32478043 PMCID: PMC7232586 DOI: 10.3389/fbioe.2020.00380] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/06/2020] [Indexed: 01/21/2023] Open
Abstract
In vitro synthetic enzymatic biosystem is considered to be the next generation of biomanufacturing platform. This biosystem contains multiple enzymes for the implementation of complicated biotransformatiom. However, the hard-to-reuse and instability of multiple enzymes limit the utilization of this biosystem in industrial process. Multi-enzyme immobilization might be a feasible alternative to address these problems. Herein, porous microspheres are used as carriers to co-immobilize multiple enzymes for producing inositol from starch. At first, all the enzymes (i.e., α-glucan phosphorylase aGP, phosphoglucose mutase PGM, inositol 1-phosphate synthase IPS, and inositol monophosphatase IMP) for converting starch to inositol were immobilized on porous microspheres individually to check the effect of immobilization, then all the enzymes are co-immobilized on porous microspheres. Compared to reaction system containing all the individual immobilized enzymes, the reaction system containing the co-immobilized enzymes exhibit ∼3.5 fold of reaction rate on producing inositol from starch. This reaction rate is comparable to that by free enzyme mixture. And the co-immobilized multi-enzyme system show higher thermal stability and recovery stability than free enzyme mixture. After 7 batches, the immobilized enzymes retain 45.6% relative yield, while the free enzyme mixture only retain 13.3% relative yield after 3 batches. Co-immobilization of multiple enzymes on porous microspheres for biomanufacturing would shed light on the application of in vitro synthetic enzymatic biosystem in industrial scale.
Collapse
Affiliation(s)
- Pingping Han
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xigui Zhou
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Chun You
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Zhang X, Zhang L, Zhang D, Liu S, Wei D, Liu F. Mechanism of the temperature-responsive material regulating porous morphology on epoxy phenolic novolac resin microcapsule surface. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Cui C, Ming H, Li L, Li M, Gao J, Han T, Wang Y. Fabrication of an in-situ co-immobilized enzyme in mesoporous silica for synthesizing GSH with ATP regeneration. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Liang S, Wu XL, Xiong J, Zong MH, Lou WY. Metal-organic frameworks as novel matrices for efficient enzyme immobilization: An update review. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213149] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Affiliation(s)
- Árpád Molnár
- Department of Organic Chemistry University of Szeged Dóm tér 8 Szeged 6720 Hungary
| |
Collapse
|
25
|
Jiang W, Zhang X, Luan Y, Wang R, Liu H, Li D, Hu L. Using γ-Ray Polymerization-Induced Assemblies to Synthesize Polydopamine Nanocapsules. Polymers (Basel) 2019; 11:E1754. [PMID: 31731483 PMCID: PMC6918355 DOI: 10.3390/polym11111754] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 01/01/2023] Open
Abstract
This work reports a simple and robust strategy for synthesis of polydopamine nanocapsules (PDA NCs). First, polymer assemblies were synthesized by a γ-ray-induced liquid-liquid (H2O-acrylate) interface polymerization strategy, in the absence of any surfactants. 1H nuclear magnetic resonance analysis and molecular dynamics simulation reveal that the generation of polymer assemblies largely depends on the hydrophilicity of acrylate and gravity of the oligomers at the interface. By virtue of the spherical structure and mechanic stability of the polymer assemblies, PDA NCs are next prepared by the interfacial polymerization of dopamine onto the assemblies, followed by the removal of templates by using ethanol. The polydopamine nanocapsules are shown to load and release ciprofloxacin (CIP, a model drug), such that the CIP-loaded PDA NCs are able to inhibit the growth of Escherichia coli.
Collapse
Affiliation(s)
- Wenwen Jiang
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, Jiangsu, China
| | - Xinyue Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yafei Luan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Rensheng Wang
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, Jiangsu, China
| | - Hanzhou Liu
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, Jiangsu, China
| | - Dan Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Liang Hu
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, Jiangsu, China
| |
Collapse
|
26
|
Zhao TT, Feng GH, Chen W, Song YF, Dong X, Li GH, Zhang HJ, Wei W. Artificial bioconversion of carbon dioxide. CHINESE JOURNAL OF CATALYSIS 2019. [DOI: 10.1016/s1872-2067(19)63408-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Xu S, Zhang G, Fang B, Xiong Q, Duan H, Lai W. Lateral Flow Immunoassay Based on Polydopamine-Coated Gold Nanoparticles for the Sensitive Detection of Zearalenone in Maize. ACS APPLIED MATERIALS & INTERFACES 2019; 11:31283-31290. [PMID: 31389683 DOI: 10.1021/acsami.9b08789] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work, polydopamine-coated gold nanoparticles (Au@PDAs) were synthesized by the oxidative self-polymerization of dopamine (DA) on the surface of AuNPs and applied for the first time as a signal-amplification label in lateral flow immunoassays (LFIAs) for the sensitive detection of zearalenone (ZEN) in maize. The PDA layer functioned as a linker between AuNPs and anti-ZEN monoclonal antibody (mAb) to form a probe (Au@PDA-mAb). Compared with AuNPs, Au@PDA had excellent color intensity, colloidal stability, and mAb coupling efficiency. The limit of detection of the Au@PDA-based LFIA (Au@PDA-LFIA) was 7.4 pg/mL, which was 10-fold lower than that of the traditional AuNP-based LFIA (AuNP-LFIA) (76.1 pg/mL). The recoveries of Au@PDA-LFIA were 93.80-111.82%, with the coefficient of variation of 1.08-9.04%. In addition, the reliability of Au@PDA-LFIA was further confirmed by the high-performance liquid chromatography method. Overall, our study showed that PDA coating can chemically modify the surface of AuNPs through a simple method and can thus significantly improve the detection sensitivity of LFIA.
Collapse
Affiliation(s)
- Shaolan Xu
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , China
| | - Ganggang Zhang
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , China
| | - Bolong Fang
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , China
| | - Qirong Xiong
- School of Chemical and Biomedical Engineering , Nanyang Technological University , Singapore 637457
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering , Nanyang Technological University , Singapore 637457
| | - Weihua Lai
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , China
| |
Collapse
|
28
|
Tran HQ, Batul R, Bhave M, Yu A. Current Advances in the Utilization of Polydopamine Nanostructures in Biomedical Therapy. Biotechnol J 2019; 14:e1900080. [DOI: 10.1002/biot.201900080] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/19/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Huy Q. Tran
- Faculty of Science, Engineering and Technology, Department of Chemistry and BiotechnologySwinburne University of TechnologyHawthorn Victoria 3122 Australia
| | - Rahila Batul
- Faculty of Science, Engineering and Technology, Department of Chemistry and BiotechnologySwinburne University of TechnologyHawthorn Victoria 3122 Australia
| | - Mrinal Bhave
- Faculty of Science, Engineering and Technology, Department of Chemistry and BiotechnologySwinburne University of TechnologyHawthorn Victoria 3122 Australia
| | - Aimin Yu
- Faculty of Science, Engineering and Technology, Department of Chemistry and BiotechnologySwinburne University of TechnologyHawthorn Victoria 3122 Australia
| |
Collapse
|
29
|
Dang H, Xu Z, Chen Z, Wu W, Feng J, Sun Y, Jin F, Li J, Ge F. A Facile and Controllable Method to In Situ Synthesize Stable Hydrophobic Vaterite Particles. CRYSTAL RESEARCH AND TECHNOLOGY 2019. [DOI: 10.1002/crat.201800243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Haichun Dang
- Department of Materials Engineering; Taiyuan Institute of Technology; Taiyuan 030008 China
| | - Zhaozan Xu
- Shanxi Collaborative Innovation Center of High Value-Added Utilization of Coal-Related Wastes; Institute of Resources and Environmental Engineering; Shanxi University; Taiyuan 030006 China
| | - Zishan Chen
- Department of Materials Engineering; Taiyuan Institute of Technology; Taiyuan 030008 China
| | - Weiling Wu
- Department of Materials Engineering; Taiyuan Institute of Technology; Taiyuan 030008 China
| | - Juan Feng
- Department of Materials Engineering; Taiyuan Institute of Technology; Taiyuan 030008 China
| | - Yiyi Sun
- Department of Materials Engineering; Taiyuan Institute of Technology; Taiyuan 030008 China
| | - Fengchi Jin
- Department of Materials Engineering; Taiyuan Institute of Technology; Taiyuan 030008 China
| | - Jiang Li
- Department of Materials Engineering; Taiyuan Institute of Technology; Taiyuan 030008 China
| | - Fan Ge
- Department of Materials Engineering; Taiyuan Institute of Technology; Taiyuan 030008 China
| |
Collapse
|
30
|
Shen Z, Zhou X, Sun X, Xu H, Chen H, Zhou H. Preparation of 2,4-dichlorophenoxyacetic acid loaded on cysteamine-modified polydopamine and its release behaviors. J Appl Polym Sci 2019. [DOI: 10.1002/app.47469] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhichuan Shen
- School of Chemistry and Chemical Engineering; Zhongkai University of Agriculture and Engineering; Guangzhou 510220 China
- Key Laboratory of Agricultural Green Fine Chemicals; Guangdong Higher Education Institution; Guangzhou 510220 China
| | - Xinhua Zhou
- School of Chemistry and Chemical Engineering; Zhongkai University of Agriculture and Engineering; Guangzhou 510220 China
- Key Laboratory of Agricultural Green Fine Chemicals; Guangdong Higher Education Institution; Guangzhou 510220 China
| | - Xuanhua Sun
- School of Chemistry and Chemical Engineering; Zhongkai University of Agriculture and Engineering; Guangzhou 510220 China
| | - Hua Xu
- School of Chemistry and Chemical Engineering; Zhongkai University of Agriculture and Engineering; Guangzhou 510220 China
- Key Laboratory of Agricultural Green Fine Chemicals; Guangdong Higher Education Institution; Guangzhou 510220 China
| | - Huayao Chen
- School of Chemistry and Chemical Engineering; Zhongkai University of Agriculture and Engineering; Guangzhou 510220 China
- Key Laboratory of Agricultural Green Fine Chemicals; Guangdong Higher Education Institution; Guangzhou 510220 China
| | - Hongjun Zhou
- School of Chemistry and Chemical Engineering; Zhongkai University of Agriculture and Engineering; Guangzhou 510220 China
- Key Laboratory of Agricultural Green Fine Chemicals; Guangdong Higher Education Institution; Guangzhou 510220 China
| |
Collapse
|
31
|
Zhang D, Zhang X, Jing T, Cao H, Li B, Liu F. Tunable thermal, mechanical, and controlled-release properties of epoxy phenolic novolac resin microcapsules mediated by diamine crosslinkers. RSC Adv 2019; 9:9820-9827. [PMID: 35520710 PMCID: PMC9062307 DOI: 10.1039/c9ra00069k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/13/2019] [Indexed: 11/21/2022] Open
Abstract
Diverse shell structures can endow microcapsules (MCs) with a variety of properties.
Collapse
Affiliation(s)
- Daxia Zhang
- Key Laboratory of Pesticide Toxicology and Application Technique
- College of Plant Protection
- Shandong Agricultural University
- Tai'an
- P. R. China
| | - Xianpeng Zhang
- Laboratory of Medicinal Biophysical Chemistry
- Huazhong Agricultural University
- Wuhan
- P. R. China
| | - Tongfang Jing
- Key Laboratory of Pesticide Toxicology and Application Technique
- College of Plant Protection
- Shandong Agricultural University
- Tai'an
- P. R. China
| | - Haichao Cao
- Key Laboratory of Pesticide Toxicology and Application Technique
- College of Plant Protection
- Shandong Agricultural University
- Tai'an
- P. R. China
| | - Beixing Li
- Key Laboratory of Pesticide Toxicology and Application Technique
- College of Plant Protection
- Shandong Agricultural University
- Tai'an
- P. R. China
| | - Feng Liu
- Key Laboratory of Pesticide Toxicology and Application Technique
- College of Plant Protection
- Shandong Agricultural University
- Tai'an
- P. R. China
| |
Collapse
|
32
|
Tan S, Long Y, Han Q, Wang J, Liang Q, Ding M. Polymer-Assisted Hierarchically Bulky Imprinted Microparticles for Enhancing the Selective Enrichment of Proteins. ACS APPLIED BIO MATERIALS 2018; 2:388-396. [DOI: 10.1021/acsabm.8b00631] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Siyuan Tan
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry,Tsinghua University, Beijing 100084, P.R. China
| | - Yang Long
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry,Tsinghua University, Beijing 100084, P.R. China
| | - Qiang Han
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry,Tsinghua University, Beijing 100084, P.R. China
| | - Jundong Wang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry,Tsinghua University, Beijing 100084, P.R. China
| | - Qionglin Liang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry,Tsinghua University, Beijing 100084, P.R. China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P.R. China
| | - Mingyu Ding
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry,Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
33
|
Amin DR, Higginson CJ, Korpusik AB, Gonthier AR, Messersmith PB. Untemplated Resveratrol-Mediated Polydopamine Nanocapsule Formation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:34792-34801. [PMID: 30230809 PMCID: PMC6320237 DOI: 10.1021/acsami.8b14128] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanocapsules can be designed for applications including drug delivery, catalysis, and biological imaging. The mussel-inspired material polydopamine is a promising shell layer for nanocapsules because of its free radical scavenging capacity, ability to react with a broad range of functional molecules, lack of toxicity, and biodegradability. Previous reports of polydopamine nanocapsule formation have relied on a templating approach. Herein, we report a template-free approach to polydopamine nanocapsule formation in the presence of resveratrol, a naturally occurring anti-inflammatory and antioxidant compound found in red wine and grapes. Synthesis of nanocapsules occurs spontaneously in an ethanolic resveratrol/dopamine·HCl solution at pH 8.5. UV-vis absorbance spectroscopy and X-ray photoelectron spectroscopy indicate that resveratrol is incorporated into the nanocapsules. We also observed the formation of a soluble fluorescent dopamine-resveratrol adduct during synthesis, which was identified by high-performance liquid chromatography, UV-vis spectroscopy, and electrospray ionization mass spectrometry. Using transmission electron microscopy and dynamic light scattering, we studied the influence of solvent composition, dopamine concentration, and resveratrol/dopamine ratio on the nanocapsule diameter and shell thickness. The resulting nanocapsules have excellent free radical scavenging activity as measured by a 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay. Our work provides a convenient pathway by which resveratrol, and possibly other hydrophobic bioactive compounds, may be encapsulated within polydopamine nanocapsules.
Collapse
Affiliation(s)
- Devang R. Amin
- Departments of Bioengineering and Materials Science and Engineering, University of California, Berkeley, 210 Hearst Mining Building, Berkeley, CA 94720 United States
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208 United States
| | - Cody J. Higginson
- Departments of Bioengineering and Materials Science and Engineering, University of California, Berkeley, 210 Hearst Mining Building, Berkeley, CA 94720 United States
| | - Angie B. Korpusik
- Departments of Bioengineering and Materials Science and Engineering, University of California, Berkeley, 210 Hearst Mining Building, Berkeley, CA 94720 United States
| | - Alyse R. Gonthier
- Departments of Bioengineering and Materials Science and Engineering, University of California, Berkeley, 210 Hearst Mining Building, Berkeley, CA 94720 United States
| | - Phillip B. Messersmith
- Departments of Bioengineering and Materials Science and Engineering, University of California, Berkeley, 210 Hearst Mining Building, Berkeley, CA 94720 United States
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 United States
| |
Collapse
|
34
|
Yang Y, Wang S, Zhou Z, Zhang R, Shen H, Song J, Su P, Yang Y. Enhanced reusability and activity: DNA directed immobilization of enzyme on polydopamine modified magnetic nanoparticles. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.05.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
35
|
Yang YH, Li XZ, Zhang S. Preparation methods and release kinetics of Litsea cubeba essential oil microcapsules. RSC Adv 2018; 8:29980-29987. [PMID: 35547274 PMCID: PMC9085389 DOI: 10.1039/c8ra05769a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/06/2018] [Indexed: 01/17/2023] Open
Abstract
In this paper, using β-cyclodextrin (β-CD) as the shell material, LCEO (Litsea cubeba essential oil) microcapsules were prepared by various preparation methods, such as grinding, saturated solution, freeze-drying and spray-drying. The encapsulation yield, encapsulation efficiency, retention rate of the microcapsules and the citral content of the microcapsules were investigated. The surface morphologies of the microcapsules were observed using SEM (Scanning Electronic Microscopy); the entrapment efficiencies of the microcapsules were detected using IR (Infrared Spectrum) analysis; the citral contents of microcapsules were detected by GC (Gas Chromatography) analysis. The highest encapsulation efficiency for the microcapsules was obtained using spray-drying, followed by freeze-drying, saturated aqueous solution and grinding, while the encapsulation yield followed the opposite sequence to the encapsulation efficiency. At a specific storage temperature (15 °C) and humidity (60%), spray-drying had the most satisfactory protective effect on citral in LCEO, followed by freeze-drying and saturated aqueous solution, while the grinding method appeared to provide the worst protective effect. Avrami's model was used to simulate the release rates of the four kinds of microcapsules. The release mechanism parameters of microcapsules prepared by grinding, saturated aqueous solution, freeze-drying and spray-drying were 0.961, 1.096, 1.156 and 0.945, respectively. The release rate constants of microcapsules prepared by grinding, saturated aqueous solution, freeze-drying and spray-drying were 2.53 × 10-2, 2.22 × 10-2, 1.84 × 10-2, and 7.27 × 10-3 d-1, respectively. It was concluded that the release reactions of the microcapsules prepared by grinding or spray-drying lay between the diffusion limiting kinetics and the first-order release kinetics, and the release reactions of the microcapsules prepared by saturated aqueous solution or freeze-drying were larger than the first-order release kinetics.
Collapse
Affiliation(s)
- Yan-Hong Yang
- School of Materials Science and Engineering, Central South University of Forestry and Technology Changsha Hunan P. R. China +86-0731-8562-3303 +86-0731-8562-3309
| | - Xiang-Zhou Li
- School of Materials Science and Engineering, Central South University of Forestry and Technology Changsha Hunan P. R. China +86-0731-8562-3303 +86-0731-8562-3309
- State Key Laboratory of Ecological Applied Technology in Forest Area of South China Changsha Hunan P. R. China
| | - Sheng Zhang
- School of Materials Science and Engineering, Central South University of Forestry and Technology Changsha Hunan P. R. China +86-0731-8562-3303 +86-0731-8562-3309
| |
Collapse
|
36
|
Zou A, Yang Y, Cheng J, Garamus VM, Li N. Construction and Characterization of a Novel Sustained-Release Delivery System for Hydrophobic Pesticides Using Biodegradable Polydopamine-Based Microcapsules. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6262-6268. [PMID: 29847115 DOI: 10.1021/acs.jafc.8b00877] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Microcapsule formulations have been highly desirable and widely developed for effective utilization of pesticides and environmental pollution reduction. However, commercial and traditional microcapsule formulations of λ-cyhalothrin (LC) were prepared by complicated synthesis procedures and thereby specific organic solvents were needed. In this work, LC was encapsulated into versatile, robust, and biodegradable polydopamine (PDA) microcapsules by self-polymerization of dopamine. LC-loaded PDA microcapsules were characterized by transmission electron microscopy (TEM), small-angle X-ray scattering (SAXS), and thermogravimetric analysis measurements (TGA). LC-loaded PDA microcapsules have uniform morphology with nanoscale, decent LC loading content (>50.0% w/w), and good physicochemical stability and sustained release properties. The bioassay against housefly ( Musca domestica) showed that the bioactivity and long-term efficiency of LC-loaded PDA microcapsules was superior to that of the commercial formulation. All of these results demonstrated that LC-loaded PDA microcapsules could be applied as a commercial LC microcapsule formulation with fewer environmental side effects and higher effective delivery.
Collapse
Affiliation(s)
- Aihua Zou
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , People's Republic of China
| | - Ying Yang
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , People's Republic of China
| | - Jiagao Cheng
- School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , People's Republic of China
| | - Vasil M Garamus
- Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research , D-21502 Geesthacht , Germany
| | - Na Li
- National Center for Protein Science Shanghai and Shanghai Institute of Biochemistry and Cell Biology , Shanghai 201210 , People's Republic of China
| |
Collapse
|
37
|
Wang Y, Shang B, Liu M, Shi F, Peng B, Deng Z. Hollow polydopamine colloidal composite particles: Structure tuning, functionalization and applications. J Colloid Interface Sci 2018; 513:43-52. [DOI: 10.1016/j.jcis.2017.10.102] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/26/2017] [Accepted: 10/26/2017] [Indexed: 12/11/2022]
|
38
|
Larrañaga A, Isa ILM, Patil V, Thamboo S, Lomora M, Fernández-Yague MA, Sarasua JR, Palivan CG, Pandit A. Antioxidant functionalized polymer capsules to prevent oxidative stress. Acta Biomater 2018; 67:21-31. [PMID: 29258803 DOI: 10.1016/j.actbio.2017.12.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/18/2017] [Accepted: 12/11/2017] [Indexed: 12/23/2022]
Abstract
Polymeric capsules exhibit significant potential for therapeutic applications as microreactors, where the bio-chemical reactions of interest are efficiently performed in a spatial and time defined manner due to the encapsulation of an active biomolecule (e.g., enzyme) and control over the transfer of reagents and products through the capsular membrane. In this work, catalase loaded polymer capsules functionalized with an external layer of tannic acid (TA) are fabricated via a layer-by-layer approach using calcium carbonate as a sacrificial template. The capsules functionalised with TA exhibit a higher scavenging capacity for hydrogen peroxide and hydroxyl radicals, suggesting that the external layer of TA shows intrinsic antioxidant properties, and represents a valid strategy to increase the overall antioxidant potential of the developed capsules. Additionally, the hydrogen peroxide scavenging capacity of the capsules is enhanced in the presence of the encapsulated catalase. The capsules prevent oxidative stress in an in vitro inflammation model of degenerative disc disease. Moreover, the expression of matrix metalloproteinase-3 (MMP-3), and disintegrin and metalloproteinase with thrombospondin motif-5 (ADAMTS-5), which represents the major proteolytic enzymes in intervertebral disc, are attenuated in the presence of the polymer capsules. This platform technology exhibits potential to reduce oxidative stress, a key modulator in the pathology of a broad range of inflammatory diseases. STATEMENT OF SIGNIFICANCE Oxidative stress damages important cell structures leading to cellular apoptosis and senescence, for numerous disease pathologies including cancer, neurodegeneration or osteoarthritis. Thus, the development of biomaterials-based systems to control oxidative stress has gained an increasing interest. Herein, polymer capsules loaded with catalase and functionalized with an external layer of tannic acid are fabricated, which can efficiently scavenge important reactive oxygen species (i.e., hydroxyl radicals and hydrogen peroxide) and modulate extracellular matrix activity in an in vitro inflammation model of nucleus pulposus. The present work represents accordingly, an important advance in the development and application of polymer capsules with antioxidant properties for the treatment of oxidative stress, which is applicable for multiple inflammatory disease targets.
Collapse
Affiliation(s)
- Aitor Larrañaga
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland; Department of Mining-Metallurgy Engineering and Materials Science & POLYMAT, University of the Basque Country, Bilbao, Spain
| | - Isma Liza Mohd Isa
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - Vaibhav Patil
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - Sagana Thamboo
- Chemistry Department, University of Basel, Basel, Switzerland
| | - Mihai Lomora
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - Marc A Fernández-Yague
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - Jose-Ramon Sarasua
- Department of Mining-Metallurgy Engineering and Materials Science & POLYMAT, University of the Basque Country, Bilbao, Spain
| | | | - Abhay Pandit
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland.
| |
Collapse
|
39
|
Zhang C, Gong L, Mao Q, Han P, Lu X, Qu J. Laccase immobilization and surface modification of activated carbon fibers by bio-inspired poly-dopamine. RSC Adv 2018; 8:14414-14421. [PMID: 35540792 PMCID: PMC9079870 DOI: 10.1039/c8ra01265b] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 03/22/2018] [Indexed: 11/30/2022] Open
Abstract
In this study, we developed a new synthesis method for modifying activated carbon fibers (ACFs) by dopamine with oxidation-based self-polymerization (DA-ACFs). In addition, laccase was immobilized on the surface of unmodified ACFs (L-ACFs) and DA-ACFs (LDA-ACFs) via cross-linking after being incubated for 12 h at 5 °C. The surface composition and microstructure of the samples were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, attenuated total reflectance Fourier-transform infrared reflection and thermo-gravimetric analysis. The optimized laccase concentration for preparing the samples was 2.0 g L−1. The results demonstrated that the successful poly-dopamine modification increased the catalytic abilities of the ACFs in terms of biocompatibility and hydrophilicity. Compared with free laccase, the immobilized laccase exhibited significantly higher relative activity over a pH range of 3.5–6.5 and a temperature range of 30–60 °C; the thermo-stability increased, and 50% relative activity of the LDA-ACFs remained after 5 h at 55 °C. After six cycles of reuse, the relative activity of LDA-ACFs remained ≥60%, compared to 40% activity remaining for L-ACFs, and long-term storage stability was demonstrated. Moreover, the kinetic parameters (Km) of the two immobilized laccases were both higher than that of free laccase, whereas the maximum velocities (Vmax) were lower. These results indicate that the DA-ACFs are economical, simple, and efficient carries for enzyme immobilization, and can be suitable for further biotechnology and environmental applications. In this study, we developed a new synthesis method for modifying activated carbon fibers (ACFs) by dopamine with oxidation-based self-polymerization (DA-ACFs).![]()
Collapse
Affiliation(s)
- Chencheng Zhang
- Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 210009
- PR China
- College of Textile and Garment
| | - Lili Gong
- Nantong Health College of Jiangsu Province
- Nantong 226007
- PR China
| | - Qinghui Mao
- College of Textile and Garment
- Nantong University
- Nantong 226019
- PR China
| | - Pingfang Han
- Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 210009
- PR China
| | - Xiaoping Lu
- Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 210009
- PR China
| | - Jiangang Qu
- College of Textile and Garment
- Nantong University
- Nantong 226019
- PR China
| |
Collapse
|
40
|
Zhang YG, Zhu YJ, Chen F, Lu BQ. Dopamine-modified highly porous hydroxyapatite microtube networks with efficient near-infrared photothermal effect, enhanced protein adsorption and mineralization performance. Colloids Surf B Biointerfaces 2017; 159:337-348. [DOI: 10.1016/j.colsurfb.2017.07.093] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/27/2017] [Accepted: 07/31/2017] [Indexed: 11/26/2022]
|
41
|
Immobilization of enzyme on chiral polyelectrolyte surface. Anal Chim Acta 2017; 952:88-95. [DOI: 10.1016/j.aca.2016.11.047] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 11/11/2016] [Accepted: 11/17/2016] [Indexed: 11/19/2022]
|
42
|
Li H, Jia Y, Feng X, Li J. Facile fabrication of robust polydopamine microcapsules for insulin delivery. J Colloid Interface Sci 2017; 487:12-19. [DOI: 10.1016/j.jcis.2016.10.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/04/2016] [Accepted: 10/04/2016] [Indexed: 12/19/2022]
|
43
|
Yang L, Wang C, Ye Z, Zhang P, Wu S, Jia S, Li Z, Zhang Z. Anisotropic polydopamine capsules with an ellipsoidal shape that can tolerate harsh conditions: efficient adsorbents for organic dyes and precursors for ellipsoidal hollow carbon particles. RSC Adv 2017. [DOI: 10.1039/c7ra02235b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ellipsoidal PDA capsules with enhanced mechanical rigidity can be directly carbonized into ellipsoidal carbon capsules and used as efficient adsorbents for organic dyes in water.
Collapse
Affiliation(s)
- Lu Yang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Cong Wang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Zihan Ye
- Key Laboratory of Functional Polymer Materials of Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Pengjiao Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Songhai Wu
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Shaoyi Jia
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Zhanyong Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Zhenkun Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|
44
|
|
45
|
Yang XY, Chen LH, Li Y, Rooke JC, Sanchez C, Su BL. Hierarchically porous materials: synthesis strategies and structure design. Chem Soc Rev 2017; 46:481-558. [DOI: 10.1039/c6cs00829a] [Citation(s) in RCA: 839] [Impact Index Per Article: 104.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review addresses recent advances in synthesis strategies of hierarchically porous materials and their structural design from micro-, meso- to macro-length scale.
Collapse
Affiliation(s)
- Xiao-Yu Yang
- State Key Laboratory Advanced Technology for Materials Synthesis and Processing
- School of Materials Science and Engineering
- Wuhan University of Technology
- Wuhan
- China
| | - Li-Hua Chen
- State Key Laboratory Advanced Technology for Materials Synthesis and Processing
- School of Materials Science and Engineering
- Wuhan University of Technology
- Wuhan
- China
| | - Yu Li
- State Key Laboratory Advanced Technology for Materials Synthesis and Processing
- School of Materials Science and Engineering
- Wuhan University of Technology
- Wuhan
- China
| | - Joanna Claire Rooke
- Laboratory of Inorganic Materials Chemistry (CMI)
- University of Namur
- B-5000 Namur
- Belgium
| | - Clément Sanchez
- Chimie de la Matiere Condensee de Paris
- UniversitePierre et Marie Curie (Paris VI)
- Collège de France
- France
| | - Bao-Lian Su
- State Key Laboratory Advanced Technology for Materials Synthesis and Processing
- School of Materials Science and Engineering
- Wuhan University of Technology
- Wuhan
- China
| |
Collapse
|
46
|
Peng L, Li Z, Li X, Xue H, Zhang W, Chen G. Integrating Sugar and Dopamine into One Polymer: Controlled Synthesis and Robust Surface Modification. Macromol Rapid Commun 2016; 38. [DOI: 10.1002/marc.201600548] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 10/25/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Lun Peng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research; Soochow University; Suzhou 215006 P. R. China
| | - Zhiyun Li
- Center for Soft Condensed Matter Physics and Interdisciplinary Research; Soochow University; Suzhou 215006 P. R. China
| | - Xiaohui Li
- Center for Soft Condensed Matter Physics and Interdisciplinary Research; Soochow University; Suzhou 215006 P. R. China
| | - Hui Xue
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry; Chemical Engineering and Materials Science of Soochow University; Soochow University; Suzhou 215123 P. R. China
| | - Weidong Zhang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research; Soochow University; Suzhou 215006 P. R. China
| | - Gaojian Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research; Soochow University; Suzhou 215006 P. R. China
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry; Chemical Engineering and Materials Science of Soochow University; Soochow University; Suzhou 215123 P. R. China
| |
Collapse
|
47
|
Cao S, Xu P, Ma Y, Yao X, Yao Y, Zong M, Li X, Lou W. Recent advances in immobilized enzymes on nanocarriers. CHINESE JOURNAL OF CATALYSIS 2016. [DOI: 10.1016/s1872-2067(16)62528-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
48
|
Liu M, Zeng G, Wang K, Wan Q, Tao L, Zhang X, Wei Y. Recent developments in polydopamine: an emerging soft matter for surface modification and biomedical applications. NANOSCALE 2016; 8:16819-16840. [PMID: 27704068 DOI: 10.1039/c5nr09078d] [Citation(s) in RCA: 327] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
After more than four billion years of evolution, nature has created a large number of fascinating living organisms, which show numerous peculiar structures and wonderful properties. Nature can provide sources of plentiful inspiration for scientists to create various materials and devices with special functions and uses. Since Messersmith proposed the fabrication of multifunctional coatings through mussel-inspired chemistry, this field has attracted considerable attention for its promising and exiciting applications. Polydopamine (PDA), an emerging soft matter, has been demonstrated to be a crucial component in mussel-inspired chemistry. In this review, the recent developments of PDA for mussel-inspired surface modification are summarized and discussed. The biomedical applications of PDA-based materials are also highlighted. We believe that this review can provide important and timely information regarding mussel-inspired chemistry and will be of great interest for scientists in the chemistry, materials, biology, medicine and interdisciplinary fields.
Collapse
Affiliation(s)
- Meiying Liu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China. Xiaoyongzhang@
| | - Guangjian Zeng
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China. Xiaoyongzhang@
| | - Ke Wang
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084, P. R. China.
| | - Qing Wan
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China. Xiaoyongzhang@
| | - Lei Tao
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084, P. R. China.
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China. Xiaoyongzhang@
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084, P. R. China.
| |
Collapse
|
49
|
Plothe R, Sittko I, Lanfer F, Fortmann M, Roth M, Kolbach V, Tiller JC. Poly(2-ethyloxazoline) as matrix for highly active electrospun enzymes in organic solvents. Biotechnol Bioeng 2016; 114:39-45. [DOI: 10.1002/bit.26043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/21/2016] [Accepted: 06/27/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Ramona Plothe
- Department of Bio- and Chemical Engineering; TU Dortmund; Emil-Figge-Str. 66 D-44227 Dortmund Germany
| | - Ina Sittko
- Department of Bio- and Chemical Engineering; TU Dortmund; Emil-Figge-Str. 66 D-44227 Dortmund Germany
| | - Franziska Lanfer
- Department of Bio- and Chemical Engineering; TU Dortmund; Emil-Figge-Str. 66 D-44227 Dortmund Germany
| | - Maximilian Fortmann
- Department of Bio- and Chemical Engineering; TU Dortmund; Emil-Figge-Str. 66 D-44227 Dortmund Germany
| | - Meike Roth
- Department of Bio- and Chemical Engineering; TU Dortmund; Emil-Figge-Str. 66 D-44227 Dortmund Germany
| | - Vivien Kolbach
- Department of Bio- and Chemical Engineering; TU Dortmund; Emil-Figge-Str. 66 D-44227 Dortmund Germany
| | - Joerg C. Tiller
- Department of Bio- and Chemical Engineering; TU Dortmund; Emil-Figge-Str. 66 D-44227 Dortmund Germany
| |
Collapse
|
50
|
Jin Z, Fan H. The modulation of melanin-like materials: methods, characterization and applications. POLYM INT 2016. [DOI: 10.1002/pi.5187] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhaoxia Jin
- Department of Chemistry; Renmin University of China; Beijing 100872 People's Republic of China
| | - Hailong Fan
- Department of Chemistry; Renmin University of China; Beijing 100872 People's Republic of China
| |
Collapse
|