1
|
Liu X, Zhao Y, Ding Y, Wang J, Liu J. Stabilization of Gold Nanoparticles by Hairpin DNA and Implications for Label-Free Colorimetric Biosensors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5542-5549. [PMID: 35446580 DOI: 10.1021/acs.langmuir.2c00119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With extremely high extinction coefficients and other unique optical properties, gold nanoparticles (AuNPs) have received growing interest in developing biosensors. DNA hairpin structures are very popular probes for the detection of not only complementary DNA or RNA but also aptamer targets. This work aims to understand the effect of the structure and sequence of hairpin DNA for the stabilization of AuNPs and its implications in AuNP-based label-free colorimetric biosensors. A series of hairpin DNA with various loop sizes from 4 to 26 bases and sequences (random sequences, poly-A and poly-T) were tested, but they showed similar abilities to protect AuNPs from aggregation. Using hairpin DNA with a tail under the same conditions, optimal protection was achieved with a six-base or longer tail. DNA hairpins are likely adsorbed via their tail regions or with their terminal bases if no tail is present. Molecular dynamics simulations showed that the rigidity of the hairpin loop region disfavored its adsorption to AuNPs, while the flexible tail region is favored. Finally, a DNA sensing assay was conducted using different structured DNA, where hairpin DNA with a tail doubled the sensitivity compared to the tail-free hairpin.
Collapse
Affiliation(s)
- Xun Liu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Yu Zhao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuzhe Ding
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Jianhua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
2
|
Dillen A, Lammertyn J. Paving the way towards continuous biosensing by implementing affinity-based nanoswitches on state-dependent readout platforms. Analyst 2022; 147:1006-1023. [DOI: 10.1039/d1an02308j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Combining affinity-based nanoswitches with state-dependent readout platforms allows for continuous biosensing and acquisition of real-time information about biochemical processes occurring in the environment of interest.
Collapse
Affiliation(s)
- Annelies Dillen
- KU Leuven, Department of Biosystems – Biosensors Group, Willem de Croylaan 42, Box 2428, 3001, Leuven, Belgium
| | - Jeroen Lammertyn
- KU Leuven, Department of Biosystems – Biosensors Group, Willem de Croylaan 42, Box 2428, 3001, Leuven, Belgium
| |
Collapse
|
3
|
Cyclic strand displacement polymerase reaction to turn-on molecular beacons for rapid detection of Staphylococcus aureus. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Zhu F, Ji Y, Li L, Bai X, Liu X, Luo Y, Liu T, Lin B, Lu Y. High-Throughput Single-Cell Extracellular Vesicle Secretion Analysis on a Desktop Scanner without Cell Counting. Anal Chem 2021; 93:13152-13160. [PMID: 34551257 DOI: 10.1021/acs.analchem.1c01446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Single-cell EV (extracellular vesicle) secretion analysis is emerging for a better understanding of non-genetic cellular heterogeneity regulating human health and diseases through intercellular mediators. However, the requirements of expensive and bulky instrumentations hinder its widespread use. Herein, by combining gold nanoparticle-enhanced silver staining and the Poisson distribution, we reported the use of a home-use scanner to realize high-throughput single-cell EV secretion analysis without cell counting. We applied the platform to analyze the secretions of different EV phenotypes with the human oral squamous cell carcinoma cell line and primary cells from patients, which generated single-cell results comparable with those of the immunofluorescence approach. Notably, we also realized the quantification of the number of EVs secreted from every single cell using their respective titration curves obtained from population samples, making it possible to directly compare different EV phonotypes in regard to their secretion number, secretion rate, and so forth. The technology introduced here is simple, easy to operate, and of low cost, which make it a potential, easily accessible, and affordable tool for widespread use in both basic and clinical research.
Collapse
Affiliation(s)
- Fengjiao Zhu
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yahui Ji
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Linmei Li
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xue Bai
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xianming Liu
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yong Luo
- State Key Laboratory of Fine Chemicals, Department of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Tingjiao Liu
- College of Stomatology, Dalian Medical University, Dalian 116044, China
| | - Bingcheng Lin
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yao Lu
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
5
|
Detection of Mercury Ion with High Sensitivity and Selectivity Using a DNA/Graphene Oxide Hybrid Immobilized on Glass Slides. BIOSENSORS-BASEL 2021; 11:bios11090300. [PMID: 34562890 PMCID: PMC8471904 DOI: 10.3390/bios11090300] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/18/2021] [Accepted: 08/22/2021] [Indexed: 01/25/2023]
Abstract
Excessive mercury ions (Hg2+) cause great pollution to soil/water and pose a major threat to human health. The high sensitivity and high selectivity in the Hg2+ detection demonstrated herein are significant for the research areas of analytical chemistry, chemical biology, physical chemistry, drug discovery, and clinical diagnosis. In this study, a series of simple, low-cost, and highly sensitive biochips based on a graphene oxide (GO)/DNA hybrid was developed. Hg2+ is detected with high sensitivity and selectivity by GO/DNA hybrid biochips immobilized on glass slides. The performance of the biosensors can be improved by introducing more phosphorothioate sites and complementary bases. The best limit of detection of the biochips is 0.38 nM with selectivity of over 10:1. This sensor was also used for Hg2+ detection in Dendrobium. The results show this biochip is promising for Hg2+ detection.
Collapse
|
6
|
He J, Hu X, Gao X, Meng C, Li Y, Li X, Fan L, Yu HZ. A versatile fluorometric in situ hybridization method for the quantitation of hairpin conformations in DNA self-assembled monolayers. Analyst 2020; 145:4522-4531. [PMID: 32418997 DOI: 10.1039/d0an00657b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As the performance of hairpin DNA (hpDNA)-based biosensors is highly dependent on the yield of stem-loop (hairpin) conformations, we report herein a versatile fluorometric in situ hybridization protocol for examining hpDNA self-assembled monolayers (SAMs) on popularly used biochip substrates. Specifically, the ratio of fluorescence (FL) intensities of hpDNA SAMs (in an array format) before and after hybridization was adopted as the key parameter for performing such a determination. Upon confirming the existence of mixed and tunable DNA conformations in binary deposition solutions and efficient hybridization of the hairpin strands with the target DNA via gel electrophoresis assays, we tested the fluorometric protocol for determining the coverages of hpDNA in hpDNA/ssDNA SAMs prepared on gold; its accuracy was validated by Exonuclease I (Exo I)-assisted electrochemical quantitation. To further confirm its versatility, this FL protocol was adopted for quantifying hairpin conformations formed on glass and polycarbonate (PC) substrates. The molar ratios of surface-tethered hairpin conformations on the three different substrates were all found to be proportional to but less than those in the binary deposition solutions, and were dependent on the substrate morphology. The findings reported herein are beneficial for the construction of highly efficient DNA hairpin-based sensing surfaces, which essentially facilitates the creation of hpDNA-based biosensors with optimal detection performance.
Collapse
Affiliation(s)
- Jiale He
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Zhang Y, Figueroa-Miranda G, Zafiu C, Willbold D, Offenhäusser A, Mayer D. Amperometric Aptasensor for Amyloid-β Oligomer Detection by Optimized Stem-Loop Structures with an Adjustable Detection Range. ACS Sens 2019; 4:3042-3050. [PMID: 31674772 DOI: 10.1021/acssensors.9b01630] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Amyloid-β oligomers (AβO) have become representative biomarkers for early diagnosis of Alzheimer's disease. Here, we report on an aptasensor based on stem-loop probes for sensitive and specific detection of AβO by an amperometric transducer principle using alternating current voltammetry (ACV). Stem-loop probes with redox-active moieties are immobilized on a gold substrate as a receptor element. The signal transduction mechanism relies on redox ferrocene (Fc) reporting via charge transfer on a molecular recognition event involving a conformational change of the molecular beacon. The stem-loop structures were optimized by considering the aptamers' stem length, spacer, and different ferrocene terminals. In addition, the sensor assembly and signal recording including aptamer concentration and ACV frequency dependence are discussed. Using the optimized stem-loop probe (B-3' Fc), the aptasensor showed a decrease of the Fc peak current induced by AβO binding within the broad concentration range spanning 6 orders of magnitude. Furthermore, the detection limit of the sensor can be further decreased by optimizing the ACV frequency, however at the cost of a narrowed detection range. In this work, a label-free electrochemical aptasensor is demonstrated, which facilitates the quantification of the concentration of AβO with high selectivity and subpicomolar sensitivity, which may be conducive to improving the diagnosis and pharmacology studies of Alzheimer's disease.
Collapse
Affiliation(s)
- Yuting Zhang
- Faculty I, RWTH Aachen, 52062 Aachen, North Rhine-Westphalia, Germany
| | | | | | - Dieter Willbold
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, North Rhine-Westphalia, Germany
| | | | | |
Collapse
|
8
|
Chu L, Zhang L, Gu ZZ, Li X, Kang X, Yu HZ. Blu-Ray Discs as Universal Biochip Substrates: Lithography-Free Surface Activation and Assay Patterning. ACS APPLIED MATERIALS & INTERFACES 2019; 11:37330-37337. [PMID: 31525871 DOI: 10.1021/acsami.9b13268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Blu-ray discs (BDs) are advantageous in comparison with other optical discs (compact discs and digital versatile discs) in terms of not only their storage capacity but also the high-quality materials fabricated from. We have recently discovered that the "Hard Coat" film of Verbatim BDs is in fact a unique type of polymeric substrates that can be readily activated and adapted for biochip fabrications. Particularly, the Hard Coat film peeled from BDs is optically transparent without any fluorescence background, which can be activated by treating with a common base (1.0 M NaOH) at a slightly elevated temperature (55 °C). The surface density of reactive carboxylic acid groups generated, 6.6 ± 0.7 × 10-9 mol/cm2, is much higher than that on polycarbonate upon UV/ozone irradiation (4.8 ± 0.2 × 10-10 mol/cm2). There are no significant physical damages to the substrate morphology, and the aging effect is minimal. More importantly, the BD substrate can be patterned using either cut-out filter paper masks or microfluidic channel plates; both are lithography-free, bench-top methods that facilitate the device fabrication in a common laboratory setting. With classical biotin-streptavidin binding and DNA hybridization arrays as trial systems, we have also demonstrated this new type of biochip substrates for quantitative assay applications.
Collapse
Affiliation(s)
- Lanling Chu
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada
- School of Biological Science and Medical Engineering , Southeast University , Nanjing , Jiangsu 210096 , China
- School of Light Industry and Food Engineering , Nanjing Forestry University , Nanjing , Jiangsu 210037 , China
| | - Lingling Zhang
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada
- College of Biomedical Engineering , Taiyuan University of Technology , Taiyuan , Shanxi 030024 , China
| | - Zhong-Ze Gu
- School of Biological Science and Medical Engineering , Southeast University , Nanjing , Jiangsu 210096 , China
| | - Xiaochun Li
- College of Biomedical Engineering , Taiyuan University of Technology , Taiyuan , Shanxi 030024 , China
| | - Xuejun Kang
- School of Biological Science and Medical Engineering , Southeast University , Nanjing , Jiangsu 210096 , China
| | - Hua-Zhong Yu
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada
- College of Biomedical Engineering , Taiyuan University of Technology , Taiyuan , Shanxi 030024 , China
| |
Collapse
|
9
|
Ma G, Yu Z, Zhou W, Li Y, Fan L, Li X. Investigation of Na+ and K+ Competitively Binding with a G-Quadruplex and Discovery of a Stable K+–Na+-Quadruplex. J Phys Chem B 2019; 123:5405-5411. [DOI: 10.1021/acs.jpcb.9b02823] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ge Ma
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ze Yu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wei Zhou
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yunchao Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Louzhen Fan
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiaohong Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
10
|
Munzar JD, Ng A, Juncker D. Duplexed aptamers: history, design, theory, and application to biosensing. Chem Soc Rev 2019; 48:1390-1419. [PMID: 30707214 DOI: 10.1039/c8cs00880a] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nucleic acid aptamers are single stranded DNA or RNA sequences that specifically bind a cognate ligand. In addition to their widespread use as stand-alone affinity binding reagents in analytical chemistry, aptamers have been engineered into a variety of ligand-specific biosensors, termed aptasensors. One of the most common aptasensor formats is the duplexed aptamer (DA). As defined herein, DAs are aptasensors containing two nucleic acid elements coupled via Watson-Crick base pairing: (i) an aptamer sequence, which serves as a ligand-specific receptor, and (ii) an aptamer-complementary element (ACE), such as a short DNA oligonucleotide, which is designed to hybridize to the aptamer. The ACE competes with ligand binding, such that DAs generate a signal upon ligand-dependent ACE-aptamer dehybridization. DAs possess intrinsic advantages over other aptasensor designs. For example, DA biosensing designs generalize across DNA and RNA aptamers, DAs are compatible with many readout methods, and DAs are inherently tunable on the basis of nucleic acid hybridization. However, despite their utility and popularity, DAs have not been well defined in the literature, leading to confusion over the differences between DAs and other aptasensor formats. In this review, we introduce a framework for DAs based on ACEs, and use this framework to distinguish DAs from other aptasensor formats and to categorize cis- and trans-DA designs. We then explore the ligand binding dynamics and chemical properties that underpin DA systems, which fall under conformational selection and induced fit models, and which mirror classical SN1 and SN2 models of nucleophilic substitution reactions. We further review a variety of in vitro and in vivo applications of DAs in the chemical and biological sciences, including riboswitches and riboregulators. Finally, we present future directions of DAs as ligand-responsive nucleic acids. Owing to their tractability, versatility and ease of engineering, DA biosensors bear a great potential for the development of new applications and technologies in fields ranging from analytical chemistry and mechanistic modeling to medicine and synthetic biology.
Collapse
Affiliation(s)
- Jeffrey D Munzar
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
11
|
Wang L, Zhu F, Liao S, Chen M, Zhu YQ, Liu Q, Chen X. Single-stranded DNA modified protonated graphitic carbon nitride nanosheets: A versatile ratiometric fluorescence platform for multiplex detection of various targets. Talanta 2019; 197:422-430. [PMID: 30771957 DOI: 10.1016/j.talanta.2019.01.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/04/2019] [Accepted: 01/16/2019] [Indexed: 12/12/2022]
Abstract
Facile and cost-effective detection of multiple targets is essential for a variety of applications ranging from life sciences to environmental monitoring. Here, we report a versatile ratiometric fluorescence platform for multiple detection of various targets based on the conjugation of single-stranded DNA (ssDNA) with protonated graphitic carbon nitride nanosheets (Pg-C3N4 NSs). We demonstrate that intrinsic peroxidase-like activity of Pg-C3N4 NSs is enhanced by conjugating with ssDNA, and thus the oxidation of substrate o-phenylenediamine (OPD) is promoted in the presence of H2O2. The oxidation product 2,3-diaminophenazine (DAP) can deliver a new fluorescence signal at 564 nm, and concurrently quench the intrinsic fluorescence of conjugates ssDNA/Pg-C3N4 NSs at 443 nm upon excitation at 370 nm. The transformation of fluorescence provides us a novel strategy for ratiometric fluorescence-based analytical sensing. Taking ssDNA as the target-recognition element of the conjugates ssDNA/Pg-C3N4 NSs, we favorably present ratiometric fluorescence detection of various targets including heavy metal ions (Hg2+) and biomolecules (Aflatoxin B1 (AFB1) and adenosine triphosphate (ATP)) in real samples by varying the ssDNA sequences. The present work provides a new strategy to develop facile methods for quantitative determination of various analytes and uncovers an innovative horizon for Pg-C3N4 NSs-based sensing platform fabrication.
Collapse
Affiliation(s)
- Lumin Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Fawei Zhu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Sen Liao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Miao Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Yu Qiu Zhu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Qi Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China.
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety,Changsha 410083, Hunan, China.
| |
Collapse
|
12
|
Gao X, Wang X, Li Y, He J, Yu HZ. Exonuclease I-Hydrolysis Assisted Electrochemical Quantitation of Surface-Immobilized DNA Hairpins and Improved HIV-1 Gene Detection. Anal Chem 2018; 90:8147-8153. [DOI: 10.1021/acs.analchem.8b01445] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Xiaoyi Gao
- Department of Chemistry, Beijing Normal University, Beijing 100875, People’s Republic of China
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Xinglin Wang
- Department of Chemistry, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Yunchao Li
- Department of Chemistry, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Jiale He
- Department of Chemistry, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Hua-Zhong Yu
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
13
|
Zhao Q, Piao J, Peng W, Wang Y, Zhang B, Gong X, Chang J. Simple and Sensitive Quantification of MicroRNAs via PS@Au Microspheres-Based DNA Probes and DSN-Assisted Signal Amplification Platform. ACS APPLIED MATERIALS & INTERFACES 2018; 10:3324-3332. [PMID: 29300448 DOI: 10.1021/acsami.7b16733] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Identifying the microRNA (miRNA) expression level can provide critical information for early diagnosis of cancers or monitoring the cancer therapeutic efficacy. This paper focused on a kind of gold-nanoparticle-coated polystyrene microbeads (PS@Au microspheres)-based DNA probe as miRNA capture and duplex-specific nuclease (DSN) signal amplification platform based on an RGB value readout for detection of miRNAs. In virtue of the outstanding selectivity and simple experimental operation, 5'-fluorochrome-labeled molecular beacons (MBs) were immobilized on PS@Au microspheres via their 3'-thiol, in the wake of the fluorescence quenching by nanoparticle surface energy transfer (NSET). Target miRNAs were captured by the PS@Au microspheres-based DNA probe through DNA/RNA hybridization. DSN enzyme subsequently selectively cleaved the DNA to recycle the target miRNA and release of fluorophores, thereby triggering the signal amplification with more free fluorophores. The RGB value measurement enabled a detection limit of 50 fM, almost 4 orders of magnitude lower than PS@Au microspheres-based DNA probe detection without DSN. Meanwhile, by different encoding of dyes, miRNA-21 and miRNA-10b were simultaneously detected in the same sample. Considering the ability for quantitation, high sensitivity, and convenient merits, the PS@Au microspheres-based DNA probe and DSN signal amplification platform supplied valuable information for early diagnosis of cancers.
Collapse
Affiliation(s)
- Qian Zhao
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin) , Tianjin 300072, China
| | - Jiafang Piao
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin) , Tianjin 300072, China
| | - Weipan Peng
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin) , Tianjin 300072, China
| | - Yang Wang
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin) , Tianjin 300072, China
| | - Bo Zhang
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin) , Tianjin 300072, China
| | - Xiaoqun Gong
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin) , Tianjin 300072, China
| | - Jin Chang
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin) , Tianjin 300072, China
| |
Collapse
|
14
|
Zhang J, Zhao Q, Wu Y, Zhang B, Peng W, Piao J, Zhou Y, Gao W, Gong X, Chang J. The construction of a novel nucleic acids detection microplatform based on the NSET for one-step detecting TK1-DNA and microRNA-21. Biosens Bioelectron 2017; 97:26-33. [DOI: 10.1016/j.bios.2017.05.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/18/2017] [Accepted: 05/22/2017] [Indexed: 10/19/2022]
|
15
|
Scanometry as microplate reader for high throughput method based on DPPH dry reagent for antioxidant assay. Acta Pharm Sin B 2017; 7:395-400. [PMID: 28540178 PMCID: PMC5430812 DOI: 10.1016/j.apsb.2017.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/02/2017] [Accepted: 01/27/2017] [Indexed: 11/24/2022] Open
Abstract
The stable chromogenic radical 1,1'-diphenyl-2-picrylhydrazyl (DPPH) solution was immobilized on the microwell plate as dry reagent to construct a simple antioxidant sensor. Then, a regular flatbed scanner was used as microplate reader to obtain analytical parameters for antioxidant assay using one-shot optical sensors as scanometry technique. Variables affecting the acquisition of the images were optimized and the analytical parameters are obtained from an area of the sensing zone inside microwell using the average luminosity of the sensing zone captured as the mean of red, green, and blue (RGB) value using ImageJ® program. By using this RGB value as sensor response, it is possible to determine antioxidant capacity in the range 1-25 ppm as gallic acid equivalent (GAE) with the response time of 9 min. The reproducibility of sensor was good (RSD<1%) with recovery at 93%-96%. The antioxidant sensor was applied to the plant extracts, such as sappan wood and Turmeric Rhizome. The results are good when compared to the same procedure using a UV/Vis spectrophotometer.
Collapse
|
16
|
Qin X, Xu A, Liu L, Sui Y, Li Y, Tan Y, Chen C, Xie Q. Selective staining of CdS on ZnO biolabel for ultrasensitive sandwich-type amperometric immunoassay of human heart-type fatty-acid-binding protein and immunoglobulin G. Biosens Bioelectron 2016; 91:321-327. [PMID: 28039809 DOI: 10.1016/j.bios.2016.12.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/21/2016] [Accepted: 12/21/2016] [Indexed: 10/20/2022]
Abstract
We report on an ultrasensitive metal-labeled amperometric immunoassay of proteins, which is based on the selective staining of nanocrystalline cadmium sulfide (CdS) on ZnO nanocrystals and in-situ microliter-droplet anodic stripping voltammetry (ASV) detection on the immunoelectrode. Briefly, antibody 1 (Ab1), bovine serum albumin (BSA), antigen and ZnO-multiwalled carbon nanotubes (MWCNTs) labeled antibody 2 (Ab2-ZnO-MWCNTs) were successively anchored on a β-cyclodextrin-graphene sheets (CD-GS) nanocomposite modified glassy carbon electrode (GCE), forming a sandwich-type immunoelectrode (Ab2-ZnO-MWCNTs/antigen/BSA/Ab1/CD-GS/GCE). CdS was selectively grown on the catalytic ZnO surfaces through chemical reaction of Cd(NO3)2 and thioacetamide (ZnO-label/CdS-staining), due to the presence of an activated cadmium hydroxide complex on ZnO surfaces that can decompose thioacetamide. A beforehand cathodic "potential control" in air and then injection of 7μL of 0.1M aqueous HNO3 on the immunoelectrode allow dissolution of the stained CdS and simultaneous cathodic preconcentration of atomic Cd onto the electrode surface, thus the following in-situ ASV detection can be used for immunoassay with enhanced sensitivity. Under optimized conditions, human immunoglobulin G (IgG) and human heart-type fatty-acid-binding protein (FABP) are analyzed by this method with ultrahigh sensitivity, excellent selectivity and small reagent-consumption, and the limits of detection (LODs, S/N=3) are 0.4fgmL-1 for IgG and 0.3fgmL-1 for FABP (equivalent to 73 FABP molecules in the 6μL sample employed).
Collapse
Affiliation(s)
- Xiaoli Qin
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China), Synergetic Innovation Center for Quantum Effects and Applications, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Aigui Xu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China), Synergetic Innovation Center for Quantum Effects and Applications, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Ling Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China), Synergetic Innovation Center for Quantum Effects and Applications, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yuyun Sui
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China), Synergetic Innovation Center for Quantum Effects and Applications, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yunlong Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China), Synergetic Innovation Center for Quantum Effects and Applications, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yueming Tan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China), Synergetic Innovation Center for Quantum Effects and Applications, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Chao Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China), Synergetic Innovation Center for Quantum Effects and Applications, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China), Synergetic Innovation Center for Quantum Effects and Applications, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
17
|
Wu T, Xu T, Xu LP, Huang Y, Shi W, Wen Y, Zhang X. Superhydrophilic cotton thread with temperature-dependent pattern for sensitive nucleic acid detection. Biosens Bioelectron 2016; 86:951-957. [DOI: 10.1016/j.bios.2016.07.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 12/25/2022]
|
18
|
Kwon K, Kim C, Lee J, Kim H, Ree M. Self-Assembly-Assisted Biomolecule-Enriched Surface and High Selectivity Performance of Simple Solution-Coatable Biomimicking Brush Copolymers. Biomacromolecules 2016; 17:974-84. [DOI: 10.1021/acs.biomac.5b01635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kyungho Kwon
- Department
of Chemistry, Division of Advanced Materials Science, Pohang Accelerator
Laboratory, Polymer Research Institute, and BK School of Molecular
Science, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Changsub Kim
- Department
of Chemistry, Division of Advanced Materials Science, Pohang Accelerator
Laboratory, Polymer Research Institute, and BK School of Molecular
Science, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Jongchan Lee
- Department
of Chemistry, Division of Advanced Materials Science, Pohang Accelerator
Laboratory, Polymer Research Institute, and BK School of Molecular
Science, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Heesoo Kim
- Department
of Microbiology and Dongguk Medical Institute, Dongguk University College of Medicine, Gyeongju 780-714, Republic of Korea
| | - Moonhor Ree
- Department
of Chemistry, Division of Advanced Materials Science, Pohang Accelerator
Laboratory, Polymer Research Institute, and BK School of Molecular
Science, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| |
Collapse
|
19
|
Wang W, Cui M, Song Z, Luo X. An antifouling electrochemical immunosensor for carcinoembryonic antigen based on hyaluronic acid doped conducting polymer PEDOT. RSC Adv 2016. [DOI: 10.1039/c6ra19169j] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A sensitive and antifouling electrochemical CEA immunosensor was developed based on PEDOT doped with hyaluronic acid.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Min Cui
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Zhiling Song
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Xiliang Luo
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| |
Collapse
|
20
|
Zhang L, Wong JXH, Li X, Li Y, Yu HZ. Detection and Quantitation of Heavy Metal Ions on Bona Fide DVDs Using DNA Molecular Beacon Probes. Anal Chem 2015; 87:5062-7. [DOI: 10.1021/acs.analchem.5b00899] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Lingling Zhang
- Key
Laboratory of Advanced Transducers and Intelligent Control Systems
(Ministry of Education and Shanxi Province), College of Physics and
Optoelectronic Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
- Department
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jessica X. H. Wong
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Xiaochun Li
- Key
Laboratory of Advanced Transducers and Intelligent Control Systems
(Ministry of Education and Shanxi Province), College of Physics and
Optoelectronic Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Yunchao Li
- Department
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hua-Zhong Yu
- Key
Laboratory of Advanced Transducers and Intelligent Control Systems
(Ministry of Education and Shanxi Province), College of Physics and
Optoelectronic Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
21
|
Hun X, Xu Y, Luo X. Peptide-based biosensor for the prostate-specific antigen using magnetic particle-bound invertase and a personal glucose meter for readout. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1483-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Shi X, Gao X, Zhang L, Li Y, Fan L, Yu HZ. Binary DNA hairpin-based colorimetric biochip for simultaneous detection of Pb2+ and Hg2+ in real-world samples. Analyst 2015; 140:2608-12. [DOI: 10.1039/c5an00120j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel microarray-format colorimetric biochip was constructed for simultaneously detecting the trace amounts of Pb2+ and Hg2+ in various real-world samples.
Collapse
Affiliation(s)
- Xiaoli Shi
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- P. R. China
| | - Xiaoyi Gao
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- P. R. China
| | - Lingling Zhang
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- P. R. China
| | - Yunchao Li
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- P. R. China
| | - Louzhen Fan
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- P. R. China
| | - Hua-Zhong Yu
- Department of Chemistry
- Simon Fraser University
- Burnaby
- Canada
| |
Collapse
|
23
|
Petryayeva E, Algar WR. Toward point-of-care diagnostics with consumer electronic devices: the expanding role of nanoparticles. RSC Adv 2015. [DOI: 10.1039/c4ra15036h] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A review of the role that nanoparticles can play in point-of-care diagnostics that utilize consumer electronic devices such as cell phones and smartphones for readout, including an overview of important concepts and examples from the literature.
Collapse
Affiliation(s)
| | - W. Russ Algar
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| |
Collapse
|
24
|
Wong JXH, Liu FSF, Yu HZ. Mobile App-Based Quantitative Scanometric Analysis. Anal Chem 2014; 86:11966-71. [DOI: 10.1021/ac5035727] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jessica X. H. Wong
- Department of Chemistry and ‡Department of
Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Frank S. F. Liu
- Department of Chemistry and ‡Department of
Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Hua-Zhong Yu
- Department of Chemistry and ‡Department of
Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
25
|
Li F, Zhang H, Wang Z, Newbigging AM, Reid MS, Li XF, Le XC. Aptamers facilitating amplified detection of biomolecules. Anal Chem 2014; 87:274-92. [PMID: 25313902 DOI: 10.1021/ac5037236] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Feng Li
- Department of Laboratory Medicine and Pathology, ‡Department of Chemistry, University of Alberta , Edmonton, Alberta, Canada T6G 2G3
| | | | | | | | | | | | | |
Collapse
|