1
|
Wang H, Guo L, Wu M, Chu G, Zhu W, Song J, Guo J. The Improved Redispersibility of Cellulose Nanocrystals Using Hydroxypropyl Cellulose and Structure Color from Redispersed Cellulose Nanocrystals. Biomacromolecules 2024; 25:8006-8015. [PMID: 39546419 DOI: 10.1021/acs.biomac.4c01277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Cellulose nanocrystals (CNC) have been significantly developed as a building block material for the design of novel functional materials in many fields such as biomedicine, nanotechnology, and materials science due to their excellent optical properties, biocompatibility, and sustainability. Improving the redispersibility of CNC in the sustainable processing of nanocellulose has been a challenge because intense hydrogen bond interaction leads to irreversible aggregation, making CNC difficult to redisperse and increasing the cost of storage and transportation of CNC. Hydroxypropyl cellulose (HPC) is an important hydroxy propylated cellulose ether. As a water-soluble cellulose derivative, HPC has a polyhydroxy structure similar to that of CNC, which leads to good compatibility and high affinity between HPC and CNC. In this work, HPC of different molecular weights was comixed with CNC of different contents, which was then dried using different methods, and the dried samples were redispersed in water. The addition of HPC improved the redispersibility of the CNC. Finally, the redispersed suspension was also redried to form a film, which was found to retain its structure color. These results provide an important avenue for the redispersion of dried CNC and for the development of functional materials from redispersed CNC.
Collapse
Affiliation(s)
- Huan Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Lukuan Guo
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Mingfeng Wu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Guang Chu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Wenyuan Zhu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Junlong Song
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Jiaqi Guo
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
2
|
Sobhiga G, Maria HJ, Mozetič M, Thomas S. A review on green materials: Exploring the potential of poly(vinyl alcohol) (PVA) and nanocellulose composites. Int J Biol Macromol 2024; 283:137176. [PMID: 39547614 DOI: 10.1016/j.ijbiomac.2024.137176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/20/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
Polyvinyl alcohol (PVA) and nanocellulose (NC) composite systems are promising candidates with exciting implications for sustainability, adaptability, and future uses. This research investigates the synergistic features of PVA and nanocellulose, focusing on their renewable and biodegradable nature as important contributors to sustainable material development. An overview of various processing techniques of PVA/NC composites, and their morphological, thermo-mechanical, barrier and biodegradable properties is examined, revealing its enhanced performance attributes compared to conventional materials. This review also discusses the numerous applications of PVA and nanocellulose composites in packaging, biomedical engineering, and environmental remediation. Furthermore, the discussion expands on the potential future applications of these composites, emphasizing their importance in tackling critical global concerns such as pollution reduction, resource conservation, and healthcare breakthroughs. With ongoing research focusing on functionalisation strategies and scalable production methods, PVA and nanocellulose composites are poised to revolutionize multiple sectors, offering sustainable solutions that align with the principles of circular economy and environmental stewardship. Finally, this review emphasises the enormous contributions of PVA and nanocellulose composites to sustainable material innovation, their broad applicability across industries, and their promise to shape a more resilient and environmentally friendly future.
Collapse
Affiliation(s)
- G Sobhiga
- International and Inter University Centre for Nanoscience and Nanotechnology (IIUCNN) Mahatma Gandhi University, Kottayam, Kerala 686 560, India
| | - Hanna J Maria
- School of Energy Materials, Mahatma Gandhi University, Kottayam, Kerala 686 560, India
| | - Miran Mozetič
- Department of Surface Engineering, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Sabu Thomas
- International and Inter University Centre for Nanoscience and Nanotechnology (IIUCNN) Mahatma Gandhi University, Kottayam, Kerala 686 560, India; School of Energy Materials, Mahatma Gandhi University, Kottayam, Kerala 686 560, India; Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, Johannesburg, South Africa; School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686 560, India; Trivandrum Engineering, Science and Technology (TrEST) Research Park, Trivandrum, India 695016.
| |
Collapse
|
3
|
Basu P, Banerjee A, Okoro PD, Masoumi A, Kanjilal B, Akbari M, Martins‐Green M, Armstrong DG, Noshadi I. Integration of Functional Polymers and Biosensors to Enhance Wound Healing. Adv Healthc Mater 2024; 13:e2401461. [PMID: 39235365 PMCID: PMC11582501 DOI: 10.1002/adhm.202401461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/17/2024] [Indexed: 09/06/2024]
Abstract
Biosensors have led to breakthroughs in the treatment of chronic wounds. Since the discovery of the oxygen electrode by Clarke, biosensors have evolved into the design of smart bandages that dispense drugs to treat wounds in response to physiological factors, such as pH or glucose concentration, which indicate pathogenic tendencies. Aptamer-based biosensors have helped identify and characterize pathogenic bacteria in wounds that often form antibiotic-resistant biofilms. Several functional polymers have served as indispensable parts of the fabrication of these biosensors. Beginning with natural polymers such as alginate, chitosan, and silk-based fibroin, which are biodegradable and absorptive, advances have been made in formulating biocompatible synthetic polymers such as polyurethane and polyethylene glycol designed to reduce non-specific binding of proteins and cells, making biosensors less painful or cumbersome for patient use. Recently, polycaprolactone has been developed, which offers ductility and a large surface-area-to-volume ratio. There is still room for advances in the fabrication and use of biosensors for wound healing and in this review, the trend in developing biosensors from biomarker detection to smart dressings to the incorporation of machine learning in designing customized wound patches while making application easier is highlighted and can be used for a long time.
Collapse
Affiliation(s)
- Proma Basu
- Department of BioengineeringUniversity of California, RiversideRiversideCA92521USA
| | - Aihik Banerjee
- Department of BioengineeringUniversity of California, RiversideRiversideCA92521USA
| | - Prince David Okoro
- Department of BioengineeringUniversity of California, RiversideRiversideCA92521USA
| | | | - Baishali Kanjilal
- Department of BioengineeringUniversity of California, RiversideRiversideCA92521USA
| | - Mohsen Akbari
- Department of Mechanical EngineeringUniversity of VictoriaVictoriaBCV8P 5C2Canada
| | - Manuela Martins‐Green
- Department of Molecular Cellular and Systems BiologyUniversity of California, RiversideRiversideCA92521USA
| | - David G. Armstrong
- Keck School of Medicine of the University of Southern CaliforniaLos AngelesCA90033USA
| | - Iman Noshadi
- Department of BioengineeringUniversity of California, RiversideRiversideCA92521USA
| |
Collapse
|
4
|
Yu K, Yang L, Zhang N, Wang S, Liu H. Development of nanocellulose hydrogels for application in the food and biomedical industries: A review. Int J Biol Macromol 2024; 272:132668. [PMID: 38821305 DOI: 10.1016/j.ijbiomac.2024.132668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
As the most abundant and renewable natural resource, cellulose has attracted significant attention and research interest for the production of hydrogels (HGs). To address environmental issues and emerging demands, the benefits of naturally produced HGs include excellent mechanical properties and superior biocompatibility. HGs are three-dimensional networks created by chemical or physical cross-linking of linear or branched hydrophilic polymers and have high capacity for absorption of water and biological fluids. Although widely used in the food and biomedical fields, most HGs are not biodegradable. Nanocellulose hydrogels (NC-HGs) have been extensively applied in the food industry for detection of freshness, chemical additives, and substitutes, as well as the biomedical field for use as bioengineering scaffolds and drug delivery systems owing to structural interchangeability and stimuli-responsive properties. In this review article, the sources, structures, and preparation methods of NC-HGs are described, applications in the food and biomedical industries are summarized, and current limitations and future trends are discussed.
Collapse
Affiliation(s)
- Kejin Yu
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China; Institute of Ocean Research, Bohai University, Jinzhou 121013, China
| | - Lina Yang
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China; Institute of Ocean Research, Bohai University, Jinzhou 121013, China.
| | - Ning Zhang
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China; Institute of Ocean Research, Bohai University, Jinzhou 121013, China
| | - Shengnan Wang
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China; Institute of Ocean Research, Bohai University, Jinzhou 121013, China
| | - He Liu
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China; Institute of Ocean Research, Bohai University, Jinzhou 121013, China
| |
Collapse
|
5
|
Claro AM, Dias IKR, Fontes MDL, Colturato VMM, Lima LR, Sávio LB, Berto GL, Arantes V, Barud HDS. Bacterial cellulose nanocrystals obtained through enzymatic and acidic routes: A comparative study of their main properties and in vitro biological responses. Carbohydr Res 2024; 539:109104. [PMID: 38643706 DOI: 10.1016/j.carres.2024.109104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 04/23/2024]
Abstract
Cellulose nanocrystals (CNCs) are crystalline domains isolated from cellulosic fibers. They have been utilized in a wide range of applications, such as reinforcing fillers, antibacterial agents and manufacturing of biosensors. Whitin this context, the aim of this work was to obtain and analyze CNCs extracted from bacterial nanocellulose (BNC) using two distinct methods combined with milling pre-treatment: an acidic hydrolysis using 64 % sulfuric acid and an enzymatic hydrolysis using a commercial cellulase enzyme mixture. The CNCs obtained from the enzymatic route (e-CNCs) were observed to be spherical nanoparticles with diameter of 56 ± 11 nm. In contrast, the CNCs from the acid hydrolysis (a-CNCs) appeared as needle-shaped nanoparticles with a high aspect ratio with lengths/widths of 158 ± 64 nm/11 ± 2 nm. The surface zeta potential (ZP) of the a-CNCs was -30,8 mV, whereas the e-CNCs has a potential of +2.70 ± 3.32 mV, indicating that a-CNCs consisted of negatively charged particles with higher stability in solution. Although the acidic route resulted in nanocrystals with a slightly higher crystallinity index compared to the enzymatic route, e-CNCs was found to be more thermally stable than BNC and a-CNCs. Here, we also confirmed the safety of a-CNCs and e-CNCs using L929 cell line. Lastly, this article describes two different CNCs synthesis approaches that leads to the formation of nanoparticles with different dimensions, morphology and unique physicochemical properties. To the best of our knowledge, this is the first study to yield spherical nanoparticles as a result of BNC enzymatic treatment.
Collapse
Affiliation(s)
- Amanda Maria Claro
- Biopolymers and Biomaterials Laboratory (BioPolMat), University of Araraquara - UNIARA, Rua Carlos Gomes 1217, 14801-340, Araraquara, SP, Brazil
| | - Isabella Karoline Ribeiro Dias
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena, SP, Brazil
| | - Marina de Lima Fontes
- Biosmart Nanotechnology LTDA, Box 8, 14808-162, Araraquara, SP, Brazil; Department of Chemistry, Federal University of São Carlos (UFSCar), 13565-905 São Carlos, SP, Brazil
| | - Vitória Maria Medalha Colturato
- Biopolymers and Biomaterials Laboratory (BioPolMat), University of Araraquara - UNIARA, Rua Carlos Gomes 1217, 14801-340, Araraquara, SP, Brazil
| | - Lais Roncalho Lima
- Biopolymers and Biomaterials Laboratory (BioPolMat), University of Araraquara - UNIARA, Rua Carlos Gomes 1217, 14801-340, Araraquara, SP, Brazil
| | - Letícia Borges Sávio
- Biopolymers and Biomaterials Laboratory (BioPolMat), University of Araraquara - UNIARA, Rua Carlos Gomes 1217, 14801-340, Araraquara, SP, Brazil
| | - Gabriela Leila Berto
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena, SP, Brazil
| | - Valdeir Arantes
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena, SP, Brazil
| | - Hernane da Silva Barud
- Biopolymers and Biomaterials Laboratory (BioPolMat), University of Araraquara - UNIARA, Rua Carlos Gomes 1217, 14801-340, Araraquara, SP, Brazil.
| |
Collapse
|
6
|
Xue J, Yao Y, Wang M, Wang Z, Xue Y, Li B, Ma Y, Shen Y, Wu H. Recent studies on proteins and polysaccharides-based pH-responsive fluorescent materials. Int J Biol Macromol 2024; 260:129534. [PMID: 38237824 DOI: 10.1016/j.ijbiomac.2024.129534] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/30/2023] [Accepted: 01/14/2024] [Indexed: 01/22/2024]
Abstract
Polymer-based pH-responsive fluorescent materials have the characteristics of fast response, real-time monitoring, visualisation, and easy forming. Consequently, they have attracted widespread attention in wound healing, sweat monitoring, security and anti-counterfeiting, freshness detection of aquatic products, metal-ion sensing and bioimaging. This paper analyses the preparation principles and characteristics of pH-responsive fluorescent materials based on cellulose, chitosan and proteins. It then outlines the fluorescence properties, environmental response mechanisms and applications of various luminescent materials. Next, the research indicates that amines, N-heterocyclic rings, carboxyl groups and amino plasmonic groups on the fluorescent molecule structure and polymer skeleton appear to change the degree of ionisation under acid or alkali stimulation, which affects the light absorption ability of chromophore electrons, thus producing fluorescence changes in fluorescent materials under different pH stimuli. On this basis, the challenges and growth encountered in the development of proteins and polysaccharides-based pH-responsive fluorescent materials were prospected to provide theoretical references and technical support for constructing pH-responsive fluorescent materials with high stability, high sensitivity, long-lasting pH-response and wide detection range.
Collapse
Affiliation(s)
- Jiannan Xue
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China
| | - Yijun Yao
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China; Key Laboratory of Functional Textile Material and Product, Xi'an Polytechnic University, Ministry of Education, Xi'an 710048, Shaanxi, China.
| | - Miao Wang
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China
| | - Zhigang Wang
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China
| | - Ying Xue
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China; Key Laboratory of Functional Textile Material and Product, Xi'an Polytechnic University, Ministry of Education, Xi'an 710048, Shaanxi, China
| | - Bo Li
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China; Key Laboratory of Functional Textile Material and Product, Xi'an Polytechnic University, Ministry of Education, Xi'an 710048, Shaanxi, China
| | - Yanli Ma
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China; Key Laboratory of Functional Textile Material and Product, Xi'an Polytechnic University, Ministry of Education, Xi'an 710048, Shaanxi, China
| | - Yanqin Shen
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China; Key Laboratory of Functional Textile Material and Product, Xi'an Polytechnic University, Ministry of Education, Xi'an 710048, Shaanxi, China
| | - Hailiang Wu
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China; Key Laboratory of Functional Textile Material and Product, Xi'an Polytechnic University, Ministry of Education, Xi'an 710048, Shaanxi, China.
| |
Collapse
|
7
|
Liang F, Liu Y, Sun J, Liu C, Deng C, Seidi F, Sun R, Xiao H. Facile preparation, optical mechanism elaboration, and bio-imaging application of fluorescent cellulose nanocrystals with tunable emission wavelength. Int J Biol Macromol 2024; 257:128648. [PMID: 38061518 DOI: 10.1016/j.ijbiomac.2023.128648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/14/2023] [Accepted: 12/04/2023] [Indexed: 01/26/2024]
Abstract
Interfacing cellulose nanocrystals (CNCs) with fluorescent materials provides more possibilities for constructing of sensory/imaging platforms in biomedical applications. In this work, by harnessing the efficient extraction accompanied modification of CNCs and adjustable optical properties of carbon dots (CDs), we report the constructions and emission wavelength tuning of fluorescent CNCs (F-CNCs) composed of CNC nano-scaffolds and CDs. The as-prepared CNCs are densely decorated with citric acid (CA), which plays the role of carbon source for the in-situ synthesis of CDs on CNCs. For the F-CNCs carrying blue, green, and red emissive CDs, ethylenediamine (EDA), urea, and thiourea are the N or N/S sources. Fingerprints of chemical groups, morphological characters, and redox activities are resolved to elaborate the optical mechanisms of CDs with varying emission colors. The emission wavelength is adjusted by either changing the particle size or introducing new emission centers. Both are primarily achieved via precursor engineering. The F-CNCs reveal quantum yields (QYs) >22 % and negligible fluorescence quenching (< 6 %) upon continuous excitation as long as 24 h. Benefited from their cell membrane penetration capability, the F-CNCs with different emission wavelengths were challenged for multiplexed cytoplasm imaging.
Collapse
Affiliation(s)
- Fangyuan Liang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, China
| | - Yuqian Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, China.
| | - Jianglei Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, China
| | - Chao Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, China
| | - Chao Deng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, China
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, China
| | - Ran Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Canada
| |
Collapse
|
8
|
Zhao X, Wang Q, Wang N, Zhu G, Ma J, Lin N. Cellulose nanocrystals-based fluorescent biocarrier binding GAPDH protein with high affinity in cancer-target doxorubicin delivery. Carbohydr Polym 2024; 324:121458. [PMID: 37985075 DOI: 10.1016/j.carbpol.2023.121458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 11/22/2023]
Abstract
Cellulose nanocrystals (CNCs) have shown immense promise in medical applications, especially in cancer treatment, owing to their excellent biocompatibility and potential for functional modifications. Considering the crucial role of the protein reduced glyceraldehyde-phosphate dehydrogenase (GAPDH) in cancer progression, we embarked to immobilize CNCs with GAPDH and fluorescent molecules FITC, creating FCNC-G through regioselective modifications. Furthermore, an accelerated proliferation of cancer cells was observed in the presence of FCNC-G. To evaluate the therapeutic potential of FCNC-G, we loaded it with doxorubicin (DOX) to create FCNC-G-D and tested its effect on Hepg2. We observed a significant inhibition of Hepg2 cells exposed to low concentrations of FCNC-G-D. Additionally, mitochondrial dysfunction was detected in Hepg2 and Cal27 cells, treated with FCNC-G-D, but not in A375 cells, further highlighting its selective impact on cancer cells. Given the limitations of DOX in clinical applications, our findings establish a strong foundation for further research on the potential of CNCs grafted with GAPDH as a novel cancer-targeted biocarrier with high affinity. The combination of CNCs unique properties with targeted delivery strategies holds tremendous promise for the development of more effective and safer cancer therapies.
Collapse
Affiliation(s)
- Xiaoping Zhao
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Qin Wang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Ning Wang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Ge Zhu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jingzhi Ma
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| | - Ning Lin
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China.
| |
Collapse
|
9
|
Ben Haj Fraj S, Ferlazzo A, El Haskouri J, Neri G, Baouab MHV. New fluorescent Schiff base modified nanocellulose-based chemosensors for the selective detection of Fe 3+, Zn 2+ and Cu 2+ in semi-aqueous media and application in seawater sample. Int J Biol Macromol 2023; 253:127762. [PMID: 37924906 DOI: 10.1016/j.ijbiomac.2023.127762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023]
Abstract
Stimulus-responsive fluorescent-modified biopolymers have received significant attention in the field of chemosensors. Herein, four new fluorescent dyes, namely, S1: (PDA-DANC), S2: (SAL-PDA-DANC), S3: (BrSAL-PDA-DANC) and S4: (ClSAL-PDA-DANC) have been successfully synthesized from 2,3-dialdehyde nanocellulose (DANC) for the detection of heavy metals. The microstructural and photophysical properties of nanocellulose (NC), microcrystalline cellulose (DANC) and the synthesized S1 to S4 dyes were investigated by FT-IR, SEM-EDX, XRD, TGA, DLS and photoluminescence. NC, obtained from conversion of MCC, shows an average size of 802.4 nm with 0.141 of polydispersity index (PdI), and a crystalline index (CI) of 82.40 % and crystallite size of 4.68 nm. The synthesized dyes present good fluorescent properties and have been therefore exploited for developing new probes for heavy metal ions detection. Remarkable "turn off" and/or "turn on" behaviors with Fe3+ and Cu2+ and with Zn2+ in DMF/water solution have been demonstrated, allowing the sensitive and selective determination of these heavy metal ions with a low limit of detection (LOD). Finally, the evaluation of the Fe3+ sensing in a real seawater sample was investigated.
Collapse
Affiliation(s)
- Sarah Ben Haj Fraj
- Research Unit Materials and Organic Synthesis (UR17ES31), Preparatory Institute for Engineering Studies of Monastir, University of Monastir, Tunisia; Instituto de Ciencias de Los Materiales de la Universitad de Valencia, Calle Catedratico José Beltran 2, 46980 Paterna, Valencia, Spain; Department of Engineering, University of Messina, C.da Di Dio, I-98166 Messina, Italy
| | - Angelo Ferlazzo
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Jamal El Haskouri
- Instituto de Ciencias de Los Materiales de la Universitad de Valencia, Calle Catedratico José Beltran 2, 46980 Paterna, Valencia, Spain
| | - Giovanni Neri
- Department of Engineering, University of Messina, C.da Di Dio, I-98166 Messina, Italy
| | - Mohamed Hassen V Baouab
- Research Unit Materials and Organic Synthesis (UR17ES31), Preparatory Institute for Engineering Studies of Monastir, University of Monastir, Tunisia.
| |
Collapse
|
10
|
Andrew LJ, Walters CM, Hamad WY, MacLachlan MJ. Coassembly of Cellulose Nanocrystals and Neutral Polymers in Iridescent Chiral Nematic Films. Biomacromolecules 2023; 24:896-908. [PMID: 36720197 DOI: 10.1021/acs.biomac.2c01325] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Photonic materials based on composite films of cellulose nanocrystals (CNCs) and polymers are promising as they can be renewable and show tunable optical and mechanical properties. However, the influence of polymers on CNC self-assembly is not always well understood, and conflicting results are present in the literature. In this study, we incorporate three neutral, water-soluble polymers-poly(ethylene glycol) (PEG), poly(vinyl pyrrolidone) (PVP), and poly(acrylic acid) (PAA)-with different molecular weights into CNC suspensions at various concentrations prior to obtaining iridescent composite thin films by solvent evaporation. Through spectroscopic, potentiometric, and rheological analyses, we find that PVP physically adsorbs to the surface of CNCs resulting in a bathochromic shift in film color with both increasing concentration and polymer molecular weight. In contrast, PEG induces depletion interactions that result in a decrease in the size of chiral nematic CNC domains, with a negligible change in film color. Finally, PAA hydrogen bonds to the hydroxyl groups of CNCs, resulting in a bathochromic color shift along with interesting rheological and liquid-state properties. This work demonstrates a deeper understanding of CNC-polymer interactions during coassembly and formation of iridescent chiral nematic films, allowing for greater control over optical properties of future CNC-based materials.
Collapse
Affiliation(s)
- Lucas J Andrew
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Christopher M Walters
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Wadood Y Hamad
- Transformation and Interfaces Group, Bioproducts Innovation Centre of Excellence, FPInnovations, 2665 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Mark J MacLachlan
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.,Stewart Blusson Quantum Matter Institute, University of British Columbia, 2355 East Mall, Vancouver, British Columbia V6T 1Z4, Canada.,WPI Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan.,UBC BioProducts Institute, 2385 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
11
|
Muzata TS, Gebrekrstos A, Orasugh JT, Ray SS. An overview of recent advances in polymer composites with improved
UV
‐shielding properties. J Appl Polym Sci 2023. [DOI: 10.1002/app.53693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Tanyaradzwa S. Muzata
- Department of Polymer Technology and Engineering Harare Institute of Technology Harare Zimbabwe
| | - Amanuel Gebrekrstos
- Department of Chemical Sciences University of Johannesburg Johannesburg South Africa
- Centre for Nanostructures and Advanced Materials DSI‐CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research Pretoria South Africa
| | - Jonathan Tersur Orasugh
- Department of Chemical Sciences University of Johannesburg Johannesburg South Africa
- Centre for Nanostructures and Advanced Materials DSI‐CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research Pretoria South Africa
| | - Suprakas Sinha Ray
- Department of Chemical Sciences University of Johannesburg Johannesburg South Africa
- Centre for Nanostructures and Advanced Materials DSI‐CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research Pretoria South Africa
| |
Collapse
|
12
|
Norrrahim MNF, Knight VF, Nurazzi NM, Jenol MA, Misenan MSM, Janudin N, Kasim NAM, Shukor MFA, Ilyas RA, Asyraf MRM, Naveen J. The Frontiers of Functionalized Nanocellulose-Based Composites and Their Application as Chemical Sensors. Polymers (Basel) 2022; 14:polym14204461. [PMID: 36298039 PMCID: PMC9608972 DOI: 10.3390/polym14204461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/16/2022] Open
Abstract
Chemical sensors are a rapidly developing technology that has received much attention in diverse industries such as military, medicine, environmental surveillance, automotive power and mobility, food manufacturing, infrastructure construction, product packaging and many more. The mass production of low-cost devices and components for use as chemical sensors is a major driving force for improvements in each of these industries. Recently, studies have found that using renewable and eco-friendly materials would be advantageous for both manufacturers and consumers. Thus, nanotechnology has led to the investigation of nanocellulose, an emerging and desirable bio-material for use as a chemical sensor. The inherent properties of nanocellulose, its high tensile strength, large specific surface area and good porous structure have many advantages in its use as a composite material for chemical sensors, intended to decrease response time by minimizing barriers to mass transport between an analyte and the immobilized indicator in the sensor. Besides which, the piezoelectric effect from aligned fibers in nanocellulose composites is beneficial for application in chemical sensors. Therefore, this review presents a discussion on recent progress and achievements made in the area of nanocellulose composites for chemical sensing applications. Important aspects regarding the preparation of nanocellulose composites using different functionalization with other compounds are also critically discussed in this review.
Collapse
Affiliation(s)
- Mohd Nor Faiz Norrrahim
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
- Correspondence: (M.N.F.N.); (V.F.K.); (N.M.N.)
| | - Victor Feizal Knight
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
- Correspondence: (M.N.F.N.); (V.F.K.); (N.M.N.)
| | - Norizan Mohd Nurazzi
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Correspondence: (M.N.F.N.); (V.F.K.); (N.M.N.)
| | - Mohd Azwan Jenol
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | | | - Nurjahirah Janudin
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - Noor Azilah Mohd Kasim
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - Muhammad Faizan A. Shukor
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - Rushdan Ahmad Ilyas
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Muhammad Rizal Muhammad Asyraf
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
- Engineering Design Research Group (EDRG), School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Jesuarockiam Naveen
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, India
| |
Collapse
|
13
|
Norizan MN, Shazleen SS, Alias AH, Sabaruddin FA, Asyraf MRM, Zainudin ES, Abdullah N, Samsudin MS, Kamarudin SH, Norrrahim MNF. Nanocellulose-Based Nanocomposites for Sustainable Applications: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193483. [PMID: 36234612 PMCID: PMC9565736 DOI: 10.3390/nano12193483] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 05/31/2023]
Abstract
Nanocellulose has emerged in recent years as one of the most notable green materials available due to its numerous appealing factors, including its non-toxic nature, biodegradability, high aspect ratio, superior mechanical capabilities, remarkable optical properties, anisotropic shape, high mechanical strength, excellent biocompatibility and tailorable surface chemistry. It is proving to be a promising material in a range of applications pertinent to the material engineering to biomedical applications. In this review, recent advances in the preparation, modification, and emerging application of nanocellulose, especially cellulose nanocrystals (CNCs), are described and discussed based on the analysis of the latest investigations. This review presents an overview of general concepts in nanocellulose-based nanocomposites for sustainable applications. Beginning with a brief introduction of cellulose, nanocellulose sources, structural characteristics and the extraction process for those new to the area, we go on to more in-depth content. Following that, the research on techniques used to modify the surface properties of nanocellulose by functionalizing surface hydroxyl groups to impart desirable hydrophilic-hydrophobic balance, as well as their characteristics and functionalization strategies, were explained. The usage of nanocellulose in nanocomposites in versatile fields, as well as novel and foreseen markets of nanocellulose products, are also discussed. Finally, the difficulties, challenges and prospects of materials based on nanocellulose are then discussed in the last section for readers searching for future high-end eco-friendly functional materials.
Collapse
Affiliation(s)
- Mohd Nurazzi Norizan
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Siti Shazra Shazleen
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Aisyah Humaira Alias
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Fatimah Atiyah Sabaruddin
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Muhammad Rizal Muhammad Asyraf
- Engineering Design Research Group (EDRG), School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| | - Edi Syams Zainudin
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Norli Abdullah
- Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia (UPNM), Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - Mohd Saiful Samsudin
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Siti Hasnah Kamarudin
- Department of Ecotechnology, School of Industrial Technology, Faculty of Applied Science, UiTM Shah Alam, Shah Alam 40450, Selangor, Malaysia
| | - Mohd Nor Faiz Norrrahim
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia (UPNM), Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
14
|
Effect of lignocellulosic composition of Reutealis trisperma waste on nanocrystalline cellulose properties. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Nanoengineering and green chemistry-oriented strategies toward nanocelluloses for protein sensing. Adv Colloid Interface Sci 2022; 308:102758. [PMID: 36037672 DOI: 10.1016/j.cis.2022.102758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/31/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022]
Abstract
As one of the most important functional organic macromolecules of life, proteins not only participate in the cell metabolism and gene regulation, they also earnestly protect the body's immunity system, leading to a powerful biological shield and homeostasis. Advances in nanomaterials are boosting the significant progress in various applications, including the sensing and examination of proteins in trace amount. Nanocellulose-oriented protein sensing is at the forefront of this revolution. The inherent feature of high biocompatibility, low cytotoxicity, high specific area, good durability and marketability endow nanocellulose with great superiority in protein sensing. Here, we highlight the recent progress of protein sensing using nanocellulose as the biosensor in trace amount. Besides, various kinds of construction strategies for nanocelluloses-based biosensors are discussed in detail, to enhance the agility and accuracy of clinical/medical diagnostics. Finally, several challenges in the approbatory identification of new approaches for the marketization of biomedical sensing that need further expedition in the future are highlighted.
Collapse
|
16
|
Applications of Starch Biopolymers for a Sustainable Modern Agriculture. SUSTAINABILITY 2022. [DOI: 10.3390/su14106085] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Protected cultivation in modern agriculture relies extensively on plastic-originated mulch films, nets, packaging, piping, silage, and various applications. Polyolefins synthesized from petrochemical routes are vastly consumed in plasticulture, wherein PP and PE are the dominant commodity plastics. Imposing substantial impacts on our geosphere and humankind, plastics in soil threaten food security, health, and the environment. Mismanaged plastics are not biodegradable under natural conditions and generate problematic emerging pollutants such as nano-micro plastics. Post-consumed petrochemical plastics from agriculture face many challenges in recycling and reusing due to soil contamination in fulfilling the zero waste hierarchy. Hence, biodegradable polymers from renewable sources for agricultural applications are pragmatic as mitigation. Starch is one of the most abundant biodegradable biopolymers from renewable sources; it also contains tunable thermoplastic properties suitable for diverse applications in agriculture. Functional performances of starch such as physicomechanical, barrier, and surface chemistry may be altered for extended agricultural applications. Furthermore, starch can be a multidimensional additive for plasticulture that can function as a filler, a metaphase component in blends/composites, a plasticizer, an efficient carrier for active delivery of biocides, etc. A substantial fraction of food and agricultural wastes and surpluses of starch sources are underutilized, without harnessing useful resources for agriscience. Hence, this review proposes reliable solutions from starch toward timely implementation of sustainable practices, circular economy, waste remediation, and green chemistry for plasticulture in agriscience
Collapse
|
17
|
Wang Y, Yu Z, Dufresne A, Ye Z, Lin N, Zhou J. Quantitative Analysis of Compatibility and Dispersibility in Nanocellulose-Reinforced Composites: Hansen Solubility and Raman Mapping. ACS NANO 2021; 15:20148-20163. [PMID: 34788992 DOI: 10.1021/acsnano.1c08100] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Considering its high specific modulus, nanocellulose, including rigid cellulose nanocrystals (CNCs) and semiflexible cellulose nanofibrils (CNFs), is widely used as a nano-reinforcing filler for polymeric-based composites, which is regarded as the most promising application of these biomass nanoparticles. The quantitative evaluation of the compatibility and dispersion/aggregation state of nanocellulose in polymeric matrices is a critical issue, as it conditions the efficient stress transfer from the matrix to the filler and effective mechanical reinforcement effect. This study reports a comprehensive set of theories and methods to directly evaluate the compatibility and dispersibility of CNCs and CNFs in four polymer matrices with different polarities, where the compatibility was assessing by Hansen solubility and dispersibility by Raman mapping and cluster analysis. Triple-bond modification on the surface of nanocellulose is a promising approach for accurate recognition in composites, exhibiting the individual signal located in the Raman-silent regions of various polymeric matrices. Based on the discussion of the quantitative dispersion factor, a multiscale percolation model is proposed to better predict the mechanical properties of nanocellulose-reinforced composites based on Raman mapping results, in order to update traditional percolation models.
Collapse
Affiliation(s)
- Yuxia Wang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Zechuan Yu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Alain Dufresne
- University Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering University Grenoble Alpes), LGP2, F-38000, Grenoble, France
| | - Zelin Ye
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, People's Republic of China
| | - Ning Lin
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Ji Zhou
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, People's Republic of China
| |
Collapse
|
18
|
Sandwich-Structured, Hydrophobic, Nanocellulose-Reinforced Polyvinyl Alcohol as an Alternative Straw Material. Polymers (Basel) 2021; 13:polym13244447. [PMID: 34960998 PMCID: PMC8707351 DOI: 10.3390/polym13244447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
An environmentally friendly, hydrophobic polyvinyl alcohol (PVA) film was developed as an alternative to commercial straws for mitigating the issue of plastic waste. Nontoxic and biodegradable cellulose nanocrystals (CNCs) and nanofibers (CNFs) were used to prepare PVA nanocomposite films by blade coating and solution casting. Double-sided solution casting of polyethylene-glycol–poly(lactic acid) (PEG–PLA) + neat PLA hydrophobic films was performed, which was followed by heat treatment at different temperatures and durations to hydrophobize the PVA composite films. The hydrophobic characteristics of the prepared composite films and a commercial straw were compared. The PVA nanocomposite films exhibited enhanced water vapor barrier and thermal properties owing to the hydrogen bonds and van der Waals forces between the substrate and the fillers. In the sandwich-structured PVA-based hydrophobic composite films, the crystallinity of PLA was increased by adjusting the temperature and duration of heat treatment, which significantly improved their contact angle and water vapor barrier. Finally, the initial contact angle and contact duration (at the contact angle of 20°) increased by 35% and 40%, respectively, which was a significant increase in the service life of the biodegradable material-based straw.
Collapse
|
19
|
Sarkhosh-Inanlou R, Shafiei-Irannejad V, Azizi S, Jouyban A, Ezzati-Nazhad Dolatabadi J, Mobed A, Adel B, Soleymani J, Hamblin MR. Applications of scaffold-based advanced materials in biomedical sensing. Trends Analyt Chem 2021; 143:116342. [PMID: 34602681 PMCID: PMC8474058 DOI: 10.1016/j.trac.2021.116342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There have been many efforts to synthesize advanced materials that are capable of real-time specific recognition of a molecular target, and allow the quantification of a variety of biomolecules. Scaffold materials have a porous structure, with a high surface area and their intrinsic nanocavities can accommodate cells and macromolecules. The three-dimensional structure (3D) of scaffolds serves not only as a fibrous structure for cell adhesion and growth in tissue engineering, but can also provide the controlled release of drugs and other molecules for biomedical applications. There has been a limited number of reports on the use of scaffold materials in biomedical sensing applications. This review highlights the potential of scaffold materials in the improvement of sensing platforms and summarizes the progress in the application of novel scaffold-based materials as sensor, and discusses their advantages and limitations. Furthermore, the influence of the scaffold materials on the monitoring of infectious diseases such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and bacterial infections, was reviewed.
Collapse
Affiliation(s)
- Roya Sarkhosh-Inanlou
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Shafiei-Irannejad
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Sajjad Azizi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ahmad Mobed
- Aging Research Institute, Faculty of Medicine, Tabriz University of Medical Sciences, Iran
| | - Bashir Adel
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, Johannesburg, 2028, South Africa
| |
Collapse
|
20
|
Long W, Ouyang H, Hu X, Liu M, Zhang X, Feng Y, Wei Y. State-of-art review on preparation, surface functionalization and biomedical applications of cellulose nanocrystals-based materials. Int J Biol Macromol 2021; 186:591-615. [PMID: 34271046 DOI: 10.1016/j.ijbiomac.2021.07.066] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/04/2021] [Accepted: 07/11/2021] [Indexed: 12/12/2022]
Abstract
Cellulose nanocrystals (CNCs) are a class of sustainable nanomaterials that are obtained from plants and microorganisms. These naturally derived nanomaterials are of abundant hydroxyl groups, well biocompatibility, low cost and biodegradable potential, making them suitable and promising candidates for various applications, especially in biomedical fields. In this review, the recent advances and development on the preparation, surface functionalization and biomedical applications of CNCs-based materials have been summarized and outlined. The main context of this paper could be divided into the following three parts. In the first part, the preparation strategies based on physical, chemical, enzymatic and combination techniques for preparation of CNCs have been summarized. The surface functionalization methods for synthesis CNCs-based materials with designed properties and functions were outlined in the following section. Finally, the current state about applications of CNCs-based materials for tissue engineering, medical hydrogels, biosensors, fluorescent imaging and intracellular delivery of biological agents have been highlighted. Moreover, current issues and future directions about the above aspects have also pointed out and discussed. We believe this review will attract great research attention of scientists from materials, chemistry, biomedicine and other disciplines. It will also provide some important insights on the future development of CNCs-based materials especially in biomedical fields.
Collapse
Affiliation(s)
- Wei Long
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Hui Ouyang
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Xin Hu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Meiying Liu
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China; Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Yulin Feng
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China; State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China.
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polyer Research, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
21
|
Xu JT, Chen XQ, Shen WH, Li Z. Spherical vs rod-like cellulose nanocrystals from enzymolysis: A comparative study as reinforcing agents on polyvinyl alcohol. Carbohydr Polym 2021; 256:117493. [PMID: 33483022 DOI: 10.1016/j.carbpol.2020.117493] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 11/18/2022]
Abstract
In this paper, we have isolated cellulose nanocrystallines (CNCs) with different morphologies by enzymatic hydrolysis, and prepared flexible and transparent nanocomposite films with PVA matrix via solution casting. By means of SEM, UV-vis, XRD, DTG, FT-IR and mechanical methods, the effects of rod-shaped cellulose nanocrystallines (RCNCs) and spherical cellulose nanocrystallines (SCNCs) on PVA nanocomposite films were compared systematically. The results showed CNCs with different morphologies had little effect on the transparency of the composite films, and the crystallinity fluctuated with the change of CNCs additive amount. Compared with the RCNCs, SCNCs had a better improve ability to the thermal stability of the composite films by promoting pyrolysis temperature 60-80 °C. On the contrary, the maximum mechanical properties of the composite films of RCNCs were much higher than those of SCNCs, and the Young's modulus of the PVA/RCNCs composite film were increased by 120.97 % in comparison with the pure PVA.
Collapse
Affiliation(s)
- Jia-Tong Xu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, PR China
| | - Xiao-Quan Chen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, PR China.
| | - Wen-Hao Shen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, PR China
| | - Zheng Li
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, PR China
| |
Collapse
|
22
|
Ma T, Hu X, Lu S, Liao X, Song Y, Hu X. Nanocellulose: a promising green treasure from food wastes to available food materials. Crit Rev Food Sci Nutr 2020; 62:989-1002. [DOI: 10.1080/10408398.2020.1832440] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Tao Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing, China
- Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing, China
| | - Xinna Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing, China
- Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing, China
| | - Shuyu Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing, China
- Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing, China
- Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing, China
| | - Yi Song
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing, China
- Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing, China
- Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing, China
| |
Collapse
|
23
|
Tang Y, Petropoulos K, Kurth F, Gao H, Migliorelli D, Guenat O, Generelli S. Screen-Printed Glucose Sensors Modified with Cellulose Nanocrystals (CNCs) for Cell Culture Monitoring. BIOSENSORS-BASEL 2020; 10:bios10090125. [PMID: 32933204 PMCID: PMC7557574 DOI: 10.3390/bios10090125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 01/03/2023]
Abstract
Glucose sensors are potentially useful tools for monitoring the glucose concentration in cell culture medium. Here, we present a new, low-cost, and reproducible sensor based on a cellulose-based material, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) oxidized-cellulose nanocrystals (CNCs). This novel biocompatible and inert nanomaterial is employed as a polymeric matrix to immobilize and stabilize glucose oxidase in the fabrication of a reproducible, operationally stable, highly selective, cost-effective, screen-printed glucose sensor. The sensors have a linear range of 0.1–2 mM (R2 = 0.999) and a sensitivity of 5.7 ± 0.3 µA cm−2∙mM−1. The limit of detection is 0.004 mM, and the limit of quantification is 0.015 mM. The sensor maintains 92.3 % of the initial current response after 30 consecutive measurements in a 1 mM standard glucose solution, and has a shelf life of 1 month while maintaining high selectivity. We demonstrate the practical application of the sensor by monitoring the glucose consumption of a fibroblast cell culture over the course of several days.
Collapse
Affiliation(s)
- Ye Tang
- Swiss Center for Electronics and Microtechnology (CSEM, Landquart), Bahnhofstrasse 1, 7302 Landquart, Switzerland; (Y.T.); (K.P.); (F.K.); (H.G.); (D.M.)
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering Research, University of Bern, Murtenstrasse 50, 3008 Bern, Switzerland;
| | - Konstantinos Petropoulos
- Swiss Center for Electronics and Microtechnology (CSEM, Landquart), Bahnhofstrasse 1, 7302 Landquart, Switzerland; (Y.T.); (K.P.); (F.K.); (H.G.); (D.M.)
| | - Felix Kurth
- Swiss Center for Electronics and Microtechnology (CSEM, Landquart), Bahnhofstrasse 1, 7302 Landquart, Switzerland; (Y.T.); (K.P.); (F.K.); (H.G.); (D.M.)
| | - Hui Gao
- Swiss Center for Electronics and Microtechnology (CSEM, Landquart), Bahnhofstrasse 1, 7302 Landquart, Switzerland; (Y.T.); (K.P.); (F.K.); (H.G.); (D.M.)
| | - Davide Migliorelli
- Swiss Center for Electronics and Microtechnology (CSEM, Landquart), Bahnhofstrasse 1, 7302 Landquart, Switzerland; (Y.T.); (K.P.); (F.K.); (H.G.); (D.M.)
| | - Olivier Guenat
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering Research, University of Bern, Murtenstrasse 50, 3008 Bern, Switzerland;
| | - Silvia Generelli
- Swiss Center for Electronics and Microtechnology (CSEM, Landquart), Bahnhofstrasse 1, 7302 Landquart, Switzerland; (Y.T.); (K.P.); (F.K.); (H.G.); (D.M.)
- Correspondence: ; Tel.: +41-81-307-8139
| |
Collapse
|
24
|
Okkelman IA, McGarrigle R, O’Carroll S, Berrio DC, Schenke-Layland K, Hynes J, Dmitriev RI. Extracellular Ca2+-Sensing Fluorescent Protein Biosensor Based on a Collagen-Binding Domain. ACS APPLIED BIO MATERIALS 2020; 3:5310-5321. [DOI: 10.1021/acsabm.0c00649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Irina A. Okkelman
- Metabolic Imaging Group, Laboratory of Biophysics and Bioanalysis, ABCRF, University College Cork, College Road, Cork T12 YN60, Ireland
| | - Ryan McGarrigle
- Agilent Technologies Ireland Limited, Little
Island T45 WK12, Cork, Ireland
| | - Shane O’Carroll
- Metabolic Imaging Group, Laboratory of Biophysics and Bioanalysis, ABCRF, University College Cork, College Road, Cork T12 YN60, Ireland
| | - Daniel Carvajal Berrio
- Department of Women’s Health, Research Institute for Women’s Health, Eberhard Karls University Tübingen, Tübingen 72074, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies” (iFIT), Eberhard Karls University Tübingen, Geschwister-Scholl-Platz, Tübingen 72074, Germany
| | - Katja Schenke-Layland
- Department of Women’s Health, Research Institute for Women’s Health, Eberhard Karls University Tübingen, Tübingen 72074, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies” (iFIT), Eberhard Karls University Tübingen, Geschwister-Scholl-Platz, Tübingen 72074, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen 72770, Germany
- Department of Medicine/Cardiology, Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLA, Los Angeles 90095, California, United States
| | - James Hynes
- Agilent Technologies Ireland Limited, Little
Island T45 WK12, Cork, Ireland
| | - Ruslan I. Dmitriev
- Metabolic Imaging Group, Laboratory of Biophysics and Bioanalysis, ABCRF, University College Cork, College Road, Cork T12 YN60, Ireland
- I.M. Sechenov First Moscow State University, Institute for Regenerative Medicine, Moscow 119992, Russian Federation
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
25
|
Meye Biyogo A, Hespel L, Humblot V, Lebrun L, Estour F. Cellulose fibers modification through metal-free click chemistry for the elaboration of versatile functional surfaces. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Hazra RS, Kale N, Aland G, Qayyumi B, Mitra D, Jiang L, Bajwa D, Khandare J, Chaturvedi P, Quadir M. Cellulose Mediated Transferrin Nanocages for Enumeration of Circulating Tumor Cells for Head and Neck Cancer. Sci Rep 2020; 10:10010. [PMID: 32561829 PMCID: PMC7305211 DOI: 10.1038/s41598-020-66625-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 05/20/2020] [Indexed: 01/05/2023] Open
Abstract
Herein we report a hierarchically organized, water-dispersible 'nanocage' composed of cellulose nanocrystals (CNCs), which are magnetically powered by iron oxide (Fe3O4) nanoparticles (NPs) to capture circulating tumor cells (CTCs) in blood for head and neck cancer (HNC) patients. Capturing CTCs from peripheral blood is extremely challenging due to their low abundance and its account is clinically validated in progression-free survival of patients with HNC. Engaging multiple hydroxyl groups along the molecular backbone of CNC, we co-ordinated Fe3O4 NPs onto CNC scaffold, which was further modified by conjugation with a protein - transferrin (Tf) for targeted capture of CTCs. Owing to the presence of Fe3O4 nanoparticles, these nanocages were magnetic in nature, and CTCs could be captured under the influence of a magnetic field. Tf-CNC-based nanocages were evaluated using HNC patients' blood sample and compared for the CTC capturing efficiency with clinically relevant Oncoviu platform. Conclusively, we observed that CNC-derived nanocages efficiently isolated CTCs from patient's blood at 85% of cell capture efficiency to that of the standard platform. Capture efficiency was found to vary with the concentration of Tf and Fe3O4 nanoparticles immobilized onto the CNC scaffold. We envision that, Tf-CNC platform has immense connotation in 'liquid biopsy' for isolation and enumeration of CTCs for early detection of metastasis in cancer.
Collapse
Affiliation(s)
- Raj Shankar Hazra
- Department of Mechanical Engineering, Materials and Nanotechnology Program, North Dakota State University, Fargo, 58108, ND, USA
| | - Narendra Kale
- Maharashtra Institute of Technology-WPU, School of Pharmacy, Pune, India
| | | | - Burhanuddin Qayyumi
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai, 400012, Maharashtra, India
| | - Dipankar Mitra
- Department of Electrical and Computer Engineering, North Dakota State University, Fargo, 58108, ND, USA
| | - Long Jiang
- Department of Mechanical Engineering, Materials and Nanotechnology Program, North Dakota State University, Fargo, 58108, ND, USA
| | - Dilpreet Bajwa
- Department of Mechanical and Industrial Engineering, Montana State University, Bozeman, MT, 59717-3800, USA
| | - Jayant Khandare
- Maharashtra Institute of Technology-WPU, School of Pharmacy, Pune, India. .,Actorius Innovations and Research (AIR) Pvt. Ltd., Pune, India.
| | - Pankaj Chaturvedi
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai, 400012, Maharashtra, India
| | - Mohiuddin Quadir
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, 58108, ND, USA.
| |
Collapse
|
27
|
Kamel S, A. Khattab T. Recent Advances in Cellulose-Based Biosensors for Medical Diagnosis. BIOSENSORS 2020; 10:E67. [PMID: 32560377 PMCID: PMC7345568 DOI: 10.3390/bios10060067] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022]
Abstract
Cellulose has attracted much interest, particularly in medical applications such as advanced biosensing devices. Cellulose could provide biosensors with enhanced biocompatibility, biodegradability and non-toxicity, which could be useful for biosensors. Thus, they play a significant role in environmental monitoring, medical diagnostic tools, forensic science, and foodstuff processing safety applications. This review summarizes the recent developments in cellulose-based biosensors targeting the molecular design principles toward medical detection purposes. The recognition/detection mechanisms of cellulose-based biosensors demonstrate two major classes of measurable signal generation, including optical and electrochemical cellulosic biosensors. As a result of their simplicity, high sensitivity, and low cost, cellulose-based optical biosensors are particularly of great interest for including label-free and label-driven (fluorescent and colorimetric) biosensors. There have been numerous types of cellulose substrates employed in biosensors, including several cellulose derivatives, nano-cellulose, bacterial cellulose, paper, gauzes, and hydrogels. These kinds of cellulose-based biosensors were discussed according to their preparation procedures and detection principle. Cellulose and its derivatives with their distinctive chemical structure have demonstrated to be versatile materials, affording a high-quality platform for accomplishing the immobilization process of biologically active molecules into biosensors. Cellulose-based biosensors exhibit a variety of desirable characteristics, such as sensitivity, accuracy, convenience, quick response, and low-cost. For instance, cellulose paper-based biosensors are characterized as being low-cost and easy to operate, while nano-cellulose biosensors are characterized as having a good dispersion, high absorbance capacity, and large surface area. Cellulose and its derivatives have been promising materials in biosensors which could be employed to monitor various bio-molecules, such as urea, glucose, cell, amino acid, protein, lactate, hydroquinone, gene, and cholesterol. The future interest will focus on the design and construction of multifunctional, miniaturized, low-cost, environmentally friendly, and integrated biosensors. Thus, the production of cellulose-based biosensors is very important.
Collapse
Affiliation(s)
- Samir Kamel
- Cellulose and Paper Department, National Research Centre, Cairo 12622, Egypt;
| | - Tawfik A. Khattab
- Dyeing, Printing and Auxiliaries Department, National Research Centre, Cairo 12622, Egypt
| |
Collapse
|
28
|
Dias OAT, Konar S, Leão AL, Yang W, Tjong J, Sain M. Current State of Applications of Nanocellulose in Flexible Energy and Electronic Devices. Front Chem 2020; 8:420. [PMID: 32528931 PMCID: PMC7253724 DOI: 10.3389/fchem.2020.00420] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 04/21/2020] [Indexed: 11/25/2022] Open
Abstract
Novel and unique applications of nanocellulose are largely driven by the functional attributes governed by its structural and physicochemical features including excellent mechanical properties and biocompatibility. In recent years, thousands of groundbreaking works have helped in the development of targeted functional nanocellulose for conductive, optical, luminescent materials, and other applications. The growing demand for sustainable and renewable materials has led to the rapid development of greener methods for the design and fabrication of high-performance green nanomaterials with multiple features, and consequently new challenges and opportunities. The present review article discusses historical developments, various fabrication and functionalization methods, the current stage, and the prospects of flexible energy and hybrid electronics based on nanocellulose.
Collapse
Affiliation(s)
| | - Samir Konar
- Centre for Biocomposites and Biomaterials Processing, University of Toronto, Toronto, ON, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Alcides Lopes Leão
- College of Agricultural Sciences, São Paulo State University (Unesp), São Paulo, Brazil
| | - Weimin Yang
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Jimi Tjong
- Centre for Biocomposites and Biomaterials Processing, University of Toronto, Toronto, ON, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Mohini Sain
- Centre for Biocomposites and Biomaterials Processing, University of Toronto, Toronto, ON, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
29
|
Ganguly K, Patel DK, Dutta SD, Shin WC, Lim KT. Stimuli-responsive self-assembly of cellulose nanocrystals (CNCs): Structures, functions, and biomedical applications. Int J Biol Macromol 2020; 155:456-469. [PMID: 32222290 DOI: 10.1016/j.ijbiomac.2020.03.171] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/05/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023]
Abstract
Cellulose nanocrystals (CNCs) have received a significant amount of attention from the researchers. It is used as a nanomaterial for various applications due to its excellent physiochemical properties for the last few decades. Self-assembly is a phenomenon where autonomous reorganization of randomly oriented species occurs elegantly. Self-assembly is responsible for the formation of the hierarchical cholesteric structure of CNCs. This process is highly influenced by several factors, such as the surface chemistry of the nanoparticles, intermolecular forces, and the fundamental laws of thermodynamics. Various conventional experimental designs and molecular dynamics (MD) studies have been applied to determine the possible mechanism of self-assembly in CNCs. Different external factors, like pH, temperature, magnetic/electric fields, vacuum, also influence the self-assembly process in CNCs. Notably, better responses have been observed in CNCs-grafted polymer nanocomposites. These functionalized CNCs with stimuli-responsive self-assembly have immense practical applications in modern biotechnology and medicine. Herein, we have concisely discussed the mechanism of the self-assembled CNCs in the presence of different external factors such as pH, temperature, electric/magnetic fields, and their biomedical applications.
Collapse
Affiliation(s)
- Keya Ganguly
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Dinesh K Patel
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Woo-Chul Shin
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
30
|
Wang X, Chen Q, Zheng Y, Hong M, Fu H. Study on novel flame retarded LDH-TDI-HEA-VTES-acrylate composites and their flame retardant mechanism. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2019.104371] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Jaymand M. Chemically Modified Natural Polymer-Based Theranostic Nanomedicines: Are They the Golden Gate toward a de Novo Clinical Approach against Cancer? ACS Biomater Sci Eng 2019; 6:134-166. [DOI: 10.1021/acsbiomaterials.9b00802] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| |
Collapse
|
32
|
Zhang L, Peng X, Zhong L, Chua W, Xiang Z, Sun R. Lignocellulosic Biomass Derived Functional Materials: Synthesis and Applications in Biomedical Engineering. Curr Med Chem 2019; 26:2456-2474. [PMID: 28925867 DOI: 10.2174/0929867324666170918122125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 03/28/2017] [Accepted: 03/28/2017] [Indexed: 11/22/2022]
Abstract
The pertinent issue of resources shortage arising from global climate change in the recent years has accentuated the importance of materials that are environmentally friendly. Despite the merits of current material like cellulose as the most abundant natural polysaccharide on earth, the incorporation of lignocellulosic biomass has the potential to value-add the recent development of cellulose-derivatives in drug delivery systems. Lignocellulosic biomass, with a hierarchical structure is comprised of cellulose, hemicellulose and lignin. As an excellent substrate that is renewable, biodegradable, biocompatible and chemically accessible for modified materials, lignocellulosic biomass sets forth a myriad of applications. To date, materials derived from lignocellulosic biomass have been extensively explored for new technological development and applications, such as biomedical, green electronics and energy products. In this review, chemical constituents of lignocellulosic biomass are first discussed before we critically examine the potential alternatives in the field of biomedical application. In addition, the pretreatment methods for extracting cellulose, hemicellulose and lignin from lignocellulosic biomass as well as their biological applications including drug delivery, biosensor, tissue engineering etc. are reviewed. It is anticipated there will be an increasing interest and research findings in cellulose, hemicellulose and lignin from natural resources, which help provide important directions for the development in biomedical applications.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xinwen Peng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China.,Department of Chemistry, National University of Singapore, Singapore 117543, Singapore, China
| | - Linxin Zhong
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Weitian Chua
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore, China
| | - Zhihua Xiang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Runcang Sun
- Center for Lignocellulose Science and Engineering, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| |
Collapse
|
33
|
Hou Q, Wang X, Ragauskas AJ. Dynamic Self-Assembly of Polyelectrolyte Composite Nanomaterial Film. Polymers (Basel) 2019; 11:E1258. [PMID: 31366006 PMCID: PMC6723539 DOI: 10.3390/polym11081258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/06/2019] [Accepted: 07/09/2019] [Indexed: 01/01/2023] Open
Abstract
The aim of this study is not only to investigate the feasibility of using PAH (polyallylamine hydrochloride) and PSS (poly styrene-4-sulfonic acid sodium salt) to prepare a film via a layer by layer self-assembly process entrained with silver nanoparticles, but also to show that the silver nanoparticles crystalline structure can be defined and deposited on the surface of the substrate in the desired alignment structure and manner, which is of great help to research on the LBL method in the cellulose field. The effect of outermost layer variation, assembly layers, and composition of multilayers on the formation of the LBL structure on a nanofibrillated cellulose (NFC)/polyvinyl alcohol (PVA) substrate was investigated. The deposition of PAH and PSS was monitored by Fourier-transform infrared spectroscopy (FT-IR). The morphology of the LBL film layers was observed by scanning electron microscope (SEM) and atomic force microscope (AFM). Furthermore, thermal degradation properties were investigated by thermogravimetric analysis (TGA), and physical properties of multilayer films were tested by a universal mechanical tester. The results reveal that PAH and PSS can be readily deposited on a NFC/PVA substrate by using LBL methodology to prepare self-assembled polyelectrolyte multilayer films. The surface morphology of the LBL composite changed from negative to positive charged depending on the final LBL treatment. Also, according to SEM and AFM analysis, silver nanoparticles were well dispersed in the (PAH/PSS) film, which significantly improved the thermal stability of the composite films.
Collapse
Affiliation(s)
- Qiupeng Hou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiwen Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
- Department of Forestry, Wildlife and Fisheries, Center for Renewable Carbon University of Tennessee, Institute of Agriculture, Knoxville, TN 37996, USA
- Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory (ORNL), Knoxville, TN 37831, USA
| |
Collapse
|
34
|
Panchal P, Mekonnen TH. Tailored cellulose nanocrystals as a functional ultraviolet absorbing nanofiller of epoxy polymers. NANOSCALE ADVANCES 2019; 1:2612-2623. [PMID: 36132718 PMCID: PMC9418684 DOI: 10.1039/c9na00265k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 05/17/2019] [Indexed: 06/16/2023]
Abstract
Epoxy is an extensively used polymer in several applications such as coatings, adhesives, structural composites etc. However, it is a poor ultraviolet (UV) absorber and suffers from UV-degradation, which usually leads to discoloration and loss of structural integrity. In this study, cellulose nanocrystals (CNCs) conjugated with a UV absorbing molecule were investigated as a functional nanomaterial to enhance the UV absorption of epoxy polymers. The grafting of a UV absorbing molecule, para-aminobenzoic acid (PABA), on the surface of CNCs was confirmed using FTIR, proton NMR, and via elemental analysis. The modified CNCs were then incorporated into an epoxy polymer and their efficacy in mitigating the photo-degradation of epoxy was evaluated. For this, a neat epoxy control, native CNCs and modified CNC based nanocomposite specimens were subjected to controlled UV irradiation and the resulting structure-property changes were assessed. Results of UV absorption and discoloration showed that the neat epoxy was impacted the most as a result of the UV irradiation. While the incorporation of native CNCs displayed some UV absorption and reduction in the UV mediated discoloration of the epoxy polymer, the most pronounced effect was obtained in PABA decorated CNC based epoxy nanocomposites. The use of such tailored CNCs has great potential to mitigate UV induced degradation of a range of polymers that are used especially in outdoor applications where direct exposure to UV is significant.
Collapse
Affiliation(s)
- Prachiben Panchal
- Department of Chemical Engineering, University of Waterloo Waterloo ON N2L 3G1 Canada
| | - Tizazu H Mekonnen
- Department of Chemical Engineering, University of Waterloo Waterloo ON N2L 3G1 Canada
| |
Collapse
|
35
|
Wang P, Aliheidari N, Zhang X, Ameli A. Strong ultralight foams based on nanocrystalline cellulose for high-performance insulation. Carbohydr Polym 2019; 218:103-111. [PMID: 31221311 DOI: 10.1016/j.carbpol.2019.04.059] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 11/16/2022]
Abstract
Environmentally friendly, sustainable, and high-performance thermal insulators are in high demand. Petroleum-based insulator foams usually have high thermal conductivity and pose health hazards. Here, we report ultralight composite foams that are highly strong, elastic, and super-insulating. The foams are composed of nanocrystalline cellulose (NCC) (74 wt%), polyvinyl alcohol (7.5 wt%), and a crosslinking agent (18.5 wt%). The fabrication process is simple and uses only water. The composite foams exhibit an elastic strain of ˜13% at a modulus of 250 K Pa and a stress of 73 K Pa at 50% strain (100+ and 18 times, respectively, higher than those of pure NCC foam); both exceed the values of reported nanocellulose-based foams with no reinforcement. The foams exhibit a thermal conductivity of 0.027 Wm-1 K-1, which is superior to those of traditional insulating materials. The structural integrity is also preserved after burning. Our results show that NCC-based materials can be engineered towards high-performance insulation applications.
Collapse
Affiliation(s)
- Peipei Wang
- Bioproducts, Sciences and Engineering Laboratory, Voiland School of Chemical Engineering and Bioengineering, Washington State University, Richland, WA, 99354, United States
| | - Nahal Aliheidari
- Advanced Composites Laboratory, School of Mechanical and Materials Engineering, Washington State University, 2710 Crimson Way, Richland, WA, 99354, United States
| | - Xiao Zhang
- Bioproducts, Sciences and Engineering Laboratory, Voiland School of Chemical Engineering and Bioengineering, Washington State University, Richland, WA, 99354, United States; Pacific Northwest National Laboratory, Richland, WA, 99354, United States.
| | - Amir Ameli
- Advanced Composites Laboratory, School of Mechanical and Materials Engineering, Washington State University, 2710 Crimson Way, Richland, WA, 99354, United States.
| |
Collapse
|
36
|
Korogiannaki M, Zhang J, Sheardown H. Surface modification of model hydrogel contact lenses with hyaluronic acid via thiol-ene "click" chemistry for enhancing surface characteristics. J Biomater Appl 2019; 32:446-462. [PMID: 28992804 DOI: 10.1177/0885328217733443] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Discontinuation of contact lens wear as a result of ocular dryness and discomfort is extremely common; as many as 26% of contact lens wearers discontinue use within the first year. While patients are generally satisfied with conventional hydrogel lenses, improving on-eye comfort continues to remain a goal. Surface modification with a biomimetic, ocular friendly hydrophilic layer of a wetting agent is hypothesized to improve the interfacial interactions of the contact lens with the ocular surface. In this work, the synthesis and characterization of poly(2-hydroxyethyl methacrylate) surfaces grafted with a hydrophilic layer of hyaluronic acid are described. The immobilization reaction involved the covalent attachment of thiolated hyaluronic acid (20 kDa) on acrylated poly(2-hydroxyethyl methacrylate) via nucleophile-initiated Michael addition thiol-ene "click" chemistry. The surface chemistry of the modified surfaces was analyzed by Fourier transform infrared spectroscopy-attenuated total reflectance and X-ray photoelectron spectroscopy. The appearance of N (1s) and S (2p) peaks on the low resolution X-ray photoelectron spectroscopy spectra confirmed successful immobilization of hyaluronic acid. Grafting hyaluronic acid to the poly(2-hydroxyethyl methacrylate) surfaces decreased the contact angle, the dehydration rate, and the amount of nonspecific sorption of lysozyme and albumin in comparison to pristine hydrogel materials, suggesting the development of more wettable surfaces with improved water-retentive and antifouling properties, while maintaining optical transparency (>92%). In vitro testing also showed excellent viability of human corneal epithelial cells with the hyaluronic acid-grafted poly(2-hydroxyethyl methacrylate) surfaces. Hence, surface modification with hyaluronic acid via thiol-ene "click" chemistry could be useful in improving contact lens surface properties, potentially alleviating symptoms of contact lens related dryness and discomfort during wear.
Collapse
Affiliation(s)
- Myrto Korogiannaki
- 1 Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Jianfeng Zhang
- 2 264790 Saint-Gobain Northborough Research and Development Center , Northboro, MA, USA
| | - Heather Sheardown
- 1 Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
37
|
Sitterli A, Heinze T. Studies about reactive ene-functionalized dextran derivatives for Thiol-ene click reactions. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2018.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
38
|
Bazbouz MB, Tronci G. Two-layer Electrospun System Enabling Wound Exudate Management and Visual Infection Response. SENSORS (BASEL, SWITZERLAND) 2019; 19:E991. [PMID: 30813559 PMCID: PMC6427107 DOI: 10.3390/s19050991] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/11/2019] [Accepted: 02/17/2019] [Indexed: 02/04/2023]
Abstract
The spread of antimicrobial resistance calls for chronic wound management devices that can engage with the wound exudate and signal infection by prompt visual effects. Here, the manufacture of a two-layer fibrous device with independently-controlled exudate management capability and visual infection responsivity was investigated by sequential free surface electrospinning of poly(methyl methacrylate-co-methacrylic acid) (PMMA-co-MAA) and poly(acrylic acid) (PAA). By selecting wound pH as infection indicator, PMMA-co-MAA fibres were encapsulated with halochromic bromothymol blue (BTB) to trigger colour changes at infection-induced alkaline pH. Likewise, the exudate management capability was integrated via the synthesis of a thermally-crosslinked network in electrospun PAA layer. PMMA-co-MAA fibres revealed high BTB loading efficiency (>80 wt.%) and demonstrated prompt colour change and selective dye release at infected-like media (pH > 7). The synthesis of the thermally-crosslinked PAA network successfully enabled high water uptake (WU = 1291 ± 48 - 2369 ± 34 wt.%) and swelling index (SI = 272 ± 4 - 285 ± 3 a.%), in contrast to electrospun PAA controls. This dual device functionality was lost when the same building blocks were configured in a single-layer mesh of core-shell fibres, whereby significant BTB release (~70 wt.%) was measured even at acidic pH. This study therefore demonstrates how the fibrous configuration can be conveniently manipulated to trigger structure-induced functionalities critical to chronic wound management and monitoring.
Collapse
Affiliation(s)
- Mohamed Basel Bazbouz
- Textile Technology Research Group, School of Design, University of Leeds, Leeds LS2 9JT, UK.
| | - Giuseppe Tronci
- Textile Technology Research Group, School of Design, University of Leeds, Leeds LS2 9JT, UK.
- Biomaterials and Tissue Engineering Research Group, School of Dentistry, St. James's University Hospital, University of Leeds, Leeds LS9 7TF, UK.
| |
Collapse
|
39
|
Ortiz C, Ferreira ML, Barbosa O, dos Santos JCS, Rodrigues RC, Berenguer-Murcia Á, Briand LE, Fernandez-Lafuente R. Novozym 435: the “perfect” lipase immobilized biocatalyst? Catal Sci Technol 2019. [DOI: 10.1039/c9cy00415g] [Citation(s) in RCA: 263] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Novozym 435 (N435) is a commercially available immobilized lipase produced by Novozymes with its advantages and drawbacks.
Collapse
Affiliation(s)
- Claudia Ortiz
- Escuela de Microbiología
- Universidad Industrial de Santander
- Bucaramanga
- Colombia
| | - María Luján Ferreira
- Planta Piloto de Ingeniería Química – PLAPIQUI
- CONICET
- Universidad Nacional del Sur
- 8000 Bahía Blanca
- Argentina
| | - Oveimar Barbosa
- Departamento de Química
- Facultad de Ciencias
- Universidad del Tolima
- Ibagué
- Colombia
| | - José C. S. dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável
- Universidade da Integração Internacional da Lusofonia Afro-Brasileira
- Redenção
- Brazil
| | - Rafael C. Rodrigues
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute
- Federal University of Rio Grande do Sul
- Porto Alegre
- Brazil
| | - Ángel Berenguer-Murcia
- Instituto Universitario de Materiales
- Departamento de Química Inorgánica
- Universidad de Alicante
- Alicante
- Spain
| | - Laura E. Briand
- Centro de Investigación y Desarrollo en Ciencias Aplicadas-Dr. Jorge J. Ronco
- Universidad Nacional de La Plata
- CONICET
- Buenos Aires
- Argentina
| | | |
Collapse
|
40
|
Surface Functionalization of Nanocellulose-Based Hydrogels. POLYMERS AND POLYMERIC COMPOSITES: A REFERENCE SERIES 2019. [DOI: 10.1007/978-3-319-77830-3_24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
41
|
O'Donnell N, Okkelman IA, Timashev P, Gromovykh TI, Papkovsky DB, Dmitriev RI. Cellulose-based scaffolds for fluorescence lifetime imaging-assisted tissue engineering. Acta Biomater 2018; 80:85-96. [PMID: 30261339 DOI: 10.1016/j.actbio.2018.09.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/11/2018] [Accepted: 09/23/2018] [Indexed: 12/12/2022]
Abstract
Quantitative measurement of pH and metabolite gradients by microscopy is one of the challenges in the production of scaffold-grown organoids and multicellular aggregates. Herein, we used the cellulose-binding domain (CBD) of the Cellulomonas fimi CenA protein for designing biosensor scaffolds that allow measurement of pH and Ca2+ gradients by fluorescence intensity and lifetime imaging (FLIM) detection modes. By fusing CBD with pH-sensitive enhanced cyan fluorescent protein (CBD-ECFP), we achieved efficient labeling of cellulose-based scaffolds based on nanofibrillar, bacterial cellulose, and decellularized plant materials. CBD-ECFP bound to the cellulose matrices demonstrated pH sensitivity comparable to untagged ECFP (1.9-2.3 ns for pH 6-8), thus making it compatible with FLIM-based analysis of extracellular pH. By using 3D culture of human colon cancer cells (HCT116) and adult stem cell-derived mouse intestinal organoids, we evaluated the utility of the produced biosensor scaffold. CBD-ECFP was sensitive to increases in extracellular acidification: the results showed a decline in 0.2-0.4 pH units in response to membrane depolarization by the protonophore FCCP. With the intestinal organoid model, we demonstrated multiparametric imaging by combining extracellular acidification (FLIM) with phosphorescent probe-based monitoring of cell oxygenation. The described labeling strategy allows for the design of extracellular pH-sensitive scaffolds for multiparametric FLIM assays and their use in engineered live cancer and stem cell-derived tissues. Collectively, this research can help in achieving the controlled biofabrication of 3D tissue models with known metabolic characteristics. STATEMENT OF SIGNIFICANCE: We designed biosensors consisting of a cellulose-binding domain (CBD) and pH- and Ca2+-sensitive fluorescent proteins. CBD-tagged biosensors efficiently label various types of cellulose matrices including nanofibrillar cellulose and decellularized plant materials. Hybrid biosensing cellulose scaffolds designed in this study were successfully tested by multiparameter FLIM microscopy in 3D cultures of cancer cells and mouse intestinal organoids.
Collapse
Affiliation(s)
- Neil O'Donnell
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Irina A Okkelman
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Peter Timashev
- Institute for Regenerative Medicine, I.M. Sechenov First Moscow State University, Moscow, Russian Federation; Institute of Photonic Technologies, Research Center 'Crystallography and Photonics', Russian Academy of Sciences, Moscow, Russian Federation
| | - Tatyana I Gromovykh
- Department of Biotechnology, I.M. Sechenov First Moscow State University, Moscow, Russian Federation
| | - Dmitri B Papkovsky
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Ruslan I Dmitriev
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland; Institute for Regenerative Medicine, I.M. Sechenov First Moscow State University, Moscow, Russian Federation.
| |
Collapse
|
42
|
l-Cysteine functionalized bagasse cellulose nanofibers for mercury(II) ions adsorption. Int J Biol Macromol 2018; 112:728-736. [PMID: 29425868 DOI: 10.1016/j.ijbiomac.2018.01.206] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 01/13/2018] [Accepted: 01/30/2018] [Indexed: 11/20/2022]
Abstract
Presence of mercury ions in water, even in trace amounts, is a serious environmental hazard. Hence, there is imperative need to develop innovative and environmentally-friendly materials for their removal from wastewaters. In the present study, cellulose nanofibers (CNFs) extracted from bagasse was esterified with l-cysteine to yield thiol and amine functionalized green material (Cys-CNFs) for removal of Hg2+ ions. The Cys-CNFs were well characterized by SEM, TEM, FTIR, EDS and XRD and evaluated for selective removal of Hg2+ ions from the simulated wastewater. It was observed that Cys-CNFs adsorb Hg2+ ions even at a very low concentration of 1.0mg/L and it exhibited a maximum adsorption capacity of 116.822mgg-1. Kinetic analysis of the data revealed that pseudo-second order kinetics and Langmuir isotherm were followed for adsorption of Hg2+ ions.
Collapse
|
43
|
Surov OV, Voronova MI, Afineevskii AV, Zakharov AG. Polyethylene oxide films reinforced by cellulose nanocrystals: Microstructure-properties relationship. Carbohydr Polym 2018; 181:489-498. [DOI: 10.1016/j.carbpol.2017.10.075] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/02/2017] [Accepted: 10/22/2017] [Indexed: 11/28/2022]
|
44
|
Xie S, Zhang X, Walcott MP, Lin H. Applications of Cellulose Nanocrystals: A Review. ACTA ACUST UNITED AC 2018. [DOI: 10.30919/es.1803302] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
45
|
Wu H, Williams GR, Wu J, Wu J, Niu S, Li H, Wang H, Zhu L. Regenerated chitin fibers reinforced with bacterial cellulose nanocrystals as suture biomaterials. Carbohydr Polym 2018; 180:304-313. [DOI: 10.1016/j.carbpol.2017.10.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 08/15/2017] [Accepted: 10/04/2017] [Indexed: 10/18/2022]
|
46
|
Polymer Nanocomposites via Click Chemistry Reactions. Polymers (Basel) 2017; 9:polym9100499. [PMID: 30965802 PMCID: PMC6418640 DOI: 10.3390/polym9100499] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 02/05/2023] Open
Abstract
The emerging areas of polymer nanocomposites, as some are already in use in industrial applications and daily commodities, have the potential of offering new technologies with all manner of prominent capabilities. The incorporation of nanomaterials into polymeric matrix provides significant improvements, such as higher mechanical, thermal or electrical properties. In these materials, interface/interphase of components play a crucial role bringing additional features on the resulting nanocomposites. Among the various preparation strategies of such materials, an appealing strategy relies on the use of click chemistry concept as a multi-purpose toolbox for both fabrication and modulation of the material characteristics. This review aims to deliver new insights to the researchers of the field by noticing effective click chemistry-based methodologies on the preparation of polymer nanocomposites and their key applications such as optic, biomedical, coatings and sensor.
Collapse
|
47
|
Hu ZH, Wang YF, Omer AM, Ouyang XK. Fabrication of ofloxacin imprinted polymer on the surface of magnetic carboxylated cellulose nanocrystals for highly selective adsorption of fluoroquinolones from water. Int J Biol Macromol 2017; 107:453-462. [PMID: 28890373 DOI: 10.1016/j.ijbiomac.2017.09.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/24/2017] [Accepted: 09/05/2017] [Indexed: 11/15/2022]
Abstract
A novel adsorbent with high selectivity for fluoroquinolone (FQ) compounds was developed, based on the surface functionalization of magnetic carboxylated cellulose nanocrystals (M-CCNs) with molecularly imprinted polymer (MIP) comprising amine moieties. The imprinting was achieved by a radical polymerization technique, which uses glycidyl methacrylate, tetraethylenepentamine, ofloxacin, ethylene glycol dimethacrylate, and azobisisobutyronitrile as the functional monomer, active groups provider, template molecule, crosslinking agent, and initiator, respectively. The developed material (M-CCNs@MIP) was comprehensively characterized and shown to exhibit high adsorption capacity and selectivity with rapid equilibration time. Moreover, the adsorption isotherms could be well-fitted with the Freundlich model, and the adsorption kinetics followed the pseudo-second-order model. The maximum adsorption capacities for M-CCNs@MIP after 2 and 20min were 34.09 and 40.65mgg-1, respectively, compared to 9.98 and 15.28mgg-1 observed for the unimprinted polymer (M-CCNs@NIP). By coupling the M-CCNs@MIP adsorbent with high-performance liquid chromatography, an approach was established to enhance the selective adsorption of seven structurally similar FQ compounds in river water samples. The recoveries of the seven FQs ranged from 81.2 to 93.7%, and the limits of detection were between 5.4 and 12.0ngmL-1. The M-CCNs@MIP adsorbent also retained good performance after seven consecutive cycles of reuse.
Collapse
Affiliation(s)
- Zhao-Hong Hu
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Yan-Fei Wang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Ahmed Mohamed Omer
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China; Polymer Materials Research Department, Advanced Technology and New Materials Research Institute, SRTA-City, New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt
| | - Xiao-Kun Ouyang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China.
| |
Collapse
|
48
|
Jia Y, Guo Y, Wang S, Chen W, Zhang J, Zheng W, Jiang X. Nanocrystalline cellulose mediated seed-growth for ultra-robust colorimetric detection of hydrogen sulfide. NANOSCALE 2017; 9:9811-9817. [PMID: 28696439 DOI: 10.1039/c7nr01775h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We describe an ultra-stable, ultra-robust, straightforward and low-cost approach for the colorimetric detection of H2S with nanocrystalline cellulose (NCC) based on the reaction of H2S with lead acetate. The presence of NCC not only mediates the seed growth of a PbS/NCC complex, but also acts as a stabilizer protecting PbS from precipitation. This stable system is so robust that it can be used to quantitatively detect H2S even after two-year storage.
Collapse
Affiliation(s)
- Yuexiao Jia
- Beijing Engineering Research Center for BioNanotechnology & CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing 100190, China.
| | | | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Zhu Q, Teng J, Liu X, Lan Y, Guo R. Preparation and characterization of gentamycin sulfate-impregnated gelatin microspheres/collagen–cellulose/nanocrystal scaffolds. Polym Bull (Berl) 2017. [DOI: 10.1007/s00289-017-2020-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|