1
|
Bhatt P, Kumar V, Subramaniyan V, Nagarajan K, Sekar M, Chinni SV, Ramachawolran G. Plasma Modification Techniques for Natural Polymer-Based Drug Delivery Systems. Pharmaceutics 2023; 15:2066. [PMID: 37631280 PMCID: PMC10459779 DOI: 10.3390/pharmaceutics15082066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/14/2023] [Accepted: 06/23/2023] [Indexed: 08/27/2023] Open
Abstract
Natural polymers have attracted significant attention in drug delivery applications due to their biocompatibility, biodegradability, and versatility. However, their surface properties often limit their use as drug delivery vehicles, as they may exhibit poor wettability, weak adhesion, and inadequate drug loading and release. Plasma treatment is a promising surface modification technique that can overcome these limitations by introducing various functional groups onto the natural polymer surface, thus enhancing its physicochemical and biological properties. This review provides a critical overview of recent advances in the plasma modification of natural polymer-based drug delivery systems, with a focus on controllable plasma treatment techniques. The review covers the fundamental principles of plasma generation, process control, and characterization of plasma-treated natural polymer surfaces. It discusses the various applications of plasma-modified natural polymer-based drug delivery systems, including improved biocompatibility, controlled drug release, and targeted drug delivery. The challenges and emerging trends in the field of plasma modification of natural polymer-based drug delivery systems are also highlighted. The review concludes with a discussion of the potential of controllable plasma treatment as a versatile and effective tool for the surface functionalization of natural polymer-based drug delivery systems.
Collapse
Affiliation(s)
- Pankaj Bhatt
- KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad 201206, Uttar Pradesh, India; (P.B.)
- Department of Pharmaceutical Sciences, Gurukul Kangri (Deemed to Be University), Haridwar 249404, Uttarakhand, India;
| | - Vipin Kumar
- Department of Pharmaceutical Sciences, Gurukul Kangri (Deemed to Be University), Haridwar 249404, Uttarakhand, India;
| | - Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Kandasamy Nagarajan
- KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad 201206, Uttar Pradesh, India; (P.B.)
| | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Selangor, Malaysia
| | - Suresh V. Chinni
- Department of Biochemistry, Faculty of Medicine, Bioscience, and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602117, Tamil Nadu, India
| | - Gobinath Ramachawolran
- Department of Foundation, RCSI & UCD Malaysia Campus, No. 4, Jalan Sepoy Lines, Georgetown 10450, Pulau Pinang, Malaysia
| |
Collapse
|
2
|
Fabregat G, Lanzalaco S, Aït Saïd J, Muñoz-Pascual X, Llorca J, Alemán C. Immobilization of glucose oxidase on plasma-treated polyethylene for non-invasive glucose detection. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
3
|
Misra N, Bhatt S, Arefi‐Khonsari F, Kumar V. State of the art in nonthermal plasma processing for biomedical applications: Can it help fight viral pandemics like COVID-19? PLASMA PROCESSES AND POLYMERS (PRINT) 2021; 18:2000215. [PMID: 34220401 PMCID: PMC8237024 DOI: 10.1002/ppap.202000215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/07/2021] [Accepted: 05/03/2021] [Indexed: 06/13/2023]
Abstract
Plasma processing finds widespread biomedical applications, such as the design of biosensors, antibiofouling surfaces, controlled drug delivery systems, and in plasma sterilizers. In the present coronavirus disease (COVID-19) situation, the prospect of applying plasma processes like surface activation, plasma grafting, plasma-enhanced chemical vapor deposition/plasma polymerization, surface etching, plasma immersion ion implantation, crosslinking, and plasma decontamination to provide timely solutions in the form of better antiviral alternatives, practical diagnostic tools, and reusable personal protective equipment is worth exploring. Herein, the role of nonthermal plasmas and their contributions toward healthcare are timely reviewed to engage different communities in assisting healthcare associates and clinicians, not only to combat the current COVID-19 pandemic but also to prevent similar kinds of future outbreaks.
Collapse
Affiliation(s)
- Nilanjal Misra
- Radiation Technology Development DivisionBhabha Atomic Research CentreTrombayMumbaiMaharashtraIndia
| | - Sudhir Bhatt
- Department of Engineering and Physical SciencesInstitute of Advanced ResearchGandhinagarGujaratIndia
| | | | - Virendra Kumar
- Radiation Technology Development DivisionBhabha Atomic Research CentreTrombayMumbaiMaharashtraIndia
- Department of Chemical SciencesHomi Bhabha National InstituteAnushaktinagarMumbaiMaharashtraIndia
| |
Collapse
|
4
|
Development of plasma functionalized polypropylene wound dressing for betaine hydrochloride controlled drug delivery on diabetic wounds. Sci Rep 2021; 11:9641. [PMID: 33953292 PMCID: PMC8100292 DOI: 10.1038/s41598-021-89105-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
Diabetes Mellitus is one of the most worrying issues among illnesses, and its chronic subsequences almost refer to inflammations and infections. The loading and local release of antioxidants to wounds may decrease inflammations. However, the low wettability of PolyPropylene (PP) restricts the drug from loading. So, to increase the adhesion of PP for loading an optimum amount of Betaine Hydrochloride (BET), plasma has been applied in two steps of functionalization and polymerization, which has been confirmed with FE-SEM, ATR-FTIR, and EDX. The new chemistry of the surface led to almost 80% of BET loaded. The drug-releasing ratio studied by HPLC approved the presence of a PEG-like layer, which was coated by polymerization of tetraglyme. To evaluate the wound healing potential of the application of PP meshes treated by plasma, 72 Wistar rats were subdivided into four groups. The skin injury site was removed and underwent biomechanical tests, stereological analysis, and RNA extraction. The results showed a significant improvement in the polymerized scaffold containing BET for skin injury. The present study suggests that the use of a modified PP mesh can induce tissue regeneration and accelerate wound healing at the skin injury site.
Collapse
|
5
|
Two-step strategy for constructing hierarchical pore structured chitosan–hydroxyapatite composite scaffolds for bone tissue engineering. Carbohydr Polym 2021; 260:117765. [DOI: 10.1016/j.carbpol.2021.117765] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/04/2020] [Accepted: 02/02/2021] [Indexed: 12/19/2022]
|
6
|
Tan F, Fang Y, Zhu L, Al-Rubeai M. Cold atmospheric plasma as an interface biotechnology for enhancing surgical implants. Crit Rev Biotechnol 2021; 41:425-440. [PMID: 33622112 DOI: 10.1080/07388551.2020.1853671] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cold atmospheric plasma (CAP) has been intensively researched for direct treatment of living cells and tissues. Significant attention is now being given to its indirect applications in plasma medicine. Surgical implant is an exemplary conveyor to deliver the therapeutic effects of plasma to patients. There is a constant drive to enhance the clinical performance of surgical implants, targeting at the implant-tissue interface. As a versatile and potent tool, CAP is capable of ameliorating surgical implants using various strategies of interface biotechnology, such as surface modification, coating deposition, and drug delivery. Understanding the chemical, physical, mechanical, electrical, and pharmacological processes occurring at the implant-tissue interface is crucial to effective application of CAP as an interface biotechnology. This preclinical review focuses on the recent advances in CAP-assisted implant-based therapy for major surgical specialties. The ultimate goal here is to elicit unique opportunities and challenges for translating implant science to plasma medicine.
Collapse
Affiliation(s)
- Fei Tan
- Department of ORL-HNS, Affiliated East Hospital of Tongji University, Shanghai, China.,School of Medicine and Institute for Advanced Study, Tongji University, Shanghai, China.,The Royal College of Surgeons of England, London, UK
| | - Yin Fang
- School of Medicine and Institute for Advanced Study, Tongji University, Shanghai, China
| | - Liwei Zhu
- Department of ORL-HNS, Affiliated East Hospital of Tongji University, Shanghai, China
| | - Mohamed Al-Rubeai
- School of Chemical and Bioprocess Engineering, and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
7
|
Tertiary blends of PAMAM/PEG/PEG tissue bioadhesives. J Mech Behav Biomed Mater 2020; 101:103405. [DOI: 10.1016/j.jmbbm.2019.103405] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/30/2019] [Accepted: 08/24/2019] [Indexed: 11/24/2022]
|
8
|
Tuning Drug Release via Twin Screw Extrusion in Polyester Films. J Pharm Sci 2019; 108:2430-2437. [DOI: 10.1016/j.xphs.2019.02.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/24/2019] [Accepted: 02/27/2019] [Indexed: 11/17/2022]
|
9
|
Bao W, Zhang X, Wu H, Chen R, Guo S. Synergistic Effect of Ultrasound and Polyethylene Glycol on the Mechanism of the Controlled Drug Release from Polylactide Matrices. Polymers (Basel) 2019; 11:E880. [PMID: 31091765 PMCID: PMC6571575 DOI: 10.3390/polym11050880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/08/2019] [Accepted: 05/11/2019] [Indexed: 01/08/2023] Open
Abstract
In this paper, the synergistic effect of ultrasound and polyethylene glycol (PEG) on the controlled release of a water soluble drug from polylactide (PLA) matrices was studied. When ultrasound was used following the hot melt extrusion (HME) of the PLA/model drug release system, the release of the model drug (Methylene Blue (MB)) from the PLA when immersed in phosphate buffered saline (PBS) was affected by the variation of the parameters of ultrasound. It was found that no more than 2% PLA dissolved during the in-vitro release study, and the release of the MB from the PLA was diffusion controlled and fit well with the Higuchi diffusion model. Polyethylene glycol (PEG), which has high hydrophilicity and rapid dissolution speed, was blended with the PLA during the melt extrusion to enhance the release of the MB. The analysis of the structure and properties of the in-vitro release tablets of PLA/PEG/MB indicated that the ultrasound could improve the dispersion of MB in the PLA/PEG blends and it could also change the structure and properties of the PLA/PEG blends. Due to the dissolution of the PEG in PBS, the release of the MB from the PLA/PEG drug carrier was a combination of diffusion and erosion controlled release. Thus a new mechanism combining of diffusion and erosion models and modified kinetics model was proposed to explain the release behavior.
Collapse
Affiliation(s)
- Wenting Bao
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
- Aviation Fuel & Chemical Airworthiness Certification Center of CAAC, The Second Research Institute of Civil Aviation Administration of China, Chengdu 610207, China.
| | - Xianlong Zhang
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| | - Hong Wu
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| | - Rong Chen
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| | - Shaoyun Guo
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| |
Collapse
|
10
|
Ortiz R, Stuckey DC, Steele TW. Rapid EC50 determination of hydrophobic toxicants in continuous droplet biomicrofluidics. MICRO AND NANO ENGINEERING 2019. [DOI: 10.1016/j.mne.2019.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
Shah AH, Pokholenko O, Nanda HS, Steele TWJ. Non-aqueous, tissue compliant carbene-crosslinking bioadhesives. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:215-225. [PMID: 30948055 DOI: 10.1016/j.msec.2019.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 01/22/2019] [Accepted: 03/01/2019] [Indexed: 01/06/2023]
Abstract
Surgical adhesives are an attractive alternative to traditional mechanical tissue fixation methods of sutures and staples. Ease of application, biocompatibility, enhanced functionality (drug delivery) are known advantages but weak adhesion strength in the wet environment and lack of tissue compliant behavior still pose a challenge. In order to address these issues, non-aqueous bioadhesive based on blends of polyamidoamine (PAMAM) dendrimer, conjugated with 4-[3-(trifluoromethyl)-3H-diazirin-3-yl] benzyl bromide (PAMAM-g-diazirine) and liquid polyethylene glycol (PEG 400) has been developed. PEG 400 biocompatible solvent reduces the viscosity of PAMAM-g-diazirine dendrimer without incorporating aqueous solvents or plasticizers, allowing application by syringe or spray. Upon UV activation, diazirine-generated reactive intermediates lead to intermolecular dendrimer crosslinking. The properties of the crosslinked matrix are tissue compliant, with anisotropic material properties dependent on the PEG 400 wt%, UV dose, pressure and uncured adhesive thickness. The hygroscopic PAMAM-g-diazirine/PEG 400 blend was hypothesized to absorb water at the tissue interface, leading to high interfacial adhesion, however porous matrices led to cohesive failure. The hydrophilic nature of the polyether backbone (PEG 400) shielded cationic PAMAM dendrimers with cured bioadhesive film displaying significantly less platelet activation than neat PAMAM-g-diazirine or PLGA thin films.
Collapse
Affiliation(s)
- Ankur Harish Shah
- School of Materials Science and Engineering, Division of Materials Technology, Nanyang Technological University, Singapore 639798, Singapore
| | - Oleksander Pokholenko
- School of Materials Science and Engineering, Division of Materials Technology, Nanyang Technological University, Singapore 639798, Singapore
| | - Himanshu Sekhar Nanda
- Department of Mechanical Engineering, PDPM-Indian Institute of Information Technology, Design and Manufacturing (IIITDM)-Jabalpur, Dumna Airport Road, Jabalpur 482005, MP, India
| | - Terry W J Steele
- School of Materials Science and Engineering, Division of Materials Technology, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
12
|
Rapid serial diluting biomicrofluidic provides EC50 in minutes. MICRO AND NANO ENGINEERING 2019. [DOI: 10.1016/j.mne.2019.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Gao F, Djordjevic I, Pokholenko O, Zhang H, Zhang J, Steele TWJ. On-Demand Bioadhesive Dendrimers with Reduced Cytotoxicity. Molecules 2018; 23:E796. [PMID: 29601480 PMCID: PMC6017702 DOI: 10.3390/molecules23040796] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 03/22/2018] [Accepted: 03/27/2018] [Indexed: 01/11/2023] Open
Abstract
Tissue adhesives based on polyamidoamine (PAMAM) dendrimer, grafted with UV-sensitive aryldiazirine (PAMAM-g-diazirine) are promising new candidates for light active adhesion on soft tissues. Diazirine carbene precursors form interfacial and intermolecular covalent crosslinks with tissues after UV light activation that requires no premixing or inclusion of free radical initiators. However, primary amines on the PAMAM dendrimer surface present a potential risk due to their cytotoxic and immunological effects. PAMAM-g-diazirine formulations with cationic pendant amines converted into neutral amide groups were evaluated. In vitro toxicity is reduced by an order of magnitude upon amine capping while retaining bioadhesive properties. The in vivo immunological response to PAMAM-g-diazirine formulations was found to be optimal in comparison to standard poly(lactic-co-glycolic acid) (PLGA) thin films.
Collapse
Affiliation(s)
- Feng Gao
- School of Material Science and Engineering, Beijing University of Chemistry Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, China.
| | - Ivan Djordjevic
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, NL, Mexico.
| | - Oleksandr Pokholenko
- School of Materials Science and Engineering, Division of Materials Technology, Nanyang Technological University, Singapore 639798, Singapore.
| | - Haobo Zhang
- School of Material Science and Engineering, Beijing University of Chemistry Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, China.
| | - Junying Zhang
- School of Material Science and Engineering, Beijing University of Chemistry Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, China.
| | - Terry W J Steele
- School of Materials Science and Engineering, Division of Materials Technology, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
14
|
Novel approach for a PTX/VEGF dual drug delivery system in cardiovascular applications—an innovative bulk and surface drug immobilization. Drug Deliv Transl Res 2018. [DOI: 10.1007/s13346-018-0507-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Liu P, Sun L, Liu P, Yu W, Zhang Q, Zhang W, Ma J, Liu P, Shen J. Surface modification of porous PLGA scaffolds with plasma for preventing dimensional shrinkage and promoting scaffold–cell/tissue interactions. J Mater Chem B 2018; 6:7605-7613. [DOI: 10.1039/c8tb02374c] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
An effective strategy for simultaneously tackling the dimensional shrinkage of a highly porous PLGA scaffold and improving the scaffold–tissue integration.
Collapse
Affiliation(s)
- Peiming Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- Jiangsu Key Laboratory of Bio-functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
| | - Lian Sun
- Jiangsu Key Laboratory of Oral Diseases
- Nanjing Medical University
- Nanjing 210029
- P. R. China
| | - Pingying Liu
- School of Materials Science and Engineering
- Jingdezhen Ceramic Institute
- Jingdezhen 333403
- P. R. China
- School of Chemistry and Chemical Engineering
| | - Wenqian Yu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- Jiangsu Key Laboratory of Bio-functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
| | - Qianhui Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- Jiangsu Key Laboratory of Bio-functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
| | - Weibing Zhang
- Jiangsu Key Laboratory of Oral Diseases
- Nanjing Medical University
- Nanjing 210029
- P. R. China
| | - Jing Ma
- School of Chemistry and Chemical Engineering
- Key Laboratory of Mesoscopic Chemistry of MOE
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Pingsheng Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- Jiangsu Key Laboratory of Bio-functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- Jiangsu Key Laboratory of Bio-functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
| |
Collapse
|
16
|
Alemán C, Fabregat G, Armelin E, Buendía JJ, Llorca J. Plasma surface modification of polymers for sensor applications. J Mater Chem B 2018; 6:6515-6533. [DOI: 10.1039/c8tb01553h] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Polymeric sensors play an increasingly important role in monitoring the environment we live in, providing relevant information for a host of applications.
Collapse
Affiliation(s)
- Carlos Alemán
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya
- Barcelona
- Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya
- Barcelona
| | - Georgina Fabregat
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya
- Barcelona
- Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya
- Barcelona
| | - Elaine Armelin
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya
- Barcelona
- Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya
- Barcelona
| | - Jorge J. Buendía
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya
- Barcelona
- Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya
- Barcelona
| | - Jordi Llorca
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya
- Barcelona
- Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya
- Barcelona
| |
Collapse
|
17
|
Stloukal P, Novák I, Mičušík M, Procházka M, Kucharczyk P, Chodák I, Lehocký M, Sedlařík V. Effect of plasma treatment on the release kinetics of a chemotherapy drug from biodegradable polyester films and polyester urethane films. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2017.1309543] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Petr Stloukal
- Centre of Polymer Systems, University Institute, Tomas Bata University, Zlín, Czech Republic
| | - Igor Novák
- Polymer Institute, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Matej Mičušík
- Polymer Institute, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Michal Procházka
- Polymer Institute, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Pavel Kucharczyk
- Centre of Polymer Systems, University Institute, Tomas Bata University, Zlín, Czech Republic
| | - Ivan Chodák
- Polymer Institute, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Marian Lehocký
- Centre of Polymer Systems, University Institute, Tomas Bata University, Zlín, Czech Republic
| | - Vladimír Sedlařík
- Centre of Polymer Systems, University Institute, Tomas Bata University, Zlín, Czech Republic
| |
Collapse
|
18
|
Plasma treatment as an efficient tool for controlled drug release from polymeric materials: A review. J Control Release 2017; 266:57-74. [DOI: 10.1016/j.jconrel.2017.09.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/13/2017] [Accepted: 09/15/2017] [Indexed: 12/19/2022]
|
19
|
Bagheri M, Mohammadi M, Steele TW, Ramezani M. Nanomaterial coatings applied on stent surfaces. Nanomedicine (Lond) 2017; 11:1309-26. [PMID: 27111467 DOI: 10.2217/nnm-2015-0007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The advent of percutaneous coronary intervention and intravascular stents has revolutionized the field of interventional cardiology. Nonetheless, in-stent restenosis, inflammation and late-stent thrombosis are the major obstacles with currently available stents. In order to enhance the hemocompatibility of stents, advances in the field of nanotechnology allow novel designs of nanoparticles and biomaterials toward localized drug/gene carriers or stent scaffolds. The current review focuses on promising polymers used in the fabrication of newer generations of stents with a short synopsis on atherosclerosis and current commercialized stents, nanotechnology's impact on stent development and recent advancements in stent biomaterials is discussed in context.
Collapse
Affiliation(s)
- Mahsa Bagheri
- Shariati Hospital, Mashhad University of Medical Sciences, Mashhad, PO Box 935189-9983, Iran.,Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, PO Box 91775-1365, Iran
| | - Marzieh Mohammadi
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, PO Box 91775-1365, Iran
| | - Terry Wj Steele
- Division of Materials Technology, Materials & Science Engineering, Nanyang Technological University, Singapore
| | - Mohammad Ramezani
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, PO Box 91775-1365, Iran
| |
Collapse
|
20
|
Self-assembled photoadditives in polyester films allow stop and go chemical release. Acta Biomater 2017; 54:186-200. [PMID: 28315815 DOI: 10.1016/j.actbio.2017.03.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/04/2017] [Accepted: 03/13/2017] [Indexed: 12/16/2022]
Abstract
Near-infrared (NIR) triggered chemical delivery allows on-demand release with the advantage of external tissue stimulation. Bioresorbable polyester poly-l-lactic acid (PLLA) was compounded with photoadditives of neat zinc oxide (ZnO) nanoparticles and 980→365nm LiYF4:Tm3+, Yb3+ upconverting nanoparticles (UCNP). Subsequently, neat ZnO and UCNP blended PLLA films of sub-50μm thickness were knife casted with a hydrophobic small molecule drug mimic, fluorescein diacetate. The PLLA films displayed a 500 times increase in fluorescein diacetate release from the 50mW NIR irradiated PLLA/photoadditive film compared to non-irradiated PLLA control films. Larger ratios of UCNP/neat ZnO increased photocatalysis efficiency at low NIR duty cycles. The synergistic increase results from the self-assembled photoadditives of neat zinc oxide and upconverting nanoparticles (UCNPs), as seen in transmission electron microscopy. Colloidal ZnO, which does not self-assemble with UCNPs, had less than half the release kinetics of the self-assembled PLLA films under similar conditions, advocating Förster resonance energy transfer as the mechanism responsible for the synergistic increase. Alternative to intensity modulation, pulse width modulation (duty cycles from 0.1 to 1) of the low intensity 50mW NIR laser diode allowed tailorable release rates from 0.01 to 1.4% per day. With the low intensity NIR activation, tailorable release rates, and favorable biocompatibility of the constituents, implanted PLLA photoadditive thin films could allow feedback mediated chemical delivery. STATEMENT OF SIGNIFICANCE Upconverting nanoparticles and zinc oxide nanorods were found to spontaneously self-assemble into submicron particles in organic solvents. Exposure of the submicron particles to near-infrared light allows stop and go chemical release from biocompatible polymers. Sample preparation of thin films is done with ease through physical mixing of the photoadditives followed by air-dried knife casting. A colloidal ZnO variant that does not self-assemble with upconverting nanoparticles had slower chemical release, suggesting that synergistic chemical release is brought upon by highly efficient energy transfer mechanisms when the nanoparticles are less than 10nm apart. Never before seen composite particles of UCNP/ZnO are displayed, which shows the close interaction of the photoadditives within the polymer matrix.
Collapse
|
21
|
O’Rorke RD, Pokholenko O, Gao F, Cheng T, Shah A, Mogal V, Steele TWJ. Addressing Unmet Clinical Needs with UV Bioadhesives. Biomacromolecules 2017; 18:674-682. [DOI: 10.1021/acs.biomac.6b01743] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Richard D. O’Rorke
- Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372
| | - Oleksandr Pokholenko
- School
of Materials Science and Engineering, Nanyang Technological University, Block N4.1, Nanyang Avenue, Singapore 639798
| | - Feng Gao
- School
of Materials Science and Engineering, Nanyang Technological University, Block N4.1, Nanyang Avenue, Singapore 639798
| | - Ting Cheng
- School
of Materials Science and Engineering, Nanyang Technological University, Block N4.1, Nanyang Avenue, Singapore 639798
| | - Ankur Shah
- School
of Materials Science and Engineering, Nanyang Technological University, Block N4.1, Nanyang Avenue, Singapore 639798
| | - Vishal Mogal
- School
of Materials Science and Engineering, Nanyang Technological University, Block N4.1, Nanyang Avenue, Singapore 639798
- Faculty
of Dentistry, National University of Singapore, 11 Lower Kent Ridge Road, Singapore 119083
| | - Terry W. J. Steele
- School
of Materials Science and Engineering, Nanyang Technological University, Block N4.1, Nanyang Avenue, Singapore 639798
| |
Collapse
|
22
|
Jenkins CL, Siebert HM, Wilker JJ. Integrating Mussel Chemistry into a Bio-Based Polymer to Create Degradable Adhesives. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02213] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Courtney L. Jenkins
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Heather M. Siebert
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Jonathan J. Wilker
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
- School
of Materials Engineering, Purdue University, 701 West Stadium Avenue, West Lafayette, Indiana 47907-2045, United States
| |
Collapse
|
23
|
A novel pressed porous silicon-polycaprolactone composite as a dual-purpose implant for the delivery of cells and drugs to the eye. Exp Eye Res 2015; 139:123-31. [DOI: 10.1016/j.exer.2015.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 06/18/2015] [Accepted: 08/10/2015] [Indexed: 11/20/2022]
|
24
|
Quantification of aldehyde terminated heparin by SEC-MALLS-UV for the surface functionalization of polycaprolactone biomaterials. Colloids Surf B Biointerfaces 2015; 132:253-63. [PMID: 26052108 DOI: 10.1016/j.colsurfb.2015.05.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 04/16/2015] [Accepted: 05/13/2015] [Indexed: 12/11/2022]
Abstract
A straight forward strategy of heparin surface grafting employs a terminal reactive-aldehyde group introduced through nitrous acid depolymerization. An advanced method that allows simultaneously monitoring of both heparin molar mass and monomer/aldehyde ratio by size exclusion chromatography, multi-angle laser light scattering and UV-absorbance (SEC-MALLS-UV) has been developed to improve upon heparin surface grafting. Advancements over older methods allow quantitative characterization by direct (aldehyde absorbance) and indirect (Schiff-based absorbance) evaluation of terminal functional aldehydes. The indirect quantitation of functional aldehydes through labeling with aniline (and the formation of a Schiff-base) allows independent quantitation of both polymer mass and terminal functional groups with the applicable UV mass extinction coefficients determined. The protocol was subsequently used to synthesize an optimized heparin-aldehyde that had minimal polydispersity (PDI<2) and high reaction yields (yield >60% by mass). The 8 kDa weight averaged molar mass heparin-aldehyde was then grafted on polycaprolactone (PCL), a common implant material. This optimized heparin-aldehyde retained its antithrombin activity, assessed in freshly drawn blood or surface immobilized on PCL films. Anticoagulant activity was equal to or better than the 24 kDa unmodified heparin it was fragmented from.
Collapse
|