1
|
Li H, Sheng W, Haruna SA, Hassan MM, Chen Q. Recent advances in rare earth ion-doped upconversion nanomaterials: From design to their applications in food safety analysis. Compr Rev Food Sci Food Saf 2023; 22:3732-3764. [PMID: 37548602 DOI: 10.1111/1541-4337.13218] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 08/08/2023]
Abstract
The misuse of chemicals in agricultural systems and food production leads to an increase in contaminants in food, which ultimately has adverse effects on human health. This situation has prompted a demand for sophisticated detection technologies with rapid and sensitive features, as concerns over food safety and quality have grown around the globe. The rare earth ion-doped upconversion nanoparticle (UCNP)-based sensor has emerged as an innovative and promising approach for detecting and analyzing food contaminants due to its superior photophysical properties, including low autofluorescence background, deep penetration of light, low toxicity, and minimal photodamage to the biological samples. The aim of this review was to discuss an outline of the applications of UCNPs to detect contaminants in food matrices, with particular attention on the determination of heavy metals, pesticides, pathogenic bacteria, mycotoxins, and antibiotics. The review briefly discusses the mechanism of upconversion (UC) luminescence, the synthesis, modification, functionality of UCNPs, as well as the detection principles for the design of UC biosensors. Furthermore, because current UCNP research on food safety detection is still at an early stage, this review identifies several bottlenecks that must be overcome in UCNPs and discusses the future prospects for its application in the field of food analysis.
Collapse
Affiliation(s)
- Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Wei Sheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Suleiman A Haruna
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Md Mehedi Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
- College of Food and Biological Engineering, Jimei University, Xiamen, P. R. China
| |
Collapse
|
2
|
Gandla K, Kumar KP, Rajasulochana P, Charde MS, Rana R, Singh LP, Haque MA, Bakshi V, Siddiqui FA, Khan SL, Ganguly S. Fluorescent-Nanoparticle-Impregnated Nanocomposite Polymeric Gels for Biosensing and Drug Delivery Applications. Gels 2023; 9:669. [PMID: 37623124 PMCID: PMC10453855 DOI: 10.3390/gels9080669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/05/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
Nanocomposite polymeric gels infused with fluorescent nanoparticles have surfaced as a propitious category of substances for biomedical purposes owing to their exceptional characteristics. The aforementioned materials possess a blend of desirable characteristics, including biocompatibility, biodegradability, drug encapsulation, controlled release capabilities, and optical properties that are conducive to imaging and tracking. This paper presents a comprehensive analysis of the synthesis and characterization of fluorescent-nanoparticle-impregnated nanocomposite polymeric gels, as well as their biomedical applications, such as drug delivery, imaging, and tissue engineering. In this discourse, we deliberate upon the merits and obstacles linked to these substances, encompassing biocompatibility, drug encapsulation, optical characteristics, and scalability. The present study aims to provide an overall evaluation of the potential of fluorescent-nanoparticle-impregnated nanocomposite polymeric gels for biomedical applications. Additionally, emerging trends and future directions for research in this area are highlighted.
Collapse
Affiliation(s)
- Kumaraswamy Gandla
- Department of Pharmaceutical Analysis, Chaitanya (Deemed to be University), Hyderabad 500075, India
| | - K. Praveen Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Government of NCT of Delhi, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - P. Rajasulochana
- Department of Microbiology, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Kanchipuram 602105, India
| | - Manoj Shrawan Charde
- Department of Pharmaceutical Chemistry, Government College of Pharmacy, Karad 415124, India
| | - Ritesh Rana
- Department of Pharmaceutics, Himachal Institute of Pharmaceutical Education and Research (HIPER), Hamirpur 177033, India
| | - Laliteshwar Pratap Singh
- Department of Pharmaceutical Chemistry, Narayan Institute of Pharmacy, Gopal Narayan Singh University, Rohtas 821305, India
| | - M. Akiful Haque
- Department of Pharmaceutical Analysis, School of Pharmacy, Anurag University, Hyderabad 500088, India
| | - Vasudha Bakshi
- Department of Pharmaceutics, School of Pharmacy, Anurag University, Hyderabad 500088, India
| | - Falak A. Siddiqui
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa 413520, India
- Department of Pharmaceutical Chemistry, School of Pharmacy, Anurag University, Hyderabad 500088, India
| | - Sharuk L. Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa 413520, India
- Department of Pharmaceutical Chemistry, School of Pharmacy, Anurag University, Hyderabad 500088, India
| | - S. Ganguly
- Bar-Ilan Institute for Nanotechnology and Advanced Materials, Ramat Gan 5290002, Israel
| |
Collapse
|
3
|
Jia D, Liu H, Zheng S, Yuan D, Sun R, Wang F, Li Y, Li H, Yuan F, Fan Q, Zhao Z. ICG-Dimeric Her2-Specific Affibody Conjugates for Tumor Imaging and Photothermal Therapy for Her2-Positive Tumors. Mol Pharm 2023; 20:427-437. [PMID: 36315025 DOI: 10.1021/acs.molpharmaceut.2c00708] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Human epidermal growth factor receptor 2 (Her2) is abundantly expressed in various solid tumors. The Her2-specific Affibody (ZHer2:2891) has been clinically tested in patients with Her2-positive breast cancer and is regarded as an ideal drug carrier for tumor diagnosis and targeted treatment. Indocyanine green (ICG) can be used as a photosensitizer for photothermal therapy (PTT), in addition to fluorescent dyes for tumor imaging. In this study, a dimeric Her2-specific Affibody (ZHer2) based on ZHer2:2891 was prepared using the E. coli expression system and then coupled to ICG through an N-hydroxysuccinimide (NHS) ester reactive group to construct a novel bifunctional protein drug (named ICG-ZHer2) for tumor diagnosis and PTT. In vitro, ICG-ZHer2-mediated PTT selectively and efficiently killed Her2-positive BT-474 and SKOV-3 tumor cells rather than Her2-negative HeLa tumor cells. In vivo, ICG-ZHer2 specifically accumulated in Her2-positive SKOV-3 tumor grafts rather than Her2-negative HeLa tumor grafts; high-contrast tumor optical images were obtained. However, Her2-negative HeLa tumor grafts were not detected. More importantly, ICG-ZHer2-mediated PTT exhibited a significantly enhanced antitumor effect in mice bearing SKOV-3 tumor grafts owing to the good photothermal properties of ICG-ZHer2. Of note, ICG-ZHer2 did not exhibit acute toxicity in mice during short-term treatment. Overall, our findings indicate that ICG-ZHer2 is a promising bifunctional drug for Her2-positive tumor diagnosis and PTT.
Collapse
Affiliation(s)
- Dianlong Jia
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Huimin Liu
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Shuhui Zheng
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Dandan Yuan
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Ruohan Sun
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Fei Wang
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yang Li
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Hui Li
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Fengjiao Yuan
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, Shandong 252000, China
| | - Qing Fan
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Zhenxiong Zhao
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang 317700, China
| |
Collapse
|
4
|
Naher HS, Al-Turaihi BAH, Mohammed SH, Naser SM, Albark MA, Madlool HA, Al- Marzoog HAM, Turki Jalil A. Upconversion nanoparticles (UCNPs): Synthesis methods, imaging and cancer therapy. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
5
|
Dessale M, Mengistu G, Mengist HM. Nanotechnology: A Promising Approach for Cancer Diagnosis, Therapeutics and Theragnosis. Int J Nanomedicine 2022; 17:3735-3749. [PMID: 36051353 PMCID: PMC9427008 DOI: 10.2147/ijn.s378074] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/22/2022] [Indexed: 01/10/2023] Open
Abstract
Cancer remains the most devastating disease and the major cause of mortality worldwide. Although early diagnosis and treatment are the key approach in fighting against cancer, the available conventional diagnostic and therapeutic methods are not efficient. Besides, ineffective cancer cell selectivity and toxicity of traditional chemotherapy remain the most significant challenge. These limitations entail the need for the development of both safe and effective cancer diagnosis and treatment options. Due to its robust application, nanotechnology could be a promising method for in-vivo imaging and detection of cancer cells and cancer biomarkers. Nanotechnology could provide a quick, safe, cost-effective, and efficient method for cancer management. It also provides simultaneous diagnosis and treatment of cancer using nano-theragnostic particles that facilitate early detection and selective destruction of cancer cells. Updated and recent discussions are important for selecting the best cancer diagnosis, treatment, and management options, and new insights on designing effective protocols are utmost important. This review discusses the application of nanotechnology in cancer diagnosis, therapeutics, and theragnosis and provides future perspectives in the field.
Collapse
Affiliation(s)
- Mesfin Dessale
- Department of Medical Laboratory Sciences, Debre Markos University, Debre Markos, Amhara, Ethiopia
| | - Getachew Mengistu
- Department of Medical Laboratory Sciences, Debre Markos University, Debre Markos, Amhara, Ethiopia
| | | |
Collapse
|
6
|
Wei M, Rao H, Niu Z, Xue X, Luo M, Zhang X, Huang H, Xue Z, Lu X. Breaking the time and space limitation of point-of-care testing strategies: Photothermometric sensors based on different photothermal agents and materials. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
7
|
Gao C, Zheng P, Liu Q, Han S, Li D, Luo S, Temple H, Xing C, Wang J, Wei Y, Jiang T, Chen W. Recent Advances of Upconversion Nanomaterials in the Biological Field. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2474. [PMID: 34684916 PMCID: PMC8539378 DOI: 10.3390/nano11102474] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022]
Abstract
Rare Earth Upconversion nanoparticles (UCNPs) are a type of material that emits high-energy photons by absorbing two or more low-energy photons caused by the anti-stokes process. It can emit ultraviolet (UV) visible light or near-infrared (NIR) luminescence upon NIR light excitation. Due to its excellent physical and chemical properties, including exceptional optical stability, narrow emission band, enormous Anti-Stokes spectral shift, high light penetration in biological tissues, long luminescent lifetime, and a high signal-to-noise ratio, it shows a prodigious application potential for bio-imaging and photodynamic therapy. This paper will briefly introduce the physical mechanism of upconversion luminescence (UCL) and focus on their research progress and achievements in bio-imaging, bio-detection, and photodynamic therapy.
Collapse
Affiliation(s)
- Cunjin Gao
- Beijing Key Laboratory of Printing and Packaging Materials and Technology, Beijing Institute of Graphic Communication, Beijing 102600, China; (C.G.); (P.Z.); (Q.L.); (S.H.); (D.L.); (S.L.)
| | - Pengrui Zheng
- Beijing Key Laboratory of Printing and Packaging Materials and Technology, Beijing Institute of Graphic Communication, Beijing 102600, China; (C.G.); (P.Z.); (Q.L.); (S.H.); (D.L.); (S.L.)
| | - Quanxiao Liu
- Beijing Key Laboratory of Printing and Packaging Materials and Technology, Beijing Institute of Graphic Communication, Beijing 102600, China; (C.G.); (P.Z.); (Q.L.); (S.H.); (D.L.); (S.L.)
| | - Shuang Han
- Beijing Key Laboratory of Printing and Packaging Materials and Technology, Beijing Institute of Graphic Communication, Beijing 102600, China; (C.G.); (P.Z.); (Q.L.); (S.H.); (D.L.); (S.L.)
| | - Dongli Li
- Beijing Key Laboratory of Printing and Packaging Materials and Technology, Beijing Institute of Graphic Communication, Beijing 102600, China; (C.G.); (P.Z.); (Q.L.); (S.H.); (D.L.); (S.L.)
| | - Shiyong Luo
- Beijing Key Laboratory of Printing and Packaging Materials and Technology, Beijing Institute of Graphic Communication, Beijing 102600, China; (C.G.); (P.Z.); (Q.L.); (S.H.); (D.L.); (S.L.)
| | - Hunter Temple
- Department of Physics, The University of Texas at Arlington, Arlington, TX 76019-0059, USA; (H.T.); (C.X.)
| | - Christina Xing
- Department of Physics, The University of Texas at Arlington, Arlington, TX 76019-0059, USA; (H.T.); (C.X.)
| | - Jigang Wang
- Beijing Key Laboratory of Printing and Packaging Materials and Technology, Beijing Institute of Graphic Communication, Beijing 102600, China; (C.G.); (P.Z.); (Q.L.); (S.H.); (D.L.); (S.L.)
| | - Yanling Wei
- Faculty of Applied Sciences, Jilin Engineering Normal University, Changchun 130052, China
| | - Tao Jiang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Wei Chen
- Department of Physics, The University of Texas at Arlington, Arlington, TX 76019-0059, USA; (H.T.); (C.X.)
- Medical Technology Research Centre, Chelmsford Campus, Anglia Ruskin University, Chelmsford CM1 1SQ, UK
| |
Collapse
|
8
|
Bondarenko L, Terekhova V, Kahru A, Dzhardimalieva G, Kelbysheva E, Tropskaya N, Kydralieva K. Sample preparation considerations for surface and crystalline properties and ecotoxicity of bare and silica-coated magnetite nanoparticles. RSC Adv 2021; 11:32227-32235. [PMID: 35495499 PMCID: PMC9042031 DOI: 10.1039/d1ra05703k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/28/2021] [Accepted: 09/10/2021] [Indexed: 11/21/2022] Open
Abstract
Magnetite (Fe3O4) nanoparticles (NPs) have widely used in various fields, including in medicine, due to their (super)paramagnetic properties. This requires a thorough evaluation of their possible hazardous effects. However, there is no standard procedure for the preparation of oxidation-prone NPs (such as magnetite) before subjecting them to biological assays. In this study we used Fe3O4 NPs (bare and silica-coated) as test samples to compare different preparation methods (ultrasound, centrifugation and filteration of NPs suspensions) based on X-ray and dynamic light scattering analysis and evaluation of microstructure and surface charge. After oxidation and functionalization, all samples retained their superparamagnetic behaviour. The toxicity of NP suspensions obtained by the methods described for Paramecium caudatum ciliates and Sinapis alba plants was evaluated. The charge and surface reactivity of magnetite nanoparticles can be affected by the different separation methods leading to their toxicity changes.![]()
Collapse
Affiliation(s)
- Lyubov Bondarenko
- Moscow Aviation Institute (National Research University), Moscow, Russia
| | - Vera Terekhova
- Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anne Kahru
- National Institute of Chemical Physics and Biophysics, 12618 Tallinn, Estonia
| | - Gulzhian Dzhardimalieva
- Moscow Aviation Institute (National Research University), Moscow, Russia
- Institute of Problems of Chemical Physics, Chernogolovka, Moscow Region, Russia
| | - Elena Kelbysheva
- A. N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Moscow, Russia
| | - Natalya Tropskaya
- Moscow Aviation Institute (National Research University), Moscow, Russia
- Sklifosovsky Institute for Emergency Medicine, Moscow, Russia
| | - Kamila Kydralieva
- Moscow Aviation Institute (National Research University), Moscow, Russia
| |
Collapse
|
9
|
Kukkar D, Kukkar P, Kumar V, Hong J, Kim KH, Deep A. Recent advances in nanoscale materials for antibody-based cancer theranostics. Biosens Bioelectron 2020; 173:112787. [PMID: 33190049 DOI: 10.1016/j.bios.2020.112787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/08/2020] [Accepted: 10/30/2020] [Indexed: 02/07/2023]
Abstract
The quest for advanced management tools or options of various cancers has been on the rise to efficiently reduce their risks of mortality without the demerits of conventional treatments (e.g., undesirable side effects of the medications on non-target tissues, non-targeted distribution, slow clearance of the administered drugs, and the development of drug resistance over the duration of therapy). In this context, nanomaterials-antibody conjugates can offer numerous advantages in the development of cancer theranostics over conventional delivery systems (e.g., highly specific and enhanced biodistribution of the drug in targeted tissues, prolonged systemic circulation, low toxicity, and minimally invasive molecular imaging). This review comprehensively discusses and evaluates recent advances in the application of nanomaterial-antibody bioconjugates for cancer theranostics for the further advancement in the control of diverse cancerous diseases. Further, discussion is expanded to cover the various challenges and limitations associated with the design and development of nanomaterial-antibody conjugates applicable towards better management of cancer.
Collapse
Affiliation(s)
- Deepak Kukkar
- Department of Nanotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, 140406, India
| | - Preeti Kukkar
- Department of Chemistry, Mata Gujri College, Fatehgarh Sahib, Punjab, 140406, India
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India
| | - Jongki Hong
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763 Republic of Korea.
| | - Akash Deep
- Central Scientific Instruments Organization (CSIR-CSIO), Sector 30 C, Chandigarh, 160030, India.
| |
Collapse
|
10
|
|
11
|
Preparation, surface functionalization and application of Fe 3O 4 magnetic nanoparticles. Adv Colloid Interface Sci 2020; 281:102165. [PMID: 32361408 DOI: 10.1016/j.cis.2020.102165] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/18/2020] [Accepted: 04/18/2020] [Indexed: 11/23/2022]
Abstract
This paper reviews recent developments in the preparation, surface functionalization, and applications of Fe3O4 magnetic nanoparticles. Especially, it includes preparation methods (such as electrodeposition, polyol methods, etc.), organic materials (such as polymers, small molecules, surfactants, biomolecules, etc.) or inorganic materials (such as silica, metals, and metal oxidation/sulfide, functionalized coating of carbon surface, graphene, etc.) and its applications (such as magnetic separation, protein fixation, magnetic catalyst, environmental treatment, medical research, etc.). In the end, some existing challenges and possible future trends in the field were discussed.
Collapse
|
12
|
Zhang Y, Li M, Gao X, Chen Y, Liu T. Nanotechnology in cancer diagnosis: progress, challenges and opportunities. J Hematol Oncol 2019; 12:137. [PMID: 31847897 PMCID: PMC6918551 DOI: 10.1186/s13045-019-0833-3] [Citation(s) in RCA: 208] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/18/2019] [Indexed: 12/24/2022] Open
Abstract
In the fight against cancer, early detection is a key factor for successful treatment. However, the detection of cancer in the early stage has been hindered by the intrinsic limits of conventional cancer diagnostic methods. Nanotechnology provides high sensitivity, specificity, and multiplexed measurement capacity and has therefore been investigated for the detection of extracellular cancer biomarkers and cancer cells, as well as for in vivo imaging. This review summarizes the latest developments in nanotechnology applications for cancer diagnosis. In addition, the challenges in the translation of nanotechnology-based diagnostic methods into clinical applications are discussed.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, 410008, China
| | - Maoyu Li
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, 410008, China
- Department of Gastroenterology, XiangYa Hospital, Central South University, Changsha, 410008, China
| | - Xiaomei Gao
- Department of Pathology, XiangYa Hospital, Central South University, Changsha, 410008, China
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, 410008, China.
| | - Ting Liu
- Department of Gastroenterology, XiangYa Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
13
|
Nouri S, Mohammadi E, Mehravi B, Majidi F, Ashtari K, Neshasteh-Riz A, Einali S. NIR triggered glycosylated gold nanoshell as a photothermal agent on melanoma cancer cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2316-2324. [PMID: 31184218 DOI: 10.1080/21691401.2019.1593187] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nowadays, gold nanoshells are used in targeted nano photothermal cancer therapy. This study surveyed the application of gold nanoshell (GNs) to thermal ablative therapy for melanoma cancer cells and it takes advantage of the near infrared absorption of gold nanoshells. The synthesis and characterization of glycosylated gold nanoshells (GGNs) were done. The cytotoxicity and photothermal effects of GNs on melanoma cells were evaluated using MTT assay and flow cytometry. The characterization data showed that GGNs are spherical, with a hydrodynamic size of 46.7 nm. Results suggest that the cellular uptake of GGNs was about 78%. Viability assays showed no significant toxicity at low concentrations of GNs. The higher heating rate and toxicity of cancer cells were obtained for the cells exposed to 808 nm NIR laser after incubation with GGNs rather than the GNs. The viability of these cells has dramatically decreased by 29%. Furthermore, 61% more cell lethality was achieved for A375 cells using combined photothermal therapy and treatment with GGNs in comparison to NIR radiation alone. In conclusion, our findings suggest that the synthesized gold/silica core-shell nanoparticles conjugated with glucosamine have high potentials to be considered as an efficient metal-nanoshell in the process of targeted cancer photothermal therapy.
Collapse
Affiliation(s)
- Samira Nouri
- a Radiation Biology Research Center, Iran University of Medical Sciences , Tehran , Iran.,c Cellular and Molecular Research Center, Iran University of Medical Sciences , Tehran , Iran
| | - Elham Mohammadi
- b Department of Medical Nanotechnologies, Faculty of Medical Nanotechnology, University of Medical Sciences , Tehran , Iran
| | - Bita Mehravi
- b Department of Medical Nanotechnologies, Faculty of Medical Nanotechnology, University of Medical Sciences , Tehran , Iran
| | - Fatemehsadat Majidi
- a Radiation Biology Research Center, Iran University of Medical Sciences , Tehran , Iran.,c Cellular and Molecular Research Center, Iran University of Medical Sciences , Tehran , Iran
| | - Khadijeh Ashtari
- b Department of Medical Nanotechnologies, Faculty of Medical Nanotechnology, University of Medical Sciences , Tehran , Iran
| | - Ali Neshasteh-Riz
- a Radiation Biology Research Center, Iran University of Medical Sciences , Tehran , Iran
| | - Samira Einali
- a Radiation Biology Research Center, Iran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
14
|
Abedin MR, Umapathi S, Mahendrakar H, Laemthong T, Coleman H, Muchangi D, Santra S, Nath M, Barua S. Polymer coated gold-ferric oxide superparamagnetic nanoparticles for theranostic applications. J Nanobiotechnology 2018; 16:80. [PMID: 30316298 PMCID: PMC6186064 DOI: 10.1186/s12951-018-0405-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 09/28/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Engineered inorganic nanoparticles (NPs) are essential components in the development of nanotechnologies. For applications in nanomedicine, particles need to be functionalized to ensure a good dispersibility in biological fluids. In many cases however, functionalization is not sufficient: the particles become either coated by a corona of serum proteins or precipitate out of the solvent. We show that by changing the coating of magnetic iron oxide NPs using poly-L-lysine (PLL) polymer the colloidal stability of the dispersion is improved in aqueous solutions including water, phosphate buffered saline (PBS), PBS with 10% fetal bovine serum (FBS) and cell culture medium, and the internalization of the NPs toward living mammalian cells is profoundly affected. METHODS A multifunctional magnetic NP is designed to perform a near-infrared (NIR)-responsive remote control photothermal ablation for the treatment of breast cancer. In contrast to the previously reported studies of gold (Au) magnetic (Fe3O4) core-shell NPs, a Janus-like nanostructure is synthesized with Fe3O4 NPs decorated with Au resulting in an approximate size of 60 nm mean diameter. The surface of trisoctahedral Au-Fe3O4 NPs was coated with a positively charged polymer, PLL to deliver the NPs inside cells. The PLL-Au-Fe3O4 NPs were characterized by transmission electron microscopy (TEM), XRD, FT-IR and dynamic light scattering (DLS). The unique properties of both Au surface plasmon resonance and superparamagnetic moment result in a multimodal platform for use as a nanothermal ablator and also as a magnetic resonance imaging (MRI) contrast agent, respectively. Taking advantage of the photothermal therapy, PLL-Au-Fe3O4 NPs were incubated with BT-474 and MDA-MB-231 breast cancer cells, investigated for the cytotoxicity and intracellular uptake, and remotely triggered by a NIR laser of ~ 808 nm (1 W/cm2 for 10 min). RESULTS The PLL coating increased the colloidal stability and robustness of Au-Fe3O4 NPs (PLL-Au-Fe3O4) in biological media including cell culture medium, PBS and PBS with 10% fetal bovine serum. It is revealed that no significant (< 10%) cytotoxicity was induced by PLL-Au-Fe3O4 NPs itself in BT-474 and MDA-MB-231 cells at concentrations up to 100 μg/ml. Brightfield microscopy, fluorescence microscopy and TEM showed significant uptake of PLL-Au-Fe3O4 NPs by BT-474 and MDA-MB-231 cells. The cells exhibited 40 and 60% inhibition in BT-474 and MDA-MB-231 cell growth, respectively following the internalized NPs were triggered by a photothermal laser using 100 μg/ml PLL-Au-Fe3O4 NPs. The control cells treated with NPs but without laser showed < 10% cell death compared to no laser treatment control CONCLUSION: Combined together, the results demonstrate a new polymer gold superparamagnetic nanostructure that integrates both diagnostics function and photothermal ablation of tumors into a single multimodal nanoplatform exhibiting a significant cancer cell death.
Collapse
Affiliation(s)
- Muhammad Raisul Abedin
- Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, 110 Bertelsmeyer Hall, 1101 N. State Street, Rolla, MO 65409-1230 USA
| | - Siddesh Umapathi
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 USA
| | - Harika Mahendrakar
- Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, 110 Bertelsmeyer Hall, 1101 N. State Street, Rolla, MO 65409-1230 USA
| | - Tunyaboon Laemthong
- Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, 110 Bertelsmeyer Hall, 1101 N. State Street, Rolla, MO 65409-1230 USA
| | - Holly Coleman
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 USA
| | - Denise Muchangi
- Department of Chemistry, Pittsburg State University, Pittsburg, KS 66762 USA
| | - Santimukul Santra
- Department of Chemistry, Pittsburg State University, Pittsburg, KS 66762 USA
| | - Manashi Nath
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 USA
| | - Sutapa Barua
- Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, 110 Bertelsmeyer Hall, 1101 N. State Street, Rolla, MO 65409-1230 USA
| |
Collapse
|
15
|
Recent progress in the green synthesis of rare-earth doped upconversion nanophosphors for optical bioimaging from cells to animals. Chin J Chem Eng 2018. [DOI: 10.1016/j.cjche.2018.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Shen R, Liu P, Zhang Y, Yu Z, Chen X, Zhou L, Nie B, Żaczek A, Chen J, Liu J. Sensitive Detection of Single-Cell Secreted H2O2 by Integrating a Microfluidic Droplet Sensor and Au Nanoclusters. Anal Chem 2018; 90:4478-4484. [DOI: 10.1021/acs.analchem.7b04798] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Rui Shen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Peipei Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Yiqiu Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Zhao Yu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Xuyue Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Lu Zhou
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Baoqing Nie
- School of Electronic and Information Engineering, Soochow University, Suzhou, Jiangsu 215123, China
| | - Anna Żaczek
- Medical Biotechnology Department, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Dębinki 1, Gdańsk, 80-211, Poland
| | - Jian Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Jian Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| |
Collapse
|
17
|
Yu Z, Zhou L, Zhang T, Shen R, Li C, Fang X, Griffiths G, Liu J. Sensitive Detection of MMP9 Enzymatic Activities in Single Cell-Encapsulated Microdroplets as an Assay of Cancer Cell Invasiveness. ACS Sens 2017; 2:626-634. [PMID: 28723167 DOI: 10.1021/acssensors.6b00731] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Matrix metalloproteinases (MMPs) are typically up-regulated in cancer cells, and play a critical role in assisting metastasis by the breakdown of the extracellular matrix. Here we report an effective strategy for cell invasiveness assay by integrating MMP9 functional activity analysis with single cell-encapsulated microdroplets. A flow focusing capillary microfluidic device has been assembled using "off-the-shelf" fluidic components for high-throughput generation of microdroplets. Tumor cells, MMP9 specific peptides, and other cofactors can be loaded into the device and encapsulated into individual droplets as dynamic microreactors for proteolytic cleavage of the substrate. This design allows for rapid and robust detection of MMP9 enzymatic activities by fluorescent signals in a few minutes. It represents the first demonstration of quantifying MMP9 enzymatic activities at the single cell level with a high throughput performance. This new technique promises functional evaluation of cancer cell invasiveness for important diagnostic or prognostic applications.
Collapse
Affiliation(s)
- Zhao Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Lu Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Ting Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Rui Shen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Chenxi Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Xu Fang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Gareth Griffiths
- Imagen Therapeutics Ltd, Suite
4D Citylabs, Nelson Street, Manchester M13 9NQ, United Kingdom
| | - Jian Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu Province 215123, China
| |
Collapse
|
18
|
Han G, Wang X, Hamel J, Zhu H, Sun R. Lignin-AuNPs liquid marble for remotely-controllable detection of Pb 2. Sci Rep 2016; 6:38164. [PMID: 27909335 PMCID: PMC5133569 DOI: 10.1038/srep38164] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/04/2016] [Indexed: 12/11/2022] Open
Abstract
This work reported the green and facile fabrication of a versatile lignin-AuNP composite, which was readily and remotely encapsulated to form novel liquid marbles. The marbles can stay suspended in water, and show excellent photothermal conversion properties, as well as visual detection and adsorption towards Pb2+. More importantly, the marbles can simultaneously remotely detect and adsorb Pb2+ via co-precipitation by simply controlling the near infrared (NIR) irradiation. It is believed that the remotely-controllable NIR-responsive lignin-AuNPs liquid marble can be used in Pb2+-related reactions. The liquid marble can be placed in the system at the very beginning of the reaction and stably stays on the surface until the reaction has ended. After reacting, upon remote NIR irradiation, the liquid marble bursts to adsorb Pb2+, and the residual Pb2+ can be collected. This facile manipulation strategy does not use complicated nanostructures or sophisticated equipment, so it has potential applications for channel-free microfluidics, smart microreactors, microengines, and so on.
Collapse
Affiliation(s)
- Guocheng Han
- State Key Laboratory of Pulp &Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Xiaoying Wang
- State Key Laboratory of Pulp &Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Jonathan Hamel
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, 02115, United States
| | - Hongli Zhu
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, 02115, United States
| | - Runcang Sun
- State Key Laboratory of Pulp &Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
19
|
Gu W, Zhang Q, Zhang T, Li Y, Xiang J, Peng R, Liu J. Hybrid polymeric nano-capsules loaded with gold nanoclusters and indocyanine green for dual-modal imaging and photothermal therapy. J Mater Chem B 2016; 4:910-919. [PMID: 32263164 DOI: 10.1039/c5tb01619c] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Currently there is a great need to design nano-carriers which enable multi-modal imaging of tumors and administration of therapeutics with high efficacy simultaneously. Herein we report a facile and robust approach to fabricate multifunctional nano-capsules based on double emulsions. The hybrid nano-capsules were loaded with BSA capped gold nanoclusters (AuNCs) and indocyanine green (ICG) for dual-modal imaging and effective photothermal therapy. RGD peptides were conjugated onto the surface of the hybrid nano-capsules to target cells overexpressing integrin ανβ3. We demonstrated that the as-prepared nano-capsules can be used for both one-photon and two-photon fluorescence imaging of tumor cells, and subsequent photothermal ablation with high effectiveness. The background noise of tissue autofluorescence was dramatically suppressed in the two-photon imaging mode. Therefore, it assisted a great deal to acquire images with a high signal-to-noise ratio using the hybrid nano-capsules. Due to a unique combination of the one-photon/two-photon fluorescence imaging and highly-effective photothermal properties, the hybrid nano-capsules may find broad biomedical applications as attractive theranostic nanomaterials.
Collapse
Affiliation(s)
- Wei Gu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials & Devices, Collaborative Innovation Centre of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu Province 215123, China.
| | | | | | | | | | | | | |
Collapse
|
20
|
Wang S, Bi A, Zeng W, Cheng Z. Upconversion nanocomposites for photo-based cancer theranostics. J Mater Chem B 2016; 4:5331-5348. [DOI: 10.1039/c6tb00709k] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Upconversion nanoparticles (UCNPs) are able to convert long wavelength excitation light into high energy ultraviolet (UV) or visible emissions, and they have attracted significant attention because of their distinct photochemical properties including sharp emission bands, low autofluorescence, high tissue penetration depth and minimal photodamage to tissues.
Collapse
Affiliation(s)
- Shuailiang Wang
- School of Pharmaceutical Sciences
- Central South University
- Changsha
- P. R. China
| | - Anyao Bi
- School of Pharmaceutical Sciences
- Central South University
- Changsha
- P. R. China
| | - Wenbin Zeng
- School of Pharmaceutical Sciences
- Central South University
- Changsha
- P. R. China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS)
- Canary Center at Stanford for Cancer Early Detection
- Department of Radiology and Bio-X Program
- School of Medicine
- Stanford University
| |
Collapse
|
21
|
Chen CW, Lee PH, Chan YC, Hsiao M, Chen CH, Wu PC, Wu PR, Tsai DP, Tu D, Chen X, Liu RS. Plasmon-induced hyperthermia: hybrid upconversion NaYF 4:Yb/Er and gold nanomaterials for oral cancer photothermal therapy. J Mater Chem B 2015; 3:8293-8302. [PMID: 32262884 DOI: 10.1039/c5tb01393c] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nanocomposites consisting of upconversion nanoparticles (UCPs) and plasmonic materials have been widely explored for bio-imaging and cancer photothermal therapy (PTT). However, several challenges, including incomprehensible efficiency of energy transfer processes and optimization of the conditions for plasmon-induced photothermal effects, still exist. In this study, we fabricated NaYF4:Yb3+/Er3+ nanoparticles (NPs) conjugated with gold nanomaterials (Au NMs), such as Au NPs and gold nanorods (Au NRs). NaYF4:Yb3+/Er3+ NPs were used as photoconverters, which could emit green and red light under excitation of a 980 nm laser; Au NPs and Au NRs were also prepared and used as heat producers. The silica shell was further coated around UCPs to improve biocompatibility and as a bridge linking UCPs and the Au NMs. Most importantly, the thickness of the silica shell was tuned precisely to investigate the effective distance of the plasmonic field for heat induction. Energy transfer was confirmed by the declining UCL photoluminescence and emission decay time after connecting to the Au NMs. Moreover, a simulative model was built using the finite element method to assess the differences in heat generation between UCP@SiO2-NPs and UCP@SiO2-NRs. The surfaces of the hybrid nanocomposites were modified with folic acid to improve the specific targeting to cancer cells. The performance of the modified hybrid nanocomposites in PTT for OECM-1 oral cancer cells was evaluated.
Collapse
Affiliation(s)
- Chieh-Wei Chen
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Mitophagy induced by nanoparticle-peptide conjugates enabling an alternative intracellular trafficking route. Biomaterials 2015; 65:56-65. [PMID: 26142776 DOI: 10.1016/j.biomaterials.2015.06.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 06/09/2015] [Accepted: 06/11/2015] [Indexed: 02/02/2023]
Abstract
The intracellular behaviors of nanoparticles are fundamentally important for the evaluation of their biosafety and the designs of nano carrier-assisted drug delivery with high therapeutic efficacy. It is still in a great need to discover how functionalized nanoparticles are transported inside the cells, for instance, in a complicated fashion of translocation between different types of cell organelles. Here we report a new understanding of the interactions between nanoparticles and cells by the development of polyoxometalates nanoparticle-peptide conjugates and investigation of their intracellular trafficking behaviors. The as-prepared nanoparticles are featured with a unique combination of fluorescence and high contrast for synchrotron X-ray-based imaging. Functional surface modification with peptides facilitates effective delivery of the nanoparticles onto the target organelle (mitochondria) and subsequent intracellular trafficking in a dynamic mode. Interestingly, our experimental results have revealed that autophagy of mitochondria (mitophagy) can be induced by NP-peptide as a cellular response for recycling the damaged organelles, through molecular mediation associated with the change of mitochondrial membrane potential. The biological effects induced by NP-peptide reciprocally affect the distribution patterns and fates of nanoparticles in the cell metabolism by providing an alternative route of intracellular trafficking. The new understanding of the mutual activities between nanoparticles and cells will enrich our approaches in the development of nanobiotechnology and nano-medicine for disease treatments.
Collapse
|
23
|
Kesik M, Demir B, Barlas FB, Geyik C, Cevher SC, Odaci Demirkol D, Timur S, Cirpan A, Toppare L. A multi-functional fluorescent scaffold as a multi-colour probe: design and application in targeted cell imaging. RSC Adv 2015. [DOI: 10.1039/c5ra16600d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A new scaffold material based on a novel targeting strategy has been developed, benefiting from recent progress in the development of tailor-made fluorescent bioprobes for cellular imaging and opening a new viewpoint for further improvements in in vitro and in vivo imaging.
Collapse
Affiliation(s)
- M. Kesik
- Department of Chemistry
- Middle East Technical University
- 06800 Ankara
- Turkey
| | - B. Demir
- Department of Biochemistry
- Faculty of Science
- Ege University
- 35100 Bornova-Izmir
- Turkey
| | - F. B. Barlas
- Department of Biochemistry
- Faculty of Science
- Ege University
- 35100 Bornova-Izmir
- Turkey
| | - C. Geyik
- Institute on Drug Abuse
- Toxicology and Pharmaceutical Science
- Ege University
- 35100 Bornova-Izmir
- Turkey
| | - S. C. Cevher
- Department of Chemistry
- Middle East Technical University
- 06800 Ankara
- Turkey
| | - D. Odaci Demirkol
- Department of Biochemistry
- Faculty of Science
- Ege University
- 35100 Bornova-Izmir
- Turkey
| | - S. Timur
- Department of Biochemistry
- Faculty of Science
- Ege University
- 35100 Bornova-Izmir
- Turkey
| | - A. Cirpan
- Department of Chemistry
- Middle East Technical University
- 06800 Ankara
- Turkey
- The Center for Solar Energy Research and Applications (GUNAM)
| | - L. Toppare
- Department of Chemistry
- Middle East Technical University
- 06800 Ankara
- Turkey
- The Center for Solar Energy Research and Applications (GUNAM)
| |
Collapse
|
24
|
Xia A, Deng Y, Shi H, Hu J, Zhang J, Wu S, Chen Q, Huang X, Shen J. Polypeptide-functionalized NaYF4:Yb(3+),Er(3+) nanoparticles: red-emission biomarkers for high quality bioimaging using a 915 nm laser. ACS APPLIED MATERIALS & INTERFACES 2014; 6:18329-18336. [PMID: 25279669 DOI: 10.1021/am5057272] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We prepared poly-L-aspartic acid (PASP) functionalized NaYF4:Yb(3+),Er(3+) upconversion nanoparticles (UCNP-PASP). These nanoparticles can give red upconversion emission under excitation at 915 nm, whose wavelength of emission and excitation is located in the optical window of biological tissue. Dynamic laser scatting and zeta potentials of UCNP-PASP were used to study their stabilities in different aqueous solution. To understand the mechanism of the red emission of UCNP-PASP, photoluminescence spectra of samples were recorded before and after modification with PASP, poly acrylic acid (PAA), and poly(ether imide) (PEI) ligands under excitation at 915 and 980 nm, respectively. The cytotoxicity of the UCNP-PASP was also examined on a A549 cell and KB cell by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay. Moreover, the PASP-functionalized UCNP was employed as a potential biomarker for in vitro and in vivo experiments of upconversion luminescence imaging.
Collapse
Affiliation(s)
- Ao Xia
- School of Chemistry & Chemical Engineering, Nanjing University , 22 Hankou Road, Nanjing 210093, China
| | | | | | | | | | | | | | | | | |
Collapse
|