1
|
Zhang H, Wang F, Guo Z. The antifouling mechanism and application of bio-inspired superwetting surfaces with effective antifouling performance. Adv Colloid Interface Sci 2024; 325:103097. [PMID: 38330881 DOI: 10.1016/j.cis.2024.103097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/14/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024]
Abstract
With the rapid development of industries, the issue of pollution on Earth has become increasingly severe. This has led to the deterioration of various surfaces, rendering them ineffective for their intended purposes. Examples of such surfaces include oil rigs, seawater intakes, and more. A variety of functional surface techniques have been created to address these issues, including superwetting surfaces, antifouling coatings, nano-polymer composite materials, etc. They primarily exploit the membrane's surface properties and hydration layer to improve the antifouling property. In recent years, biomimetic superwetting surfaces with non-toxic and environmental characteristics have garnered massive attention, greatly aiding in solving the problem of pollution. In this work, a detailed presentation of antifouling superwetting materials was made, including superhydrophobic surface, superhydrophilic surface, and superhydrophilic/underwater superoleophobic surface, along with the antifouling mechanisms. Then, the applications of the superwetting antifouling materials in antifouling domain were addressed in depth.
Collapse
Affiliation(s)
- Huayang Zhang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China
| | - Fengyi Wang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China; School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
2
|
Sinu K, Savitha R, Ranjit B, Pushpavanam S. Detection of azadirachtin from neem kernels using a paper-based sandwich sensor. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1034-1042. [PMID: 38265638 DOI: 10.1039/d3ay02030d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
In this work, a microfluidic paper-based analytical device (μPAD) was developed to detect the biopesticide azadirachtin (Aza) through a colorimetric assay. High precision estimation of Aza is classically carried out using high performance liquid chromatography (HPLC), which requires highly skilled personnel. Acidified vanillin is a commonly used colorimetric indicator in thin layer chromatography for detection of various phytochemicals. However, the assay involves concentrated acid, which limits the choice of paper substrates for paper-based sensors and raises safety concerns. In this work, we show how the assay can be extended from the liquid phase to a paper substrate. Glass microfiber (GMF) filter paper was found to be suitable paper as it was acid resistant; besides, its hydrophilicity enabled smooth flow of reagents. A microfluidic paper-based sensor (μPAD) was developed by sandwiching 5 mm sized GMF dots between two parafilm sheets. We demonstrate the use of colorimetric assay on the μPAD for on-site detection of Aza in neem kernels. The magenta color developed upon the reaction of acidified vanillin with Aza was captured using a smart-phone and analysed using RGB levels in the image. Calibration was established using neem kernel extract of known concentration. Linearity was seen in the concentration range of 5 to 25 mg L-1 Aza. A limit of detection of 2.3 mg L-1 was obtained using this method. The colorimetric assay showed a relative recovery of >85% when compared with the values obtained from HPLC. The stability of the reagents on the GMF sensor was investigated to understand the storage conditions and shelf life of the reagents and sensor. The present work demonstrates the development of a portable sensor for on-site detection of phytochemicals that can be an integral part of the agricultural supply chain.
Collapse
Affiliation(s)
- Kurian Sinu
- Chemical Engineering Department, Indian Institute of Technology Madras, Chennai - 600036, India.
- Metallurgical and Materials Engineering Department, Indian Institute of Technology Madras, Chennai - 600036, India
| | - Rangasamy Savitha
- Chemical Engineering Department, Indian Institute of Technology Madras, Chennai - 600036, India.
| | - Bauri Ranjit
- Metallurgical and Materials Engineering Department, Indian Institute of Technology Madras, Chennai - 600036, India
| | - Subramaniam Pushpavanam
- Chemical Engineering Department, Indian Institute of Technology Madras, Chennai - 600036, India.
| |
Collapse
|
3
|
Kim I, Kang SM. Formation of Amphiphilic Zwitterionic Thin Poly(SBMA- co-TFEMA) Brushes on Solid Surfaces for Marine Antifouling Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38314692 DOI: 10.1021/acs.langmuir.3c03687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Water molecules can bind to zwitterionic polymers, such as carboxybetaine and sulfobetaine, forming strong hydration layers along the polymer chains. Such hydration layers act as a barrier to impede the attachment of marine fouling organisms; therefore, zwitterionic polymer coatings have been of considerable interest as marine antifouling coatings. However, recent studies have shown that severe adsorption of marine sediments occurs on zwitterionic-polymer-coated surfaces, resulting in the degradation of their marine antifouling performance. Therefore, a novel approach for forming amphiphilic zwitterionic polymers using zwitterionic and hydrophobic monomers is being investigated to simultaneously inhibit both sediment adsorption and marine fouling. In this study, amphiphilic zwitterionic thin polymer brushes composed of sulfobetaine methacrylate (SBMA) and trifluoroethyl methacrylate (TFEMA) were synthesized on Si/SiO2 surfaces via surface-initiated atom transfer radical polymerization. For this, a facile metal-ion-mediated method was developed for immobilizing polymerization initiators on solid substrates to subsequently form poly(SBMA-co-TFEMA) brushes on the initiator-coated substrate surface. Poly(SBMA-co-TFEMA) brushes with various SBMA/TFEMA ratios were prepared to determine the composition at which both marine diatom adhesion and sediment adsorption can be prevented effectively. The results indicate that poly(SBMA-co-TFEMA) brushes prepared with an SBMA/TFEMA ratio of 3:7 effectively inhibit both sediment adsorption and marine diatom adhesion, thereby exhibiting balanced marine antifouling properties. Thus, the findings of this study provide important insights into the design of amphiphilic marine antifouling materials.
Collapse
Affiliation(s)
- Inho Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
| | - Sung Min Kang
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
| |
Collapse
|
4
|
Manouchehri M. A comprehensive review on state-of-the-art antifouling super(wetting and anti-wetting) membranes for oily wastewater treatment. Adv Colloid Interface Sci 2024; 323:103073. [PMID: 38160525 DOI: 10.1016/j.cis.2023.103073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
One of the most dangerous types of pollution to the environment is oily wastewater, which is produced from a number of industrial sources and can cause damage to the environment, people, and creatures. To overcome this issue, membrane technology as an advanced method has been considered for treating oily wastewater due to its stability, high removal efficiency, and simplicity in scaling up. Membrane fouling, or the accumulation of oil droplets at or within the membrane pores, compromises the efficiency of membrane separation and water flux. In the last decade, the fabrication of membranes with specific wettability to reduce fouling has received much consideration. The purpose of this article is to offer a literature overview of all fabricated anti-fouling super(wetting and anti-wetting) membranes for applicable membrane processes for the separation of immiscible and emulsified oil/water mixtures. In this review, we first explain membrane fouling and discuss methods for preventing it. Afterwards, in all membrane separation processes, including pressure-driven, gravity-driven, and thermal-driven, membranes based on the form and density of oil are categorized as oil-removing or water-removing with special wettability, and then their wettability modification with different materials is particularly discussed. Finally, the prospect of anti-fouling membrane fabrication in the future is presented.
Collapse
Affiliation(s)
- Massoumeh Manouchehri
- Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
5
|
Tan H, Mong GR, Wong SL, Wong KY, Sheng DDCV, Nyakuma BB, Othman MHD, Kek HY, Razis AFA, Wahab NHA, Wahab RA, Lee KQ, Chiong MC, Lee CH. Airborne microplastic/nanoplastic research: a comprehensive Web of Science (WoS) data-driven bibliometric analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:109-126. [PMID: 38040882 DOI: 10.1007/s11356-023-31228-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 11/20/2023] [Indexed: 12/03/2023]
Abstract
This paper presents the landscape of research on airborne microplastics and nanoplastics (MPs/NPs) according to the bibliometric analysis of 147 documents issued between 2015 and 2021, extracted from the Web of Science database. The publications on airborne MPs/NPs have increased rapidly from 2015 onwards, which is largely due to the existence of funding support. Science of the Total Environment is one of the prominent journals in publishing related papers. China, England, the USA, and European Countries have produced a significant output of airborne MP/NP research works, which is associated with the availability of funding agencies regionally or nationally. The research hotspot on the topic ranges from the transport of airborne MPs/NPs to their deposition in the terrestrial or aquatic environments, along with the contamination of samples by indoor MPs/NPs. Most of the publications are either research or review papers related to MPs/NPs. It is crucial to share the understanding of global plastic pollution and its unfavorable effects on humankind by promoting awareness of the existence and impact of MPs/NPs. Funding agencies are vital in boosting the research development of airborne MPs/NPs. Some countries that are lacking funding support were able to publish research findings related to the field of interest, however, with lesser research output. Without sufficient fundings, some impactful publications may not be able to carry a substantial impact in sharing the findings and discoveries with the mass public.
Collapse
Affiliation(s)
- Huiyi Tan
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Guo Ren Mong
- School of Energy and Chemical Engineering, Faculty of Engineering, Xiamen University Malaysia, Sepang, Xiamen, Selangor, Malaysia
| | - Syie Luing Wong
- Dpto. Matemática Aplicada, Ciencia e Ingeniería de Materiales y Tecnología Electrónica, Universidad Rey Juan Carlos, Móstoles, Madrid, Spain
| | - Keng Yinn Wong
- Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia.
| | | | - Bemgba Bevan Nyakuma
- Department of Chemistry, Faculty of Sciences, Benue State University, Makurdi, Benue State, Nigeria
- Department of Chemical Sciences, Faculty of Science and Computing, Pen Resource University, P. M. B. 086, Gombe, Gombe State, Nigeria
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Hong Yee Kek
- Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | - Roswanira Abdul Wahab
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
- Department of Chemistry, Faculty of Sciences, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Kee Quen Lee
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Meng Choung Chiong
- Faculty of Engineering, Technology & Built Environment, UCSI University, Cheras, Kuala Lumpur, Malaysia
| | - Chia Hau Lee
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| |
Collapse
|
6
|
Watanabe T, Nakagawa K, Gonzales RR, Kitagawa T, Matsuoka A, Kamio E, Yoshioka T, Matsuyama H. Influence of structure of porous polyketone microfiltration membranes on separation of water‐in‐oil emulsions. J Appl Polym Sci 2023. [DOI: 10.1002/app.53900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
7
|
Hu J, Yuan S, Zhao W, Li C, Liu P, Shen X. Fabrication of a Superhydrophilic/Underwater Superoleophobic PVDF Membrane via Thiol–Ene Photochemistry for the Oil/Water Separation. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
8
|
Zhang Y, Jia B, Li B, Shi K, Liu B, Zhang S. Dual-functional superwetting CuCo2O4 coated stainless steel mesh for wastewater treatment: highly efficient oil/water emulsion separation and photocatalytic degradation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
9
|
Yao Y, Dang X, Qiao X, Li R, Chen J, Huang Z, Gong YK. Crosslinked biomimetic coating modified stainless-steel-mesh enables completely self-cleaning separation of crude oil/water mixtures. WATER RESEARCH 2022; 224:119052. [PMID: 36099762 DOI: 10.1016/j.watres.2022.119052] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/13/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The development of high-flux, durable and completely self-cleaning membranes is highly desired for separation of massive oil/water mixtures. Herein, differently crosslinked poly(2-methacryloyloxylethyl phosphorylcholine) (PMPC) brush grafted stainless steel mesh (SSM) membranes (SSM/PMPCs) were fabricated by integrating of mussel inspired universal adhesion and crosslinking chemistry with surface-initiated activators regenerated by electron transfer atom transfer radical polymerization (SI-ARGET-ATRP). The durability and self-cleaning performance of the prepared SSM membranes were evaluated by separating sticky crude oil/water mixtures in a continuous recycling dead-end filtration device. The water filtration flux driven by gravity reached 60,000 L⋅m-2⋅h-1 with a separation efficiency of over 99.98%. Furthermore, zero-flux-decline was observed during a 5 h continuous filtration when assisted by mechanical stirring. More significantly, such a completely self-cleaning separation of the well crosslinked SSM/PMPC2 membrane under optimized flux and stirring conditions had been operated cumulatively for 190 h in 30 days without any additional cleaning. These significant advances are more promising for practical applications in crude oil-contaminated water treatments and massive oil/water mixture separation.
Collapse
Affiliation(s)
- Yao Yao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, PR China
| | - Xingzhi Dang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, PR China
| | - Xinyu Qiao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, PR China
| | - Rong Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, PR China
| | - Jiazhi Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, PR China
| | - Zhihuan Huang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, PR China
| | - Yong-Kuan Gong
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, PR China; Institute of Materials Science and New Technology, Northwest University, Xian 710127, Shaanxi, PR China.
| |
Collapse
|
10
|
Xie W, Chen M, Wei S, Huang Z, Li Z. Lignin nanoparticles-intercalated reduced graphene oxide/glass fiber composite membranes for highly efficient oil-in-water emulsions separation in harsh environment. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Li S, Song Z, Jiang Q, Wu J. Facile fabrication of multifunctional underwater superoleophobicity zwitterionic coating by surface-initiated redox polymerization. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Xi J, Lou Y, Jiang S, Dai H, Yang P, Zhou X, Fang G, Wu W. High flux composite membranes based on glass/cellulose fibers for efficient oil-water emulsion separation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Niu Z, Luo W, Liu W, Sun Q, Mu P, Li J. One-step constructing of underwater superoleophobic bed for highly efficient oil-in-water emulsions separation. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2049291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Zhenhua Niu
- Gansu International Scientific and Technological Cooperation Base of Water-retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, P. R. China
| | - Wenjia Luo
- Gansu International Scientific and Technological Cooperation Base of Water-retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, P. R. China
| | - Weimin Liu
- Gansu International Scientific and Technological Cooperation Base of Water-retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, P. R. China
| | - Qing Sun
- Gansu International Scientific and Technological Cooperation Base of Water-retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, P. R. China
| | - Peng Mu
- Gansu International Scientific and Technological Cooperation Base of Water-retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, P. R. China
| | - Jian Li
- Gansu International Scientific and Technological Cooperation Base of Water-retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, P. R. China
| |
Collapse
|
14
|
|
15
|
Haridharan N, Sundar D, Kurrupasamy L, Anandan S, Liu C, Wu JJ. Oil spills adsorption and cleanup by polymeric materials: A review. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Neelamegan Haridharan
- Department of Environmental Engineering and Science Feng Chia University Taichung Taiwan
- Department of Chemistry Vel Tech Rangarajan Dr. Sagunthala R & D Institute of Science and Technology Avadi Tamilnadu India
| | - Dhivyasundar Sundar
- Department of Environmental Engineering and Science Feng Chia University Taichung Taiwan
| | - Lakshmanan Kurrupasamy
- Department of Environmental Engineering and Science Feng Chia University Taichung Taiwan
| | - Sambandam Anandan
- Department of Chemistry National Institute of Technology Trichy India
| | - Chen‐Hua Liu
- Department of Environmental Engineering and Science Feng Chia University Taichung Taiwan
| | - Jerry J. Wu
- Department of Environmental Engineering and Science Feng Chia University Taichung Taiwan
| |
Collapse
|
16
|
Yong J, Yang Q, Hou X, Chen F. Emerging Separation Applications of Surface Superwettability. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:688. [PMID: 35215017 PMCID: PMC8878479 DOI: 10.3390/nano12040688] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 11/17/2022]
Abstract
Human beings are facing severe global environmental problems and sustainable development problems. Effective separation technology plays an essential role in solving these challenges. In the past decades, superwettability (e.g., superhydrophobicity and underwater superoleophobicity) has succeeded in achieving oil/water separation. The mixture of oil and water is just the tip of the iceberg of the mixtures that need to be separated, so the wettability-based separation strategy should be extended to treat other kinds of liquid/liquid or liquid/gas mixtures. This review aims at generalizing the approach of the well-developed oil/water separation to separate various multiphase mixtures based on the surface superwettability. Superhydrophobic and even superoleophobic surface microstructures have liquid-repellent properties, making different liquids keep away from them. Inspired by the process of oil/water separation, liquid polymers can be separated from water by using underwater superpolymphobic materials. Meanwhile, the underwater superaerophobic and superaerophilic porous materials are successfully used to collect or remove gas bubbles in a liquid, thus achieving liquid/gas separation. We believe that the diversified wettability-based separation methods can be potentially applied in industrial manufacture, energy use, environmental protection, agricultural production, and so on.
Collapse
Affiliation(s)
- Jiale Yong
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (J.Y.); (X.H.)
| | - Qing Yang
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Xun Hou
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (J.Y.); (X.H.)
| | - Feng Chen
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (J.Y.); (X.H.)
| |
Collapse
|
17
|
Kim Y, Thuy LT, Kim Y, Seong M, Cho WK, Choi JS, Kang SM. Coordination-Driven Surface Zwitteration for Antibacterial and Antifog Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1550-1559. [PMID: 35057617 DOI: 10.1021/acs.langmuir.1c03009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The enhancement of surface wettability by hydrophilic polymer coatings has been of great interest because it has been used to address several technical challenges such as biofouling and surface fogging. Among the hydrophilic polymers, zwitterionic polymers have been extensively utilized to coat solid surfaces due to their excellent capability to bind water molecules, thereby forming dense hydration layers on the solid surfaces. For these zwitterionic polymers to function appropriately on the solid surfaces, techniques for fixing polymers onto the solid surface with high efficiency are required. Herein, we report a new approach to graft zwitterionic polymers onto solid substrates. The approach is based on the mussel-inspired surface chemistry and metal coordination. It consists of polydopamine coating and the coordination-driven grafting of the zwitterionic polymers. Polydopamine coating enables the versatile surface immobilization of catechols. Zwitterionic polymers are then easily fixed onto the catechol-immobilized surface by metal-mediated crosslinking reactions. Using this approach, nanometer-thick zwitterionic polymer layers that are highly resistant to bacterial adhesion and fog generation could be successfully fabricated on solid substrates in a substrate-independent manner.
Collapse
Affiliation(s)
- Yohan Kim
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Le Thi Thuy
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yejin Kim
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Minjin Seong
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Woo Kyung Cho
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Joon Sig Choi
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sung Min Kang
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| |
Collapse
|
18
|
Zwitterionic hydrogel-coated cotton fabrics with underwater superoleophobic, self-healing and anti-fouling performances for oil-water separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119789] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Li H, Xu X, Wang J, Han X, Xu Z. A Robust PVDF-Assisted Composite Membrane for Tetracycline Degradation in Emulsion and Oil-Water Separation. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3201. [PMID: 34947550 PMCID: PMC8703638 DOI: 10.3390/nano11123201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022]
Abstract
Tetracycline (TC) contamination in water has progressively exacerbated the environmental crisis. It is urgent to develop a feasible method to solve this pollution in water. However, polluted water often contains oil. This paper reported a glass fiber (FG)-assisted polyvinylidene fluoride (PVDF) hybrid membrane with dual functions: high TC degradation efficiency in emulsion and oil-water separation. It can meet the catalytic degradation of tetracycline in complex water. This membrane was decorated by coating the glass fiber with PVDF solution containing hydrophilic graphene oxide hybridized NH2-MIL-101(Fe) particles. Moreover, due to its strong mechanical strength enhanced by the glass fiber, it can be reused as TC degradation catalysts for dozens of times without cracking. Thanks to the hydrophobicity of PVDF and the surface pore size of MOFs, the prepared membrane showed a good oil-water separation performance. Besides, the hydrophilic graphene oxide (GO) and NH2-MIL-101(Fe) improved the membrane's anti-fouling performance, allowing it to be reused as the separation membrane. Therefore, the outstanding stability and recoverability of the membrane make it as a fantastic candidate material for large-scale removal of TC as well as oil-water separation application.
Collapse
Affiliation(s)
- Huijun Li
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China; (H.L.); (X.X.); (J.W.)
| | - Xin Xu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China; (H.L.); (X.X.); (J.W.)
| | - Jiwei Wang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China; (H.L.); (X.X.); (J.W.)
| | - Xuefeng Han
- School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Zhouqing Xu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China; (H.L.); (X.X.); (J.W.)
| |
Collapse
|
20
|
Liu Q, Zhang Y, Liu W, Wang L, Choi YW, Fulton M, Fuchs S, Shariati K, Qiao M, Bernat V, Ma M. A Broad-Spectrum Antimicrobial and Antiviral Membrane Inactivates SARS-CoV-2 in Minutes. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2103477. [PMID: 34512227 PMCID: PMC8420574 DOI: 10.1002/adfm.202103477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/25/2021] [Indexed: 05/27/2023]
Abstract
SARS-CoV-2, the virus that caused the COVID-19 pandemic, can remain viable and infectious on surfaces for days, posing a potential risk for fomite transmission. Liquid-based disinfectants, such as chlorine-based ones, have played an indispensable role in decontaminating surfaces but they do not provide prolonged protection from recontamination. Here a safe, inexpensive, and scalable membrane with covalently immobilized chlorine, large surface area, and fast wetting that exhibits long-lasting, exceptional killing efficacy against a broad spectrum of bacteria and viruses is reported. The membrane achieves a more than 6 log reduction within several minutes against all five bacterial strains tested, including gram-positive, gram-negative, and drug-resistant ones as well as a clinical bacterial cocktail. The membrane also efficiently deactivated nonenveloped and enveloped viruses in minutes. In particular, a 5.17 log reduction is achieved against SARS-CoV-2 after only 10 min of contact with the membrane. This membrane may be used on high-touch surfaces in healthcare and other public facilities or in air filters and personal protective equipment to provide continuous protection and minimize transmission risks.
Collapse
Affiliation(s)
- Qingsheng Liu
- Department of Biological and Environmental EngineeringCornell UniversityIthacaNY14853USA
| | - Yidan Zhang
- Department of Fiber Science and Apparel DesignCornell UniversityIthacaNY14853USA
- Halomine Inc.IthacaNY14853USA
| | - Wanjun Liu
- Department of Biological and Environmental EngineeringCornell UniversityIthacaNY14853USA
| | - Long‐Hai Wang
- Department of Biological and Environmental EngineeringCornell UniversityIthacaNY14853USA
| | | | | | - Stephanie Fuchs
- Department of Biological and Environmental EngineeringCornell UniversityIthacaNY14853USA
| | - Kaavian Shariati
- Department of Biological and Environmental EngineeringCornell UniversityIthacaNY14853USA
| | | | - Victorien Bernat
- Department of Materials Science and EngineeringCornell UniversityIthacaNY14853USA
| | - Minglin Ma
- Department of Biological and Environmental EngineeringCornell UniversityIthacaNY14853USA
| |
Collapse
|
21
|
Li X, Nayak K, Stamm M, Tripathi BP. Zwitterionic silica nanogel-modified polysulfone nanoporous membranes formed by in-situ method for water treatment. CHEMOSPHERE 2021; 280:130615. [PMID: 33965864 DOI: 10.1016/j.chemosphere.2021.130615] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/04/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
We report a simple methodology to prepare nano-porous polysulfone membranes using zwitterionic functionalized silica nanogels with high BSA protein rejection and antifouling properties. The zwitterionic silica precursor was prepared by reacting 1,3-propane sultone with 3-aminopropyl triethoxysilane under an inert atmosphere. The precursor was in situ hydrolyzed and condensed in the polysulfone nanoporous membrane network by one-pot acidic phase inversion. The prepared membranes were characterized to establish their physicochemical nature, morphology, and basic membrane properties such as permeation, rejection, and recovery. The zwitterionic membranes showed improved hydrophilicity, membrane water uptake (∼83.5%), water permeation, BSA protein rejection (>95%), and dye rejection (congo red: >52% (∼6-fold increase); methylene blue: ∼15% (∼2-fold increase)) were improved without compromising the membrane flux and fouling resistance. Overall, we report an easy fabrication method of efficient nanocomposite zwitterionic ultrafilter membranes for water treatment with excellent flux, protein separation, filtration efficiency, and antifouling behavior.
Collapse
Affiliation(s)
- Xiaojiao Li
- Department of Nanostructured Materials, Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, 01069, Dresden, Germany; Technische Universität Dresden, Department of Chemistry, 01069, Dresden, Germany
| | - Kanupriya Nayak
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Manfred Stamm
- Department of Nanostructured Materials, Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, 01069, Dresden, Germany; Technische Universität Dresden, Department of Chemistry, 01069, Dresden, Germany
| | - Bijay P Tripathi
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
22
|
Zhu Y, Lin H, Fang W, Wang A, Sun J, Yuan S, Li J, Jin J. Pseudo-zwitterions self-assembled from polycation and anion clusters showing exceptional water-cleanable anti-crude-oil-adhesion property. iScience 2021; 24:102964. [PMID: 34466787 PMCID: PMC8383005 DOI: 10.1016/j.isci.2021.102964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/28/2021] [Accepted: 08/04/2021] [Indexed: 11/28/2022] Open
Abstract
It is of great importance and practical value to develop a facile and operable surface treatment method of materials with excellent antipollution and antiadhesion property, but still a huge challenge. In this work, a series of pseudo-zwitterions are prepared from electrostatic assembly of cationic polyethyleneimine and anionic phosphonic clusters. These pseudo-zwitterionic assemblies provide a strong hydration through electrostatic interaction with water and in turn create a barrier against oil foulants, leading to a nearly zero crude oil adhesion force. The pseudo-zwitterions-decorated surfaces exhibit exceptional water-cleanable oil-repellent property, even when they are completely dried and without prehydration before fouled by crude oil. While using these pseudo-zwitterions-modified polymeric membranes for separating surfactant stabilized oil-in-water emulsion, less than 10% decline of permeating flux is observed throughout a 2-h continuous separation experiment, showing excellent emulsion separation ability and antipollution performance for high viscous oil. The ion pairs called pseudo-zwitterions were constructed by electrostatic self-assembly The pseudo-zwitterions-modified surfaces can repel crude oil without prehydration Pseudo-zwitterionic membrane shows exceptional antioil fouling performance The strategy gives a new way to endow the surfaces with excellent antiadhesion property
Collapse
Affiliation(s)
- Yuzhang Zhu
- i-Lab and CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P.R. China
| | - Hongzhen Lin
- i-Lab and CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P.R. China
| | - Wangxi Fang
- i-Lab and CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P.R. China
| | - Aqiang Wang
- College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Jichao Sun
- Key Lab of Colloid and Interface Chemistry, Shandong University, Jinan 250100, China
| | - Shiling Yuan
- Key Lab of Colloid and Interface Chemistry, Shandong University, Jinan 250100, China
| | - Jingye Li
- College of Chemistry and Materials Science, Shanghai Normal University, No. 100 Guilin Road, Shanghai, 200234, China
| | - Jian Jin
- College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
23
|
Kollár J, Popelka A, Tkac J, Žabka M, Mosnáček J, Kasak P. Sulfobetaine-based polydisulfides with tunable upper critical solution temperature (UCST) in water alcohols mixture, depolymerization kinetics and surface wettability. J Colloid Interface Sci 2021; 588:196-208. [PMID: 33387822 DOI: 10.1016/j.jcis.2020.12.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023]
Abstract
HYPOTHESIS Synthesis of a new family of polymers having a polydisulfide structure can be conducted from sulfobetaine-based derivative of natural (R)-lipoic acid. A polydisulfide backbone of polymer can be depolymerized by response to external stimuli and sulfobetaine pendant groups ensure the upper critical solution temperature (UCST) behaviour temperatures that can be modulated according to the nature of the solvent and concentration. EXPERIMENTS Sulfobetaine-bearing polydisulfides were synthesized from dithiolane derivatives and then characterized. UCST behavior of the polymers in water and in mixtures containing different alcohols (methanol, ethanol, isopropanol) was investigated. The regeneration of monomers from the polymers in response to external stimuli was examined using UV-vis and circular dichroism (CD) spectroscopy. Tunable surface wettability were shown on the grafted polymers. FINDINGS Decreasing polarity and/or increasing alcohol percentage in the water mixtures induced an increase in the cloud points of the polymers in the solutions. Thermoresponsive behaviour were repeatable and fully reversible with negligible hysteresis from aggregate to unimer state. The regeneration of monomers by depolymerization was tunable by temperature and sunlight. A thickness dependence on surface wettability was observed on wafers covalently modified with polydisulfides. This is the first report of sulfobetaine-based polydisulfides showing tunable UCST behavior and surface wettability.
Collapse
Affiliation(s)
- Jozef Kollár
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar; Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovak Republic
| | - Anton Popelka
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Jan Tkac
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic
| | - Matej Žabka
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovak Republic
| | - Jaroslav Mosnáček
- Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovak Republic; Centre for Advanced Materials Application, Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava, Slovak Republic
| | - Peter Kasak
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
24
|
Oily Wastewater Treatment: Overview of Conventional and Modern Methods, Challenges, and Future Opportunities. WATER 2021. [DOI: 10.3390/w13070980] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Industrial developments in the oil and gas, petrochemical, pharmaceutical and food sector have contributed to the large production of oily wastewater worldwide. Oily wastewater pollution affects drinking water and groundwater resources, endangers aquatic life and human health, causes atmospheric pollution, and affects crop production. Several traditional and conventional methods were widely reported, and the advantages and limitations were discussed. However, with the technology innovation, new trends of coupling between techniques, use of new materials, optimization of the cleaning process, and multiphysical approach present new paths for improvement. Despite these trends of improvement and the encouraging laboratory results of modern and green methods, many challenges remain to be raised, particularly the commercialization and the global aspect of these solutions and the reliability to reduce the system’s maintenance and operational cost. In this review, the well-known oily wastewater cleaning methods and approaches are being highlighted, and the obstacles faced in the practical use of these technologies are discussed. A critical review on the technologies and future direction as the road to commercialization is also presented to persevere water resources for the benefit of mankind and all living things.
Collapse
|
25
|
Salimi P, Aroujalian A, Iranshahi D. Graft copolymerization of zwitterionic monomer on the polyethersulfone membrane surface by corona air plasma for separation of oily wastewater. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117939] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
26
|
Green and sustainable method of manufacturing anti-fouling zwitterionic polymers-modified poly(vinyl chloride) ultrafiltration membranes. J Colloid Interface Sci 2021; 591:343-351. [PMID: 33618292 DOI: 10.1016/j.jcis.2021.01.107] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/15/2021] [Accepted: 01/30/2021] [Indexed: 12/21/2022]
Abstract
The nonsolvent induced phase separation (NIPS) method for ultrafiltration (UF) membrane fabrication relies on the extensive use of traditional solvents, thus ranking first in terms of ecological impacts among all the membrane fabrication steps. Methyl-5-(dimethylamino)-2-methyl-5-oxopentanoate (PolarClean), as a green solvent, was utilized in this study to fabricate poly(vinyl chloride) (PVC) UF membranes. Subsequently, in post-treatment process, zwitterionic polymer, [2-(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide (DMAPS), was grafted onto the membrane surface to enhance its anti-fouling properties using a greener surface-initiated activator regenerated by electron transfer-atom transfer radical polymerization (ARGET-ATRP) reaction. This novel method used low toxicity chemicals, avoiding the environmental hazards of traditional ATRP, and greatly improving the reaction efficiency. We systematically studied the grafting time effect on the resulted membranes using sodium alginate as the foulant, and found that short grafting time (30 min) achieved excellent membrane performance: pure water permeability of 2872 L m-2 h-1 bar-1, flux recovery ratio of 86.4% after 7-hour fouling test, and foulant rejection of 96.0%. This work discusses for the first time the greener procedures with lower environmental impacts in both fabrication and modification processes of PVC UF membranes.
Collapse
|
27
|
Diethylenetriaminepentaacetic acid-functionalized multi-walled carbon nanotubes/titanium oxide-PVDF nanofiber membrane for effective separation of oil/water emulsion. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117926] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
28
|
Fabrication of superhydrophilic and underwater superoleophobic membranes for fast and effective oil/water separation with excellent durability. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118898] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Lee HJ, Choi WS. 2D and 3D Bulk Materials for Environmental Remediation: Air Filtration and Oil/Water Separation. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5714. [PMID: 33333822 PMCID: PMC7765286 DOI: 10.3390/ma13245714] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 01/17/2023]
Abstract
Air and water pollution pose an enormous threat to human health and ecosystems. In particular, particulate matter (PM) and oily wastewater can cause serious environmental and health concerns. Thus, controlling PM and oily wastewater has been a great challenge. Various techniques have been reported to effectively remove PM particles and purify oily wastewater. In this article, we provide a review of the recent advancements in air filtration and oil/water separation using two- and three-dimensional (2D and 3D) bulk materials. Our review covers the advantages, characteristics, limitations, and challenges of air filters and oil/water separators using 2D and 3D bulk materials. In each section, we present representative works in detail and describe the concepts, backgrounds, employed materials, fabrication methods, and characteristics of 2D and 3D bulk material-based air filters and oil/water separators. Finally, the challenges, technical problems, and future research directions are briefly discussed for each section.
Collapse
Affiliation(s)
- Ha-Jin Lee
- Western Seoul Center, Korea Basic Science Institute, 150 Bugahyun-ro, Seoudaemun-gu, Seoul 120-140, Korea;
| | - Won San Choi
- Department of Chemical and Biological Engineering, Hanbat National University, 125 Dongseodaero, Yuseong-gu, Daejeon 305-719, Korea
| |
Collapse
|
30
|
Song Y, Wang B, Altemose P, Kowall C, Li L. 3D-Printed Membranes with a Zwitterionic Hydrogel Coating for More Robust Oil–Water Separation. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yihan Song
- Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Bingchen Wang
- Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Patrick Altemose
- Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Cliff Kowall
- Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Lubrizol Corporation, 29400 Lakeland Boulevard, Wickliffe, Ohio 44092, United States
| | - Lei Li
- Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
31
|
Chen Z, Liao M, Zhang L, Zhou J. Molecular simulations on the hydration and underwater oleophobicity of zwitterionic self‐assembled monolayers. AIChE J 2020. [DOI: 10.1002/aic.17103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zheng Chen
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory for Green Chemical Product Technology South China University of Technology Guangzhou China
| | - Mingrui Liao
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory for Green Chemical Product Technology South China University of Technology Guangzhou China
| | - Lizhi Zhang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory for Green Chemical Product Technology South China University of Technology Guangzhou China
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory for Green Chemical Product Technology South China University of Technology Guangzhou China
| |
Collapse
|
32
|
Ali N, Bilal M, Khan A, Ali F, Nasir Mohamad Ibrahim M, Gao X, Zhang S, Hong K, M. N. Iqbal H. Engineered Hybrid Materials with Smart Surfaces for Effective Mitigation of Petroleum-originated Pollutants. ENGINEERING 2020. [DOI: 10.1016/j.eng.2020.07.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
33
|
Liu S, Wang J. Eco-friendly and facile fabrication of polyimide mesh with underwater superoleophobicity for oil/water separation via polydopamine/starch hybrid decoration. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117228] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Zang L, Zheng S, Wang L, Ma J, Sun L. Zwitterionic nanogels modified nanofibrous membrane for efficient oil/water separation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118379] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
35
|
Li L, Xiang Y, Yang W, Liu Z, Cai M, Ma Z, Wei Q, Pei X, Yu B, Zhou F. Embedded polyzwitterionic brush-modified nanofibrous membrane through subsurface-initiated polymerization for highly efficient and durable oil/water separation. J Colloid Interface Sci 2020; 575:388-398. [DOI: 10.1016/j.jcis.2020.04.117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/25/2022]
|
36
|
Okhrimenko DV, Nielsen CF, Lakshtanov LZ, Dalby KN, Johansson DB, Solvang M, Deubener J, Stipp SLS. Surface Reactivity and Dissolution Properties of Alumina-Silica Glasses and Fibers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:36740-36754. [PMID: 32663394 DOI: 10.1021/acsami.0c09362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The ability of bulk glass and fibers to react in aqueous solution, with organic polymers and coupling agents, depends on the surface charge, reactivity, and adsorption properties of the glass surface, i.e. the character and density of surface -OH groups, whereas glass and fiber chemical stability and biosolubility depend on the resistance to dissolution. If glass dissolution products are accumulated in a media, they can change the surface properties by specific adsorption. We determined the -OH surface concentration, reactivity, adsorption, and dissolution properties of aluminosilicate glasses containing various modifiers and compared the results with the behavior of complex mineral wool fibers. Using proton consumption and element release from batch surface titration experiments, over the range 5 < pH < 10, surface -OH adsorption properties were modeled with the FITEQL program. During titration, network modifiers in the glass subsurface are preferentially replaced by protons, resulting in cation accumulation in the solution and formation of a leached layer enriched with Si on the solid. The behavior of Al was different. At 5 < pH < 9, only very small amounts of Al were found in the leachates, which can be explained by almost complete Al adsorption as stable surface complexes, i.e. >XOAl(OH)2 (where X = Si or Al and > represents the surface). At pH > 9, divalent cations adsorbed specifically, as >XOMe+ complexes (Me = Ca or Mg). This deeper understanding of the surface behavior of glasses and fibers is important for the design of composite materials, for applications in biology and medicine and in materials production in general, as well as for understanding natural processes, such as global uptake estimates of CO2 during rock weathering.
Collapse
Affiliation(s)
| | - C F Nielsen
- ROCKWOOL International A/S, 2640 Hedehusene, Denmark
| | - L Z Lakshtanov
- Institute of Experimental Mineralogy RAS, 142432 Chernogolovka, Russia
| | - K N Dalby
- Haldor Topsoe A/S, Haldor Topsøes Alle 1, 2800 Kongens Lyngby, Denmark
| | - D B Johansson
- ROCKWOOL International A/S, 2640 Hedehusene, Denmark
| | - M Solvang
- ROCKWOOL International A/S, 2640 Hedehusene, Denmark
| | - J Deubener
- Institute of Non-Metallic Materials, Clausthal University of Technology, 38678 Clausthal-Zellerfeld, Germany
| | - S L S Stipp
- Department of Physics, Danish Technical University, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
37
|
Ultrathin microporous membrane with high oil intrusion pressure for effective oil/water separation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118201] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Ok S, Sheets J, Welch S, Liu T, Kaya S, Cole DR. Wetting behaviors of fluoroterpolymer fiber films. E-POLYMERS 2020. [DOI: 10.1515/epoly-2020-0043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractVarious aspects of electrospun fibers prepared from terpolymer of tetrafluoroethylene (TFE), hexafluoropropylene (HFP), and vinylidene fluoride (VDF) (THV)/acetone solutions at two applied voltages, THV/acetone solutions having Texas montmorillonite with two ratios, and THV/ethyl acetate solutions using two needle sizes are described. Fibers from THV/acetone and THV/ethyl acetate solutions showed shallow indentations and pores, respectively. The clay, functioning as electrospinning agent, did not influence the fiber morphology, but yielded narrower fiber diameter distribution and the thinnest fibers. Heterogeneous fiber diameter distribution and increase in the fiber diameters were observed by lowering the voltage for fibers of THV/acetone solutions. Fibers from THV/ethyl acetate solutions had the largest diameter and the broadest diameter distribution. Electrospun THV fibers having both hydrophobic characteristics with nearly 140° water contact angles and oleophilic properties with oil contact angles less than 45° might have applications in areas such as water/oil separation.
Collapse
Affiliation(s)
- Salim Ok
- Petroleum Research Center, Kuwait Institute for Scientific Research, P.O. box 24885, Safat, 13109, Kuwait
| | - Julia Sheets
- School of Earth Sciences, The Ohio State University, Columbus, 43210, Ohio, USA
| | - Susan Welch
- School of Earth Sciences, The Ohio State University, Columbus, 43210, Ohio, USA
| | - Tingting Liu
- School of Earth Sciences, The Ohio State University, Columbus, 43210, Ohio, USA
| | - Savas Kaya
- School of Electrical Engineering and Computer Science, Russ College of Engineering and Technology, Ohio University, Athens, 45701, Ohio, USA
| | - David R. Cole
- School of Earth Sciences, The Ohio State University, Columbus, 43210, Ohio, USA
- School of Electrical Engineering and Computer Science, Russ College of Engineering and Technology, Ohio University, Athens, 45701, Ohio, USA
| |
Collapse
|
39
|
Li M, Zhuang B, Yu J. Functional Zwitterionic Polymers on Surface: Structures and Applications. Chem Asian J 2020; 15:2060-2075. [DOI: 10.1002/asia.202000547] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/29/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Minglun Li
- School of Materials Science and EngineeringNanyang Technological University Singapore 639798 Singapore
| | - Bilin Zhuang
- Division of ScienceYale-NUS College Singapore 138527 Singapore
| | - Jing Yu
- School of Materials Science and EngineeringNanyang Technological University Singapore 639798 Singapore
| |
Collapse
|
40
|
Micro/Nanoscale Structured Superhydrophilic and Underwater Superoleophobic Hybrid-Coated Mesh for High-Efficiency Oil/Water Separation. Polymers (Basel) 2020; 12:polym12061378. [PMID: 32575503 PMCID: PMC7361680 DOI: 10.3390/polym12061378] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/02/2022] Open
Abstract
A novel micro/nanoscale rough structured superhydrophilic hybrid-coated mesh that shows underwater superoleophobic behavior is fabricated by spray casting or dipping nanoparticle–polymer suspensions on stainless steel mesh substrates. Water droplets can spread over the mesh completely; meanwhile, oil droplets can roll off the mesh at low tilt angles without any penetration. Besides overcoming the oil-fouling problem of many superhydrophilic coatings, this superhydrophilic and underwater superoleophobic mesh can be used to separate oil and water. The simple method used here to prepare the organic–inorganic hybrid coatings successfully produced controllable micro-nano binary roughness and also achieved a rough topography of micro-nano binary structure by controlling the content of inorganic particles. The mechanism of oil–water separation by the superhydrophilic and superoleophobic membrane is rationalized by considering capillary mechanics. Tetraethyl orathosilicate (TEOS) as a base was used to prepare the nano-SiO2 solution as a nano-dopant through a sol-gel process, while polyvinyl alcohol (PVA) was used as the film binder and glutaraldehyde as the cross-linking agent; the mixture was dip-coated on the surface of 300-mesh stainless steel mesh to form superhydrophilic and underwater superoleophobic film. Properties of nano-SiO2 represented by infrared spectroscopy and surface topography of the film observed under scanning electron microscope (SEM) indicated that the film surface had a coarse micro–nano binary structure; the effect of nano-SiO2 doping amount on the film’s surface topography and the effect of such surface topography on hydrophilicity of the film were studied; contact angle of water on such surface was tested as 0° by the surface contact angle tester and spread quickly; the underwater contact angle to oil was 158°, showing superhydrophilic and underwater superoleophobic properties. The effect of the dosing amount of cross-linking agent to the waterproof swelling property and the permeate flux of the film were studied; the oil–water separation effect of the film to oil–water suspension and oil–water emulsion was studied too, and in both cases the separation efficiency reached 99%, which finally reduced the oil content to be lower than 50 mg/L. The effect of filtration times to permeate flux was studied, and it was found that the more hydrophilic the film was, the stronger the stain resistance would be, and the permeate flux would gradually decrease along with the increase of filtration times.
Collapse
|
41
|
Gupta A, Mishra V, Srivastava R. Zinc oxide nanoparticles decorated fluorescent and antibacterial glass fiber pre-filter paper. NANO EXPRESS 2020. [DOI: 10.1088/2632-959x/ab976d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Abstract
Zinc oxide nanoparticles (ZnO–NPs) were synthesized and decorated simultaneously onto the glass fiber pre-filter paper (GF paper) by the sonochemical method without using any additional reagents (a ‘Green’ synthesis approach). ZnO–NPs decorated GF paper was characterized by electron, confocal laser scanning and atomic force microscopy, fourier transform infrared and atomic emission spectroscopy, X-ray diffraction, and thermogravimetric analysis etc. Due to the massive void volume space, exceptional dimensional stability, large thickness (790 μm) of the GF paper (unlike other paper materials) and ultrasonic irradiation effects, ZnO–NPs were decorated in the enormous amount (96 mg per paper) without causing any adverse effects on the GF paper. Such a huge amount decoration onto GF paper makes it multifunctional, fluorescencet (orange-pink color, 535–624 nm) under ultra-violet light (360 nm) and antibacterial. The antibacterial activity of the ZnO–NPs decorated GF paper was examined against Gram-positive bacteria Bacillus subtilis 168 and Staphylococcus aureus (MCC 2043, pathogenic). The outcomes from the antibacterial experiments revealed ∼99% (2 log) reduction in the survival of the filtered bacteria (B. subtilis) on the ZnO–NPs decorated GF paper due to the toxicity of ZnO–NPs on bacterial cells like cell shrinkage, cytoplasmic leakage, cell burst, etc. Multifunctional, ZnO–NPs decorated GF paper could be used for fluorescencet and antibacterial paper-based applications.
Collapse
|
42
|
Wang F, Luo S, Xiao S, Zhang W, Zhuo Y, He J, Zhang Z. Enabling phase transition of infused lubricant in porous structure for exceptional oil/water separation. JOURNAL OF HAZARDOUS MATERIALS 2020; 390:122176. [PMID: 32006849 DOI: 10.1016/j.jhazmat.2020.122176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/15/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
The fundamental mechanism behind oil/water separation materials is their surface wettability that allows either oil or water to pass through. The conventional materials for oil/water separation generally have extreme wettability, namely superhydrophilic for water separation and superhydrophobic for oil separation. Using easily accessible materials that are medium hydrophobic or even relatively hydrophilic for preparing highly efficient oil/water separators have rarely been reported. In this work, a new strategy by triggering phase transition of infused lubricant from liquid to solid state in porous structure is realized in fabricating slippery lubricant infused porous structure for oil/water separations. By infusing polyester fabric with coconut oil, after phase transition, excellent water repellency and oil permeability by an absorbing-permeating mechanism are achieved, despite the low water contact angle on the new material. Although the new phase transformable slippery lubricant infused porous structure, features much milder hydrophobicity than conventional oil/water separators, it can remove diverse types of oil from water with high efficiencies. The phase transformable slippery lubricant infused porous structure is able to maintain their water repellency after immersing in high concentration salt (10 wt% NaCl), acid (25 % HCl), alkaline (25 % NH3·H2O) solutions for 120 h, showing remarkably functional durability in harsh environment. The lubricant phase transition mechanism proposed in this study is universally applicable to porous substrates with various chemical compositions and pore structures, such as porous sponges or even daily life breads, for creating efficient oil/water separators, which can serve as a novel accessible design principle of phase transformable slippery lubricant infused porous structure for eco-friendly oil/water separators.
Collapse
Affiliation(s)
- Feng Wang
- NTNU Nanomechanical Lab, Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway
| | - Sihai Luo
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway
| | - Senbo Xiao
- NTNU Nanomechanical Lab, Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway
| | - Wenjing Zhang
- Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway
| | - Yizhi Zhuo
- NTNU Nanomechanical Lab, Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway
| | - Jianying He
- NTNU Nanomechanical Lab, Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway.
| | - Zhiliang Zhang
- NTNU Nanomechanical Lab, Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway.
| |
Collapse
|
43
|
Helali N, Rastgar M, Farhad Ismail M, Sadrzadeh M. Development of underwater superoleophobic polyamide-imide (PAI) microfiltration membranes for oil/water emulsion separation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116451] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
44
|
Zarghami S, Mohammadi T, Sadrzadeh M, Van der Bruggen B. Bio-inspired anchoring of amino-functionalized multi-wall carbon nanotubes (N-MWCNTs) onto PES membrane using polydopamine for oily wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134951. [PMID: 31812409 DOI: 10.1016/j.scitotenv.2019.134951] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/01/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
The major problem that limits the utilization of PES membranes in treatment of oily wastewater is the drastic irreversible membrane fouling due to the attachment of oil droplets onto the membrane surface. The goal of this study was to develop a novel, fast and facile post-functionalization of polydopamine (PDA) coated membranes using pre-synthesized nanoparticles for fabrication of novel organic-inorganic hybrid recoverable membranes with high hydrophilicity and underwater oleophobicity. Here, bio-inspired technique was studied because the membrane technology could separate small oil droplets (even <10 µm) with high performance if faced little fouling phenomena during the treatment process. The amino-functionalized multi-wall carbon nanotubes (N-MWCNTs) were anchored onto the PDA coated PES membranes. The membranes characteristics, with specific focus on surface morphology and wettability were investigated. The newly developed PES/PDA/N-MWCNTs membranes showed an enhanced flux (~1086%) compared to the unmodified PES membrane. This enhancement was attributed to the high hydrophilic and underwater oleophobic properties, which were found to alleviate the effect of fouling. The total fouling ratio (Rt) of the PES/PDA/N-MWCNTs membrane was 22.35%, which was far lower than that of the unmodified PES membrane (98.38%). Meanwhile, most of the fouling was reversible for the former with the remaining (irreversible fouling) of 18.08%. It was concluded that cake filtration is the dominant fouling mechanism of the PES/PDA/N-MWCNTs membranes due to their average pore diameter. The modified membranes showed high oil rejection (>99%) so that the obtained clean water with oil concentration lower than 5 ppm met the wastewater discharge standard recommendations. Also, evaluation of the PES/PDA/N-MWCNT membrane in cross-flow filtration showed its antifouling properties in the long-term application (16 h).
Collapse
Affiliation(s)
- Soheil Zarghami
- Center of Excellence for Membrane Science and Technology, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran; Research and Technology Centre of Membrane Separation Processes, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran
| | - Toraj Mohammadi
- Center of Excellence for Membrane Science and Technology, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran; Research and Technology Centre of Membrane Separation Processes, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran.
| | - Mohtada Sadrzadeh
- Center of Excellence for Membrane Science and Technology, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran; Department of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium; Faculty of Engineering and the Built Environment, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
| |
Collapse
|
45
|
Wang W, Lin J, Cheng J, Cui Z, Si J, Wang Q, Peng X, Turng LS. Dual super-amphiphilic modified cellulose acetate nanofiber membranes with highly efficient oil/water separation and excellent antifouling properties. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121582. [PMID: 31818654 DOI: 10.1016/j.jhazmat.2019.121582] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/15/2019] [Accepted: 10/31/2019] [Indexed: 05/26/2023]
Abstract
Along with increasing oily, industrial wastewater and seawater pollution, oil spills-and their clean-up via the separation of oil and water-are still a worldwide challenge. Aiming to fabricate an oil/water separation membrane with excellent comprehensive performance, we report here a new type of multifunctional deacetylated cellulose acetate (d-CA) membrane. The cellulose acetate (CA) nanofiber membranes are fabricated by electrospinning and then deacetylated to obtain the d-CA nanofiber membranes, which are super-amphiphilic in air, oleophobic in water, and super-hydrophilic in oil. The multifunctional d-CA nanofiber membranes can be used as water-removal substances for oil/water mixtures, as well as emulsified oil/water and oil/corrosive aqueous systems, with gravity as the only needed driving force. The d-CA nanofiber membranes possess the highest separation flux, reaching up to 38,000 L/m2·h, and the highest separation efficiency, reaching up to 99.97 % for chloroform/water mixtures under the force of gravity. In fact, the separation flux was several times higher than that of commercial CA (c-CA) membranes. The excellent anti-pollution and self-cleaning abilities endow the membranes with powerful cyclic stability and reusability. The d-CA nanofiber membranes show great application prospects in chemical plants, textile mills, and the food industry, as well as offshore oil spills, to separate oil from water.
Collapse
Affiliation(s)
- Weiwen Wang
- School of Materials Science and Engineering, Fujian University of Technology, Fujian, 350118, China; Fujian Provincial Key Laboratory in the Universities of Polymer Materials and Production, Fujian, 350118, China
| | - Jixin Lin
- School of Materials Science and Engineering, Fujian University of Technology, Fujian, 350118, China; Fujian Provincial Key Laboratory in the Universities of Polymer Materials and Production, Fujian, 350118, China
| | - Jiaqi Cheng
- School of Materials Science and Engineering, Fujian University of Technology, Fujian, 350118, China; Fujian Provincial Key Laboratory in the Universities of Polymer Materials and Production, Fujian, 350118, China
| | - Zhixiang Cui
- School of Materials Science and Engineering, Fujian University of Technology, Fujian, 350118, China; Fujian Provincial Key Laboratory in the Universities of Polymer Materials and Production, Fujian, 350118, China.
| | - Junhui Si
- School of Materials Science and Engineering, Fujian University of Technology, Fujian, 350118, China; Fujian Provincial Key Laboratory in the Universities of Polymer Materials and Production, Fujian, 350118, China
| | - Qianting Wang
- School of Materials Science and Engineering, Fujian University of Technology, Fujian, 350118, China; Fujian Provincial Key Laboratory in the Universities of Polymer Materials and Production, Fujian, 350118, China
| | - Xiangfang Peng
- School of Materials Science and Engineering, Fujian University of Technology, Fujian, 350118, China; Fujian Provincial Key Laboratory in the Universities of Polymer Materials and Production, Fujian, 350118, China
| | - Lih-Sheng Turng
- Wisconsin Institutes for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, 53715, United States; Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States.
| |
Collapse
|
46
|
Highly efficient self-cleaning of heavy polyelectrolyte coated electrospun polyacrylonitrile nanofibrous membrane for separation of oil/water emulsions with intermittent pressure. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116106] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
47
|
Wang H, Jiang DB, Gu J, Ouyang L, Zhang YX, Yuan S. Simultaneous Removal of Phenol and Pb2+ from the Mixed Solution by Zwitterionic Poly(sulfobetaine methacrylate)-Grafted Poly(vinylbenzyl chloride) Microspheres. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06171] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hanzhi Wang
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - De-Bin Jiang
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Mechanical Transmissions, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Juntao Gu
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Like Ouyang
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yu-Xin Zhang
- State Key Laboratory of Mechanical Transmissions, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Shaojun Yuan
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
48
|
Wang B, Mahmood A, Chen L, Weng D, Wang C, Chen C, Li Z, Wang J. Under-oil superhydrophilic salt particle filter for the efficient separation of water-in-oil emulsions. Chem Commun (Camb) 2020; 56:11585-11588. [DOI: 10.1039/d0cc04290k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, a surfactant stabilized water-in-oil emulsion has been successfully separated by using only NaCl particles as a filter.
Collapse
Affiliation(s)
- Bao Wang
- Northeast Petroleum University
- Daqing 163318
- China
- State Key Laboratory of Tribology
- Tsinghua University
| | - Awais Mahmood
- State Key Laboratory of Tribology
- Tsinghua University
- Beijing 100084
- China
| | - Lei Chen
- State Key Laboratory of Tribology
- Tsinghua University
- Beijing 100084
- China
| | - Ding Weng
- State Key Laboratory of Tribology
- Tsinghua University
- Beijing 100084
- China
| | - Caihua Wang
- Northeast Petroleum University
- Daqing 163318
- China
| | - Chaolang Chen
- State Key Laboratory of Tribology
- Tsinghua University
- Beijing 100084
- China
| | - Zhaoxin Li
- State Key Laboratory of Tribology
- Tsinghua University
- Beijing 100084
- China
| | - Jiadao Wang
- State Key Laboratory of Tribology
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
49
|
Zarghami S, Mohammadi T, Sadrzadeh M, Van der Bruggen B. Superhydrophilic and underwater superoleophobic membranes - A review of synthesis methods. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.101166] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
50
|
Chen WH, Liao TY, Thissen H, Tsai WB. One-Step Aminomalononitrile-Based Coatings Containing Zwitterionic Copolymers for the Reduction of Biofouling and the Foreign Body Response. ACS Biomater Sci Eng 2019; 5:6454-6462. [DOI: 10.1021/acsbiomaterials.9b00871] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Wen-Hsuan Chen
- Department of Chemical Engineering, and Advanced Research Center for Green Materials Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Tzu-Ying Liao
- Department of Chemical Engineering, and Advanced Research Center for Green Materials Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
- CSIRO Manufacturing, Research Way, Clayton 3168, Victoria, Australia
| | - Helmut Thissen
- CSIRO Manufacturing, Research Way, Clayton 3168, Victoria, Australia
| | - Wei-Bor Tsai
- Department of Chemical Engineering, and Advanced Research Center for Green Materials Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| |
Collapse
|