1
|
Qian Q, Deng X, Mureed S, Gan Y, Xu D, Wang X, Ali H. Integrating transcriptomics and metabolomics to analyze the defense response of Morus notabilis to mulberry ring rot disease. Front Microbiol 2024; 15:1373827. [PMID: 38533335 PMCID: PMC10963518 DOI: 10.3389/fmicb.2024.1373827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
Introduction The mulberry industry has thrived in China for millennia, offering significant ecological and economic benefits. However, the prevalence of mulberry ring rot disease poses a serious threat to the quality and yield of mulberry leaves. Methods In this study, we employed a combination of transcriptomic and metabolomic analyses to elucidate the changes occurring at the transcriptional and metabolic levels in Morus notabilis in response to this disease infestation. Key metabolites identified were further validated through in vitro inhibition experiments. Results The findings revealed significant enrichment in Kyoto Encyclopedia of Genes and Genomes pathways, particularly those related to flavonoid biosynthesis. Notably, naringenin, kaempferol, and quercetin emerged as pivotal players in M. notabilis' defense mechanism against this disease pathogen. The upregulation of synthase genes, including chalcone synthase, flavanone-3-hydroxylase, and flavonol synthase, suggested their crucial roles as structural genes in this process. In vitro inhibition experiments demonstrated that kaempferol and quercetin exhibited broad inhibitory properties, while salicylic acid and methyl jasmonate demonstrated efficient inhibitory effects. Discussion This study underscores the significance of the flavonoid biosynthesis pathway in M. notabilis' defense response against mulberry ring rot disease, offering a theoretical foundation for disease control measures.
Collapse
Affiliation(s)
- Qianqian Qian
- College of Life Science, China West Normal University, Nanchong, China
| | - Xinqi Deng
- College of Life Science, China West Normal University, Nanchong, China
| | - Sumbul Mureed
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Yujie Gan
- College of Life Science, China West Normal University, Nanchong, China
| | - Danping Xu
- College of Life Science, China West Normal University, Nanchong, China
| | - Xie Wang
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Habib Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| |
Collapse
|
2
|
Li J, Liang P, Gao L, Lu H, Dong Y, Zhang J. o-Nitrobenzyl-Based Caged exo-16,17-Dihydro-gibberellin A5-13-acetate for Photocontrolled Release of Plant Growth Regulators. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16533-16541. [PMID: 37878916 DOI: 10.1021/acs.jafc.3c05259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Caged plant growth regulators (caged PGRs) that release bioactive molecules under irradiation are critical in enhancing the efficacy and mitigating the negative environmental effects of PGRs. The synthetically derived plant growth inhibitor exo-16,17-dihydro-gibberellin A5-13-acetate (DHGA5) regulates the development and stress resilience of plants. We report here the conception of novel caged DHGA5 derivatives wherein the photoremovable protecting groups (PRPGs) serve not only to enable light-controlled release but also to protect the carboxyl group during chemical synthesis. Three o-nitrobenzyl-based caged DHGA5 derivatives with different substituents on the nitrobenzyl moiety were obtained and evaluated for their properties in vitro and in vivo. The photolysis half-life values of caged DHGA5 derivatives 7a, 7b, and 7c under a UV lamp were 15.6 h, 1.2 h, and 28.2 h, respectively. Experiments in vivo showed that 0.2 mM of the caged compounds significantly inhibited the growth of the model plant Arabidopsis thaliana and important crop rice in a precise photoactivated form.
Collapse
Affiliation(s)
- Jingmin Li
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Peibo Liang
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Linying Gao
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Huizhe Lu
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Yanhong Dong
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Jianjun Zhang
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Rosheen, Sharma S, Utreja D. Salicylic Acid: Synthetic Strategies and Their Biological Activities. ChemistrySelect 2023. [DOI: 10.1002/slct.202204614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Rosheen
- Department of Chemistry College of Basic Sciences and Humanities Punjab Agricultural University Ludhiana 141004 India
| | - Shivali Sharma
- Department of Chemistry College of Basic Sciences and Humanities Punjab Agricultural University Ludhiana 141004 India
| | - Divya Utreja
- Department of Chemistry College of Basic Sciences and Humanities Punjab Agricultural University Ludhiana 141004 India
| |
Collapse
|
4
|
Yang S, Lyu X, Zhang J, Shui Y, Yang R, Xu X. The Application of Small Molecules to the Control of Typical Species Associated With Oral Infectious Diseases. Front Cell Infect Microbiol 2022; 12:816386. [PMID: 35265531 PMCID: PMC8899129 DOI: 10.3389/fcimb.2022.816386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/28/2022] [Indexed: 12/12/2022] Open
Abstract
Oral microbial dysbiosis is the major causative factor for common oral infectious diseases including dental caries and periodontal diseases. Interventions that can lessen the microbial virulence and reconstitute microbial ecology have drawn increasing attention in the development of novel therapeutics for oral diseases. Antimicrobial small molecules are a series of natural or synthetic bioactive compounds that have shown inhibitory effect on oral microbiota associated with oral infectious diseases. Novel small molecules, which can either selectively inhibit keystone microbes that drive dysbiosis of oral microbiota or inhibit the key virulence of the microbial community without necessarily killing the microbes, are promising for the ecological management of oral diseases. Here we discussed the research progress in the development of antimicrobial small molecules and delivery systems, with a particular focus on their antimicrobial activity against typical species associated with oral infectious diseases and the underlying mechanisms.
Collapse
Affiliation(s)
- Sirui Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoying Lyu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yusen Shui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ran Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Hemelíková N, Žukauskaitė A, Pospíšil T, Strnad M, Doležal K, Mik V. Caged Phytohormones: From Chemical Inactivation to Controlled Physiological Response. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12111-12125. [PMID: 34610745 DOI: 10.1021/acs.jafc.1c02018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plant hormones, also called phytohormones, are small signaling molecules regulating a wide range of growth and developmental processes. These unique compounds respond to both external (light, temperature, water, nutrition, or pathogen attack) and internal factors (e.g., age) and mediate signal transduction leading to gene expression with the aim of allowing plants to adapt to constantly changing environmental conditions. Within the regulation of biological processes, individual groups of phytohormones act mostly through a web of interconnected responses rather than linear pathways, making elucidation of their mode of action in living organisms quite challenging. To further progress with our knowledge, the development of novel tools for phytohormone research is required. Although plenty of small molecules targeting phytohormone metabolic or signaling pathways (agonists, antagonists, and inhibitors) and labeled or tagged (fluorescently, isotopically, or biotinylated) compounds have been produced, the control over them in vivo is lost at the time of their administration. Caged compounds, on the other hand, represent a new approach to the development of small organic substances for phytohormone research. The term "caged compounds" refers to light-sensitive probes with latent biological activity, where the active molecule can be freed using a light beam in a highly spatio/temporal-, amplitude-, or frequency-defined manner. This review summarizes the up-to-date development in the field of caged plant hormones. Research progress is arranged in chronological order for each phytohormone regardless of the cage compound formulation and bacterial/plant/animal cell applications. Several known drawbacks and possible directions for future research are highlighted.
Collapse
Affiliation(s)
- Noemi Hemelíková
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Asta Žukauskaitė
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Tomáš Pospíšil
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Karel Doležal
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Václav Mik
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| |
Collapse
|
6
|
Yang H, Hu S, Zhao H, Luo X, Liu Y, Deng C, Yu Y, Hu T, Shan S, Zhi Y, Su H, Jiang L. High-performance Fe-doped ZIF-8 adsorbent for capturing tetracycline from aqueous solution. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126046. [PMID: 34492891 DOI: 10.1016/j.jhazmat.2021.126046] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 05/26/2023]
Abstract
Efficient removal of antibiotics from aqueous solution is of fundamental importance due to the increasingly severe antibiotic-related pollution. Herein, a high-performance Fe-ZIF-8-500 adsorbent was synthesized by Fe-doping strategy and subsequent activation with high-temperature. In order to evaluate the feasibility of Fe-ZIF-8-500 as an adsorbent for tetracycline (TC) removal, the adsorption properties of Fe-ZIF-8-500 were systematically explored. The results showed that the Fe-ZIF-8-500 exhibited ultrahigh adsorption capacity for TC with a record-high value of 867 mg g-1. Additionally, the adsorption kinetics and isotherms for TC onto the Fe-ZIF-8-500 can be well-fitted by the pseudo-second-order kinetics model and the Freundlich model, respectively. The ultrahigh adsorption capacity of Fe-ZIF-8-500 can be explained by the synergistic effect of multi-affinities, i.e., surface complexation, electrostatic attraction, π-π interaction and hydrogen bonding. After being used for four cycles the adsorption capacity of Fe-ZIF-8-500 remains a high level, demonstrating its outstanding reusability. The ultrahigh adsorption capacity, excellent reusability, satisfactory water stability and easy-preparation nature of Fe-ZIF-8-500 highlight its bright prospect for removing tetracycline pollutant from wastewater.
Collapse
Affiliation(s)
- Huan Yang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Shuai Hu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Hui Zhao
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Xiaofei Luo
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yi Liu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Chengfei Deng
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yulan Yu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Tianding Hu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Shaoyun Shan
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Yunfei Zhi
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Hongying Su
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Lihong Jiang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| |
Collapse
|
7
|
Zhang Z, He Z, Xie Y, He T, Fu Y, Yu Y, Huang F. Brønsted acid-catalyzed homogeneous O–H and S–H insertion reactions under metal- and ligand-free conditions. Org Chem Front 2021. [DOI: 10.1039/d0qo01401j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The economical and accessible CF3SO3H successfully catalyzed homogeneous O–H and S–H bond insertion reactions between hydroxyl compounds, thiols and diazo compounds under metal- and ligand-free conditions.
Collapse
Affiliation(s)
- Zhipeng Zhang
- School of Food Science and Pharmaceutical Engineering
- Nanjing Normal University
- Nanjing 210023
- P. R. China
- School of Biology and Biological Engineering
| | - Zhiqin He
- School of Food Science and Pharmaceutical Engineering
- Nanjing Normal University
- Nanjing 210023
- P. R. China
| | - Yuxing Xie
- School of Food Science and Pharmaceutical Engineering
- Nanjing Normal University
- Nanjing 210023
- P. R. China
| | - Tiantong He
- School of Pharmaceutical Sciences
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Yaofeng Fu
- School of Pharmaceutical Sciences
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Yang Yu
- School of Environmental Science and Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Fei Huang
- School of Food Science and Pharmaceutical Engineering
- Nanjing Normal University
- Nanjing 210023
- P. R. China
- School of Pharmaceutical Sciences
| |
Collapse
|
8
|
Chaudhuri A, Paul A, Sikder A, Pradeep Singh ND. Single component photoresponsive fluorescent organic nanoparticles: a smart platform for improved biomedical and agrochemical applications. Chem Commun (Camb) 2021; 57:1715-1733. [DOI: 10.1039/d0cc07183h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Single component photoresponsive fluorescent organic nanoparticles for the regulated release of anticancer drugs, antibacterial agents, gasotransmitters, and agrochemicals and as effective PDT agents.
Collapse
Affiliation(s)
- Amrita Chaudhuri
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- 721302 Kharagpur
- India
| | - Amrita Paul
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- 721302 Kharagpur
- India
| | - Antara Sikder
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- 721302 Kharagpur
- India
| | - N. D. Pradeep Singh
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- 721302 Kharagpur
- India
| |
Collapse
|
9
|
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020; 120:13135-13272. [PMID: 33125209 PMCID: PMC7833475 DOI: 10.1021/acs.chemrev.0c00663] [Citation(s) in RCA: 278] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Collapse
Affiliation(s)
- Roy Weinstain
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Dnyaneshwar Kand
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Petr Klán
- Department
of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
10
|
Truong VX. Break Up to Make Up: Utilization of Photocleavable Groups in Biolabeling of Hydrogel Scaffolds. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Vinh X. Truong
- School of Chemistry and PhysicsQueensland University of Technology 2 George St. QLD 4000 Brisbane Australia
- Centre for Materials ScienceQueensland University of Technology 2 George Street Brisbane QLD 4000 Australia
| |
Collapse
|
11
|
Long S, Chi W, Miao L, Qiao Q, Liu X, Xu Z. Strong π-π stacking interactions led to the mis-assignment of dimer emissions to the monomers of 1-acetylpyrene. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
12
|
Carboxylation of Hydroxyaromatic Compounds with HCO3− by Enzyme Catalysis: Recent Advances Open the Perspective for Valorization of Lignin-Derived Aromatics. Catalysts 2019. [DOI: 10.3390/catal9010037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
This review focuses on recent advances in the field of enzymatic carboxylation reactions of hydroxyaromatic compounds using HCO3− (as a CO2 source) to produce hydroxybenzoic and other phenolic acids in mild conditions with high selectivity and moderate to excellent yield. Nature offers an extensive portfolio of enzymes catalysing reversible decarboxylation of hydroxyaromatic acids, whose equilibrium can be pushed towards the side of the carboxylated products. Extensive structural and mutagenesis studies have allowed recent advances in the understanding of the reaction mechanism of decarboxylase enzymes, ultimately enabling an improved yield and expansion of the scope of the reaction. The topic is of particular relevance today as the scope of the carboxylation reactions can be extended to include lignin-related compounds in view of developing lignin biorefinery technology.
Collapse
|
13
|
Svechkarev D, Mohs AM. Organic Fluorescent Dye-based Nanomaterials: Advances in the Rational Design for Imaging and Sensing Applications. Curr Med Chem 2019; 26:4042-4064. [PMID: 29484973 PMCID: PMC6703954 DOI: 10.2174/0929867325666180226111716] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/08/2017] [Accepted: 12/13/2017] [Indexed: 12/28/2022]
Abstract
Self-assembled fluorescent nanomaterials based on small-molecule organic dyes are gaining increasing popularity in imaging and sensing applications over the past decade. This is primarily due to their ability to combine spectral properties tunability and biocompatibility of small molecule organic fluorophores with brightness, chemical and colloidal stability of inorganic materials. Such a unique combination of features comes with rich versatility of dye-based nanomaterials: from aggregates of small molecules to sophisticated core-shell nanoarchitectures involving hyperbranched polymers. Along with the ongoing discovery of new materials and better ways of their synthesis, it is very important to continue systematic studies of fundamental factors that regulate the key properties of fluorescent nanomaterials: their size, polydispersity, colloidal stability, chemical stability, absorption and emission maxima, biocompatibility, and interactions with biological interfaces. In this review, we focus on the systematic description of various types of organic fluorescent nanomaterials, approaches to their synthesis, and ways to optimize and control their characteristics. The discussion is built on examples from reports on recent advances in the design and applications of such materials. Conclusions made from this analysis allow a perspective on future development of fluorescent nanomaterials design for biomedical and related applications.
Collapse
Affiliation(s)
- Denis Svechkarev
- University of Nebraska Medical Center, Department of Pharmaceutical Sciences, Fred and Pamela Buffett Cancer Center, Omaha, United States
| | - Aaron M. Mohs
- University of Nebraska Medical Center, Department of Pharmaceutical Sciences, Fred and Pamela Buffett Cancer Center, Omaha, United States
| |
Collapse
|
14
|
|
15
|
|
16
|
Tan X, Burchfield EL, Zhang K. Light-responsive Drug Delivery Systems. STIMULI-RESPONSIVE DRUG DELIVERY SYSTEMS 2018. [DOI: 10.1039/9781788013536-00163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Materials that interact with light and subsequently change their physicochemical properties are of great interest for drug delivery. The human body is semitransparent to light of the near-infrared (NIR) region, which makes it possible to use light as an external stimulus to trigger drug release. In this chapter, we review light-triggered drug release systems of both photochemical and photothermal mechanisms. We explore recent literature on a variety of light-responsive materials for drug delivery, including organic, inorganic, and hybrid systems, which collectively embody the strategies for synergizing light responsiveness for controlled drug release/activation with other drug delivery techniques.
Collapse
Affiliation(s)
- X. Tan
- Northeastern University, Department of Chemistry and Chemical Biology 360 Huntington Ave. Boston MA 02115 USA
| | - E. L. Burchfield
- Northeastern University, Department of Chemistry and Chemical Biology 360 Huntington Ave. Boston MA 02115 USA
| | - K. Zhang
- Northeastern University, Department of Chemistry and Chemical Biology 360 Huntington Ave. Boston MA 02115 USA
| |
Collapse
|
17
|
Meyer LE, Plasch K, Kragl U, von Langermann J. Adsorbent-Based Downstream-Processing of the Decarboxylase-Based Synthesis of 2,6-Dihydroxy-4-methylbenzoic Acid. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.8b00104] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lars-Erik Meyer
- University of Rostock, Institute of Chemistry, Albert-Einstein-Str. 3a, 18051 Rostock, Germany
| | - Katharina Plasch
- University of Graz, Organic & Bioorganic Chemistry, Heinrichstrasse 28, A-8010 Graz, Austria
| | - Udo Kragl
- University of Rostock, Institute of Chemistry, Albert-Einstein-Str. 3a, 18051 Rostock, Germany
- Faculty for Interdisciplinary Research, Department Life, Light and Matter, University of Rostock, 18051 Rostock, Germany
| | - Jan von Langermann
- University of Rostock, Institute of Chemistry, Albert-Einstein-Str. 3a, 18051 Rostock, Germany
| |
Collapse
|
18
|
Lan C, Zhao S. Self-assembled nanomaterials for synergistic antitumour therapy. J Mater Chem B 2018; 6:6685-6704. [DOI: 10.1039/c8tb01978a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Recent progress on self-assembled nanodrugs for anticancer treatment was discussed.
Collapse
Affiliation(s)
- Chuanqing Lan
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- Guangxi Normal University
- Guilin
- China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- Guangxi Normal University
- Guilin
- China
| |
Collapse
|
19
|
Dey N, Maji B, Bhattacharya S. A Versatile Probe for Caffeine Detection in Real-Life Samples via Excitation-Triggered Alteration in the Sensing Behavior of Fluorescent Organic Nanoaggregates. Anal Chem 2017; 90:821-829. [DOI: 10.1021/acs.analchem.7b03520] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Nilanjan Dey
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Basudeb Maji
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
20
|
Truong VX, Li F, Forsythe JS. Photolabile Hydrogels Responsive to Broad Spectrum Visible Light for Selective Cell Release. ACS APPLIED MATERIALS & INTERFACES 2017; 9:32441-32445. [PMID: 28892355 DOI: 10.1021/acsami.7b11517] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We introduce an efficient method for the preparation of photolabile polymer linkers to be used in the fabrication of bioorthogonal and photodegradable hydrogels. The versatility of this synthesis strategy allows for incorporation of a series of chromophores responsive to addressable wavelengths of UV and broad spectrum visible light. Consequently, selective release of different cell types from composite hydrogels by user-defined timing can be achieved by irradiating the materials with different wavelengths of light.
Collapse
Affiliation(s)
- Vinh X Truong
- Department of Materials Science & Engineering, Monash Institute of Medical Engineering, Monash University , Clayton, 3800 Victoria, Australia
| | - Fanyi Li
- Department of Materials Science & Engineering, Monash Institute of Medical Engineering, Monash University , Clayton, 3800 Victoria, Australia
- CSIRO Manufacturing , Bayview Avenue, Clayton, 3168 Victoria, Australia
| | - John S Forsythe
- Department of Materials Science & Engineering, Monash Institute of Medical Engineering, Monash University , Clayton, 3800 Victoria, Australia
| |
Collapse
|
21
|
Gao Z, Yuan P, Wang D, Xu Z, Li Z, Shao X. Photo-controlled release of fipronil from a coumarin triggered precursor. Bioorg Med Chem Lett 2017; 27:2528-2535. [DOI: 10.1016/j.bmcl.2017.03.091] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 12/20/2022]
|
22
|
Luo J, Preciado S, Xie P, Larrosa I. Carboxylation of Phenols with CO2at Atmospheric Pressure. Chemistry 2016; 22:6798-802. [DOI: 10.1002/chem.201601114] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Junfei Luo
- School of Chemistry; University of Manchester; Oxford Road Manchester M13 9PL UK
- School of Biological and Chemical Sciences; Queen Mary University of London, Joseph Priestley Building; Mile End Road E1 4NS London UK
| | - Sara Preciado
- School of Biological and Chemical Sciences; Queen Mary University of London, Joseph Priestley Building; Mile End Road E1 4NS London UK
| | - Pan Xie
- School of Chemistry; University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Igor Larrosa
- School of Chemistry; University of Manchester; Oxford Road Manchester M13 9PL UK
| |
Collapse
|
23
|
Kasprzyk R, Kowalska J, Wieczorek Z, Szabelski M, Stolarski R, Jemielity J. Acetylpyrene-labelled 7-methylguanine nucleotides: unusual fluorescence properties and application to decapping scavenger activity monitoring. Org Biomol Chem 2016; 14:3863-8. [PMID: 26975842 DOI: 10.1039/c6ob00419a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
7-Methylguanosine (m(7)G) nucleotides labelled with acetylpyrene (AcPy) were synthesized as fluorescent mRNA 5' end (cap) analogues. The unique fluorescent properties of m(7)G-AcPy conjugates, different from G-AcPy, can be applied to studying various mRNA cap-related processes including the evaluation of putative inhibitors of DcpS enzyme-a therapeutic target in neuromuscular diseases.
Collapse
Affiliation(s)
- Renata Kasprzyk
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland.
| | | | | | | | | | | |
Collapse
|
24
|
Fu X, Gu RR, Zhang Q, Rao SJ, Zheng XL, Qu DH, Tian H. Phototriggered supramolecular polymerization of a [c2]daisy chain rotaxane. Polym Chem 2016. [DOI: 10.1039/c6py00309e] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The supramolecular polymerization of a [c2]daisy chain rotaxane monomer can be triggered by light via a photocleavage mechanism.
Collapse
Affiliation(s)
- Xin Fu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai
- China
| | - Rui-Rui Gu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai
- China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai
- China
| | - Si-Jia Rao
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai
- China
| | - Xiu-Li Zheng
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai
- China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai
- China
| | - He Tian
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai
- China
| |
Collapse
|
25
|
Olejniczak J, Carling CJ, Almutairi A. Photocontrolled release using one-photon absorption of visible or NIR light. J Control Release 2015; 219:18-30. [PMID: 26394063 DOI: 10.1016/j.jconrel.2015.09.030] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/08/2015] [Accepted: 09/16/2015] [Indexed: 11/26/2022]
Abstract
Light is an excellent means to externally control the properties of materials and small molecules for many applications. Light's ability to initiate chemistries largely independent of a material's local environment makes it particularly useful as a bio-orthogonal and on-demand trigger in living systems. Materials responsive to UV light are widely reported in the literature; however, UV light has substantial limitations for in vitro and in vivo applications. Many biological molecules absorb these energetic wavelengths directly, not only preventing substantial tissue penetration but also causing detrimental photochemical reactions. The more innocuous nature of long-wavelength light (>400nm) and its ability at longer wavelengths (600-950nm) to effectively penetrate tissues is ideal for biological applications. Multi-photon processes (e.g. two-photon excitation and upconversion) using longer wavelength light, often in the near-infrared (NIR) range, have been proposed as a means of avoiding the negative characteristics of UV light. However, high-power focused laser light and long irradiation times are often required to initiate photorelease using these inefficient non-linear optical methods, limiting their in vivo use in mammalian tissues where NIR light is readily scattered. The development of materials that efficiently convert a single photon of long-wavelength light to chemical change is a viable solution to achieve in vivo photorelease. However, to date only a few such materials have been reported. Here we review current technologies for photo-regulated release using photoactive organic materials that directly absorb visible and NIR light.
Collapse
Affiliation(s)
- Jason Olejniczak
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Carl-Johan Carling
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; IEM Center for Nanomedicine and Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Adah Almutairi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; IEM Center for Nanomedicine and Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; Department of Nanoengineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; Department of Materials Science and Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA.
| |
Collapse
|
26
|
Wang Y, Gevorgyan V. General method for the synthesis of salicylic acids from phenols through palladium-catalyzed silanol-directed C-H carboxylation. Angew Chem Int Ed Engl 2015; 54:2255-9. [PMID: 25597502 PMCID: PMC4565602 DOI: 10.1002/anie.201410375] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/02/2014] [Indexed: 12/26/2022]
Abstract
A silanol-directed, palladium-catalyzed C-H carboxylation reaction of phenols to give salicylic acids has been developed. This method features high efficiency and selectivity, and excellent functional-group tolerance. The generality of this method was demonstrated by the carboxylation of estrone and by the synthesis of an unsymmetrically o,o'-disubstituted phenolic compound through two sequential C-H functionalization processes.
Collapse
Affiliation(s)
- Yang Wang
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor St., Room 4500, Chicago, IL 60607 (USA), Homepage: http://www.chem.uic.edu/vggroup
| | - Vladimir Gevorgyan
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor St., Room 4500, Chicago, IL 60607 (USA), Homepage: http://www.chem.uic.edu/vggroup
| |
Collapse
|
27
|
Wang Y, Gevorgyan V. General Method for the Synthesis of Salicylic Acids from Phenols through Palladium-Catalyzed Silanol-Directed CH Carboxylation. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201410375] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
28
|
Griepenburg J, Sood N, Vargo KB, Williams D, Rawson J, Therien MJ, Hammer DA, Dmochowski IJ. Caging metal ions with visible light-responsive nanopolymersomes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:799-807. [PMID: 25518002 PMCID: PMC4303334 DOI: 10.1021/la5036689] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 12/01/2014] [Indexed: 05/14/2023]
Abstract
Polymersomes are bilayer vesicles that self-assemble from amphiphilic diblock copolymers, and provide an attractive system for the delivery of biological and nonbiological molecules due to their environmental compatibility, mechanical stability, synthetic tunability, large aqueous core, and hyperthick hydrophobic membrane. Herein, we report a nanoscale photoresponsive polymersome system featuring a meso-to-meso ethyne-bridged bis[(porphinato)zinc] (PZn2) fluorophore hydrophobic membrane solute and dextran in the aqueous core. Upon 488 nm irradiation in solution or in microinjected zebrafish embryos, the polymersomes underwent deformation, as monitored by a characteristic red-shifted PZn2 emission spectrum and confirmed by cryo-TEM. The versatility of this system was demonstrated through the encapsulation and photorelease of a fluorophore (FITC), as well as two different metal ions, Zn(2+) and Ca(2+).
Collapse
Affiliation(s)
- Julianne
C. Griepenburg
- Department
of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Nimil Sood
- Department
of Chemical and Biomolecular Engineering, University of Pennsylvania, 220 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Kevin B. Vargo
- Department
of Chemical and Biomolecular Engineering, University of Pennsylvania, 220 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Dewight Williams
- Department
of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| | - Jeff Rawson
- Department
of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27708, United States
| | - Michael J. Therien
- Department
of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27708, United States
| | - Daniel A. Hammer
- Department
of Chemical and Biomolecular Engineering, University of Pennsylvania, 220 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
- Department
of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 240 Skirkanich
Hall, Philadelphia, Pennsylvania 19104, United States
| | - Ivan J. Dmochowski
- Department
of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
29
|
Yang X, He D, He X, Wang K, Zou Z, Yang X, He X, Xiong J, Li S, Li L. A dopamine responsive nano-container for the treatment of pheochromocytoma cells based on mesoporous silica nanoparticles capped with DNA-templated silver nanoparticles. J Mater Chem B 2015; 3:7135-7142. [DOI: 10.1039/c5tb01129a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel DA responsive delivery system was developed for the treatment of pheochromocytoma cells based on MSNs capped with DNA-templated AgNPs.
Collapse
|
30
|
Barman S, Mukhopadhyay SK, Gangopadhyay M, Biswas S, Dey S, Singh NDP. Coumarin–benzothiazole–chlorambucil (Cou–Benz–Cbl) conjugate: an ESIPT based pH sensitive photoresponsive drug delivery system. J Mater Chem B 2015; 3:3490-3497. [DOI: 10.1039/c4tb02081b] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed an ESIPT based drug delivery system, Cou–Benz–Cbl conjugate, with pH sensitive fluorescence properties and photocontrolled release of the anticancer drug chlorambucil.
Collapse
Affiliation(s)
- Shrabani Barman
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur 721302
- India
| | | | | | - Sandipan Biswas
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur 721302
- India
| | - Satyahari Dey
- Department of Biotechnology
- Indian Institute of Technology
- Kharagpur 721302
- India
| | | |
Collapse
|