1
|
Liu L, Lan X, Chen X, Dai S, Wang Z, Zhao A, Lu L, Huang N, Chen J, Yang P, Liao Y. Multi-functional plant flavonoids regulate pathological microenvironments for vascular stent surface engineering. Acta Biomater 2023; 157:655-669. [PMID: 36436757 DOI: 10.1016/j.actbio.2022.11.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/23/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
In-stent restenosis (ISR) and late thrombosis, usually caused by excessive smooth muscle cell (SMC) proliferation and delayed endothelial layer repair, respectively, are the main risks for the failure of vascular stent implantation. For years, modification of stents with biomolecules that could selectively inhibit SMC proliferation and support endothelial cell (EC) growth had drawn extensive attention. However, the modulatory effect of these biomolecules faces the impact of oxidative stress, inflammation, and hyperlipidemia of the pathological vascular microenvironment, which is caused by the stent implantation injury and atherosclerosis lesions. Here, we modified stents with a natural and multi-functional flavonoid, baicalin (BCL), using poly-dopamine (PDA) coating technology to combat the harmful impact of the pathological microenvironment. Stent with an appropriate BCL immobilization density (approximately 2.03 μg/cm2) successfully supported ECs growth while inhibited SMC proliferation. Furthermore, baicalin-modified surfaces regulated the oxidative stress, inflammation, and high-lipid of the pathological microenvironment to inhibit endothelial dysfunction and the oxidized low-density lipoprotein (ox-LDL)-induced macrophage foam cells formation. In vivo results showed that baicalin-modified stents exhibited significant anti-ISR, anti-inflammatory, and endothelialization-promoting functions. Our study suggests that the multi-functional baicalin with pathological microenvironment-regulation (PMR) effect has potential use in the surface engineering of cardiovascular devices. STATEMENT OF SIGNIFICANCE: Empowering vascular stents with selective modulation of smooth muscle cells and endothelial cells by surface technology has become an important research direction for stent surface engineering. However, stent coatings that can furthermodulate the pathological microenvironment of blood vessels have been rarely reported. In this study, we constructed a multifunctional coating based on a flavonoid, baicalin, which can selectively modulate vascular wall cells and improve the pathological microenvironment. This study may provide a reference for developing advanced vascular stents.
Collapse
Affiliation(s)
- Luying Liu
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Xiaorong Lan
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xiao Chen
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Sheng Dai
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Zhixing Wang
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Ansha Zhao
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Lei Lu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Nan Huang
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Jiang Chen
- Sichuan Key Laboratory for Disease Gene Study, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32 of the West Second Section of First Ring Road, Chengdu 610031, PR China.
| | - Ping Yang
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, PR China.
| | - Yuzhen Liao
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, PR China.
| |
Collapse
|
2
|
Lee SJ, Kim JE, Jung JW, Choi YJ, Gong JE, Douangdeuane B, Souliya O, Choi YW, Seo SB, Hwang DY. Novel role of Dipterocarpus tuberculatus as a stimulator of focal cell adhesion through the regulation of MLC2/FAK/Akt signaling pathway. Cell Adh Migr 2022; 16:72-93. [PMID: 35615953 PMCID: PMC9154806 DOI: 10.1080/19336918.2022.2073002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
To investigate a novel function of Dipterocarpus tuberculatus on focal cell adhesion stimulation, alterations to the regulation of focal cell adhesion-related factors were analyzed in NHDF cells and a calvarial defect rat model after treatment with methanol extracts of D. tuberculatus (MED). MED contained gallic acid, caffeic acid, ellagic acid, and naringenin in high concentrations. The proliferation activity, focal cell adhesion ability, adhesion receptors-mediated signaling pathway in NHDF cells were increased by MED. Also, a dense adhered tissue layer and adherent cells on MED-coated titanium plate (MEDTiP) surfaces were detected during regeneration of calvarial bone. The results of the present study provide novel evidence that MED may stimulate focal cell adhesion in NHDF cells and a calvarial defect rat model.
Collapse
Affiliation(s)
- Su Jin Lee
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, Pusan National University, Miryang, Republic of Korea
| | - Ji Eun Kim
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, Pusan National University, Miryang, Republic of Korea
| | - Jae Won Jung
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, Pusan National University, Miryang, Republic of Korea
| | - Yun Ju Choi
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, Pusan National University, Miryang, Republic of Korea
| | - Jeong Eun Gong
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, Pusan National University, Miryang, Republic of Korea
| | - Bounleuane Douangdeuane
- Department of products development, Institute of Traditional Medicine, Ministry of Health, Vientiane, Lao PDR
| | - Onevilay Souliya
- Department of products development, Institute of Traditional Medicine, Ministry of Health, Vientiane, Lao PDR
| | - Young Whan Choi
- Department of Horticultural Bioscience, Pusan National University, Miryang, Republic of Korea
| | - Sung Baek Seo
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, Pusan National University, Miryang, Republic of Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, Pusan National University, Miryang, Republic of Korea
| |
Collapse
|
3
|
Ki SH, Thuy LT, Kim S, Lee S, Choi JS, Cho WK. Curcumin-Based Universal Grafting of Poly(OEGMA) Brushes and Their Antibacterial Applications. Macromol Biosci 2022; 22:e2200310. [PMID: 36074994 DOI: 10.1002/mabi.202200310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/06/2022] [Indexed: 12/25/2022]
Abstract
Catechol and/or pyrogallol groups are recognized as crucial for the formation of polyphenol coatings on various substrates. Meanwhile, studies on polyphenolic molecules that do not contain such groups are relatively rare. The key molecule in turmeric-based universal (i.e., substrate-independent) coatings is curcumin, which contains no catechol or pyrogallol groups. As chemically reactive hydroxyl groups would remain after curcumin coating, it is hypothesized that curcumin coating can serve as a reactive layer for controlling interfacial properties. In this study, a curcumin-based surface modification method is developed to graft polymer brushes from various substrates, including titanium dioxide, gold, glass, stainless steel, and nylon. α-Bromoisobutyryl bromide, a polymerization initiator, is introduced to the curcumin-coated substrates via esterification; subsequently, poly(oligo(ethylene glycol) methacrylate) (poly(OEGMA)) is grafted from the surfaces. Compared to the control surfaces, poly(OEGMA)-grafted surfaces significantly suppress bacterial adhesion by up to 99.4%, demonstrating their antibacterial properties. Considering its facile and versatile surface modification, curcumin-based polymer grafting can be an efficient method for controlling the chemical/physical properties of surfaces in a substrate-independent manner.
Collapse
Affiliation(s)
- So Hyun Ki
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Le Thi Thuy
- Department of Biochemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sunhee Kim
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seulgi Lee
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, 34054, Republic of Korea
| | - Joon Sig Choi
- Department of Biochemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Woo Kyung Cho
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| |
Collapse
|
4
|
Composite Coating Prepared with Ferulic Acid to Improve the Corrosion Resistance and Blood Compatibility of Magnesium Alloy. METALS 2022. [DOI: 10.3390/met12040545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Magnesium (Mg) alloy has been used for medical vascular stents because of its good biocompatibility and degradability, but its rapid degradation and poor blood compatibility limits its further application. In this study, ferulic acid (FA) was conjugated onto the polydopamine (PDA) deposited Mg-Zn-Y-Nd alloy to prepare a PDA/FA multi-functional coating with better corrosion resistance and blood compatibility. The results suggest that the PDA/FA coating possessed potential application for surface modification of a medical Mg alloy.
Collapse
|
5
|
Jung J, Choi YJ, Lee SJ, Choi YS, Douangdeuane B, Souliya O, Jeong S, Park S, Hwang DY, Seo S. Promoting Effects of Titanium Implants Coated with Dipterocarpus tuberculatus Extract on Osseointegration. ACS Biomater Sci Eng 2022; 8:847-858. [DOI: 10.1021/acsbiomaterials.1c01220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jaewon Jung
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Yun Ju Choi
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Su Jin Lee
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Yu-Sang Choi
- DENTIS, 6, Yuram-ro, Dong-gu, Daegu 41065, Republic of Korea
| | | | - Onevilay Souliya
- Ministry of Health, Institute of Traditional Medicine, Vientiane 0103, Lao PDR
| | - Suhui Jeong
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Sohae Park
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Sungbaek Seo
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| |
Collapse
|
6
|
A coaxially structured trilayered gallic acid-based antioxidant vascular graft for treating coronary artery disease. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110203] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
7
|
S. Alneyadi S. Mini Review: Antioxidant Application of Metal-Organic Frameworks and Their Composites. HETEROCYCLES 2021. [DOI: 10.3987/rev-20-942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Qiu H, Tu Q, Gao P, Li X, Maitz MF, Xiong K, Huang N, Yang Z. Phenolic-amine chemistry mediated synergistic modification with polyphenols and thrombin inhibitor for combating the thrombosis and inflammation of cardiovascular stents. Biomaterials 2020; 269:120626. [PMID: 33418199 DOI: 10.1016/j.biomaterials.2020.120626] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023]
Abstract
Antithrombogenicity, anti-inflammation, and rapid re-endothelialization are central requirements for the long-term success of cardiovascular stents. In this work, a plant-inspired phenolic-amine chemistry strategy was developed to combine the biological functions of a plant polyphenol, tannic acid (TA), and the thrombin inhibitor bivalirudin (BVLD) for tailoring the desired multiple surface functionalities of cardiovascular stents. To realize the synergistic modification of TA and BVLD on a stent surface, an amine-bearing coating of plasma polymerized allylamine was firstly prepared on the stent surface, followed by the sequential conjugation of TA and BVLD in alkaline solution based on phenolic-amine chemistry (i.e., Michael addition reaction). TA and BVLD were successfully immobilized onto the stent surface with considerable amounts of 330 ± 12 and 930 ± 80 ng/cm2, respectively. The abundant phenolic hydroxyl groups of TA imparted the stent with ability to suppress inflammation. Meanwhile, BVLD provided an antithrombogenic and endothelial-friendly microenvironment. As a result, the combined functions of the TA and BVLD facilitate the rapid stent re-endothelialization for reduced intimal hyperplasia in vivo, and may be a promising strategy to address the clinical complications associated with restenosis and late stent thrombosis.
Collapse
Affiliation(s)
- Hua Qiu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Qiufen Tu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Peng Gao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Xiangyang Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Manfred F Maitz
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China; Max Bergmann Center of Biomaterials, Leibniz Institute of Polymer Research Dresden, Dresden, 01069, Germany
| | - Kaiqin Xiong
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Nan Huang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Zhilu Yang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
9
|
Lin LH, Lee HP, Yeh ML. Characterization of a Sandwich PLGA-Gallic Acid-PLGA Coating on Mg Alloy ZK60 for Bioresorbable Coronary Artery Stents. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5538. [PMID: 33291735 PMCID: PMC7730464 DOI: 10.3390/ma13235538] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023]
Abstract
Absorbable magnesium stents have become alternatives for treating restenosis owing to their better mechanical properties than those of bioabsorbable polymer stents. However, without modification, magnesium alloys cannot provide the proper degradation rate required to match the vascular reform speed. Gallic acid is a phenolic acid with attractive biological functions, including anti-inflammation, promotion of endothelial cell proliferation, and inhibition of smooth muscle cell growth. Thus, in the present work, a small-molecule eluting coating is designed using a sandwich-like configuration with a gallic acid layer enclosed between poly (d,l-lactide-co-glycolide) layers. This coating was deposited on ZK60 substrate, a magnesium alloy that is used to fabricate bioresorbable coronary artery stents. Electrochemical analysis showed that the corrosion rate of the specimen was ~2000 times lower than that of the bare counterpart. The released gallic acid molecules from sandwich coating inhibit oxidation by capturing free radicals, selectively promote the proliferation of endothelial cells, and inhibit smooth muscle cell growth. In a cell migration assay, sandwich coating delayed wound closure in smooth muscle cells. The sandwich coating not only improved the corrosion resistance but also promoted endothelialization, and it thus has great potential for the development of functional vascular stents that prevent late-stent restenosis.
Collapse
Affiliation(s)
- Li-Han Lin
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan;
| | - Hung-Pang Lee
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX 77843, USA;
| | - Ming-Long Yeh
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan;
- Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
10
|
Zhao J, Feng Y. Surface Engineering of Cardiovascular Devices for Improved Hemocompatibility and Rapid Endothelialization. Adv Healthc Mater 2020; 9:e2000920. [PMID: 32833323 DOI: 10.1002/adhm.202000920] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/18/2020] [Indexed: 12/13/2022]
Abstract
Cardiovascular devices have been widely applied in the clinical treatment of cardiovascular diseases. However, poor hemocompatibility and slow endothelialization on their surface still exist. Numerous surface engineering strategies have mainly sought to modify the device surface through physical, chemical, and biological approaches to improve surface hemocompatibility and endothelialization. The alteration of physical characteristics and pattern topographies brings some hopeful outcomes and plays a notable role in this respect. The chemical and biological approaches can provide potential signs of success in the endothelialization of vascular device surfaces. They usually involve therapeutic drugs, specific peptides, adhesive proteins, antibodies, growth factors and nitric oxide (NO) donors. The gene engineering can enhance the proliferation, growth, and migration of vascular cells, thus boosting the endothelialization. In this review, the surface engineering strategies are highlighted and summarized to improve hemocompatibility and rapid endothelialization on the cardiovascular devices. The potential outlook is also briefly discussed to help guide endothelialization strategies and inspire further innovations. It is hoped that this review can assist with the surface engineering of cardiovascular devices and promote future advancements in this emerging research field.
Collapse
Affiliation(s)
- Jing Zhao
- School of Chemical Engineering and Technology Tianjin University Yaguan Road 135 Tianjin 300350 P. R. China
| | - Yakai Feng
- School of Chemical Engineering and Technology Tianjin University Yaguan Road 135 Tianjin 300350 P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) Yaguan Road 135 Tianjin 300350 P. R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education) Tianjin University Tianjin 300072 P. R. China
| |
Collapse
|
11
|
Dai S, Jiang L, Liu L, Chen J, Liao Y, He S, Cui J, Liu X, Zhao A, Yang P, Huang N. Photofunctionalized and Drug-Loaded TiO2 Nanotubes with Improved Vascular Biocompatibility as a Potential Material for Polymer-Free Drug-Eluting Stents. ACS Biomater Sci Eng 2020; 6:2038-2049. [DOI: 10.1021/acsbiomaterials.0c00041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sheng Dai
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, No. 111 of the North 1st Section of Second Ring Road, Chengdu 610031, China
| | - Lang Jiang
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, No. 111 of the North 1st Section of Second Ring Road, Chengdu 610031, China
| | - Luying Liu
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, No. 111 of the North 1st Section of Second Ring Road, Chengdu 610031, China
| | - Jiang Chen
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, No. 111 of the North 1st Section of Second Ring Road, Chengdu 610031, China
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 of Wangjiang road, Wuhou district, Chengdu, Sichuan 610064, China
| | - Yuzhen Liao
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, No. 111 of the North 1st Section of Second Ring Road, Chengdu 610031, China
| | - Shuang He
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, No. 111 of the North 1st Section of Second Ring Road, Chengdu 610031, China
| | - Jiawei Cui
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, No. 111 of the North 1st Section of Second Ring Road, Chengdu 610031, China
| | - Xiaoqi Liu
- Sichuan Key Laboratory for Disease Gene Study, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32 of the West Second Section of First Ring Road, Chengdu, CN 610072, China
| | - Ansha Zhao
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, No. 111 of the North 1st Section of Second Ring Road, Chengdu 610031, China
| | - Ping Yang
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, No. 111 of the North 1st Section of Second Ring Road, Chengdu 610031, China
| | - Nan Huang
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, No. 111 of the North 1st Section of Second Ring Road, Chengdu 610031, China
| |
Collapse
|
12
|
Fan Z, Guo C, Zhang Y, Yao J, Liao L, Dong J. Hongjingtian Injection Inhibits Proliferation and Migration and Promotes Apoptosis in High Glucose-Induced Vascular Smooth Muscle Cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:4115-4126. [PMID: 31827318 PMCID: PMC6901383 DOI: 10.2147/dddt.s220719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/12/2019] [Indexed: 12/26/2022]
Abstract
Background Hongjingtian injection (HJT) is administered in the treatment of vascular diseases, including diabetic angiopathies (DA). However, its underlying mechanisms have not been examined systematically. Methods In this research, we explored potential mechanisms of HJT through network pharmacology. HG-stimulated A7r5 cells served as the cell model. Cell proliferation, migration and apoptosis were investigated. The effects on key targets and the AKT pathway were verified by Western blotting in experiments with the AKT inhibitor LY294002 or activator SC79. Results Network analysis predicted that HJT targeted 10 candidate targets and 15 pathways including cell proliferation, migration and apoptosis in response to DA. Functional experiments showed that HJT markedly suppressed the proliferation and migration and promoted the apoptosis of HG-induced VSMCs, which validated the prediction. Mechanistically, HJT significantly downregulated the expression of pAKT, MMP9, and PCNA, upregulated the expression of p53 and cleaved caspase-3 and increased the Bax/Bcl-2 ratio compared with the HG group. SC79, an AKT activator, partially reversed the inhibitory effects of HJT on HG-induced VSMCs, confirming the involvement of the AKT pathway. Furthermore, the presence of the AKT inhibitor LY294002 had a similar inhibitory effect as HJT. Conclusion These findings systematically evaluate the potential mechanisms of HJT for the treatment of DA. HJT suppressed the proliferation and migration and promoted the apoptosis of HG-induced VSMCs partly by inhibiting the AKT pathway. Additionally, this study may provide a quick and effective way to investigate the molecular mechanisms of traditional Chinese medicine.
Collapse
Affiliation(s)
- Zhengyuan Fan
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, People's Republic of China.,Division of Endocrinology, Department of Internal Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, People's Republic of China
| | - Congcong Guo
- Division of Endocrinology, Department of Internal Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, People's Republic of China
| | - Yuhan Zhang
- Division of Endocrinology, Department of Internal Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, People's Republic of China.,Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, People's Republic of China
| | - Jinming Yao
- Division of Endocrinology, Department of Internal Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, People's Republic of China.,Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, People's Republic of China
| | - Lin Liao
- Division of Endocrinology, Department of Internal Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, People's Republic of China.,Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, People's Republic of China
| | - Jianjun Dong
- Division of Endocrinology, Department of Internal Medicine, Qilu Hospital of Shandong University, Jinan 250012, People's Republic of China
| |
Collapse
|
13
|
Wang P, Liu J, Luo X, Xiong P, Gao S, Yan J, Li Y, Cheng Y, Xi T. A tannic acid-modified fluoride pre-treated Mg-Zn-Y-Nd alloy with antioxidant and platelet-repellent functionalities for vascular stent application. J Mater Chem B 2019; 7:7314-7325. [PMID: 31674636 DOI: 10.1039/c9tb01587f] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Vascular stent interventional therapy, as a regular and effective therapy, has been widely used to treat coronary artery diseases. However, adverse events occur frequently after stent intervention, especially restenosis and late stent thrombosis. The targeted implanting site will suffer from severe atherosclerosis, which is considered as a chronic inflammatory disease. Meanwhile, with the over-expanding use of endovascular mechanical intervention, vascular injury has become an increasingly common issue. Lesions and newly induced vascular injury result in inflammatory and oxidative stress; meanwhile, activated macrophages and granulocytes generate high levels of reactive oxygen species (ROS), contributing to endothelial dysfunction and neointima hyperplasia. Therefore, attenuating oxidative stress and reducing ROS generation in the inflammatory response represent reasonable strategies to inhibit intimal hyperplasia and restenosis. Herein, we have developed a multifunctional surface for the MgZnYNd alloy with tannic acid (TA) coating, and the pH dependence of the coating deposition is also demonstrated. The phenolic hydroxyl groups on the coatings endow the modified surface with excellent antioxidant functions. We found that the coating can be recycled, and the scavenging activity hardly weakened within five cycles. Also, the TA coating has a promising strong antioxidant activity as it shows a radical scavenging activity over 80% in long term. Moreover, the TA coating possesses platelet-repellent capability. No significant inflammatory response was observed for the TA modified sample in the rat subcutaneous implantation test. Combining these performances, we envision that the vascular stent modified with TA coating can have great potential in various applications by virtue of its simplicity and effectiveness.
Collapse
Affiliation(s)
- Pei Wang
- Academy for Advanced Interdisciplinary Studies, Peking University, No. 5, Yiheyuan Road HaiDian District, Beijing 100871, China.
| | - Jing Liu
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Xujiang Luo
- Department of Orthopedics, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China and Institute of Orthopedics, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries in PLA, Chinese PLA General Hospital, Beijing 100853, China
| | - Pan Xiong
- Academy for Advanced Interdisciplinary Studies, Peking University, No. 5, Yiheyuan Road HaiDian District, Beijing 100871, China.
| | - Shuang Gao
- Academy for Advanced Interdisciplinary Studies, Peking University, No. 5, Yiheyuan Road HaiDian District, Beijing 100871, China.
| | - Jianglong Yan
- Academy for Advanced Interdisciplinary Studies, Peking University, No. 5, Yiheyuan Road HaiDian District, Beijing 100871, China.
| | - Yangyang Li
- Academy for Advanced Interdisciplinary Studies, Peking University, No. 5, Yiheyuan Road HaiDian District, Beijing 100871, China.
| | - Yan Cheng
- Academy for Advanced Interdisciplinary Studies, Peking University, No. 5, Yiheyuan Road HaiDian District, Beijing 100871, China.
| | - Tingfei Xi
- Academy for Advanced Interdisciplinary Studies, Peking University, No. 5, Yiheyuan Road HaiDian District, Beijing 100871, China.
| |
Collapse
|
14
|
Chen Q, Yu S, Zhang D, Zhang W, Zhang H, Zou J, Mao Z, Yuan Y, Gao C, Liu R. Impact of Antifouling PEG Layer on the Performance of Functional Peptides in Regulating Cell Behaviors. J Am Chem Soc 2019; 141:16772-16780. [DOI: 10.1021/jacs.9b07105] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qi Chen
- State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shan Yu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Donghui Zhang
- State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenjing Zhang
- State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Haodong Zhang
- State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jingcheng Zou
- State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuan Yuan
- State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
15
|
Bedair TM, Bedair HM, Ko KW, Park W, Joung YK, Han DK. Persulfated flavonoids accelerated re-endothelialization and improved blood compatibility for vascular medical implants. Colloids Surf B Biointerfaces 2019; 181:174-184. [PMID: 31129523 DOI: 10.1016/j.colsurfb.2019.05.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/20/2019] [Accepted: 05/15/2019] [Indexed: 12/14/2022]
Abstract
Drug-eluting stents (DESs) have been used for the treatment of cardiovascular diseases including stenosis. However, in-stent restenosis, thrombosis, and delayed re-endothelialization represent challenges for their clinical applications. Here, we demonstrate a novel work to overcome these limitations through surface modification technology. The cobalt-chromium (Co-Cr) surface was modified with antioxidants such as gallic acid (GA) and rutin (Ru) and the corresponding persulfates derivatives (i.e., GAS, and RuS) through a simple conjugation procedure. Various analyses tools such as ATR-FTIR, XPS, water contact angle, SEM, and AFM characterized the functionalized surface. The surface characterization confirmed that the antioxidant and the additional persulfates were successfully bonded to the Co-Cr surface. The results of in vitro endothelial cells proved that the persulfates derivatives showed the highest tendency to get rapid re-endothelialization especially RuS. In addition, it showed inhibition to smooth muscle cells (SMCs) as compared to control Co-Cr substrate. The persulfates modified substrates reduced the amount of adsorbed fibrinogen and albumin with higher stability to fetal bovine serum. Moreover, platelet study also demonstrated that Ru and RuS presented lower platelet adhesion with round shape morphology, whereas the control Co-Cr adhere and activate many platelets with pseudopodium morphology. Moreover, these modification processes did not cause any inflammatory responses. In conclusion, it is believed that the persulfates flavonoids have a great potential in the field of drug-eluting stents and blood contacting medical implants to improve blood compatibility, suppress SMCs, and get rapid re-endothelialization.
Collapse
Affiliation(s)
- Tarek M Bedair
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi, 13488, Republic of Korea; Chemistry Department, Faculty of Science, Minia University, El-Minia, 61519, Egypt; Center for Biomaterials, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| | - Hanan M Bedair
- Department of Clinical Pathology, National Liver Institute, Menoufia University, Shebeen El-Kom, Menoufia, 32721, Egypt
| | - Kyoung-Won Ko
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi, 13488, Republic of Korea
| | - Wooram Park
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi, 13488, Republic of Korea
| | - Yoon Ki Joung
- Center for Biomaterials, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea; Department of Biomedical Engineering, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi, 13488, Republic of Korea.
| |
Collapse
|
16
|
Zhang F, Zhang Q, Li X, Huang N, Zhao X, Yang Z. Mussel-inspired dopamine-CuII coatings for sustained in situ generation of nitric oxide for prevention of stent thrombosis and restenosis. Biomaterials 2019; 194:117-129. [DOI: 10.1016/j.biomaterials.2018.12.020] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 12/06/2018] [Accepted: 12/19/2018] [Indexed: 12/21/2022]
|
17
|
Roopmani P, Krishnan UM. Harnessing the pleiotropic effects of atorvastatin-fenofibrate combination for cardiovascular stents. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:875-891. [DOI: 10.1016/j.msec.2018.07.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 06/23/2018] [Accepted: 07/18/2018] [Indexed: 12/20/2022]
|
18
|
Liu X, Chen J, Qu C, Bo G, Jiang L, Zhao H, Zhang J, Lin Y, Hua Y, Yang P, Huang N, Yang Z. A Mussel-Inspired Facile Method to Prepare Multilayer-AgNP-Loaded Contact Lens for Early Treatment of Bacterial and Fungal Keratitis. ACS Biomater Sci Eng 2018; 4:1568-1579. [PMID: 33445314 DOI: 10.1021/acsbiomaterials.7b00977] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xiaoqi Liu
- Institute of Biomaterials and Surface Engineering, Key Lab for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, No. 111 of the North First Section of Second Ring Road, Chengdu, CN 610031, China
- Sichuan Key Laboratory for Disease Gene Study, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32 of the West Second Section of First Ring Road, Chengdu, CN 610072, China
- Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32 of the West Second Section of First Ring Road, Chengdu, CN 610072, China
| | - Jiang Chen
- Institute of Biomaterials and Surface Engineering, Key Lab for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, No. 111 of the North First Section of Second Ring Road, Chengdu, CN 610031, China
| | - Chao Qu
- Department of Ophthalmology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32 of the West Second Section of First Ring Road, Chengdu, CN 610072, China
| | - Gong Bo
- Sichuan Key Laboratory for Disease Gene Study, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32 of the West Second Section of First Ring Road, Chengdu, CN 610072, China
- Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32 of the West Second Section of First Ring Road, Chengdu, CN 610072, China
| | - Lang Jiang
- Institute of Biomaterials and Surface Engineering, Key Lab for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, No. 111 of the North First Section of Second Ring Road, Chengdu, CN 610031, China
| | - Hui Zhao
- School of Medicine, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave West Hi-Tech Zone, Chengdu, CN 611731, China
| | - Jing Zhang
- Department of Ophthalmology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32 of the West Second Section of First Ring Road, Chengdu, CN 610072, China
| | - Yin Lin
- Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32 of the West Second Section of First Ring Road, Chengdu, CN 610072, China
| | - Yu Hua
- Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32 of the West Second Section of First Ring Road, Chengdu, CN 610072, China
| | - Ping Yang
- Institute of Biomaterials and Surface Engineering, Key Lab for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, No. 111 of the North First Section of Second Ring Road, Chengdu, CN 610031, China
| | - Nan Huang
- Institute of Biomaterials and Surface Engineering, Key Lab for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, No. 111 of the North First Section of Second Ring Road, Chengdu, CN 610031, China
| | - Zhenglin Yang
- Sichuan Key Laboratory for Disease Gene Study, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32 of the West Second Section of First Ring Road, Chengdu, CN 610072, China
| |
Collapse
|
19
|
Liao Y, Li L, Chen J, Yang P, Zhao A, Sun H, Huang N. Tailoring of TiO2 films by H2SO4 treatment and UV irradiation to improve anticoagulant ability and endothelial cell compatibility. Colloids Surf B Biointerfaces 2017; 155:314-322. [DOI: 10.1016/j.colsurfb.2017.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/05/2017] [Accepted: 04/10/2017] [Indexed: 10/19/2022]
|
20
|
Lee HP, Lin DJ, Yeh ML. Phenolic Modified Ceramic Coating on Biodegradable Mg Alloy: The Improved Corrosion Resistance and Osteoblast-Like Cell Activity. MATERIALS 2017; 10:ma10070696. [PMID: 28773055 PMCID: PMC5551739 DOI: 10.3390/ma10070696] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/11/2017] [Accepted: 06/22/2017] [Indexed: 12/18/2022]
Abstract
Magnesium alloys have great potential for developing orthopedic implants due to their biodegradability and mechanical properties, but the rapid corrosion rate of the currently-available alloys limits their clinical applications. To increase the corrosion resistance of the substrate, a protective ceramic coating is constructed by a micro-arc oxidation (MAO) process on ZK60 magnesium alloy. The porous ceramic coating is mainly composed of magnesium oxide and magnesium silicate, and the results from cell cultures show it can stimulate osteoblastic cell growth and proliferation. Moreover, gallic acid, a phenolic compound, was successfully introduced onto the MAO coating by grafting on hydrated oxide and chelating with magnesium ions. The gallic acid and rough surface of MAO altered the cell attachment behavior, making it difficult for fibroblasts to adhere to the MAO coating. The viability tests showed that gallic acid could suppress fibroblast growth and stimulate osteoblastic cell proliferation. Overall, the porous MAO coating combined with gallic acid offered a novel strategy for increasing osteocompatibility.
Collapse
Affiliation(s)
- Hung-Pang Lee
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| | - Da-Jun Lin
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| | - Ming-Long Yeh
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
- Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
21
|
Silva LN, Da Hora GCA, Soares TA, Bojer MS, Ingmer H, Macedo AJ, Trentin DS. Myricetin protects Galleria mellonella against Staphylococcus aureus infection and inhibits multiple virulence factors. Sci Rep 2017; 7:2823. [PMID: 28588273 PMCID: PMC5460262 DOI: 10.1038/s41598-017-02712-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/18/2017] [Indexed: 02/06/2023] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen related to a variety of life-threatening infections but for which antimicrobial resistance is liming the treatment options. We report here that myricetin, but not its glycosylated form, can remarkably decrease the production of several S. aureus virulence factors, including adhesion, biofilm formation, hemolysis and staphyloxanthin production, without interfering with growth. Myricetin affects both surface proteins and secreted proteins which indicate that its action is unrelated to inhibition of the agr quorum sensing system. Analysis of virulence related gene expression and computational simulations of pivotal proteins involved in pathogenesis demonstrate that myricetin downregulates the saeR global regulator and interacts with sortase A and α-hemolysin. Furthermore, Myr confers a significant degree of protection against staphylococcal infection in the Galleria mellonella model. The present findings reveal the potential of Myr as an alternative multi-target antivirulence candidate to control S. aureus pathogenicity.
Collapse
Affiliation(s)
- L N Silva
- Centro de Biotecnologia do Estado do Rio Grande do Sul, Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre-RS, 91501-970, Brazil
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre-RS, 90610-000, Brazil
| | - G C A Da Hora
- Departmento de Química Fundamental, Universidade Federal de Pernambuco, Recife-PE, 50670-901, Brazil
| | - T A Soares
- Departmento de Química Fundamental, Universidade Federal de Pernambuco, Recife-PE, 50670-901, Brazil
- Department of Chemistry, Umeå University, 90187, Umeå, Sweden
| | - M S Bojer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, 1870, Denmark
| | - H Ingmer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, 1870, Denmark
| | - A J Macedo
- Centro de Biotecnologia do Estado do Rio Grande do Sul, Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre-RS, 91501-970, Brazil.
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre-RS, 90610-000, Brazil.
| | - D S Trentin
- Centro de Biotecnologia do Estado do Rio Grande do Sul, Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre-RS, 91501-970, Brazil
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre-RS, 90610-000, Brazil
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre-RS, 90050-170, Brazil
| |
Collapse
|
22
|
Hidalgo T, Cooper L, Gorman M, Lozano-Fernández T, Simón-Vázquez R, Mouchaham G, Marrot J, Guillou N, Serre C, Fertey P, González-Fernández Á, Devic T, Horcajada P. Crystal structure dependent in vitro antioxidant activity of biocompatible calcium gallate MOFs. J Mater Chem B 2017; 5:2813-2822. [PMID: 32264168 DOI: 10.1039/c6tb03101c] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Two novel 3-D coordination polymers, denoted MIL-155 and MIL-156 (MIL stands for Materials Institute Lavoisier), built up from calcium and the naturally occurring gallic acid (H4gal), have been hydrothermally synthesized and their crystal structures were determined by single-crystal X-ray diffraction. These solids are based on different inorganic subunits: infinite chains of edge-sharing dimers of CaO7 polyhedra linked through partially deprotonated gallate ligands (H2gal2-) for MIL-155 or [Ca2(H2O)(H2gal)2]·2H2O, and ribbon-like inorganic subunits containing both eight-fold or six-fold coordinated CaII ions linked through fully deprotonated gallate ligands (gal4-) for MIL-156 or [Ca3K2(H2O)2(gal)2]·nH2O (n∼ 5). Both solids contain small channels filled with water molecules, with, however no accessible porosity towards N2 at 77 K. MIL-155 and MIL-156 were proven to be biocompatible, as evidenced by in vitro assays (viability and cell proliferation/death balance). While the high chemical stability of MIL-156 makes it almost bioinert, the progressive degradation of MIL-155 leads to an important protective antioxidant effect, associated with the release of the bioactive gallate ligand.
Collapse
Affiliation(s)
- Tania Hidalgo
- Institut Lavoisier, UMR 8180 CNRS Université de Versailles Saint-Quentin-en-Yvelines, 45 avenue des Etats-Unis, 78035 Versailles cedex, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Bedair TM, ElNaggar MA, Joung YK, Han DK. Recent advances to accelerate re-endothelialization for vascular stents. J Tissue Eng 2017; 8:2041731417731546. [PMID: 28989698 PMCID: PMC5624345 DOI: 10.1177/2041731417731546] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 08/19/2017] [Indexed: 12/25/2022] Open
Abstract
Cardiovascular diseases are considered as one of the serious diseases that leads to the death of millions of people all over the world. Stent implantation has been approved as an easy and promising way to treat cardiovascular diseases. However, in-stent restenosis and thrombosis remain serious problems after stent implantation. It was demonstrated in a large body of previously published literature that endothelium impairment represents a major factor for restenosis. This discovery became the driving force for many studies trying to achieve an optimized methodology for accelerated re-endothelialization to prevent restenosis. Thus, in this review, we summarize the different methodologies opted to achieve re-endothelialization, such as, but not limited to, manipulation of surface chemistry and surface topography.
Collapse
Affiliation(s)
- Tarek M Bedair
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, Korea
- Chemistry Department, Faculty of Science, Minia University, Minia, Egypt
| | - Mahmoud A ElNaggar
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Korea
| | - Yoon Ki Joung
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Korea
| | - Dong Keun Han
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Korea
- Department of Biomedical Science, CHA University, Gyeonggi, Korea
| |
Collapse
|
24
|
|
25
|
Xiong K, Qi P, Yang Y, Li X, Qiu H, Li X, Shen R, Tu Q, Yang Z, Huang N. Facile immobilization of vascular endothelial growth factor on a tannic acid-functionalized plasma-polymerized allylamine coating rich in quinone groups. RSC Adv 2016. [DOI: 10.1039/c5ra25917g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Biomolecules like VEGF with thiol or amine groups can easily be covalently immobilized onto a Tannic Acid functional plasma polymerized allylamine surface rich in quinone groups in a mild alkali buffer solution based on Schiff base or Michael addition reactions.
Collapse
|
26
|
Córdoba A, Monjo M, Hierro-Oliva M, González-Martín ML, Ramis JM. Bioinspired Quercitrin Nanocoatings: A Fluorescence-Based Method for Their Surface Quantification, and Their Effect on Stem Cell Adhesion and Differentiation to the Osteoblastic Lineage. ACS APPLIED MATERIALS & INTERFACES 2015; 7:16857-16864. [PMID: 26167954 DOI: 10.1021/acsami.5b05044] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Polyphenol-based coatings have several potential applications in medical devices, such as cardiovascular stents, contrast agents, drug delivery systems, or bone implants, due to the multiple bioactive functionalities of these compounds. In a previous study, we fabricated titanium surfaces functionalized with flavonoids through covalent chemistry, and observed their osteogenic, anti-inflammatory, and antifibrotic properties in vitro. In this work, we report a fluorescence-based method for the quantification of the amount of flavonoid grafted onto the surfaces, using 2-aminoethyl diphenylborinate, a boronic ester that spontaneously forms a fluorescent complex with flavonoids. The method is sensitive, simple, rapid, and easy to perform with routine equipment, and could be applied to determine the surface coverage of other plant-derived polyphenol-based coatings. Besides, we evaluated an approach based on reductive amination to covalently graft the flavonoid quercitrin to Ti substrates, and optimized the grafting conditions. Depending on the reaction conditions, the amount of quercitrin grafted was between 64 ± 10 and 842 ± 361 nmol on 6.2 mm Ti coins. Finally, we evaluated the in vitro behavior of bone-marrow-derived human mesenchymal stem cells cultured on the quercitrin nanocoated Ti surfaces. The surfaces functionalized with quercitrin showed a faster stem cell adhesion than control surfaces, probably due to the presence of the catechol groups of quercitrin on the surfaces. A rapid cell adhesion is crucial for the successful performance of an implant. Furthermore, quercitrin-nanocoated surfaces enhanced the mineralization of the cells after 21 days of cell culture. These results indicate that quercitrin nanocoatings could promote the rapid osteointegration of bone implants.
Collapse
Affiliation(s)
- Alba Córdoba
- †Group of Cell Therapy and Tissue Engineering, Research Institute on Health Sciences (IUNICS), University of Balearic Islands, Carretera de Valldemossa km 7.5, 07122 Palma de Mallorca, Spain
- ‡Instituto de Investigación Sanitaria de Palma, 07010 Palma de Mallorca, Spain
| | - Marta Monjo
- †Group of Cell Therapy and Tissue Engineering, Research Institute on Health Sciences (IUNICS), University of Balearic Islands, Carretera de Valldemossa km 7.5, 07122 Palma de Mallorca, Spain
- ‡Instituto de Investigación Sanitaria de Palma, 07010 Palma de Mallorca, Spain
| | - Margarita Hierro-Oliva
- §Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
- ∥Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 50018 Zaragoza, Spain
| | - María Luisa González-Martín
- §Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
- ∥Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 50018 Zaragoza, Spain
| | - Joana Maria Ramis
- †Group of Cell Therapy and Tissue Engineering, Research Institute on Health Sciences (IUNICS), University of Balearic Islands, Carretera de Valldemossa km 7.5, 07122 Palma de Mallorca, Spain
- ‡Instituto de Investigación Sanitaria de Palma, 07010 Palma de Mallorca, Spain
| |
Collapse
|
27
|
Qi P, Yang Y, Xiong K, Wang J, Tu Q, Yang Z, Wang J, Chen J, Huang N. Multifunctional Plasma-Polymerized Film: Toward Better Anticorrosion Property, Enhanced Cellular Growth Ability, and Attenuated Inflammatory and Histological Responses. ACS Biomater Sci Eng 2015; 1:513-524. [DOI: 10.1021/ab5001595] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Pengkai Qi
- Key Laboratory of Advanced Technology for Materials of Education
Ministry, ‡The Institute of Biomaterials and Surface Engineering, School of
Materials Science and Engineering, and §Laboratory of Biosensing and MicroMechatronics, Southwest Jiaotong University, Chengdu 610031, China
| | - Ying Yang
- Key Laboratory of Advanced Technology for Materials of Education
Ministry, ‡The Institute of Biomaterials and Surface Engineering, School of
Materials Science and Engineering, and §Laboratory of Biosensing and MicroMechatronics, Southwest Jiaotong University, Chengdu 610031, China
| | - Kaiqin Xiong
- Key Laboratory of Advanced Technology for Materials of Education
Ministry, ‡The Institute of Biomaterials and Surface Engineering, School of
Materials Science and Engineering, and §Laboratory of Biosensing and MicroMechatronics, Southwest Jiaotong University, Chengdu 610031, China
| | - Juan Wang
- Key Laboratory of Advanced Technology for Materials of Education
Ministry, ‡The Institute of Biomaterials and Surface Engineering, School of
Materials Science and Engineering, and §Laboratory of Biosensing and MicroMechatronics, Southwest Jiaotong University, Chengdu 610031, China
| | - Qiufen Tu
- Key Laboratory of Advanced Technology for Materials of Education
Ministry, ‡The Institute of Biomaterials and Surface Engineering, School of
Materials Science and Engineering, and §Laboratory of Biosensing and MicroMechatronics, Southwest Jiaotong University, Chengdu 610031, China
| | - Zhilu Yang
- Key Laboratory of Advanced Technology for Materials of Education
Ministry, ‡The Institute of Biomaterials and Surface Engineering, School of
Materials Science and Engineering, and §Laboratory of Biosensing and MicroMechatronics, Southwest Jiaotong University, Chengdu 610031, China
| | - Jin Wang
- Key Laboratory of Advanced Technology for Materials of Education
Ministry, ‡The Institute of Biomaterials and Surface Engineering, School of
Materials Science and Engineering, and §Laboratory of Biosensing and MicroMechatronics, Southwest Jiaotong University, Chengdu 610031, China
| | - Junying Chen
- Key Laboratory of Advanced Technology for Materials of Education
Ministry, ‡The Institute of Biomaterials and Surface Engineering, School of
Materials Science and Engineering, and §Laboratory of Biosensing and MicroMechatronics, Southwest Jiaotong University, Chengdu 610031, China
| | - Nan Huang
- Key Laboratory of Advanced Technology for Materials of Education
Ministry, ‡The Institute of Biomaterials and Surface Engineering, School of
Materials Science and Engineering, and §Laboratory of Biosensing and MicroMechatronics, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
28
|
Chan KC, Huang HP, Ho HH, Huang CN, Lin MC, Wang CJ. Mulberry polyphenols induce cell cycle arrest of vascular smooth muscle cells by inducing NO production and activating AMPK and p53. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.03.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
29
|
Ding Y, Yang M, Yang Z, Luo R, Lu X, Huang N, Huang P, Leng Y. Cooperative control of blood compatibility and re-endothelialization by immobilized heparin and substrate topography. Acta Biomater 2015; 15:150-63. [PMID: 25541345 DOI: 10.1016/j.actbio.2014.12.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 12/04/2014] [Accepted: 12/16/2014] [Indexed: 11/17/2022]
Abstract
A wide variety of environmental cues provided by the extracellular matrix, including biophysical and biochemical cues, are responsible for vascular cell behavior and function. In particular, substrate topography and surface chemistry have been shown to regulate blood and vascular compatibility individually. The combined impact of chemical and topographic cues on blood and vascular compatibility, and the interplay between these two types of cues, are subjects that are currently being explored. In the present study, a facile polydopamine-mediated approach is introduced for immobilization of heparin on topographically patterned substrates, and the combined effects of these cues on blood compatibility and re-endothelialization are systematically investigated. The results show that immobilized heparin and substrate topography cooperatively modulate anti-coagulation activity, endothelial cell (EC) attachment, proliferation, focal adhesion formation and endothelial marker expression. Meanwhile, the substrate topography is the primary determinant of cell alignment and elongation, driving in vivo-like endothelial organization. Importantly, combining immobilized heparin with substrate topography empowers substantially greater competitive ability of ECs over smooth muscle cells than each cue individually. Moreover, a model is proposed to elucidate the cooperative interplay between immobilized heparin and substrate topography in regulating cell behavior.
Collapse
Affiliation(s)
- Yonghui Ding
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Meng Yang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Zhilu Yang
- Key Laboratory of Advanced Technology of Materials, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Rifang Luo
- Key Laboratory of Advanced Technology of Materials, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Xiong Lu
- Key Laboratory of Advanced Technology of Materials, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Nan Huang
- Key Laboratory of Advanced Technology of Materials, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Pingbo Huang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yang Leng
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
30
|
Yang Y, Qi P, Wen F, Li X, Xia Q, Maitz MF, Yang Z, Shen R, Tu Q, Huang N. Mussel-inspired one-step adherent coating rich in amine groups for covalent immobilization of heparin: hemocompatibility, growth behaviors of vascular cells, and tissue response. ACS APPLIED MATERIALS & INTERFACES 2014; 6:14608-20. [PMID: 25105346 DOI: 10.1021/am503925r] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Heparin, an important polysaccharide, has been widely used for coatings of cardiovascular devices because of its multiple biological functions including anticoagulation and inhibition of intimal hyperplasia. In this study, surface heparinization of a commonly used 316L stainless steel (SS) was explored for preparation of a multifunctional vascular stent. Dip-coating of the stents in an aqueous solution of dopamine and hexamethylendiamine (HD) (PDAM/HD) was presented as a facile method to form an adhesive coating rich in primary amine groups, which was used for covalent heparin immobilization via active ester chemistry. A heparin grafting density of about 900 ng/cm(2) was achieved with this method. The retained bioactivity of the immobilized heparin was confirmed by a remarkable prolongation of the activated partial thromboplastin time (APTT) for about 15 s, suppression of platelet adhesion, and prevention of the denaturation of adsorbed fibrinogen. The Hep-PDAM/HD also presented a favorable microenvironment for selectively enhancing endothelial cell (EC) adhesion, proliferation, migration and release of nitric oxide (NO), and at the same time inhibiting smooth muscle cell (SMC) adhesion and proliferation. Upon subcutaneous implantation, the Hep-PDAM/HD exhibited mitigated tissue response, with thinner fibrous capsule and less granulation formation compared to the control 316L SS. This number of unique functions qualifies the heparinized coating as an attractive alternative for the design of a new generation of stents.
Collapse
Affiliation(s)
- Ying Yang
- Key Laboratory of Advanced Technology for Materials of Education Ministry, ‡The Institute of Biomaterials and Surface Engineering, School of Materials Science and Engineering, and #Laboratory of Biosensing and MicroMechatronics, Southwest Jiaotong University , Chengdu 610031, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Yang Z, Zhong S, Yang Y, Maitz MF, Li X, Tu Q, Qi P, Zhang H, Qiu H, Wang J, Huang N. Polydopamine-mediated long-term elution of the direct thrombin inhibitor bivalirudin from TiO2nanotubes for improved vascular biocompatibility. J Mater Chem B 2014; 2:6767-6778. [DOI: 10.1039/c4tb01118j] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
New strategies for developing cardiovascular stent surfaces with novel functions (Review). Biointerphases 2014; 9:029017. [DOI: 10.1116/1.4878719] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|