1
|
Yan S, Shao S, Tang Y, Zhang X, Guo C, Wang L, Liu J, Wu L, Wang F. Ultralight Hierarchical Fe 3O 4/MoS 2/rGO/Ti 3C 2T x MXene Composite Aerogels for High-Efficiency Electromagnetic Wave Absorption. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36962-36972. [PMID: 38959083 DOI: 10.1021/acsami.4c05903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Aerogel-based composites, renowned for their three-dimensional (3D) network architecture, are gaining increasing attention as lightweight electromagnetic (EM) wave absorbers. However, attaining high reflection loss, broad effective absorption bandwidth (EAB), and ultrathin thickness concurrently presents a formidable challenge, owing to the stringent demands for precise structural regulation and incorporation of magnetic/dielectric multicomponents with synergistic loss mechanisms within the 3D networks. In this study, we successfully synthesized a 3D hierarchical porous Fe3O4/MoS2/rGO/Ti3C2Tx MXene (FMGM) composite aerogel via directional freezing and subsequent heat treatment processes. Owing to their ingenious structure and multicomponent design, the FMGM aerogels, featured with abundant heterogeneous interface structure and magnetic/dielectric synergism, show exceptional impedance matching characteristics and diverse EM wave absorption mechanisms. After optimization, the prepared ultralight (6.4 mg cm-3) FMGM-2 aerogel exhibits outstanding EM wave absorption performance, achieving a minimal reflection loss of -66.92 dB at a thickness of 3.61 mm and an EAB of 6.08 GHz corresponding to the thickness of 2.3 mm, outperforming most of the previously reported aerogel-based absorbing materials. This research presents an effective strategy for fabricating lightweight, ultrathin, highly efficient, and broad band EM wave absorption materials.
Collapse
Affiliation(s)
- Shiyao Yan
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, P. R. China
| | - Shiping Shao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, P. R. China
| | - Yunxiang Tang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, P. R. China
| | - Xin Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, P. R. China
| | - Chan Guo
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, P. R. China
| | - Luxue Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, P. R. China
| | - Jiurong Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, P. R. China
| | - Lili Wu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, P. R. China
| | - Fenglong Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, P. R. China
| |
Collapse
|
2
|
Li Q, Nan K, Wang W, Zheng H, He K, Wang Y. Electrostatically fabricated heterostructure of interfacial-polarization-enhanced Fe 3O 4/C/MXene for ultra-wideband electromagnetic wave absorption. J Colloid Interface Sci 2024; 662:796-806. [PMID: 38382364 DOI: 10.1016/j.jcis.2024.02.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 02/23/2024]
Abstract
Electromagnetic (EM) pollution can disrupt the functioning of advanced electronic devices, hence it's necessary to design EM wave absorbers with high-level absorption capabilities. The Ti3C2Tx (MXene) is classified as a potential EM absorbing material; nevertheless, the lack of magnetic loss mechanism leads to its inadequate EM absorbing performance. On this basis, a novel composite design with promising EM absorption properties is hypothesized to be the integration of few-layer MXene and heterogeneous magnetic MOF derivatives (Fe3O4/C) with complementary advantages. Herein, we synthesized two-dimensional (2D) interfacial-polarization-enhanced MXene hybrid (Fe3O4/C/MXene) by electrostatic assembly. It is notable that the interfacial polarization is realized by adding a small amount of magnetic Fe3O4/C. Furthermore, the Fe3O4/C/ MXene demonstrates an astonishing effective absorption bandwidth (EAB) of 10.7 GHz and an excellent EM wave absorption performance (RLmin) of -66.9 dB. Moreover, the radar cross section (RCS) of Fe3O4/C/MXene is lower than -15.1 dB m2 from -90° to 90° with a minimum RCS value of -52.6 dB m2 at 32°. In addition, the significant attenuation of the EM wave is due to the synergistic effect of improved impedance matching, dielectric loss, and magnetic loss. Thus, the magnetized Fe3O4/C/MXene hybrid is expected to emerge as a strong contender for high-performance EM wave absorbers.
Collapse
Affiliation(s)
- Qingwei Li
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
| | - Kai Nan
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China.
| | - Wei Wang
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
| | - Hao Zheng
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
| | - Kaikai He
- Department of Orthopaedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Yan Wang
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China.
| |
Collapse
|
3
|
Meng X, Xu W, Ren X, Zhu M. Progress and Challenges of Ferrite Matrix Microwave Absorption Materials. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2315. [PMID: 38793383 PMCID: PMC11123132 DOI: 10.3390/ma17102315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024]
Abstract
Intelligent devices, when subjected to multiple interactions, tend to generate electromagnetic pollution, which can disrupt the normal functioning of electronic components. Ferrite, which acts as a microwave-absorbing material (MAM), offers a promising strategy to overcome this issue. To further enhance the microwave absorption properties of ferrite MAM, numerous works have been conducted, including ion doping and combining with other materials. Notably, the microstructure is also key factor that affects the microwave absorption properties of ferrite-based MAM. Thus, this article provides a comprehensive overview of research progress on the influence of the microstructure on ferrite-based MAM. MAMs with sheet and layered structures are also current important research directions. For core-shell structure composites, the solid core-shell structure, hollow core-shell structure, yolk-eggshell structure, and non-spherical core-shell structure are introduced. For porous composites, the biomass porous structure and other porous structures are presented. Finally, the development trends are summarized, and prospects for the structure design and preparation of high-performance MAMs are predicted.
Collapse
Affiliation(s)
- Xianfeng Meng
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China; (W.X.); (X.R.)
| | | | | | - Maiyong Zhu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China; (W.X.); (X.R.)
| |
Collapse
|
4
|
Phillips SG, Lankone AR, O'Hagan SS, Ganji N, Fairbrother DH. Gas-Phase Functionalization of Phytoglycogen Nanoparticles and the Role of Reagent Structure in the Formation of Self-Limiting Hydrophobic Shells. Biomacromolecules 2024; 25:2902-2913. [PMID: 38593289 DOI: 10.1021/acs.biomac.4c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
A suite of acyl chloride structural isomers (C6H11OCl) was used to effect gas-phase esterification of starch-based phytoglycogen nanoparticles (PhG NPs). The surface degree of substitution (DS) was quantified using X-ray photoelectron spectroscopy, while the overall DS was quantified using 1H NMR spectroscopy. Gas-phase modification initiates at the NP surface, with the extent of surface and overall esterification determined by both the reaction time and the steric footprint of the acyl chloride reagent. The less sterically hindered acyl chlorides diffuse fully into the NP interior, while the branched isomers are restricted to the near-surface region and form self-limiting hydrophobic shells, with shell thicknesses decreasing with increasing steric footprint. These differences in substitution were also reflected in the solubility of the NPs, with water solubility systematically decreasing with increasing DS. The ability to separately control both the surface and overall degree of functionalization and thereby form thin hydrophobic shells has significant implications for the development of polysaccharide-based biopolymers as nanocarrier delivery systems.
Collapse
Affiliation(s)
- Savannah G Phillips
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Alyssa R Lankone
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | | | - Nasim Ganji
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - D Howard Fairbrother
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
5
|
Yu W, Lin J, Zhao Z, Fang J, Wang Z, Huang J, Min Y. Polyimide-based porous carbon and cobalt nanoparticle composites as high-performance electromagnetic wave absorbers. RSC Adv 2024; 14:9716-9724. [PMID: 38525061 PMCID: PMC10958461 DOI: 10.1039/d4ra00488d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/19/2024] [Indexed: 03/26/2024] Open
Abstract
This study successfully utilized a straightforward approach, choosing liquid-liquid phase separation to build a porous structure and synthesize composite absorbers based on polyimide-based porous carbon and cobalt nanoparticles (designated as PPC/Co-700 and PPC/Co-800). A fine porous structure was achieved as a result of the excellent heat resistance of polyimide resulting in an excellent electromagnetic wave absorption ability of PPC/Co composites. The results obtained clearly indicated that PPC/Co-700 and PPC/Co-800 exhibit a porous structure with coral-like pores, enhancing both impedance matching properties and microwave attenuation abilities. This improvement in impedance matching conditions and dissipation capability is attributed to the synergistic effect of dielectric loss induced by carbon and magnetic loss induced by Co nanoparticles. PPC/Co-700 showed the strongest absorption performance with a minimum reflection loss of -59.85 dB (30 wt% loading, thickness of 3.42 mm) and an effective absorption bandwidth (EABW, RL ≤ -10 dB) of 6.24 GHz (30 wt% loading, thickness of 2.78 mm). Therefore, this work provides a facile strategy for the development of a promising absorbing material with outstanding electromagnetic wave absorption performance.
Collapse
Affiliation(s)
- Wentao Yu
- Guangdong University of Technology Guangzhou 51000 Guangdong China
| | - Jiahui Lin
- Guangdong University of Technology Guangzhou 51000 Guangdong China
| | - Zhaozhang Zhao
- Guangdong University of Technology Guangzhou 51000 Guangdong China
| | - Jiyong Fang
- Midea Corporate Research Cente Foshan 528000 Guangdong China
| | - Ziqing Wang
- Visionox Technology Co., Ltd Guangzhou 51000 Guangdong China
| | - Jintao Huang
- Guangdong University of Technology Guangzhou 51000 Guangdong China
| | - Yonggang Min
- Guangdong University of Technology Guangzhou 51000 Guangdong China
| |
Collapse
|
6
|
Wang J, Sheng X, Hao S, Liu G, Cai R, Xue X, Wang Y. Construction of Fe 0.64Ni 0.36@graphite nanoparticles via corrosion-like transformation from NiFe 2O 4 and surface graphitization in flexible carbon nanofibers to achieve strong wideband microwave absorption. J Colloid Interface Sci 2024; 657:193-207. [PMID: 38039880 DOI: 10.1016/j.jcis.2023.11.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/31/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023]
Abstract
Recently, microwave absorption (MA) materials have attracted intensive research attention for their ability to counteract the effects of ever-growing electromagnetic pollution. However, conventional microwave absorbers suffer from complex fabrication processes, poor stability and different optimal thicknesses for minimum reflection loss (RLmin) and widest effective absorption bandwidth (EAB). To address these issues, we have used electrospinning followed by high-temperature annealing in argon to develop a flexible microwave absorber with strong wideband absorption. The MA properties of the carbon nanofibers (CNFs) can be tuned by adjusting annealing temperature, and are dependent on the composition and microstructure of the CNFs. The absorber membrane obtained at 800 °C consists of Fe0.64Ni0.36@graphite core-shell nanoparticles (NPs) embedded in CNFs, formed via a corrosion-like transformation from NiFe2O4 to Fe0.64Ni0.36 followed by surface graphitization. This nanostructure greatly enhances magnetic-dielectric synergistic loss to achieve superior MA properties, with an RLmin of -57.7 dB and an EAB of 6.48 GHz (11.20-17.68 GHz) both acquired at a thickness of 2.1 mm. This work provides useful insights into structure-property relationship of the CNFs, sheds light on the formation mechanism of Fe0.64Ni0.36@graphite NPs, and offers a simple synthesis route to fabricate light-weight and flexible microwave absorbers.
Collapse
Affiliation(s)
- Jiaju Wang
- College of Physics, Qingdao University, No. 308, Ningxia Road, Qingdao 266071, PR China
| | - Xiaoli Sheng
- College of Physics, Qingdao University, No. 308, Ningxia Road, Qingdao 266071, PR China
| | - Shujin Hao
- College of Physics, Qingdao University, No. 308, Ningxia Road, Qingdao 266071, PR China
| | - Guanting Liu
- College of Physics, Qingdao University, No. 308, Ningxia Road, Qingdao 266071, PR China
| | - Rongsheng Cai
- Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Xuyan Xue
- College of Physics, Qingdao University, No. 308, Ningxia Road, Qingdao 266071, PR China.
| | - Yiqian Wang
- College of Physics, Qingdao University, No. 308, Ningxia Road, Qingdao 266071, PR China.
| |
Collapse
|
7
|
Xiao L, Wang Y, Kimura H, Sun H, Sun X, Hou C, Wang B, Zhang Y, Yang X, Yu R, Ni C, Xie X, Du W. Synergetic dielectric and magnetic losses of melamine sponge-loaded puffed-rice biomass carbon and Ni 3ZnC 0.7 for optimal effective microwave absorption. J Colloid Interface Sci 2024; 653:570-580. [PMID: 37738930 DOI: 10.1016/j.jcis.2023.09.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
Multi-dimensional design and the combination of multiple phases can effectively enhance the dielectric loss properties and multiple reflection effects of absorbers. Herein, a novel multi-dimensional microporous nanostructured composite, melamine sponge (MS) loaded puffed-rice biomass carbon (C) together with bimetallic carbide material Ni3ZnC0.7 (Ni3ZnC0.7-MS/C) was synthesized by simple vacuum filtration and hydrothermal calcination. The result indicates that small Ni3ZnC0.7 particles with little Ni doping uniformly decorated on the surfaces of the three-dimensional (3D) melamine sponge and puffed rice carbons. The Ni3ZnC0.7-MS/C composite mixed with paraffin (weight ratio of 1:2) exhibited the best electromagnetic wave (EMW) absorption performance, and the minimum reflection loss (RLmin) value of the Ni3ZnC0.7-MS/C composite reaches -107.7 dB with a matching thickness of 2.78 mm and the maximum effective absorption bandwidth for RL below -10 dB (EABmax) is adjusted to 9.2 GHz at a matching thickness of 4.0 mm. The dipole polarization effect of the N doping and the different interfaces provided by the 3D structure of the MS carbon enhance the conduction loss and interface polarization, while the positive effects of eddy current and resonance caused by Ni3ZnC0.7 effectively improve the microwave absorption performances. This melamine sponge-loaded bimetallic carbon composite exhibited a magnetic/dielectric loss combination, resulting in a high-performance absorber with lightweight, cost-effective and efficient properties.
Collapse
Affiliation(s)
- Lirong Xiao
- School of Environmental and Material Engineering, Yantai University, No. 30 Qingquan Road, Yantai 264005, China
| | - Yukun Wang
- School of Environmental and Material Engineering, Yantai University, No. 30 Qingquan Road, Yantai 264005, China
| | - Hideo Kimura
- School of Environmental and Material Engineering, Yantai University, No. 30 Qingquan Road, Yantai 264005, China
| | - Haosen Sun
- School of Environmental and Material Engineering, Yantai University, No. 30 Qingquan Road, Yantai 264005, China
| | - Xueqin Sun
- School of Environmental and Material Engineering, Yantai University, No. 30 Qingquan Road, Yantai 264005, China
| | - Chuanxin Hou
- School of Environmental and Material Engineering, Yantai University, No. 30 Qingquan Road, Yantai 264005, China
| | - Baolei Wang
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yuping Zhang
- School of Environmental and Material Engineering, Yantai University, No. 30 Qingquan Road, Yantai 264005, China
| | - Xiaoyang Yang
- School of Environmental and Material Engineering, Yantai University, No. 30 Qingquan Road, Yantai 264005, China
| | - Ronghai Yu
- Key Laboratory of Aerospace Materials and Performance (Ministry of Education) School of Materials Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing 100191, China
| | - Cui Ni
- School of Environmental and Material Engineering, Yantai University, No. 30 Qingquan Road, Yantai 264005, China.
| | - XiuBo Xie
- School of Environmental and Material Engineering, Yantai University, No. 30 Qingquan Road, Yantai 264005, China.
| | - Wei Du
- School of Environmental and Material Engineering, Yantai University, No. 30 Qingquan Road, Yantai 264005, China.
| |
Collapse
|
8
|
Qiu J, Liang Y, Xiang Y, Zhang M, Zhao R, Li X, Ma S, Luo Z, Zhang X, Sun X. Confined In-Situ Encapsulation of Co/C Composites with Increased Heterogeneous Interface Polarization for Enhanced Electromagnetic Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308270. [PMID: 37948414 DOI: 10.1002/smll.202308270] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/18/2023] [Indexed: 11/12/2023]
Abstract
It is an urgent problem to realize reliable microwave absorption materials (MAMs) with low density. To address this issue, a series of controlled experiments w ere carried out, which indicated that the tubular structure enables excellent microwave absorption properties with a lower powder filling rate. This performance is attributable to the combined dielectric and magnetic loss mechanisms provided by Co/C and the interface polarization facilitated by multiple heterogeneous interfaces. Particularly, Co@C nanotubes, benefiting from the enhanced heterointerface polarization due to their abundant specific surface area and the reduced electron migration barrier induced by their 1D stacked structure, effectively achieved a dual enhancement of dielectric loss and polarization loss at lower powder filling ratios. Furthermore, the magnetic coupling effect of magnetic nanoparticle arrays in tubular structures is demonstrated by micromagnetic simulation, which have been few reported elsewhere. These propertied enable Co@C nanotubes to achieve minimum reflection loss and maximum effective absorption broadband values of 61.0 dB and 5.5 GHz, respectively, with a powder filling ratio of 20 wt% and a thickness of 1.94 mm. This study reveals the significance of designing 1D structures in reducing powder filling ratio and matching thickness, providing valuable insights for developing MAMs with different microstructures.
Collapse
Affiliation(s)
- Jiahang Qiu
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education) School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China
- Foshan Graduate School of Innovation of Northeastern University, Foshan, 528311, P. R. China
| | - Yan Liang
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education) School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China
- Foshan Graduate School of Innovation of Northeastern University, Foshan, 528311, P. R. China
| | - Yao Xiang
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education) School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China
- Foshan Graduate School of Innovation of Northeastern University, Foshan, 528311, P. R. China
| | - Mu Zhang
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education) School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China
- Foshan Graduate School of Innovation of Northeastern University, Foshan, 528311, P. R. China
| | - Rongzhi Zhao
- Institute of Advanced Magnetic Materials College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310012, P. R. China
| | - Xiaodong Li
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education) School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China
| | - Song Ma
- Shenyang National Laboratory for Materials Science Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, P. R. China
| | - Zhengtang Luo
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P.R. China
| | - Xuefeng Zhang
- Institute of Advanced Magnetic Materials College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310012, P. R. China
| | - Xudong Sun
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education) School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China
- Foshan Graduate School of Innovation of Northeastern University, Foshan, 528311, P. R. China
| |
Collapse
|
9
|
Wu M, Rao L, Liu L, Li Y, Zhang Y, Ji Z, Ying G. Urchin-like Fe 3O 4@C hollow spheres with core-shell structure: Controllable synthesis and microwave absorption. J Colloid Interface Sci 2023; 649:313-324. [PMID: 37352562 DOI: 10.1016/j.jcis.2023.06.077] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/25/2023]
Abstract
The steadily increasing use of microwave stealth materials in aerospace flying vehicles needs the development of lightweight absorbers with low density and high thermal stability for printing or spraying. In that regard, the structural designability of typical microwave absorbers made of Fe3O4 seems to be a significant roadmap. In this work, a hollow spherical structure with a uniform carbon shell around the urchin-like Fe3O4 core (Fe3O4@C) was produced via a two-step hydrothermal method and annealing. The Fe3O4@C absorber exhibited a strong minimum reflection loss (RLmin) of -73.5 dB at the matching thickness of 3.23 mm. The maximum effective absorption bandwidth (EABmax) was 4.78 GHz at 4.55 mm. The proposed urchin-like core-shell structure was shown to provide good impedance matching and electromagnetic loss ability due to the synergistic effect of Fe3O4 and C. In particular, the urchin-like structure increases the heterogeneous interfaces and effectively improves their polarization and relaxation. On the other hand, it reduces the density of the absorber and enhances multiple scattering attenuations of electromagnetic waves (EMWs). Therefore, the findings of the present study open up prospects for the design of high-efficiency lightweight microwave absorbers with specialized structures.
Collapse
Affiliation(s)
- Meng Wu
- Department of Materials Science and Engineering, College of Mechanics and Materials, Hohai University, Nanjing 211100, China
| | - Lei Rao
- Department of Materials Science and Engineering, College of Mechanics and Materials, Hohai University, Nanjing 211100, China.
| | - Lu Liu
- Department of Materials Science and Engineering, College of Mechanics and Materials, Hohai University, Nanjing 211100, China
| | - Yuexia Li
- Department of Materials Science and Engineering, College of Mechanics and Materials, Hohai University, Nanjing 211100, China
| | - Yuan Zhang
- Department of Materials Science and Engineering, College of Mechanics and Materials, Hohai University, Nanjing 211100, China
| | - Ziying Ji
- Department of Materials Science and Engineering, College of Mechanics and Materials, Hohai University, Nanjing 211100, China
| | - Guobing Ying
- Department of Materials Science and Engineering, College of Mechanics and Materials, Hohai University, Nanjing 211100, China.
| |
Collapse
|
10
|
Geng H, Guo Y, Zhang X, Zhang Y, Wang X, Zhao P, Wang G, Liao J, Dong L. Combination strategy of large interlayer spacing and active basal planes for regulating the microwave absorption performance of MoS 2/MWCNT composites at thin absorber level. J Colloid Interface Sci 2023; 648:12-24. [PMID: 37295364 DOI: 10.1016/j.jcis.2023.05.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Recently, molybdenum disulfide (MoS2)/carbon has become a promising candidate for efficient microwave absorption. However, it is still challenging to simultaneously optimize the synergy of impedance matching and loss capability at the level of a thin absorber. Here, a new adjustment strategy is proposed by changing the concentration of precursor l-cysteine for MoS2/multi-walled carbon nanotubes (MWCNT) composites to unlock the basal plane of MoS2 and expand the interlayer spacing from 0.62 nm to 0.99 nm, leading to improved packing of MoS2 nanosheets and more active sites. Therefore, the tailored MoS2 nanosheets exhibit abundant sulfur-vacancies, lattice-oxygen, more metallic 1T-phase, and higher surface area. Such sulfur-vacancies and lattice-oxygen promote the electronic asymmetric distribution at the solid-air interface of MoS2 crystals and induce stronger microwave attenuation through interface/dipole polarization, which is further verified by first-principles calculations. In addition, the expansion of the interlayer spacing induces more MoS2 to deposit on the MWCNT surface and increases the roughness, improving the impedance matching and multiple scattering. Overall, the advantage of this adjustment method is that while optimizing impedance matching at the thin absorber level, composite still maintains a high attenuation capacity, which means enhancing the attenuation performance of MoS2 itself offsets the weakening of the composite's attenuation ability caused by the decrease in the relative content of MWCNT components. Most importantly, adjusting impedance matching and attenuation ability can be easily implemented by separate control of l-cysteine content. As a result, the MoS2/MWCNT composites achieve a minimum reflection loss value of -49.38 dB and an effective absorption bandwidth of 4.64 GHz at a thickness of only 1.7 mm. This work provides a new vision for the fabrication of thin MoS2-carbon absorbers.
Collapse
Affiliation(s)
- Haoran Geng
- Hainan Institute, Wuhan University of Technology, Sanya 572000, China
| | - Yi Guo
- Hainan Institute, Wuhan University of Technology, Sanya 572000, China
| | - Xuan Zhang
- Hainan Institute, Wuhan University of Technology, Sanya 572000, China
| | - Yang Zhang
- Hainan Institute, Wuhan University of Technology, Sanya 572000, China
| | - Xuelin Wang
- Hainan Institute, Wuhan University of Technology, Sanya 572000, China
| | - Pengfei Zhao
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
| | - Guizhen Wang
- School of Materials Science and Engineering, Hainan University, Haikou 570208, China
| | - Jianhe Liao
- School of Materials Science and Engineering, Hainan University, Haikou 570208, China
| | - Lijie Dong
- Hainan Institute, Wuhan University of Technology, Sanya 572000, China.
| |
Collapse
|
11
|
Du B, Chai L, Zheng Q, Liu Y, Wang X, Chen X, Zhai S, Zhou J, Sun RC. Designed synthesis of multifunctional lignin-based adsorbent for efficient heavy metal ions removal and electromagnetic wave absorption. Int J Biol Macromol 2023; 234:123668. [PMID: 36796567 DOI: 10.1016/j.ijbiomac.2023.123668] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
Multifunctional lignin-based adsorbents, which have shown great application prospect, have attracted widespread attention. Herein, a series of multifunctional lignin-based magnetic recyclable adsorbents were prepared from carboxymethylated lignin (CL), which was rich in carboxyl group (-COOH). After optimizing the mass ratio of CL to Fe3O4, the prepared CL/Fe3O4 (3:1) adsorbent showed efficient adsorption capacities for heavy metal ions. The kinetic and isotherm nonlinear fitting studies revealed that the adsorption process followed the second-order kinetic and Langmuir models, and the maximum adsorption capacities (Qmax) of CL/Fe3O4 (3:1) magnetic recyclable adsorbent for Pb2+, Cu2+ and Ni2+ ions reached 189.85, 124.43 and 106.97 mg/g, respectively. Meanwhile, after 6 cycles, the adsorption capacities of CL/Fe3O4 (3:1) for Pb2+, Cu2+ and Ni2+ ions could keep at 87.4 %, 83.4 % and 82.3 %, respectively. In addition, CL/Fe3O4 (3:1) also exhibited excellent electromagnetic wave absorption (EMWA) performance with a reflection loss (RL) of -28.65 dB at 6.96 GHz under the thickness of 4.5 mm, and its effective absorption bandwidth (EAB) achieved 2.24 GHz (6.08-8.32 GHz). In short, the prepared multifunctional CL/Fe3O4 (3:1) magnetic recyclable adsorbent with outstanding adsorption capacity for heavy metal ions and superior EMWA capability opens a new avenue for the diversified utilization of lignin and lignin-based adsorbent.
Collapse
Affiliation(s)
- Boyu Du
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Lanfang Chai
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Qian Zheng
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Ying Liu
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Xing Wang
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Xiaohong Chen
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Shangru Zhai
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| | - Jinghui Zhou
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Run-Cang Sun
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| |
Collapse
|
12
|
Chen L, Li Y, Zhao B, Liu S, Zhang H, Chen K, Li M, Du S, Xiu F, Che R, Chai Z, Huang Q. Multiprincipal Element M 2 FeC (M = Ti,V,Nb,Ta,Zr) MAX Phases with Synergistic Effect of Dielectric and Magnetic Loss. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206877. [PMID: 36727817 PMCID: PMC10074122 DOI: 10.1002/advs.202206877] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/05/2023] [Indexed: 06/18/2023]
Abstract
Electromagnetic (EM) wave pollution is harmful to human health and environment, thus it is absolutely important to develop new electromagnetic wave absorbing materials. MAX phases have been attracted more attention as a potential candidate for electromagnetic wave absorbing materials due to their high conductivity and nanolaminated structure. Herein, two new magnetic MAX phases with multiprincipal elements ((Ti1/3 Nb1/3 Ta1/3 )2 FeC and (Ti0.2 V0.2 Nb0.2 Ta0.2 Zr0.2 )2 FeC) in which Fe atoms replace Al atoms in the A sites are successfully synthesized by an isomorphous replacement reaction of multiprincipal (Ti1/3 Nb1/3 Ta1/3 )2 AlC and (Ti0.2 V0.2 Nb0.2 Ta0.2 Zr0.2 )2 AlC MAX phases with Lewis acid salt (FeCl2 ). (Ti1/3 Nb1/3 Ta1/3 )2 FeC and (Ti0.2 V0.2 Nb0.2 Ta0.2 Zr0.2 )2 FeC exhibit ferromagnetic behavior, and the Curie temperature (Tc ) are 302 and 235 K, respectively. The dual electromagnetic absorption mechanisms that include dielectric and magnetic loss, which is realized in these multiprincipal MAX phases. The minimum reflection loss (RL) of (Ti1/3 Nb1/3 Ta1/3 )2 FeC is -44.4 dB at 6.56 GHz with 3 mm thickness, and the effective bandwidth is 2.48 GHz. Additionally, the electromagnetic wave absorption properties of the magnetic MAX phases indicate that magnetic loss also plays an important role besides dielectric loss. This work shows a promising composition-design strategy to develop MAX phases with good EM wave absorption performance via simultaneously regulating dielectric and magnetic loss together.
Collapse
Affiliation(s)
- Lu Chen
- Engineering Laboratory of Advanced Energy MaterialsNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboZhejiang315201China
- College of Materials Science and Opto‐electronic TechnologyUniversity of Chinese Academy of Sciences19 A Yuquan Rd, Shijingshan DistrictBeijing100049China
- Qianwan Institute of CNiTECHNingbo315336China
| | - Youbing Li
- Engineering Laboratory of Advanced Energy MaterialsNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboZhejiang315201China
- Qianwan Institute of CNiTECHNingbo315336China
| | - Biao Zhao
- Laboratory of Advanced MaterialsShanghai Key Lab of Molecular Catalysis and Innovative MaterialsSchool of MicroelectronicsFudan UniversityShanghai200438China
| | - Shanshan Liu
- State Key Laboratory of Surface Physics and Department of PhysicsFudan UniversityShanghai200433China
| | - Huibin Zhang
- Laboratory of Advanced MaterialsShanghai Key Lab of Molecular Catalysis and Innovative MaterialsSchool of MicroelectronicsFudan UniversityShanghai200438China
| | - Ke Chen
- Engineering Laboratory of Advanced Energy MaterialsNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboZhejiang315201China
- Qianwan Institute of CNiTECHNingbo315336China
| | - Mian Li
- Engineering Laboratory of Advanced Energy MaterialsNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboZhejiang315201China
- Qianwan Institute of CNiTECHNingbo315336China
| | - Shiyu Du
- Engineering Laboratory of Advanced Energy MaterialsNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboZhejiang315201China
- Qianwan Institute of CNiTECHNingbo315336China
| | - Faxian Xiu
- State Key Laboratory of Surface Physics and Department of PhysicsFudan UniversityShanghai200433China
| | - Renchao Che
- Laboratory of Advanced MaterialsShanghai Key Lab of Molecular Catalysis and Innovative MaterialsSchool of MicroelectronicsFudan UniversityShanghai200438China
| | - Zhifang Chai
- Engineering Laboratory of Advanced Energy MaterialsNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboZhejiang315201China
- Qianwan Institute of CNiTECHNingbo315336China
| | - Qing Huang
- Engineering Laboratory of Advanced Energy MaterialsNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboZhejiang315201China
- Qianwan Institute of CNiTECHNingbo315336China
| |
Collapse
|
13
|
Zeng S, Han S, Sun X, Wang L, Gao Y, Chen Z, Feng H. Co 3O 4 Nanoparticle-Modified Porous Carbons with High Microwave Absorption Performances. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1073. [PMID: 36985967 PMCID: PMC10051154 DOI: 10.3390/nano13061073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Carbon materials derived from natural biomaterials have received increasing attention because of their low cost, accessibility, and renewability. In this work, porous carbon (DPC) material prepared from D-fructose was used to make a DPC/Co3O4 composite microwave absorbing material. Their electromagnetic wave absorption properties were thoroughly investigated. The results show that the composition of Co3O4 nanoparticles with DPC had enhanced microwave absorption (-60 dB to -63.7 dB), reduced the frequency of the maximum reflection loss (RL) (16.9 GHz to 9.2 GHz), and had high reflection loss over a wide range of coating thicknesses (2.78-4.84 mm, highest reflection loss <-30 dB). This work provided a way for further research on the development of biomass-derived carbon as a sustainable, lightweight, high-performance microwave absorber for practical applications.
Collapse
Affiliation(s)
- Shuangyin Zeng
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Shaojie Han
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Xiaotian Sun
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Li Wang
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Yanfeng Gao
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Zhang Chen
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Haitao Feng
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China
| |
Collapse
|
14
|
Sheikholia Lavasani F, Khalaj Z, Kabirifard H, Monajjemi M. Fabrication and characterization of the Fe 3O 4@SiO 2-rGO nanocomposite: a catalyst for multi-component reactions. Phys Chem Chem Phys 2023; 25:2821-2829. [PMID: 36606418 DOI: 10.1039/d2cp05354c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A novel nanocomposite is synthesized by covalently modifying reduced graphene oxide (rGO) with Fe3O4@SiO2 nanoparticles. Fe3O4 was synthesized using a co-precipitation method, and SiO2 was then coated onto the Fe3O4via a sol-gel method. Graphene oxide was synthesized using the Hummers' method. Furthermore, a hydrothermal method was applied to create the Fe3O4@SiO2-GO composite, and a simple reduction was used to obtain three-dimensional (3D) Fe3O4@SiO2-rGO core-shell spheres. XRD, FTIR, FE-SEM, VSM, BET, TGA, and Raman analyses were used to characterize the prepared nanocomposites. X-Ray diffraction (XRD) and Raman spectra reveal that the nanostructures consist of highly crystallized cubic Fe3O4, amorphous SiO2, and rGO sheets stacked in a disordered fashion. Field emission scanning electron microscopy (FE-SEM) characterization indicates that the form of the Fe3O4@SiO2 core-shell structures is spherical, with an average size of about 25 nm. Magnetic hysteresis loops reveal the super-paramagnetic behavior of the samples at room temperature. All of the results obtained confirm the synthesis of high-quality nanocomposites, which can be a good candidate for use as a catalyst in multi-component reactions.
Collapse
Affiliation(s)
| | - Zahra Khalaj
- Department of Physics, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.
| | - Hassan Kabirifard
- Department of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Majid Monajjemi
- Department of Chemical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
15
|
Zhang Q, Cui J, Zhao S, Gao A, Zhang G, Yan Y. Regulation binary electromagnetic filler networks in segregated poly(vinylidenefluoride) composite for absorption‐dominated electromagnetic interference shielding. J Appl Polym Sci 2023. [DOI: 10.1002/app.53650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Qimei Zhang
- Key Lab of Rubber‐Plastics Ministry of Education/Shandong Provincial Key Lab of Rubber‐Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao China
- School of Materials and Environmental Engineering Chizhou University Chizhou China
| | - Jian Cui
- Key Lab of Rubber‐Plastics Ministry of Education/Shandong Provincial Key Lab of Rubber‐Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao China
| | - Shuai Zhao
- Key Lab of Rubber‐Plastics Ministry of Education/Shandong Provincial Key Lab of Rubber‐Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao China
| | - Ailin Gao
- Key Lab of Rubber‐Plastics Ministry of Education/Shandong Provincial Key Lab of Rubber‐Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao China
| | - Guangfa Zhang
- Key Lab of Rubber‐Plastics Ministry of Education/Shandong Provincial Key Lab of Rubber‐Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao China
| | - Yehai Yan
- Key Lab of Rubber‐Plastics Ministry of Education/Shandong Provincial Key Lab of Rubber‐Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao China
| |
Collapse
|
16
|
Tabar Maleki S, Babamoradi M. Microwave absorption theory and recent advances in microwave absorbers by polymer-based nanocomposites (Carbons, Oxides, Sulfides, Metals, and Alloys). INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
17
|
Zhang P, Fu Y, Zhang X, Zhang X, Li BW, Nan CW. Flexible high-performance microcapacitors enabled by all-printed two-dimensional nanosheets. Sci Bull (Beijing) 2022; 67:2541-2549. [PMID: 36604032 DOI: 10.1016/j.scib.2022.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/20/2022] [Accepted: 11/22/2022] [Indexed: 12/10/2022]
Abstract
Chemically exfoliated nanosheets have exhibited great potential for applications in various electronic devices. Solution-based processing strategies such as inkjet printing provide a low-cost, environmentally friendly, and scalable route for the fabrication of flexible devices based on functional inks of two-dimensional nanosheets. In this study, chemically exfoliated high-k perovskite nanosheets (i.e., Ca2Nb3O10 and Ca2NaNb4O13) are well dispersed in appropriate solvents to prepare printable inks, and then, a series of microcapacitors with Ag and graphene electrodes are printed. The resulting microcapacitors, Ag/Ca2Nb3O10/Ag, graphene/Ca2Nb3O10/graphene, and graphene/Ca2NaNb4O13/graphene, demonstrate high capacitance densities of 20, 80, and 150 nF/cm2 and high dielectric constants of 26, 110, and 200, respectively. Such dielectric enhancement in the microcapacitors with graphene electrodes is possibly attributed to the dielectric/graphene interface. In addition, these microcapacitors also exhibit good insulating performance with a moderate electrical breakdown strength of approximately 1 MV/cm, excellent flexibility, and thermal stability up to 200 ℃. This work demonstrates the potential of high-k perovskite nanosheets for additive manufacturing of flexible high-performance dielectric capacitors.
Collapse
Affiliation(s)
- Pengxiang Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China
| | - Yushui Fu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Xin Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Xihua Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China
| | - Bao-Wen Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China; State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
| | - Ce-Wen Nan
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
18
|
Yang W, Li L, Hou Y, Liu Y, Xiao X. Enhanced Electromagnetic Wave Absorption of SiOC/Porous Carbon Composites. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8864. [PMID: 36556670 PMCID: PMC9782895 DOI: 10.3390/ma15248864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/23/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Carbon-based materials have been widely explored as electromagnetic (EM) wave absorbing materials with specific surface areas and low density. Herein, novel porous carbon/SiOC ceramic composites materials (porous C/sp-SiOC) were prepared from the binary mixture, which used the low cost pitch as carbon resource and the polysilylacetylene (PSA) as SiOC ceramic precursor. With the melt-blending-phase separation route, the PSA resin formed micro-spheres in the pitch. Then, numerous SiOC ceramic micro-spheres were generated in porous carbon matrices during the pyrolysis process. By changing the percent of SiOC, the microstructure and wave absorption of porous C/sp-SiOC composites could be adjusted. The synergistic effect of the unique structure, the strong interfacial polarization, and the optimized impedance matching properties contributed to the excellent absorption performance of porous C/sp-SiOC composites. The minimum reflection loss for porous C/sp-SiOC absorber reached -56.85 dB, and the widest effective bandwidth was more than 4 GHz with a thickness of only 1.39 mm. This presented research provides an innovative and practical approach to developing high-performance porous carbon-based microwave absorption materials from green chemistry.
Collapse
Affiliation(s)
- Wen Yang
- School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255000, China
| | - Li Li
- Shandong Si-Nano Materials Technology Co., Ltd., Zibo 255400, China
| | - Yongzhao Hou
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Yun Liu
- Shandong Industrial Ceramics Research & Design Institute Co., Ltd., Zibo 255400, China
| | - Xinwei Xiao
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
| |
Collapse
|
19
|
Dong S, Li J, Zhang S, Li N, Li B, Zhang Q, Ge L. Excellent microwave absorption performance of PAN-based Fe/C nanofibers with low loading fillers. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Zhang X, Xian G, Wang J, Fan Y, Liu Y, Oh WC, Liu Z, Wang Y, Kong LB. Evolution of hollow dodecahedron carbon coated FeCo with enhance of electromagnetic properties. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
21
|
Super simple and green synthesis of bifunctional iron oxide anchored on graphene oxide-like carbon composite. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
22
|
Li W, Guo F, Zhao Y, Liu Y. A Sustainable and Low-Cost Route to Design NiFe 2O 4 Nanoparticles/Biomass-Based Carbon Fibers with Broadband Microwave Absorption. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4063. [PMID: 36432351 PMCID: PMC9693991 DOI: 10.3390/nano12224063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Carbon-based microwave-absorbing materials with a low cost, simple preparation process, and excellent microwave absorption performance have important application value. In this paper, biomass-based carbon fibers were prepared using cotton fiber, hemp fiber, and bamboo fiber as carbon sources. Then, the precise loading of NiFe2O4 nanoparticles on biomass-based carbon fibers with the loading amount in a wide range was successfully realized through a sustainable and low-cost route. The effects of the composition and structure of NiFe2O4/biomass-based carbon fibers on electromagnetic parameters and electromagnetic absorption properties were systematically studied. The results show that the impedance matching is optimized, and the microwave absorption performance is improved after loading NiFe2O4 nanoparticles on biomass-based carbon fibers. In particular, when the weight percentage of NiFe2O4 nanoparticles in NiFe2O4/carbonized cotton fibers is 42.3%, the effective bandwidth of NiFe2O4/carbonized cotton fibers can reach 6.5 GHz with a minimum reflection loss of -45.3 dB. The enhancement of microwave absorption performance is mainly attributed to the appropriate electromagnetic parameters with the ε' ranging from 9.2 to 4.8, and the balance of impedance matching and electromagnetic loss. Given the simple synthesis method, low cost, high output, and excellent microwave absorption performance, the NiFe2O4/biomass-based carbon fibers have broad application prospects as an economic and broadband microwave absorbent.
Collapse
|
23
|
Yu W, Min Y, Fang J, Lu X, Wang Z, Jian L. Polyimide-derived porous carbon/Co particle-based composites for high-performance microwave absorption. RSC Adv 2022; 12:29070-29077. [PMID: 36320773 PMCID: PMC9554940 DOI: 10.1039/d2ra04653a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/16/2022] [Indexed: 11/07/2022] Open
Abstract
A simple method that combines liquid-liquid phase separation and high-temperature pyrolysis has been developed for the synthesis of polyimide-derived porous carbon/Co particle-based composite absorbers (PIC/Co-800 and PIC/Co-1000). The excellent heat resistance of polyimide allows the composite precursor to maintain its porous structure during pyrolysis. According to the results, PIC/Co-800 and PIC/Co-1000 have a coral-like porous structure, which can enhance the impedance matching property and microwave attenuation ability of the synthesized materials. The impedance matching condition and dissipation ability of PIC/Co-800 and PIC/Co-1000 have been enhanced due to the synergistic effect between the carbon-induced dielectric loss and Co nanoparticle-induced magnetic loss. PIC/Co-1000 shows the highest absorption performance with a minimum reflection loss (RL) of -40.22 dB at a thickness of 5.3 mm and an effective absorption bandwidth (EABW, RL ≤ -10 dB) of 4.10 GHz at a thickness of 1.4 mm. With thicknesses in the range of 1.4 mm to 5.3 mm, the minimum RL value of each thickness is lower than -15 dB. Therefore, this work provides a new strategy for the synthesis of promising absorbing materials with outstanding EMW absorption performance.
Collapse
Affiliation(s)
- Wentao Yu
- School of Materials and Energy, Guangdong University of Technology Guangzhou 510006 China
| | - Yonggang Min
- School of Materials and Energy, Guangdong University of Technology Guangzhou 510006 China
| | - Jiyong Fang
- School of Materials and Energy, Guangdong University of Technology Guangzhou 510006 China
| | - Xiaochuang Lu
- School of Materials and Energy, Guangdong University of Technology Guangzhou 510006 China
| | - Ziqing Wang
- School of Materials and Energy, Guangdong University of Technology Guangzhou 510006 China
| | - Lingfeng Jian
- School of Materials and Energy, Guangdong University of Technology Guangzhou 510006 China
| |
Collapse
|
24
|
Dong S, Li J, Zhang S, Li N, Li B, Zhang Q, Ge L. Excellent microwave absorption of lightweight PAN-based carbon nanofibers prepared by electrospinning. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Li Y, Qin Y, Wu G, Zheng Y, Ban Q. Metal-coordination-driven self-assembly synthesis of porous iron/carbon composite for high-efficiency electromagnetic wave absorption. J Colloid Interface Sci 2022. [DOI: 10.1016/j.jcis.2022.05.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Barzegarzadeh M, Amini-Fazl MS, Nasrizadeh H. A rapid and sensitive method to detection of Cr3+by using the Fe3O4@Pectin-polymethacrylimide@graphene quantum dot as a sensitive material. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02484-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Qiao M, Tian Y, Wang J, Li X, He X, Lei X, Zhang Q, Ma M, Meng X. Magnetic-Field-Induced Vapor-Phase Polymerization to Achieve PEDOT-Decorated Porous Fe 3O 4 Particles as Excellent Microwave Absorbers. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mingtao Qiao
- College of Materials Science and Engineering, Xi’an University of Architecture & Technology, Xi’an 710055, Shaanxi, P. R. China
| | - Yurui Tian
- School of Environmental and Municipal Engineering, Xi’an University of Architecture & Technology, Xi’an 710055, Shaanxi, P. R. China
| | - Jiani Wang
- College of Materials Science and Engineering, Xi’an University of Architecture & Technology, Xi’an 710055, Shaanxi, P. R. China
| | - Xiang Li
- College of Materials Science and Engineering, Xi’an University of Architecture & Technology, Xi’an 710055, Shaanxi, P. R. China
| | - Xiaowei He
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, Shaanxi, P. R. China
| | - Xingfeng Lei
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, Shaanxi, P. R. China
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, Shaanxi, P. R. China
| | - Mingliang Ma
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, Shandong, P. R. China
| | - Xiaorong Meng
- School of Chemistry and Chemical Engineering, Xi’an University of Architecture & Technology, Xi’an 710055, Shaanxi, P. R. China
| |
Collapse
|
28
|
Yuan H, Liu Z, Zhang Y, Ding J, Sun Y, Zhang M, Tan S. High-performance electromagnetic wave absorption in cobalt sulfide flower-like nanospheres. RSC Adv 2022; 12:25323-25331. [PMID: 36199349 PMCID: PMC9450002 DOI: 10.1039/d2ra04764k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022] Open
Abstract
A heterophase cobalt sulfide absorbing material with petal-like surface structure was prepared by a simple hydrothermal method. The cobalt sulfide sample with the optimal microwave absorption capacity was achieved through regulating the reaction temperature. By regulating the reaction temperature to 200 °C, the optimal reflection loss was -48.4 dB at 16.8 GHz with filler loading of 50%, and the effective absorption bandwidth was 4.3 GHz at Ku band corresponding to a thickness of only 1.5 mm. The petal-like surface structure of cobalt sulfide gradually disappears as the reaction temperature rises, and the reduction of specific surface area has a negative effect on the microwave absorption capacity of the sample. Meanwhile, by adjusting the sample thickness from 1.5 to 5.0 mm, the effective absorption bandwidth could cover almost the whole test frequency range. The results show that the cobalt sulfide absorbing material with regulated reaction temperature has a strong electromagnetic wave absorption ability, light weight, thin thickness and simple synthesis, which is a promising microwave absorbing material for actual application.
Collapse
Affiliation(s)
- Hao Yuan
- School of Physics and Optoelectronic Engineering, Shandong University of Technology Zibo 255000 People's Republic of China
| | - Zhidong Liu
- School of Physics and Optoelectronic Engineering, Shandong University of Technology Zibo 255000 People's Republic of China
| | - Yani Zhang
- School of Physics and Optoelectronic Engineering, Shandong University of Technology Zibo 255000 People's Republic of China
| | - Jinfeng Ding
- School of Physics and Optoelectronic Engineering, Shandong University of Technology Zibo 255000 People's Republic of China
| | - Yuping Sun
- School of Physics and Optoelectronic Engineering, Shandong University of Technology Zibo 255000 People's Republic of China
| | - Min Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Physics and Electronic Information, Huaibei Normal University Huaibei 235000 People's Republic of China
| | - Shugang Tan
- School of Physics and Optoelectronic Engineering, Shandong University of Technology Zibo 255000 People's Republic of China
| |
Collapse
|
29
|
Du B, Chai L, Li W, Wang X, Chen X, Zhou J, Sun RC. Preparation of functionalized magnetic graphene oxide/lignin composite nanoparticles for adsorption of heavy metal ions and reuse as electromagnetic wave absorbers. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121509] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
30
|
Xu J, Shu R, Shi J. Synthesis of tetragonal copper-nickel ferrite decorated nitrogen-doped reduced graphene oxide composite as a thin and high-efficiency electromagnetic wave absorber. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Kiran, Thakur N. Nanostructured MnFe2O4 anchored on graphene oxide and reduced graphene oxide sheets for effective regulation of microwave absorption performance. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
32
|
McKeever C, Aziz M. Effect of Multilayered Structure on the Static and Dynamic Properties of Magnetic Nanospheres. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35177-35183. [PMID: 35879264 PMCID: PMC9354015 DOI: 10.1021/acsami.2c05715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of flexible and lightweight electromagnetic interference (EMI)-shielding materials and microwave absorbers requires precise control and optimization of core-shell constituents within composite materials. Here, a theoretical model is proposed to predict the static and dynamic properties of multilayered core-shell particles comprised of exchange-coupled layers, as in the case of a spherical iron core coupled to an oxide shell across a spacer layer. The theory of exchange resonance in homogeneous spheres is shown to be a limiting special case of this more general theory. Nucleation of magnetization reversal occurs through either quasi-uniform or curling magnetization processes in core-shell particles, where a purely homogeneous magnetization configuration is forbidden by the multilayered morphology. The energy is minimized through mixing of modes for specific interface conditions, leading to many inhomogeneous solutions, which grow as 2n with increasing layers, where n represents the number of magnetic layers. The analytical predictions are confirmed using numerical simulations.
Collapse
Affiliation(s)
- Conor McKeever
- Department
of Physics and Astronomy, University of
Exeter, Exeter EX4 4QL, United Kingdom
- MaxLLG,
Exeter Science Park, Exeter EX5 2FN, United Kingdom
| | - Mustafa Aziz
- Department
of Engineering, University of Exeter, Exeter EX4 4QF, United Kingdom
- MaxLLG,
Exeter Science Park, Exeter EX5 2FN, United Kingdom
| |
Collapse
|
33
|
Gu H, Qin G, Chen A, Li M, Huang D, Peng Z, Zhang J, Lei C. Directional Migration and Distribution of Magnetic Microparticles in Polypropylene-Matrix Magnetic Composites Molded by an Injection Molding Assisted by External Magnetic Field. MATERIALS 2022; 15:ma15134632. [PMID: 35806755 PMCID: PMC9267549 DOI: 10.3390/ma15134632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/23/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023]
Abstract
Surface-functionalized polymer composites with spherical particles as fillers offer great qualities and have been widely employed in applications of sensors, pharmaceutical industries, anti-icing, and flexible electromagnetic interference shielding. The directional migration and dispersion theory of magnetic microparticles in polypropylene (PP)-matrix magnetic composites must be studied to better acquire the functional surface with remarkable features. In this work, a novel simulation model based on multi-physical field coupling was suggested to analyze the directed migration and distribution of magnetic ferroferric oxide (Fe3O4) particles in injection molding assisted by an external magnetic field using COMSOL Multiphysics® software. To accurately introduce rheological phenomena of polymer melt into the simulation model, the Carreau model was used. Particle size, magnetic field intensity, melt viscosity, and other parameters impacting particle directional motion were discussed in depth. The directional distribution of particles in the simulation model was properly assessed and confirmed by experiment results. This model provides theoretical support for the control, optimization, and investigation of the injection-molding process control of surface-functionalized polymer composites.
Collapse
|
34
|
Gao J, Ma Z, Liu F, Chen C. Synthesis of carbon-coated cobalt ferrite core–shell structure composite: A method for enhancing electromagnetic wave absorption properties by adjusting impedance matching. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Zhang X, Fan Y, Wang J, Xian G, Liu Z, Xie A, Wang Y, Li J, Liu Y, Gao J, Kong LB. Synergistic effect of niobium oxide and cobalt on electromagnetic properties of dodecahedron-carbon composites. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Zhu H, Liang J, Chen J, Chang H, Jiao X, Jiao Q, Feng C, Li H, Zhang Y, Zhao Y. Rational construction of yolk-shell structured Co 3Fe 7/FeO@carbon composite and optimization of its microwave absorption. J Colloid Interface Sci 2022; 626:775-786. [PMID: 35820213 DOI: 10.1016/j.jcis.2022.06.156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 01/17/2023]
Abstract
The construction of yolk-shell composites with dielectric/magnetic multiple loss mechanisms has become a promising strategy to obtain high-efficiency microwave absorbing materials. An ideal microwave absorber should possess dielectric and magnetic loss abilities, thereby leading to the attenuation and absorption of incident electromagnetic radiation. Herein, the yolk-shell structured CoFe2O4@carbon (YS-CoFe2O4@C) and Co3Fe7/FeO@carbon (YS-Co3Fe7/FeO@C) composites were designed and synthesized through a series of processes, which include in-situ coating, heat-treating, etching and subsequent carbonization reduction reaction. The composite materials with specific structure, composition, and electromagnetic parameters could be effectively obtained by controlling the reaction conditions. The combination of alloy with high magnetic loss and carbon with advanced dielectric loss as well as the unique yolk-shell structure endow YS-Co3Fe7/FeO@C improved impendence matching and large attenuation constant. The YS-Co3Fe7/FeO@C composites show optimized microwave absorption behaviors, the minimum reflection loss is up to -57.6 dB at 12.30 GHz with the of 2.5 mm and the corresponding effective absorption bandwidth is 5.27 GHz (10.10-15.37 GHz). Moreover, the widest effective bandwidth could reach 7.0 GHz (11-18 GHz) with the thickness of 2.3 m. This design provides a novel concept for tuning microwave absorption efficiency of magnetic/dielectric composites to prepare high-performance microwave absorbers.
Collapse
Affiliation(s)
- Huanhuan Zhu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Jie Liang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Jinfeng Chen
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Hao Chang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Xiaoguang Jiao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Qingze Jiao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China; School of Materials and the Environment, Beijing Institute of Technology, Zhuhai, Zhuhai 519085, PR China
| | - Caihong Feng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Hansheng Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Yaoyuan Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Yun Zhao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| |
Collapse
|
37
|
Microstructure, Electromagnetic Properties, and Microwave Absorption Mechanism of SiO 2-MnO-Al 2O 3 Based Manganese Ore Powder for Electromagnetic Protection. Molecules 2022; 27:molecules27123758. [PMID: 35744883 PMCID: PMC9227126 DOI: 10.3390/molecules27123758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022] Open
Abstract
Considering the electromagnetic protection needs of important ground buildings, exploring the electromagnetic wave (EMW) absorption performance of manganese ore powder (MOP) building materials is an effective way to overcome its low added value and difficulty in popularizing. Here, choosing filling ratios commonly used in building materials such as autoclaved bricks, MOP/paraffin samples with 20%, 40%, and 60% mass fraction of MOP were prepared, and electromagnetic properties were analyzed at 2−18 GHz using the coaxial method. The results show that 60 wt% sample has the best absorption performance, with a minimum reflection loss (RLmin) value of −22.06 dB at 15.04 GHz, and the effective absorption bandwidth (EAB, RL < −10 dB) reaches 4.16 GHz at a 7.65 mm absorber thickness, covering most of the Ku-band region. The excellent microwave absorption performance of MOP is due to its multi-oxide forming multi-interface structure and rough surface, which can not only form abundant dipole and interfacial polarization under the action of EMW, but also reflect and scatter the incident EMW, prolong the transmission path, and enhanced the absorption of microwaves. This study demonstrates that MOP building materials can have excellent microwave absorption properties, thus becoming a new way to address harmful manganese residue; for example, autoclaved bricks, which can not only improve the added value of manganese residue building materials but also can be consumed on a large scale. It provides a new idea to solve the harm of manganese residue.
Collapse
|
38
|
Mei Q, Xiao H, Ding G, Liu H, Zhao C, Wang R, Huang Z. Ultralight Open-Cell Graphene Aerogels with Multiple, Gradient Microstructures for Efficient Microwave Absorption. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1896. [PMID: 35683751 PMCID: PMC9181992 DOI: 10.3390/nano12111896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023]
Abstract
Development of high-performance graphene-based microwave absorbing materials with low density and strong absorption is of great significance to solve the growing electromagnetic pollution. Herein, a controllable open-cell structure is introduced into graphene aerogels by the graphene oxide (GO) Pickering emulsion. The open-cell graphene aerogel (OCGA) with multiple microstructures shows a significantly enhanced microwave absorption ability without any additions. A high microwave absorption performance with the minimum value of reflection loss (RLmin) of -51.22 dB was achieved, while the material density was only 4.81 mg/cm3. Moreover, by means of centrifugation, the graphene cells were arranged by their diameter, and a gradient, open-cell graphene structure was first fabricated. Based on this unique structure, an amazing microwave absorption value of -62.58 dB was reached on a condition of ultra-low graphene content of 0.53 wt%. In our opinion, such excellent microwave absorption performance results from multiple reflection and well-matched impedance brought by the open-cell and gradient structure, respectively. In addition, the structural strength of the OCGA is greatly improved with a maximum increase of 167% due to the introduction of cell structure. Therefore, the OCGAs with the gradient structure can be an excellent candidate for lightweight, efficient microwave absorption materials.
Collapse
Affiliation(s)
| | | | - Guomin Ding
- School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; (Q.M.); (H.X.); (H.L.); (C.Z.); (R.W.); (Z.H.)
| | | | | | | | | |
Collapse
|
39
|
Xu C, Liu P, Wu Z, Zhang H, Zhang R, Zhang C, Wang L, Wang L, Yang B, Yang Z, You W, Che R. Customizing Heterointerfaces in Multilevel Hollow Architecture Constructed by Magnetic Spindle Arrays Using the Polymerizing-Etching Strategy for Boosting Microwave Absorption. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200804. [PMID: 35404542 PMCID: PMC9189646 DOI: 10.1002/advs.202200804] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/18/2022] [Indexed: 05/20/2023]
Abstract
Heterointerface engineering is evolving as an effective approach to tune electromagnetic functional materials, but the mechanisms of heterointerfaces on microwave absorption (MA) remain unclear. In this work, abundant electromagnetic heterointerfaces are customized in multilevel hollow architecture via a one-step synergistic polymerizing-etching strategy. Fe/Fe3 O4 @C spindle-on-tube structures are transformed from FeOOH@polydopamine precursors by a controllable reduction process. The impressive electromagnetic heterostructures are realized on the Fe/Fe3 O4 @C hollow spindle arrays and induce strong interfacial polarization. The highly dispersive Fe/Fe3 O4 nanoparticles within spindles build multi-dimension magnetic networks, which enhance the interaction with incident microwaves and reinforce magnetic loss capacity. Moreover, the hierarchically hollow structure and electromagnetic synergistic components are conducive to the impedance matching between absorbing materials and air medium. Furthermore, the mechanisms of electromagnetic heterointerfaces on the MA are systematically investigated. Accordingly, the as-prepared hierarchical Fe/Fe3 O4 @C microtubes exhibit remarkable MA performance with a maximum refection loss of -55.4 dB and an absorption bandwidth of 4.2 GHz. Therefore, in this study, the authors not only demonstrate a synergistic strategy to design multilevel hollow architecture, but also provide a fundamental guide in heterointerface engineering of highly efficient electromagnetic functional materials.
Collapse
Affiliation(s)
- Chunyang Xu
- Laboratory of Advanced MaterialsShanghai Key Lab of Molecular Catalysis and Innovative MaterialsDepartment of Materials ScienceFudan UniversityShanghai200438P. R. China
| | - Panbo Liu
- School of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi'an710129P. R. China
| | - Zhengchen Wu
- Laboratory of Advanced MaterialsShanghai Key Lab of Molecular Catalysis and Innovative MaterialsDepartment of Materials ScienceFudan UniversityShanghai200438P. R. China
| | - Huibin Zhang
- Laboratory of Advanced MaterialsShanghai Key Lab of Molecular Catalysis and Innovative MaterialsDepartment of Materials ScienceFudan UniversityShanghai200438P. R. China
| | - Ruixuan Zhang
- Laboratory of Advanced MaterialsShanghai Key Lab of Molecular Catalysis and Innovative MaterialsDepartment of Materials ScienceFudan UniversityShanghai200438P. R. China
| | - Chang Zhang
- Laboratory of Advanced MaterialsShanghai Key Lab of Molecular Catalysis and Innovative MaterialsDepartment of Materials ScienceFudan UniversityShanghai200438P. R. China
| | - Lei Wang
- Laboratory of Advanced MaterialsShanghai Key Lab of Molecular Catalysis and Innovative MaterialsDepartment of Materials ScienceFudan UniversityShanghai200438P. R. China
| | - Longyuan Wang
- Laboratory of Advanced MaterialsShanghai Key Lab of Molecular Catalysis and Innovative MaterialsDepartment of Materials ScienceFudan UniversityShanghai200438P. R. China
| | - Bingtong Yang
- Laboratory of Advanced MaterialsShanghai Key Lab of Molecular Catalysis and Innovative MaterialsDepartment of Materials ScienceFudan UniversityShanghai200438P. R. China
| | - Ziqi Yang
- Laboratory of Advanced MaterialsShanghai Key Lab of Molecular Catalysis and Innovative MaterialsDepartment of Materials ScienceFudan UniversityShanghai200438P. R. China
| | - Wenbin You
- Laboratory of Advanced MaterialsShanghai Key Lab of Molecular Catalysis and Innovative MaterialsDepartment of Materials ScienceFudan UniversityShanghai200438P. R. China
| | - Renchao Che
- Laboratory of Advanced MaterialsShanghai Key Lab of Molecular Catalysis and Innovative MaterialsDepartment of Materials ScienceFudan UniversityShanghai200438P. R. China
- Joint‐Research Center for Computational MaterialsZhejiang LaboratoryHangzhou311100China
| |
Collapse
|
40
|
Neysi M, Elhamifar D. Pd-containing magnetic periodic mesoporous organosilica nanocomposite as an efficient and highly recoverable catalyst. Sci Rep 2022; 12:7970. [PMID: 35562531 PMCID: PMC9106672 DOI: 10.1038/s41598-022-11918-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
A novel magnetic ionic liquid based periodic mesoporous organosilica supported palladium (Fe3O4@SiO2@IL-PMO/Pd) nanocomposite is synthesized, characterized and its catalytic performance is investigated in the Heck reaction. The Fe3O4@SiO2@IL-PMO/Pd nanocatalyst was characterized using FT-IR, PXRD, SEM, TEM, VSM, TG, nitrogen-sorption and EDX analyses. This nanocomposite was effectively employed as catalyst in the Heck reaction to give corresponding arylalkenes in high yield. The recovery test was performed to study the catalyst stability and durability under applied conditions.
Collapse
Affiliation(s)
- Maryam Neysi
- Department of Chemistry, Yasouj University, Yasouj, 75918-74831, Iran
| | - Dawood Elhamifar
- Department of Chemistry, Yasouj University, Yasouj, 75918-74831, Iran.
| |
Collapse
|
41
|
Simultaneous Achievement of High-Yield Hydrogen and High-Performance Microwave Absorption Materials from Microwave Catalytic Deconstruction of Plastic Waste. Processes (Basel) 2022. [DOI: 10.3390/pr10040782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Here, FeAlOx catalytic deconstruction of polyethylene in a domestic microwave oven is reported. With the starting weight ratio of FeAlOx to polyethylene at 1:1, the concentration and yield of H2 reach up to 67.85 vol% and 48.1 mmol g−1plastic, respectively. CNTs@Fe3O4/Fe3C/Fe composite, which exhibits excellent microwave absorption properties, is generated simultaneously. The minimum reflection loss (RLmin) of the solid product reaches −54.78 dB at 15 GHz with an effective absorption bandwidth of 4.5 GHz at the thickness of 1.57 mm.
Collapse
|
42
|
Nan Y, Zhang Z, Wang Z, Yuan H, Zhou Y, Wei J. Controllable Synthesis of Mo 3C 2 Encapsulated by N-Doped Carbon Microspheres to Achieve Highly Efficient Microwave Absorption at Full Wavebands: From Lemon-like to Fig-like Morphologies. Inorg Chem 2022; 61:6281-6294. [PMID: 35412830 DOI: 10.1021/acs.inorgchem.2c00533] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mo3C2@N-doped carbon microspheres (Mo3C2@NC) have been discovered to be a family of superior microwave absorbing materials. Herein, Mo3C2@NC was synthesized through a simple high-temperature carbonization process by evaporating a graphite anode and Mo wire in Ar and N2 atmospheres with an N-doping content of 6.4 at. %. Attributing to the self-assembly mechanism, the number of Mo wires inserted into the graphite anode determined the morphologies of Mo3C2@NC, which were the unique lemon-like (1- and 2-Mo3C2@NC) and fig-like (3-, 4-, and 5-Mo3C2@NC) microstructures. 1- and 2-Mo3C2@NC exhibited powerful reflection losses (RLs) of -45.60, -45.59, and -47.11 dB at the S, C and X bands, respectively, which corresponded to thinner thicknesses. 3-, 4-, and 5-Mo3C2@NC showed outstanding absorption performance at the C, X, and Ku bands, respectively, with each value of a minimum RL less than -43.00 dB. In particular, the strongest RL (-43.56 dB) for 5-Mo3C2@NC corresponded to an ultrathin thickness of 1.3 mm. In addition, the maximum effective absorption bandwidth was 6.3 GHz for 4-Mo3C2@NC. After analysis, all Mo3C2@NC samples showed well-matched impedance due to the enhanced dielectric loss caused by the unique carbon structure and moderate magnetic loss derived from the weak magnetic property of Mo3C2. More importantly, the unique lemon-like and fig-like microstructures created sufficient interfaces and differentiated multiple reflection paths, which greatly contributed to the strong microwave absorptions at full wavebands. In full consideration of the simple preparation method and tunable absorption properties, Mo3C2@NC composites can be regarded as excellent electromagnetic wave absorption materials.
Collapse
Affiliation(s)
- Yanli Nan
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Nano Materials and Technology, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zihan Zhang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Nano Materials and Technology, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhaoyu Wang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Nano Materials and Technology, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hudie Yuan
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Nano Materials and Technology, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yun Zhou
- School of Medical Information and Engineering, Southwest Medical University, Lu Zhou 646000, China
| | - Jian Wei
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Nano Materials and Technology, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
43
|
Xu H, Zhang G, Wang Y, Ning M, Ouyang B, Zhao Y, Huang Y, Liu P. Size-Dependent Oxidation-Induced Phase Engineering for MOFs Derivatives Via Spatial Confinement Strategy Toward Enhanced Microwave Absorption. NANO-MICRO LETTERS 2022; 14:102. [PMID: 35412156 PMCID: PMC9005575 DOI: 10.1007/s40820-022-00841-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/05/2022] [Indexed: 05/02/2023]
Abstract
Precisely reducing the size of metal-organic frameworks (MOFs) derivatives is an effective strategy to manipulate their phase engineering owing to size-dependent oxidation; however, the underlying relationship between the size of derivatives and phase engineering has not been clarified so far. Herein, a spatial confined growth strategy is proposed to encapsulate small-size MOFs derivatives into hollow carbon nanocages. It realizes that the hollow cavity shows a significant spatial confinement effect on the size of confined MOFs crystals and subsequently affects the dielectric polarization due to the phase hybridization with tunable coherent interfaces and heterojunctions owing to size-dependent oxidation motion, yielding to satisfied microwave attenuation with an optimal reflection loss of -50.6 dB and effective bandwidth of 6.6 GHz. Meanwhile, the effect of phase hybridization on dielectric polarization is deeply visualized, and the simulated calculation and electron holograms demonstrate that dielectric polarization is shown to be dominant dissipation mechanism in determining microwave absorption. This spatial confined growth strategy provides a versatile methodology for manipulating the size of MOFs derivatives and the understanding of size-dependent oxidation-induced phase hybridization offers a precise inspiration in optimizing dielectric polarization and microwave attenuation in theory.
Collapse
Affiliation(s)
- Hanxiao Xu
- School of Chemistry and Chemical Engineering, μNorthwestern Polytechnical University, Xi'an, 710129, People's Republic of China
| | - Guozheng Zhang
- School of Chemistry and Chemical Engineering, μNorthwestern Polytechnical University, Xi'an, 710129, People's Republic of China
| | - Yi Wang
- School of Chemistry and Chemical Engineering, μNorthwestern Polytechnical University, Xi'an, 710129, People's Republic of China
| | - Mingqiang Ning
- Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China.
| | - Bo Ouyang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China.
| | - Yang Zhao
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, ON, N6A 5B9, Canada
| | - Ying Huang
- School of Chemistry and Chemical Engineering, μNorthwestern Polytechnical University, Xi'an, 710129, People's Republic of China
| | - Panbo Liu
- School of Chemistry and Chemical Engineering, μNorthwestern Polytechnical University, Xi'an, 710129, People's Republic of China.
| |
Collapse
|
44
|
Cheng J, Li C, Xiong Y, Zhang H, Raza H, Ullah S, Wu J, Zheng G, Cao Q, Zhang D, Zheng Q, Che R. Recent Advances in Design Strategies and Multifunctionality of Flexible Electromagnetic Interference Shielding Materials. NANO-MICRO LETTERS 2022; 14:80. [PMID: 35333993 PMCID: PMC8956783 DOI: 10.1007/s40820-022-00823-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/09/2022] [Indexed: 05/05/2023]
Abstract
With rapid development of 5G communication technologies, electromagnetic interference (EMI) shielding for electronic devices has become an urgent demand in recent years, where the development of corresponding EMI shielding materials against detrimental electromagnetic radiation plays an essential role. Meanwhile, the EMI shielding materials with high flexibility and functional integrity are highly demanded for emerging shielding applications. Hitherto, a variety of flexible EMI shielding materials with lightweight and multifunctionalities have been developed. In this review, we not only introduce the recent development of flexible EMI shielding materials, but also elaborate the EMI shielding mechanisms and the index for "green EMI shielding" performance. In addition, the construction strategies for sophisticated multifunctionalities of flexible shielding materials are summarized. Finally, we propose several possible research directions for flexible EMI shielding materials in near future, which could be inspirational to the fast-growing next-generation flexible electronic devices with reliable and multipurpose protections as offered by EMI shielding materials.
Collapse
Affiliation(s)
- Junye Cheng
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, People's Republic of China
| | - Chuanbing Li
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, People's Republic of China
| | - Yingfei Xiong
- School of Materials Science and Engineering, Qiqihar University, Qiqihar, 161006, People's Republic of China
| | - Huibin Zhang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, People's Republic of China
| | - Hassan Raza
- Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China
| | - Sana Ullah
- Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China
| | - Jinyi Wu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, People's Republic of China
| | - Guangping Zheng
- Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China
| | - Qi Cao
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, People's Republic of China.
| | - Deqing Zhang
- School of Materials Science and Engineering, Qiqihar University, Qiqihar, 161006, People's Republic of China
| | - Qingbin Zheng
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, People's Republic of China.
| | - Renchao Che
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, People's Republic of China.
| |
Collapse
|
45
|
Gong C, Jiang J, Ding J, Wang C, Guo Y, Shi C, He F. Graphene oxide supported Yolk - Shell ZnS/Ni 3S 4 with the adjustable air layer for high performance of electromagnetic wave absorber. J Colloid Interface Sci 2022; 617:620-632. [PMID: 35305474 DOI: 10.1016/j.jcis.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
Abstract
Yolk-shell structure materials with the light weight, excellent impedance matching and electromagnetic wave (EMW) loss ability were widely used in the field of absorbing materials. However, the previous researches on this kind of structure always focused on the comparison between solid structure and empty structure. Different from previous studies, in this paper, the effect of yolk-shell structure with different air layer thickness on EMW absorption was studied for the first time. Graphene oxide (GO) supported yolk-shell ZnS/Ni3S4 absorbers with adjustable air layer were prepared by a simple two-step hydrothermal method. Through the equivalence of RLC resonant circuit and the elimination of the influence of polarization relaxation and conduction loss, it was found that yolk-shell structure with different air layer thickness will resonate with EMW of different frequencies, thus increasing the loss capacity of materials to EMW of this frequency. At the same time, Compared with the solid structure, the yolk-shell structure can not only make the material lighter, but also cause multiple reflections and scattering of EMW. Noteworthy, yolk-shell structure composite material exhibits the maximum reflection loss (RL) of -63.0 dB at 4.8 GHz and an effective absorption bandwidth (EAB) of 4.1 GHz at a thickness of 1.6 mm. This research provides an idea and basis for the design of absorbing materials that respond to different frequency EMW.
Collapse
Affiliation(s)
- Chuangchuang Gong
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300072, People's Republic of China
| | - Jun Jiang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300072, People's Republic of China
| | - Jiawei Ding
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300072, People's Republic of China
| | - Chenxu Wang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yue Guo
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300072, People's Republic of China
| | - Chunsheng Shi
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300072, People's Republic of China; Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072, People's Republic of China
| | - Fang He
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300072, People's Republic of China; Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072, People's Republic of China.
| |
Collapse
|
46
|
Hu Q, Yang R, Yang S, Huang W, Zeng Z, Gui X. Metal-Organic Framework-Derived Core-Shell Nanospheres Anchored on Fe-Filled Carbon Nanotube Sponge for Strong Wideband Microwave Absorption. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10577-10587. [PMID: 35188369 DOI: 10.1021/acsami.1c25019] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Metal-organic frameworks (MOFs) are booming as a promising precursor for constructing lightweight, high-efficiency microwave absorbing (MA) material. However, it is still a challenge to rationally design three-dimensional (3D), porous MOF-derived MA materials with a stable structure and strong and wideband MA performance. Herein, a 3D hybrid nanostructure (CNT/FeCoNi@C) comprising MOF-derived magnetic nanospheres and Fe-filled carbon nanotube (CNT) sponge has been controllably fabricated to enhance the absorption ability and broaden the effective absorption bandwidth (EAB). The magnetic nanospheres are uniformly anchored on the CNT skeleton, forming hybrid network structures, which enhance interface polarization, electron transportation, and impedance matching. The minimum reflection loss (RL) and EAB of the as-prepared CNT/FeCoNi@C sponges reach -51.7 dB and 6.0 GHz, respectively, outperforming most reported MOF-based wave absorbers. This work provides not only a novel design of MOF-derived 3D nanostructures but also an effective guide for the optimization of electromagnetic properties and absorbing performance in MA material.
Collapse
Affiliation(s)
- Qingmei Hu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Rongliang Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Shaodian Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Weibo Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhiping Zeng
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xuchun Gui
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
47
|
Wu Z, Cheng HW, Jin C, Yang B, Xu C, Pei K, Zhang H, Yang Z, Che R. Dimensional Design and Core-Shell Engineering of Nanomaterials for Electromagnetic Wave Absorption. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107538. [PMID: 34755916 DOI: 10.1002/adma.202107538] [Citation(s) in RCA: 150] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/28/2021] [Indexed: 05/17/2023]
Abstract
Electromagnetic (EM) wave absorption materials possess exceptionally high EM energy loss efficiency. With vigorous developments in nanotechnology, such materials have exhibited numerous advanced EM functions, including radiation prevention and antiradar stealth. To achieve improved EM performance and multifunctionality, the elaborate control of microstructures has become an attractive research direction. By designing them as core-shell structures with different dimensions, the combined effects, such as interfacial polarization, conduction networks, magnetic coupling, and magnetic-dielectric synergy, can significantly enhance the EM wave absorption performance. Herein, the advances in low-dimensional core-shell EM wave absorption materials are outlined and a selection of the most remarkable examples is discussed. The derived key information regarding dimensional design, structural engineering, performance, and structure-function relationship are comprehensively summarized. Moreover, the investigation of the cutting-edge mechanisms is given particular attention. Additional applications, such as oxidation resistance and self-cleaning functions, are also introduced. Finally, insight into what may be expected from this rapidly expanding field and future challenges are presented.
Collapse
Affiliation(s)
- Zhengchen Wu
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Han-Wen Cheng
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Chen Jin
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Bintong Yang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Chunyang Xu
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Ke Pei
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Huibin Zhang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Ziqi Yang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Renchao Che
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
48
|
Li Q, Zhao X, Zhang Z, Xun X, Zhao B, Xu L, Kang Z, Liao Q, Zhang Y. Architecture Design and Interface Engineering of Self-assembly VS 4/rGO Heterostructures for Ultrathin Absorbent. NANO-MICRO LETTERS 2022; 14:67. [PMID: 35211806 PMCID: PMC8873340 DOI: 10.1007/s40820-022-00809-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/18/2022] [Indexed: 05/03/2023]
Abstract
The employment of microwave absorbents is highly desirable to address the increasing threats of electromagnetic pollution. Importantly, developing ultrathin absorbent is acknowledged as a linchpin in the design of lightweight and flexible electronic devices, but there are remaining unprecedented challenges. Herein, the self-assembly VS4/rGO heterostructure is constructed to be engineered as ultrathin microwave absorbent through the strategies of architecture design and interface engineering. The microarchitecture and heterointerface of VS4/rGO heterostructure can be regulated by the generation of VS4 nanorods anchored on rGO, which can effectively modulate the impedance matching and attenuation constant. The maximum reflection loss of 2VS4/rGO40 heterostructure can reach - 43.5 dB at 14 GHz with the impedance matching and attenuation constant approaching 0.98 and 187, respectively. The effective absorption bandwidth of 4.8 GHz can be achieved with an ultrathin thickness of 1.4 mm. The far-reaching comprehension of the heterointerface on microwave absorption performance is explicitly unveiled by experimental results and theoretical calculations. Microarchitecture and heterointerface synergistically inspire multi-dimensional advantages to enhance dipole polarization, interfacial polarization, and multiple reflections and scatterings of microwaves. Overall, the strategies of architecture design and interface engineering pave the way for achieving ultrathin and enhanced microwave absorption materials.
Collapse
Affiliation(s)
- Qi Li
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Xuan Zhao
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Zheng Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Xiaochen Xun
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Bin Zhao
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Liangxu Xu
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Zhuo Kang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Qingliang Liao
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.
| | - Yue Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.
| |
Collapse
|
49
|
Li S, Tang X, Zhang Y, Lan Q, Hu Z, Li L, Zhang N, Ma P, Dong W, Tjiu W, Wang Z, Liu T. Corrosion-Resistant Graphene-Based Magnetic Composite Foams for Efficient Electromagnetic Absorption. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8297-8310. [PMID: 35130700 DOI: 10.1021/acsami.1c23439] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Designing and fabricating high-performance microwave absorption materials with efficient electromagnetic absorption and corrosion resistance becomes a serious and urgent concern. Herein, novel corrosion-resistant graphene-based carbon-coated iron (Fe@C) magnetic composite foam is fabricated via self-assembly of iron phthalocyanine/Fe3O4 (FePc hybrid) on the graphene skeletons under solvothermal conditions and then annealing at high temperature. As a result, the rational construction of a hierarchical impedance gradient between graphene skeletons and Fe@C particles can facilitate the optimization in impedance matching and attenuation characteristic of the foam, realizing the efficient dissipation for incident electromagnetic waves. Additionally, the performance of electromagnetic absorption can be controllably regulated by optimizing annealing temperature and/or time. More importantly, the formation of a carbon-coated iron structure substantially improves the corrosion resistance of magnetic particles, endowing the composite foam with excellent stability and durability in microwave absorption performance.
Collapse
Affiliation(s)
- Shuangshuang Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Institute of Nanocomposites and Energy Materials, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, Jiangsu, P. R. China
| | - Xinwei Tang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Institute of Nanocomposites and Energy Materials, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, Jiangsu, P. R. China
| | - Yawei Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Institute of Nanocomposites and Energy Materials, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, Jiangsu, P. R. China
| | - Qianqian Lan
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Institute of Nanocomposites and Energy Materials, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, Jiangsu, P. R. China
| | - Zhiwei Hu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Institute of Nanocomposites and Energy Materials, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, Jiangsu, P. R. China
| | - Le Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Institute of Nanocomposites and Energy Materials, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, Jiangsu, P. R. China
| | - Nan Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Institute of Nanocomposites and Energy Materials, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, Jiangsu, P. R. China
| | - Piming Ma
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Institute of Nanocomposites and Energy Materials, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, Jiangsu, P. R. China
| | - Weifu Dong
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Institute of Nanocomposites and Energy Materials, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, Jiangsu, P. R. China
| | - Wengweei Tjiu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore
| | - Zicheng Wang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Institute of Nanocomposites and Energy Materials, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, Jiangsu, P. R. China
| | - Tianxi Liu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Institute of Nanocomposites and Energy Materials, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, Jiangsu, P. R. China
| |
Collapse
|
50
|
Fu H, Guo Y, Yu J, Shen Z, Zhao J, Xie Y, Ling Y, Ouyang S, Li S, Zhang W. Tuning the shell thickness of core-shell α-Fe2O3@SiO2 nanoparticles to promote microwave absorption. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.07.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|