1
|
Wang Z, Xu J, Zhu J, Fang H, Lei W, Qu X, Cheng YY, Li X, Guan Y, Wang H, Song K. Osteochondral Tissue Engineering: Scaffold Materials, Fabrication Techniques and Applications. Biotechnol J 2025; 20:e202400699. [PMID: 39865414 DOI: 10.1002/biot.202400699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/24/2024] [Accepted: 01/06/2025] [Indexed: 01/28/2025]
Abstract
Osteochondral damage, caused by trauma, tumors, or degenerative diseases, presents a major challenge due to the limited self-repair capacity of the tissue. Traditional treatments often result in significant trauma and unpredictable outcomes. Recent advances in bone/cartilage tissue engineering, particularly in scaffold materials and fabrication technologies, offer promising solutions for osteochondral regeneration. This review highlights the selection and design of scaffolds using natural and synthetic materials such as collagen, chitosan (Cs), and polylactic acid (PLA), alongside inorganic components like bioactive glass and nano-hydroxyapatite (nHAp). Key fabrication techniques-freeze-drying, electrospinning, and 3D printing-have improved scaffold porosity and mechanical properties. Special focus is placed on the design of multiphasic scaffolds that mimic natural tissue structures, promoting cell adhesion and differentiation and supporting the regeneration of cartilage and subchondral bone. In addition, the current obstacles and future directions for regenerating damaged osteochondral tissues will be discussed.
Collapse
Affiliation(s)
- Zhenyu Wang
- Cancer Hospital of Dalian University of Technology, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Jie Xu
- Cancer Hospital of Dalian University of Technology, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Jingjing Zhu
- Cancer Hospital of Dalian University of Technology, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Huan Fang
- Cancer Hospital of Dalian University of Technology, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Wanyu Lei
- Cancer Hospital of Dalian University of Technology, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Xinrui Qu
- Cancer Hospital of Dalian University of Technology, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Yuen Yee Cheng
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Broadway, Australia
| | - Xiangqin Li
- Cancer Hospital of Dalian University of Technology, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Yanchun Guan
- Department of Rheumatology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hongfei Wang
- Department of Orthopedics, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Kedong Song
- Cancer Hospital of Dalian University of Technology, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
2
|
Wu H, Wang X, Wang G, Yuan G, Jia W, Tian L, Zheng Y, Ding W, Pei J. Advancing Scaffold-Assisted Modality for In Situ Osteochondral Regeneration: A Shift From Biodegradable to Bioadaptable. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407040. [PMID: 39104283 DOI: 10.1002/adma.202407040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/10/2024] [Indexed: 08/07/2024]
Abstract
Over the decades, the management of osteochondral lesions remains a significant yet unmet medical challenge without curative solutions to date. Owing to the complex nature of osteochondral units with multi-tissues and multicellularity, and inherently divergent cellular turnover capacities, current clinical practices often fall short of robust and satisfactory repair efficacy. Alternative strategies, particularly tissue engineering assisted with biomaterial scaffolds, achieve considerable advances, with the emerging pursuit of a more cost-effective approach of in situ osteochondral regeneration, as evolving toward cell-free modalities. By leveraging endogenous cell sources and innate regenerative potential facilitated with instructive scaffolds, promising results are anticipated and being evidenced. Accordingly, a paradigm shift is occurring in scaffold development, from biodegradable and biocompatible to bioadaptable in spatiotemporal control. Hence, this review summarizes the ongoing progress in deploying bioadaptable criteria for scaffold-based engineering in endogenous osteochondral repair, with emphases on precise control over the scaffolding material, degradation, structure and biomechanics, and surface and biointerfacial characteristics, alongside their distinguished impact on the outcomes. Future outlooks of a highlight on advanced, frontier materials, technologies, and tools tailoring precision medicine and smart healthcare are provided, which potentially paves the path toward the ultimate goal of complete osteochondral regeneration with function restoration.
Collapse
Affiliation(s)
- Han Wu
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite & Center of Hydrogen Science, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuejing Wang
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Guocheng Wang
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, 518055, China
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite & Center of Hydrogen Science, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weitao Jia
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Liangfei Tian
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Wenjiang Ding
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite & Center of Hydrogen Science, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jia Pei
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite & Center of Hydrogen Science, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Institute of Medical Robotics & National Engineering Research Center for Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
3
|
Wu D, Zheng K, Yin W, Hu B, Yu M, Yu Q, Wei X, Deng J, Zhang C. Enhanced osteochondral regeneration with a 3D-Printed biomimetic scaffold featuring a calcified interfacial layer. Bioact Mater 2024; 36:317-329. [PMID: 38496032 PMCID: PMC10940945 DOI: 10.1016/j.bioactmat.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
The integrative regeneration of both articular cartilage and subchondral bone remains an unmet clinical need due to the difficulties of mimicking spatial complexity in native osteochondral tissues for artificial implants. Layer-by-layer fabrication strategies, such as 3D printing, have emerged as a promising technology replicating the stratified zonal architecture and varying microstructures and mechanical properties. However, the dynamic and circulating physiological environments, such as mass transportation or cell migration, usually distort the pre-confined biological properties in the layered implants, leading to undistinguished spatial variations and subsequently inefficient regenerations. This study introduced a biomimetic calcified interfacial layer into the scaffold as a compact barrier between a cartilage layer and a subchondral bone layer to facilitate osteogenic-chondrogenic repair. The calcified interfacial layer consisting of compact polycaprolactone (PCL), nano-hydroxyapatite, and tasquinimod (TA) can physically and biologically separate the cartilage layer (TA-mixed, chondrocytes-load gelatin methacrylate) from the subchondral bond layer (porous PCL). This introduction preserved the as-designed independent biological environment in each layer for both cartilage and bone regeneration, successfully inhibiting vascular invasion into the cartilage layer and preventing hyaluronic cartilage calcification owing to devascularization of TA. The improved integrative regeneration of cartilage and subchondral bone was validated through gross examination, micro-computed tomography (micro-CT), and histological and immunohistochemical analyses based on an in vivo rat model. Moreover, gene and protein expression studies identified a key role of Caveolin (CAV-1) in promoting angiogenesis through the Wnt/β-catenin pathway and indicated that TA in the calcified layer blocked angiogenesis by inhibiting CAV-1.
Collapse
Affiliation(s)
- Di Wu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.600 Yishan Road, Shanghai, 200233, China
| | - Kaiwen Zheng
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.600 Yishan Road, Shanghai, 200233, China
| | - Wenjing Yin
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.600 Yishan Road, Shanghai, 200233, China
| | - Bin Hu
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.600 Yishan Road, Shanghai, 200233, China
| | - Mingzhao Yu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.600 Yishan Road, Shanghai, 200233, China
| | - Qingxiao Yu
- Shanghai Uniorlechnology Corporation, No. 258 Xinzhuan Road, Shanghai, 201612, China
| | - Xiaojuan Wei
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.600 Yishan Road, Shanghai, 200233, China
| | - Jue Deng
- Academy for Engineering & Technology, Fudan University, No. 220 Handan Road, Shanghai, 200433, China
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.600 Yishan Road, Shanghai, 200233, China
| |
Collapse
|
4
|
Zadegan S, Vahidi B, Nourmohammadi J, Shojaee A, Haghighipour N. Evaluation of rabbit adipose derived stem cells fate in perfused multilayered silk fibroin composite scaffold for Osteochondral repair. J Biomed Mater Res B Appl Biomater 2024; 112:e35396. [PMID: 38433653 DOI: 10.1002/jbm.b.35396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/30/2023] [Accepted: 02/18/2024] [Indexed: 03/05/2024]
Abstract
Development of osteochondral tissue engineering approaches using scaffolds seeded with stem cells in association with mechanical stimulations has been recently considered as a promising technique for the repair of this tissue. In this study, an integrated and biomimetic trilayered silk fibroin (SF) scaffold containing SF nanofibers in each layer was fabricated. The osteogenesis and chondrogenesis of stem cells seeded on the fabricated scaffolds were investigated under a perfusion flow. 3-Dimethylthiazol-2,5-diphenyltetrazolium bromide assay showed that the perfusion flow significantly enhanced cell viability and proliferation. Analysis of gene expression by stem cells revealed that perfusion flow had significantly upregulated the expression of osteogenic and chondrogenic genes in the bone and cartilage layers and downregulated the hypertrophic gene expression in the intermediate layer of the scaffold. In conclusion, applying flow perfusion on the prepared integrated trilayered SF-based scaffold can support osteogenic and chondrogenic differentiation for repairing osteochondral defects.
Collapse
Affiliation(s)
- Sara Zadegan
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Bahman Vahidi
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Jhamak Nourmohammadi
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Asiyeh Shojaee
- Division of Physiology, Department of Basic Science, Faculty of Veterinary, Amol University of Special Modern Technologies, Amol, Iran
| | | |
Collapse
|
5
|
Zhou J, Wu N, Zeng J, Liang Z, Qi Z, Jiang H, Chen H, Liu X. Chondrogenic Differentiation of Adipose-Derived Stromal Cells Induced by Decellularized Cartilage Matrix/Silk Fibroin Secondary Crosslinking Hydrogel Scaffolds with a Three-Dimensional Microstructure. Polymers (Basel) 2023; 15:polym15081868. [PMID: 37112015 PMCID: PMC10144539 DOI: 10.3390/polym15081868] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/18/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
Finding an ideal scaffold is always an important issue in the field of cartilage tissue engineering. Both decellularized extracellular matrix and silk fibroin have been used as natural biomaterials for tissue regeneration. In this study, a secondary crosslinking method of γ irradiation and ethanol induction was used to prepare decellularized cartilage extracellular matrix and silk fibroin (dECM-SF) hydrogels with biological activity. Furthermore, the dECM-SF hydrogels were cast in custom-designed molds to produce a three-dimensional multi-channeled structure to improve internal connectivity. The adipose-derived stromal cells (ADSC) were seeded on the scaffolds, cultured in vitro for 2 weeks, and implanted in vivo for another 4 and 12 weeks. The double crosslinked dECM-SF hydrogels exhibited an excellent pore structure after lyophilization. The multi-channeled hydrogel scaffold presents higher water absorption ability, surface wettability, and no cytotoxicity. The addition of dECM and a channeled structure could promote chondrogenic differentiation of ADSC and engineered cartilage formation, confirmed by H&E, safranin O staining, type II collagen immunostaining, and qPCR assay. In conclusion, the hydrogel scaffold fabricated by the secondary crosslinking method has good plasticity and can be used as a scaffold for cartilage tissue engineering. The multi-channeled dECM-SF hydrogel scaffolds possess a chondrogenic induction activity that promotes engineered cartilage regeneration of ADSC in vivo.
Collapse
Affiliation(s)
- Jing Zhou
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, China
| | - Nier Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Jinshi Zeng
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, China
| | - Ziyu Liang
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Zuoliang Qi
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, China
| | - Haiyue Jiang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, China
| | - Haifeng Chen
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Xia Liu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, China
- Key Laboratory of Reconstruction for Superfacial Tissues and Organs, Beijing 100144, China
| |
Collapse
|
6
|
Niu X, Li N, Du Z, Li X. Integrated gradient tissue-engineered osteochondral scaffolds: Challenges, current efforts and future perspectives. Bioact Mater 2023; 20:574-597. [PMID: 35846846 PMCID: PMC9254262 DOI: 10.1016/j.bioactmat.2022.06.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/30/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023] Open
Abstract
The osteochondral defect repair has been most extensively studied due to the rising demand for new therapies to diseases such as osteoarthritis. Tissue engineering has been proposed as a promising strategy to meet the demand of simultaneous regeneration of both cartilage and subchondral bone by constructing integrated gradient tissue-engineered osteochondral scaffold (IGTEOS). This review brought forward the main challenges of establishing a satisfactory IGTEOS from the perspectives of the complexity of physiology and microenvironment of osteochondral tissue, and the limitations of obtaining the desired and required scaffold. Then, we comprehensively discussed and summarized the current tissue-engineered efforts to resolve the above challenges, including architecture strategies, fabrication techniques and in vitro/in vivo evaluation methods of the IGTEOS. Especially, we highlighted the advantages and limitations of various fabrication techniques of IGTEOS, and common cases of IGTEOS application. Finally, based on the above challenges and current research progress, we analyzed in details the future perspectives of tissue-engineered osteochondral construct, so as to achieve the perfect reconstruction of the cartilaginous and osseous layers of osteochondral tissue simultaneously. This comprehensive and instructive review could provide deep insights into our current understanding of IGTEOS.
Collapse
Affiliation(s)
- Xiaolian Niu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Ning Li
- Department of Orthopedics, The Fourth Central Hospital of Baoding City, Baoding, 072350, China
| | - Zhipo Du
- Department of Orthopedics, The Fourth Central Hospital of Baoding City, Baoding, 072350, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| |
Collapse
|
7
|
Nie K, Zhou S, Li H, Tian J, Shen W, Huang W. Advanced silk materials for musculoskeletal tissue regeneration. Front Bioeng Biotechnol 2023; 11:1199507. [PMID: 37200844 PMCID: PMC10185897 DOI: 10.3389/fbioe.2023.1199507] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/19/2023] [Indexed: 05/20/2023] Open
Abstract
Musculoskeletal diseases are the leading causes of chronic pain and physical disability, affecting millions of individuals worldwide. Over the past two decades, significant progress has been made in the field of bone and cartilage tissue engineering to combat the limitations of conventional treatments. Among various materials used in musculoskeletal tissue regeneration, silk biomaterials exhibit unique mechanical robustness, versatility, favorable biocompatibility, and tunable biodegradation rate. As silk is an easy-to-process biopolymer, silks have been reformed into various materials formats using advanced bio-fabrication technology for the design of cell niches. Silk proteins also offer active sites for chemical modifications to facilitate musculoskeletal system regeneration. With the emergence of genetic engineering techniques, silk proteins have been further optimized from the molecular level with other functional motifs to introduce new advantageous biological properties. In this review, we highlight the frontiers in engineering natural and recombinant silk biomaterials, as well as recent progress in the applications of these new silks in the field of bone and cartilage regeneration. The future potentials and challenges of silk biomaterials in musculoskeletal tissue engineering are also discussed. This review brings together perspectives from different fields and provides insight into improved musculoskeletal engineering.
Collapse
Affiliation(s)
- Kexin Nie
- Centre for Regeneration and Cell Therapy, The Zhejiang University—University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Sicheng Zhou
- Department of Orthopedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Hu Li
- Centre for Regeneration and Cell Therapy, The Zhejiang University—University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingyi Tian
- Centre for Regeneration and Cell Therapy, The Zhejiang University—University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Weiliang Shen
- Department of Orthopedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenwen Huang
- Centre for Regeneration and Cell Therapy, The Zhejiang University—University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Department of Orthopedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Wenwen Huang,
| |
Collapse
|
8
|
Barui S, Ghosh D, Laurencin CT. Osteochondral regenerative engineering: challenges, state-of-the-art and translational perspectives. Regen Biomater 2022; 10:rbac109. [PMID: 36683736 PMCID: PMC9845524 DOI: 10.1093/rb/rbac109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/22/2022] [Accepted: 12/09/2022] [Indexed: 12/27/2022] Open
Abstract
Despite quantum leaps, the biomimetic regeneration of cartilage and osteochondral regeneration remains a major challenge, owing to the complex and hierarchical nature of compositional, structural and functional properties. In this review, an account of the prevailing challenges in biomimicking the gradients in porous microstructure, cells and extracellular matrix (ECM) orientation is presented. Further, the spatial arrangement of the cues in inducing vascularization in the subchondral bone region while maintaining the avascular nature of the adjacent cartilage layer is highlighted. With rapid advancement in biomaterials science, biofabrication tools and strategies, the state-of-the-art in osteochondral regeneration since the last decade has expansively elaborated. This includes conventional and additive manufacturing of synthetic/natural/ECM-based biomaterials, tissue-specific/mesenchymal/progenitor cells, growth factors and/or signaling biomolecules. Beyond the laboratory-based research and development, the underlying challenges in translational research are also provided in a dedicated section. A new generation of biomaterial-based acellular scaffold systems with uncompromised biocompatibility and osteochondral regenerative capability is necessary to bridge the clinical demand and commercial supply. Encompassing the basic elements of osteochondral research, this review is believed to serve as a standalone guide for early career researchers, in expanding the research horizon to improve the quality of life of osteoarthritic patients affordably.
Collapse
Affiliation(s)
- Srimanta Barui
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Debolina Ghosh
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | |
Collapse
|
9
|
Zhou Z, Cui J, Wu S, Geng Z, Su J. Silk fibroin-based biomaterials for cartilage/osteochondral repair. Am J Cancer Res 2022; 12:5103-5124. [PMID: 35836802 PMCID: PMC9274741 DOI: 10.7150/thno.74548] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/18/2022] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis (OA) is a common joint disease with a high disability rate. In addition, OA not only causes great physiological and psychological harm to patients, but also puts great pressure on the social healthcare system. Pathologically, the disintegration of cartilage and the lesions of subchondral bone are related to OA. Currently, tissue engineering, which is expected to overcome the defects of existing treatment methods, had a lot of research in the field of cartilage/osteochondral repair. Silk fibroin (SF), as a natural macromolecular material with good biocompatibility, unique mechanical properties, excellent processability and degradability, holds great potential in the field of tissue engineering. Nowadays, SF had been prepared into various materials to adapt to the demands of cartilage/osteochondral repair. SF-based biomaterials can also be functionally modified to enhance repair performance further. In this review, the preparation methods, types, structures, mechanical properties, and functional modifications of SF-based biomaterials used for cartilage/osteochondral repair are summarized and discussed. We hope that this review will provide a reference for the design and development of SF-based biomaterials in cartilage/osteochondral repair field.
Collapse
Affiliation(s)
- Ziyang Zhou
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China,Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China,School of Medicine, Shanghai University, Shanghai 200444, China,School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jin Cui
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China,Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China,Department of Orthopedics Trauma, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Shunli Wu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China,Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China,School of Medicine, Shanghai University, Shanghai 200444, China,School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China,Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China,✉ Corresponding authors: Zhen Geng, ; Jiacan Su,
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China,Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China,✉ Corresponding authors: Zhen Geng, ; Jiacan Su,
| |
Collapse
|
10
|
Rahman G, Frazier TP, Gimble JM, Mohiuddin OA. The Emerging Use of ASC/Scaffold Composites for the Regeneration of Osteochondral Defects. Front Bioeng Biotechnol 2022; 10:893992. [PMID: 35845419 PMCID: PMC9280640 DOI: 10.3389/fbioe.2022.893992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Articular cartilage is composed of chondrocytes surrounded by a porous permeable extracellular matrix. It has a limited spontaneous healing capability post-injury which, if left untreated, can result in severe osteochondral disease. Currently, osteochondral (OC) defects are treated by bone marrow stimulation, artificial joint replacement, or transplantation of bone, cartilage, and periosteum, while autologous osteochondral transplantation is also an option; it carries the risk of donor site damage and is limited only to the treatment of small defects. Allografts may be used for larger defects; however, they have the potential to elicit an immune response. A possible alternative solution to treat osteochondral diseases involves the use of stromal/stem cells. Human adipose-derived stromal/stem cells (ASCs) can differentiate into cartilage and bone cells. The ASC can be combined with both natural and synthetic scaffolds to support cell delivery, growth, proliferation, migration, and differentiation. Combinations of both types of scaffolds along with ASCs and/or growth factors have shown promising results for the treatment of OC defects based on in vitro and in vivo experiments. Indeed, these findings have translated to several active clinical trials testing the use of ASC-scaffold composites on human subjects. The current review critically examines the literature describing ASC-scaffold composites as a potential alternative to conventional therapies for OC tissue regeneration.
Collapse
Affiliation(s)
- Gohar Rahman
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | | | | | - Omair A. Mohiuddin
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
11
|
Fan Z, Liu H, Shi S, Ding Z, Zhang Z, Lu Q, Kaplan DL. Anisotropic silk nanofiber layers as regulators of angiogenesis for optimized bone regeneration. Mater Today Bio 2022; 15:100283. [PMID: 35634170 PMCID: PMC9130114 DOI: 10.1016/j.mtbio.2022.100283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 11/16/2022] Open
Abstract
Osteogenesis-angiogenesis coupling processes play a crucial role in bone regeneration. Here, electric field induced aligned nanofiber layers with tunable thickness were coated on the surface of pore walls inside the deferoxamine (DFO)-laden silk fibroin (SF) and hydroxyapatite (HA) composite scaffolds to regulate the release of DFO to control vascularization dynamically. Longer electric field treatments resulted in gradually thickening layers to reduce the release rate of DFO where the released amount of DFO decreased gradually from 84% to 63% after 28 days. Besides the osteogenic capacity of HA, the changeable release of DFO brought different angiogenic behaviors in bone regeneration process, which provided a desirable niche with osteogenic and angiogenic cues. Anisotropic cues were introduced to facilitate cell migration inside the scaffolds. Changeable cytokine secretion from endothelial cells cultured in the different scaffolds revealed the regulation of cell responses related to vascularization in vitro. Peak expression of angiogenic factors appeared at days 7, 21 and 35 for endothelial cells cultured in the scaffolds with different silk nanofier layers, suggesting the dynamical regulation of angiogenesis. Although all of the scaffolds had the same silk and HA composition, in vitro cell studies indicated different osteogenic capacities for the scaffolds, suggesting that the regulation of DFO release also influenced osteogenesis outcomes in vitro. In vivo, the best bone regeneration occurred in defects treated with the composite scaffolds that exhibited the best osteogenic capacity in vitro. Using a rat bone defect model, healing was achieved within 12 weeks, superior to those treated with previous SF-HA composite matrices. Controlling angiogenic properties of bone biomaterials dynamically is an effective strategy to improve bone regeneration capacity. Anisotropic silk nanofiber layers with tunable thickness control the sustained release of DFO dynamically. Dynamical regulation of angiogenesis was achieved in bone regeneration process through tuning the release behaviors of DFO. Significantly improved bone regeneration through the synergistic effect of optimal vascularization and osteogenesis.
Collapse
Affiliation(s)
- Zhihai Fan
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215000, PR China
| | - Hongxiang Liu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215000, PR China
| | - Shilei Shi
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215000, PR China
| | - Zhaozhao Ding
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, PR China
- Corresponding author.
| | - Zhen Zhang
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, PR China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, PR China
- Corresponding author.
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, United States
| |
Collapse
|
12
|
Liu Y, Zhang Z, Wang B, Dong Y, Zhao C, Zhao Y, Zhang L, Liu X, Guo J, Chen Y, Zhou J, Yang T, Wang Y, Liu H, Wang S. Inflammation-Stimulated MSC-Derived Small Extracellular Vesicle miR-27b-3p Regulates Macrophages by Targeting CSF-1 to Promote Temporomandibular Joint Condylar Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107354. [PMID: 35277920 DOI: 10.1002/smll.202107354] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/05/2022] [Indexed: 05/10/2023]
Abstract
Small extracellular vesicles (sEVs) secreted by mesenchymal stem cells (MSCs) have been extensively studied in recent years. sEV contents change with the secreting cell state. When MSCs are exposed to an inflammatory environment, they release more functional growth factors, exosomes, and chemokines. Herein, MSCs are stimulated to alter sEV cargos and functions to regulate the inflammatory microenvironment and promote tissue regeneration. Sequencing of sEV miRNAs shows that certain RNAs conducive to cell function are upregulated. In this study, in vitro cell function experiments show that both inflammation-stimulated adipose-derived MSC (ADSC)-derived sEV (IAE) and normal ADSC-derived sEV (AE) promote cell proliferation; IAE also significantly improves cell migration. Regarding macrophage polarization regulation, IAE significantly promotes M2 macrophage differentiation. RNA-sequencing analysis indicates that high miR-27b-3p expression levels in IAE may regulate macrophages by targeting macrophage colony-stimulating factor-1 (CSF-1). In vivo, a rabbit temporomandibular joint (TMJ) condylar osteochondral defect model shows that both AE and IAE promote TMJ regeneration, with IAE having the most significant therapeutic effect. Therefore, the authors confirm that exposing MSCs to an inflammatory environment can feasibly enhance sEV functions and that modified sEVs achieve better therapeutic effects.
Collapse
Affiliation(s)
- Yufei Liu
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhiling Zhang
- Department of Occlusion and Temporomandibular Joint Diseases, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
| | - Biao Wang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yunsheng Dong
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Congrui Zhao
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yanhong Zhao
- Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, China
| | - Lin Zhang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiangsheng Liu
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jingyue Guo
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yuehua Chen
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jie Zhou
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Tingting Yang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yanying Wang
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
- Department of Implantology, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, China
| | - Hao Liu
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
- Department of Oral and Maxillofacial Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, China
| | - Shufang Wang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
13
|
Pitta Kruize C, Panahkhahi S, Putra NE, Diaz-Payno P, van Osch G, Zadpoor AA, Mirzaali MJ. Biomimetic Approaches for the Design and Fabrication of Bone-to-Soft Tissue Interfaces. ACS Biomater Sci Eng 2021. [PMID: 34784181 DOI: 10.1021/acsbiomaterials.1c00620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bone-to-soft tissue interfaces are responsible for transferring loads between tissues with significantly dissimilar material properties. The examples of connective soft tissues are ligaments, tendons, and cartilages. Such natural tissue interfaces have unique microstructural properties and characteristics which avoid the abrupt transitions between two tissues and prevent formation of stress concentration at their connections. Here, we review some of the important characteristics of these natural interfaces. The native bone-to-soft tissue interfaces consist of several hierarchical levels which are formed in a highly specialized anisotropic fashion and are composed of different types of heterogeneously distributed cells. The characteristics of a natural interface can rely on two main design principles, namely by changing the local microarchitectural features (e.g., complex cell arrangements, and introducing interlocking mechanisms at the interfaces through various geometrical designs) and changing the local chemical compositions (e.g., a smooth and gradual transition in the level of mineralization). Implementing such design principles appears to be a promising approach that can be used in the design, reconstruction, and regeneration of engineered biomimetic tissue interfaces. Furthermore, prominent fabrication techniques such as additive manufacturing (AM) including 3D printing and electrospinning can be used to ease these implementation processes. Biomimetic interfaces have several biological applications, for example, to create synthetic scaffolds for osteochondral tissue repair.
Collapse
Affiliation(s)
- Carlos Pitta Kruize
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Sara Panahkhahi
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Niko Eka Putra
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Pedro Diaz-Payno
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Gerjo van Osch
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Mohammad J Mirzaali
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| |
Collapse
|
14
|
Zhang N, Wang Y, Zhang J, Guo J, He J. Controlled domain gels with a biomimetic gradient environment for osteochondral tissue regeneration. Acta Biomater 2021; 135:304-317. [PMID: 34454084 DOI: 10.1016/j.actbio.2021.08.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/06/2021] [Accepted: 08/19/2021] [Indexed: 12/17/2022]
Abstract
In order to repair an osteochondral defect, it is critical to advance a bi-lineage constructive scaffold with gradient transition. In this study, we developed a simple and straightforward approach for fabricating a multi-domain gel scaffold through the assembly/disassembly of low-molecular-weight gels (LMWGs) inside a stable PEGDA network by photopolymerization. The versatility of this technology enabled to vary biological, topological, and mechanical properties through material selection and to generate a chondrogenic-osteogenic gradient transition. The multi-domain gel exhibited an increasing stiffness gradient along the longitudinal direction from the cartilage layer at approximately 20 kPa to the bone layer at approximately 300 kPa as well as spatial variation at the gradient interface. Moreover, the transitional layer with a condensed structure and intermediate stiffness prevented delamination of the contrasting layers and maintained microenvironmental differences in the upper and lower layers. The in vitro results indicated that each domain had an individual capacity to spatially control the differentiation of MSCs toward osteoblastic lineage and chondrocytic lineage. This was mainly because the mechanical and topographical cues from the respective domains played an important role in modulating the Rho-ROCK signaling pathway, whereas the blockage of ROCK signals significantly impaired domain-modulated osteogenesis and enhanced chondrogenesis. Additionally, the quantity and quality of osteochondral repair were evaluated at 4 and 8 weeks through histological analysis and micro-computed tomography (micro-CT). The results indicated that the multi-domain gels distinctly improved the regeneration of subchondral bone and cartilage tissues. Overall, the outcomes of this study can motivate future bioinspired gradient and heterogeneity strategies for osteochondral tissue regeneration. STATEMENT OF SIGNIFICANCE: The regeneration of osteochondral defects remains a major challenge due to the complexity of osteochondral structure and the limited self-repair capacity of cartilage. The gradient design to mimic the transition between the calcified cartilage and the subchondral bone plate as well as the zones of cartilage is an effective strategy. In this study, controlled multi-domain gels were fabricated through the assembly/disassembly of low-molecular-weight gels inside a stable PEGDA network by photopolymerization. The prepared multi-domain gels showed a chondrogenic-osteogenic gradient transition, which decreased the possibility of delamination and stimulated osteochondral tissue regeneration in vivo. Overall, our study promotes new strategies of bioinspired gradients and heterogeneities for more challenging applications.
Collapse
|
15
|
Liu M, Ke X, Yao Y, Wu F, Ye S, Zhang L, Yang G, Shen M, Li Y, Yang X, Zhong C, Gao C, Gou Z. Artificial osteochondral interface of bioactive fibrous membranes mediating calcified cartilage reconstruction. J Mater Chem B 2021; 9:7782-7792. [PMID: 34586140 DOI: 10.1039/d1tb01238j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Calcified cartilage is a mineralized osteochondral interface region between the hyaline cartilage and subchondral bone. There are few reported artificial biomaterials that could offer bioactivities for substantial reconstruction of calcified cartilage. Herein we developed new poly(L-lactide-co-caprolactone) (PLCL)-based trilayered fibrous membranes as a functional interface for calcified cartilage reconstruction and superficial cartilage restoration. The trilayered membranes were prepared by the electrospinning technique, and the fibrous morphology was maintained when the chondroitin sulfate (CS) or bioactive glass (BG) particles were introduced in the upper or bottom layer, respectively. Although 30% BG in the bottom layer led to a significant decrease in tensile resistance, the inorganic ion release was remarkably higher than that in the counterpart with 10% BG. The in vivo studies showed that the fibrous membranes as osteochondral interfaces exhibited different biological performances on superficial cartilage restoration and calcified cartilage reconstruction. All of the implanted host hyaline cartilage enabled a self-healing process and an increase in the BG content in the membranes was desirable for promoting the repair of the calcified cartilage with time. The histological staining confirmed the osteochondral interface in the 30% BG bottom membrane maintained appreciable calcified cartilage repair after 12 weeks. These findings demonstrated that such an integrated artificial osteochondral interface containing appropriate bioactive ions are potentially applicable for osteochondral interface tissue engineering.
Collapse
Affiliation(s)
- Mengtao Liu
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China.
| | - Xiurong Ke
- Department of Orthopaedic Surgery of The third Hospital Affiliated to Wenzhou Medical University, Rui'an 325200, China
| | - Yuejun Yao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Fanghui Wu
- Department of Orthopaedic Surgery of The third Hospital Affiliated to Wenzhou Medical University, Rui'an 325200, China
| | - Shuo Ye
- Department of Orthopaedic Surgery of The third Hospital Affiliated to Wenzhou Medical University, Rui'an 325200, China
| | - Lei Zhang
- Department of Orthopaedic Surgery of The third Hospital Affiliated to Wenzhou Medical University, Rui'an 325200, China
| | - Guojing Yang
- Department of Orthopaedic Surgery of The third Hospital Affiliated to Wenzhou Medical University, Rui'an 325200, China
| | - Miaoda Shen
- Department of Orthopedics, the First Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou 310003, China.
| | - Yifan Li
- Department of Orthopedics, the First Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou 310003, China.
| | - Xianyan Yang
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China.
| | - Cheng Zhong
- Department of Orthopedics, the First Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou 310003, China.
| | - Changyou Gao
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China. .,MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhongru Gou
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
16
|
Zhang L, Zhang W, Hu Y, Fei Y, Liu H, Huang Z, Wang C, Ruan D, Heng BC, Chen W, Shen W. Systematic Review of Silk Scaffolds in Musculoskeletal Tissue Engineering Applications in the Recent Decade. ACS Biomater Sci Eng 2021; 7:817-840. [PMID: 33595274 DOI: 10.1021/acsbiomaterials.0c01716] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During the past decade, various novel tissue engineering (TE) strategies have been developed to maintain, repair, and restore the biomechanical functions of the musculoskeletal system. Silk fibroins are natural polymers with numerous advantageous properties such as good biocompatibility, high mechanical strength, and low degradation rate and are increasingly being recognized as a scaffolding material of choice in musculoskeletal TE applications. This current systematic review examines and summarizes the latest research on silk scaffolds in musculoskeletal TE applications within the past decade. Scientific databases searched include PubMed, Web of Science, Medline, Cochrane library, and Embase. The following keywords and search terms were used: musculoskeletal, tendon, ligament, intervertebral disc, muscle, cartilage, bone, silk, and tissue engineering. Our Review was limited to articles on musculoskeletal TE, which were published in English from 2010 to September 2019. The eligibility of the articles was assessed by two reviewers according to prespecified inclusion and exclusion criteria, after which an independent reviewer performed data extraction and a second independent reviewer validated the data obtained. A total of 1120 articles were reviewed from the databases. According to inclusion and exclusion criteria, 480 articles were considered as relevant for the purpose of this systematic review. Tissue engineering is an effective modality for repairing or replacing injured or damaged tissues and organs with artificial materials. This Review is intended to reveal the research status of silk-based scaffolds in the musculoskeletal system within the recent decade. In addition, a comprehensive translational research route for silk biomaterial from bench to bedside is described in this Review.
Collapse
Affiliation(s)
- Li Zhang
- Department of Orthopedic Surgery of The Second Affiliated Hospital and Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Department of Orthopaedics, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wei Zhang
- School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu 210096, China
| | - Yejun Hu
- Department of Orthopedic Surgery of The Second Affiliated Hospital and Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, Zhejiang 310000, China
| | - Yang Fei
- Department of Orthopedic Surgery of The Second Affiliated Hospital and Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, Zhejiang 310000, China
| | - Haoyang Liu
- School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu 210096, China
| | - Zizhan Huang
- Department of Orthopedic Surgery of The Second Affiliated Hospital and Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, Zhejiang 310000, China
| | - Canlong Wang
- Department of Orthopedic Surgery of The Second Affiliated Hospital and Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, Zhejiang 310000, China
| | - Dengfeng Ruan
- Department of Orthopedic Surgery of The Second Affiliated Hospital and Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, Zhejiang 310000, China
| | | | - Weishan Chen
- Department of Orthopedic Surgery of The Second Affiliated Hospital and Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, Zhejiang 310000, China
| | - Weiliang Shen
- Department of Orthopedic Surgery of The Second Affiliated Hospital and Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Sports System Disease Research and Accurate Diagnosis and Treatment of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, Zhejiang 310000, China.,China Orthopaedic Regenerative Medicine (CORMed), Chinese Medical Association, Hangzhou, Zhejiang, China
| |
Collapse
|
17
|
Deng X, Huang B, Hu R, Chen L, Tang Y, Lu C, Chen Z, Zhang W, Zhang X. 3D printing of robust and biocompatible poly(ethylene glycol)diacrylate/nano-hydroxyapatite composites via continuous liquid interface production. J Mater Chem B 2021; 9:1315-1324. [PMID: 33443259 DOI: 10.1039/d0tb02182b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three-dimensional (3D) printing technology with satisfactory speed and accuracy has been a powerful force in biomaterial processing. Early studies on 3D printing of biomaterials mainly focused on their biocompatibility and cellular viability while rarely attempted to produce robust specimens. Nonetheless, the biomedical applications of polymers can be severely limited by their inherently weak mechanical properties particularly in bone tissue engineering. In this study, continuous liquid interface production (CLIP) is applied to construct 3D objects of nano-hydroxyapatite (n-HA) filled polymeric biomaterials with complex architectures. Notably, the bioactive and osteoconductive n-HA endows the 3D prints of poly(ethyleneglycol)diacrylate (PEGDA) composites with a high compression strength of 6.5 ± 1.4 MPa, about 342% improvement over neat PEGDA. This work demonstrates the first successful attempt on CLIP 3D printing of n-HA nanocomposites, providing a feasible, cost-effective and patient-specific solution to various fields in the biomedical industry.
Collapse
Affiliation(s)
- Xueyong Deng
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute at Sichuan University, Chengdu 610065, China.
| | - Bingxue Huang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute at Sichuan University, Chengdu 610065, China.
| | - Rui Hu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute at Sichuan University, Chengdu 610065, China.
| | - Liling Chen
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing 401174, China.
| | - Yingying Tang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing 401174, China.
| | - Canhui Lu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute at Sichuan University, Chengdu 610065, China. and Advanced Polymer Materials Research Center of Sichuan University, Shishi 362700, China
| | - Zhenming Chen
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization at Hezhou University, Hezhou 542800, China
| | - Wei Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute at Sichuan University, Chengdu 610065, China. and Advanced Polymer Materials Research Center of Sichuan University, Shishi 362700, China
| | - Ximu Zhang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing 401174, China.
| |
Collapse
|
18
|
Neubauer VJ, Döbl A, Scheibel T. Silk-Based Materials for Hard Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2021; 14:674. [PMID: 33535662 PMCID: PMC7867174 DOI: 10.3390/ma14030674] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023]
Abstract
Hard tissues, e.g., bone, are mechanically stiff and, most typically, mineralized. To design scaffolds for hard tissue regeneration, mechanical, physico-chemical and biological cues must align with those found in the natural tissue. Combining these aspects poses challenges for material and construct design. Silk-based materials are promising for bone tissue regeneration as they fulfill several of such necessary requirements, and they are non-toxic and biodegradable. They can be processed into a variety of morphologies such as hydrogels, particles and fibers and can be mineralized. Therefore, silk-based materials are versatile candidates for biomedical applications in the field of hard tissue engineering. This review summarizes silk-based approaches for mineralized tissue replacements, and how to find the balance between sufficient material stiffness upon mineralization and cell survival upon attachment as well as nutrient supply.
Collapse
Affiliation(s)
- Vanessa J. Neubauer
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Prof.-Rüdiger-Bormann-Straße 1, 95447 Bayreuth, Germany; (V.J.N.); (A.D.)
| | - Annika Döbl
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Prof.-Rüdiger-Bormann-Straße 1, 95447 Bayreuth, Germany; (V.J.N.); (A.D.)
| | - Thomas Scheibel
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Prof.-Rüdiger-Bormann-Straße 1, 95447 Bayreuth, Germany; (V.J.N.); (A.D.)
- Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Bayerisches Polymerinstitut (BPI), Universitätsstraße 30, 95440 Bayreuth, Germany
- Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Bayreuther Materialzentrum (BayMAT), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| |
Collapse
|
19
|
Frank RM, Bradsell H, Dragoo J. Adipose Derived Cellular Therapies–Arthroscopic Approaches. OPER TECHN SPORT MED 2020. [DOI: 10.1016/j.otsm.2020.150779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
The 3D-Printed Bilayer's Bioactive-Biomaterials Scaffold for Full-Thickness Articular Cartilage Defects Treatment. MATERIALS 2020; 13:ma13153417. [PMID: 32756370 PMCID: PMC7436011 DOI: 10.3390/ma13153417] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 11/22/2022]
Abstract
The full-thickness articular cartilage defect (FTAC) is an abnormally severe grade of articular cartilage (AC) injury. An osteochondral autograft transfer (OAT) is the recommended treatment, but the increasing morbidity rate from osteochondral plug harvesting is a limitation. Thus, the 3D-printed bilayer’s bioactive-biomaterials scaffold is of major interest. Polylactic acid (PLA) and polycaprolactone (PCL) were blended with hydroxyapatite (HA) for the 3D-printed bone layer of the bilayer’s bioactive-biomaterials scaffold (B-BBBS). Meanwhile, the blended PLA/PCL filament was 3D printed and combined with a chitosan (CS)/silk firoin (SF) using a lyophilization technique to fabricate the AC layer of the bilayer’s bioactive-biomaterials scaffold (AC-BBBS). Material characterization and mechanical and biological tests were performed. The fabrication process consists of combining the 3D-printed structure (AC-BBBS and B-BBBS) and a lyophilized porous AC-BBBS. The morphology and printing abilities were investigated, and biological tests were performed. Finite element analysis (FEA) was performed to predict the maximum load that the bilayer’s bioactive-biomaterials scaffold (BBBS) could carry. The presence of HA and CS/SF in the PLA/PCL structure increased cell proliferation. The FEA predicted the load carrying capacity to be up to 663.2 N. All tests indicated that it is possible for BBBS to be used in tissue engineering for AC and bone regeneration in FTAC treatment.
Collapse
|
21
|
Chen P, Li L, Dong L, Wang S, Huang Z, Qian Y, Wang C, Liu W, Yang L. Gradient Biomineralized Silk Fibroin Nanofibrous Scaffold with Osteochondral Inductivity for Integration of Tendon to Bone. ACS Biomater Sci Eng 2020; 7:841-851. [PMID: 33715375 DOI: 10.1021/acsbiomaterials.9b01683] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Enthesis injury repair remains a huge challenge because of the unique biomolecular composition, microstructure, and mechanics in the interfacial region. Surgical reconstruction often creates new bone-scaffold interfaces with mismatched properties, resulting in poor osseointegration. To mimic the natural interface tissue structures and properties, we fabricated a nanofibrous scaffold with gradient mineral coating based on 10 × simulated body fluid (SBF) and silk fibroin (SF). We then characterized the physicochemical properties of the scaffold and evaluated its biological functions both in vitro and in vivo. The results showed that different areas of SF nanofibrous scaffold had varying levels of mineralization with disparate mechanical properties and had different effects on bone marrow mesenchymal stem cell growth and differentiation. Furthermore, the gradient scaffolds exhibited an enhancement of integration in the tendon-to-bone interface with a higher ultimate load and more fibrocartilage-like tissue formation. These findings demonstrate that the silk-based nanofibrous scaffold with gradient mineral coating can regulate the formation of interfacial tissue and has the potential to be applied in interface tissue engineering.
Collapse
Affiliation(s)
- Peixing Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
| | - Linhao Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P. R. China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, P. R. China
| | - Lili Dong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
| | - Sixiang Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
| | - Zhi Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
| | - Yuna Qian
- Wenzhou Institute of Biomaterials & Engineering, University of Chinese Academy of Sciences, Wenzhou 325001, P. R. China
| | - Chunli Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
| | - Wanqian Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, P. R. China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, P. R. China
| |
Collapse
|
22
|
Zhao Y, Teng B, Sun X, Dong Y, Wang S, Hu Y, Wang Z, Ma X, Yang Q. Synergistic Effects of Kartogenin and Transforming Growth Factor-β3 on Chondrogenesis of Human Umbilical Cord Mesenchymal Stem Cells In Vitro. Orthop Surg 2020; 12:938-945. [PMID: 32462800 PMCID: PMC7307229 DOI: 10.1111/os.12691] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/29/2020] [Accepted: 04/03/2020] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE To explore the effect of kartogenin (KGN) on proliferation and chondrogenic differentiation of human umbilical cord mesenchymal stem cells (hUCMSC) in vitro, and the synergistic effects of KGN and transforming growth factor (TGF)-β3 on hUCMSC. METHODS Human umbilical cord mesenchymal stem cells were isolated and cultured. Then the differentiation properties were identified by flow cytometry analysis. HUCMSC were divided into four groups: control group, KGN group, TGF-β3 group, and TK group (with TGF-β3 and KGN added into the medium simultaneously). Cells in all groups were induced for 21 days using the suspension ball culture method. Hematoxylin and eosin, immunofluorescence, and Alcian blue staining were used to analyze chondrogenic differentiation. Real-time reverse transcriptase polymerase chain reaction was performed to investigate genes associated with chondrogenic differentiation. RESULT Hematoxylin and eosin staining showed that cells in the TGF-β3 group and the TK group had formed cartilage-like tissue after 21 days of culture. The results of immunofluorescence and Alcian blue staining showed that compared with the control group, cells in the KGN and TGF-β3 groups demonstrated increased secretion of aggrecan after 21 days of culture. In addition, cells in the group combining KGN with TGF-β3 (5.587 ± 0.27, P < 0.01) had more collagen II secretion than cells in the TGF-β3 alone group (2.86 ± 0.141, P < 0.01) or the KGN group (1.203 ± 0.215, P < 0.01). The expression of aggrecan (2.468 ± 0.097, P < 0.05) and SRY-Box 9 (4.08 ± 0.13, P < 0.05) in cells in the group combining KGN with TGF-β3 was significantly higher than those in the TGF-β3 group (2.216 ± 0.09, 3.02 ± 0.132, P < 0.05).' CONCLUSION The combination of KGN and TGF-β3 had synergistic effects and induced hUCMSC chondrogenesis. This could represent a new approach for clinical application and studies on cartilage repair and regeneration.
Collapse
Affiliation(s)
- Yanhong Zhao
- Stomatological Hospital of Tianjin Medical UniversityTianjinChina
| | - Binhong Teng
- Stomatological Hospital of Tianjin Medical UniversityTianjinChina
- Department of Oral and Maxillofacial SurgerySchool and Hospital of Stomatology, Peking UniversityBeijingChina
| | - Xun Sun
- Department of Spine SurgeryTianjin Hospital, Tianjin UniversityTianjinChina
| | - Yunsheng Dong
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai UniversityTianjinChina
| | - Shufang Wang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai UniversityTianjinChina
| | - Yongcheng Hu
- Department of Spine SurgeryTianjin Hospital, Tianjin UniversityTianjinChina
| | - Zheng Wang
- Department of OrthopedicsNo. 1 Medical Center of Chinese PLA General HospitalBeijingChina
| | - Xinlong Ma
- Department of Spine SurgeryTianjin Hospital, Tianjin UniversityTianjinChina
| | - Qiang Yang
- Department of Spine SurgeryTianjin Hospital, Tianjin UniversityTianjinChina
| |
Collapse
|
23
|
Injectable hydrogel delivering bone morphogenetic protein-2, vascular endothelial growth factor, and adipose-derived stem cells for vascularized bone tissue engineering. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Kunze KN, Burnett RA, Wright-Chisem J, Frank RM, Chahla J. Adipose-Derived Mesenchymal Stem Cell Treatments and Available Formulations. Curr Rev Musculoskelet Med 2020; 13:264-280. [PMID: 32328959 DOI: 10.1007/s12178-020-09624-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW The use of human adipose-derived mesenchymal stem cells (ADSCs) has gained attention due to its potential to expedite healing and the ease of harvesting; however, clinical evidence is limited, and questions concerning optimal method of delivery and long-term outcomes remain unanswered. RECENT FINDINGS Administration of ADSCs in animal models has been reported to aid in improved healing benefits with enhanced repair biomechanics, superior gross histological appearance of injury sites, and higher concentrations of growth factors associated with healing compared to controls. Recently, an increasing body of research has sought to examine the effects of ADSCs in humans. Several available processing techniques and formulations for ADSCs exist with evidence to suggest benefits with the use of ADSCs, but the superiority of any one method is not clear. Evidence from the most recent clinical studies available demonstrates promising outcomes following treatment of select musculoskeletal pathologies with ADSCs despite reporting variability among ADSCs harvesting and processing; these include (1) healing benefits and pain improvement for rotator cuff and Achilles tendinopathies, (2) improvements in pain and function in those with knee and hip osteoarthritis, and (3) improved cartilage regeneration for osteochondral focal defects of the knee and talus. The limitation to most of this literature is the use of other therapeutic biologics in combination with ADSCs. Additionally, many studies lack control groups, making establishment of causation inappropriate. It is imperative to perform higher-quality studies using consistent, predictable control populations and to standardize formulations of ADSCs in these trials.
Collapse
Affiliation(s)
- Kyle N Kunze
- Department of Orthopaedic Surgery, Division of Sports Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Robert A Burnett
- Department of Orthopaedic Surgery, Division of Sports Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Joshua Wright-Chisem
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, NY, USA
| | - Rachel M Frank
- Department of Orthopaedic Surgery, Division of Sports Medicine, University of Colorado School of Medicine, Boulder, CO, USA
| | - Jorge Chahla
- Department of Orthopaedic Surgery, Division of Sports Medicine, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
25
|
Zhao Y, Ding X, Dong Y, Sun X, Wang L, Ma X, Zhu M, Xu B, Yang Q. Role of the Calcified Cartilage Layer of an Integrated Trilayered Silk Fibroin Scaffold Used to Regenerate Osteochondral Defects in Rabbit Knees. ACS Biomater Sci Eng 2020; 6:1208-1216. [PMID: 33464868 DOI: 10.1021/acsbiomaterials.9b01661] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The repair of osteochondral defects remains challenging, given the complexity of native osteochondral tissue and the limited self-repair capacity of cartilage. Osteochondral tissue engineering is a promising strategy. Here, we fabricated a biomimetic osteochondral scaffold using silk fibroin and hydroxyapatite, including a calcified cartilage layer (CCL). We studied the role played by the CCL in terms of cell viability in vivo. We established osteochondral defects in rabbit knees to investigate the effects of CCL-containing scaffolds with or without adipose tissue-derived stem cells (ADSCs). We evaluated osteochondral tissue regeneration by calculating gross observational scores, via histological and immunohistochemical assessments, by performing quantitative biochemical and biomechanical analyses of new osteochondral tissue, and via microcomputed tomography of new bone at 4, 8, and 12 weeks after surgery. In terms of surface roughness and integrity, the CCL + ADSCs group was better than the CCL and the non-CCL + ADSCs groups at all time points tested; the glycosaminoglycan and collagen type II levels of the CCL + ADSCs group were highest, reflecting the important role played by the CCL in cartilage tissue repair. Subchondral bone smoothness was better in the CCL + ADSCs group than in the non-CCL + ADSCs and CCL groups. The CCL promoted smooth subchondral bone regeneration but did not obviously affect bone strength or quality. In conclusion, a biomimetic osteochondral scaffold with a CCL, combined with autologous ADSCs, satisfactorily regenerated a rabbit osteochondral defect. The CCL enhances cartilage and subchondral bone regeneration.
Collapse
Affiliation(s)
- Yanhong Zhao
- Stomatological Hospital of Tianjin Medical University, 12 Qixiangtai Road, Heping District, Tianjin 300070, People's Republic of China
| | - Xiaoming Ding
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, 406 Jiefang Nan Road, Hexi District, Tianjin 300211, People's Republic of China.,Department of Orthopedics, Rizhao Traditional Chinese Medicine Hospital, 35 Haiwang Road, Donggang District, Rizhao, Shandong 276800, People's Republic of China
| | - Yunsheng Dong
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, 94 Weijin Road, Nankai District, Tianjin 300071, People's Republic of China
| | - Xun Sun
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, 406 Jiefang Nan Road, Hexi District, Tianjin 300211, People's Republic of China
| | - Lianyong Wang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, 94 Weijin Road, Nankai District, Tianjin 300071, People's Republic of China
| | - Xinlong Ma
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, 406 Jiefang Nan Road, Hexi District, Tianjin 300211, People's Republic of China
| | - Meifeng Zhu
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, 94 Weijin Road, Nankai District, Tianjin 300071, People's Republic of China
| | - Baoshan Xu
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, 406 Jiefang Nan Road, Hexi District, Tianjin 300211, People's Republic of China
| | - Qiang Yang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, 406 Jiefang Nan Road, Hexi District, Tianjin 300211, People's Republic of China
| |
Collapse
|
26
|
Hu X, Xu J, Li W, Li L, Parungao R, Wang Y, Zheng S, Nie Y, Liu T, Song K. Therapeutic "Tool" in Reconstruction and Regeneration of Tissue Engineering for Osteochondral Repair. Appl Biochem Biotechnol 2019; 191:785-809. [PMID: 31863349 DOI: 10.1007/s12010-019-03214-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
Repairing osteochondral defects to restore joint function is a major challenge in regenerative medicine. However, with recent advances in tissue engineering, the development of potential treatments is promising. In recent years, in addition to single-layer scaffolds, double-layer or multilayer scaffolds have been prepared to mimic the structure of articular cartilage and subchondral bone for osteochondral repair. Although there are a range of different cells such as umbilical cord stem cells, bone marrow mesenchyml stem cell, and others that can be used, the availability, ease of preparation, and the osteogenic and chondrogenic capacity of these cells are important factors that will influence its selection for tissue engineering. Furthermore, appropriate cell proliferation and differentiation of these cells is also key for the optimal repair of osteochondral defects. The development of bioreactors has enhanced methods to stimulate the proliferation and differentiation of cells. In this review, we summarize the recent advances in tissue engineering, including the development of layered scaffolds, cells, and bioreactors that have changed the approach towards the development of novel treatments for osteochondral repair.
Collapse
Affiliation(s)
- Xueyan Hu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jie Xu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Wenfang Li
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China.,Key Laboratory of Biological Medicines, Universities of Shandong Province Weifang Key Laboratory of Antibody Medicines, School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, China
| | - Liying Li
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Roxanne Parungao
- Burns Research Group, ANZAC Research Institute, University of Sydney, Concord, NSW, 2139, Australia
| | - Yiwei Wang
- Burns Research Group, ANZAC Research Institute, University of Sydney, Concord, NSW, 2139, Australia
| | - Shuangshuang Zheng
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou, 450000, China
| | - Yi Nie
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou, 450000, China. .,Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Tianqing Liu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China.
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
27
|
Rosadi I, Karina K, Rosliana I, Sobariah S, Afini I, Widyastuti T, Barlian A. In vitro study of cartilage tissue engineering using human adipose-derived stem cells induced by platelet-rich plasma and cultured on silk fibroin scaffold. Stem Cell Res Ther 2019; 10:369. [PMID: 31801639 PMCID: PMC6894137 DOI: 10.1186/s13287-019-1443-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/13/2019] [Accepted: 10/03/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cartilage tissue engineering is a promising technique for repairing cartilage defect. Due to the limitation of cell number and proliferation, mesenchymal stem cells (MSCs) have been developed as a substitute to chondrocytes as a cartilage cell-source. This study aimed to develop cartilage tissue from human adipose-derived stem cells (ADSCs) cultured on a Bombyx mori silk fibroin scaffold and supplemented with 10% platelet-rich plasma (PRP). METHODS Human ADSCs and PRP were characterized. A silk fibroin scaffold with 500 μm pore size was fabricated through salt leaching. ADSCs were then cultured on the scaffold (ADSC-SS) and supplemented with 10% PRP for 21 days to examine cell proliferation, chondrogenesis, osteogenesis, and surface marker expression. The messenger ribonucleic acid (mRNA) expression of type 2 collagen, aggrecan, and type 1 collagen was analysed. The presence of type 2 collagen confirming chondrogenesis was validated using immunocytochemistry. The negative and positive controls were ADSC-SS supplemented with 10% foetal bovine serum (FBS) and ADSC-SS supplemented with commercial chondrogenesis medium, respectively. RESULTS Cells isolated from adipose tissue were characterized as ADSCs. Proliferation of the ADSC-SS PRP was significantly increased (p < 0.05) compared to that of controls. Chondrogenesis was observed in ADSC-SS PRP and was confirmed through the increase in glycosaminoglycans (GAG) and transforming growth factor-β1 (TGF-β1) secretion, the absence of mineral deposition, and increased surface marker proteins on chondrogenic progenitors. The mRNA expression of type 2 collagen in ADSC-SS PRP was significantly increased (p < 0.05) compared to that in the negative control on days 7 and 21; however, aggrecan was significantly increased on day 14 compared to the controls. ADSC-SS PRP showed stable mRNA expression of type 1 collagen up to 14 days and it was significantly decreased on day 21. Confocal analysis showed the presence of type 2 collagen in the ADSC-SS PRP and positive control groups, with high distribution outside the cells forming the extracellular matrix (ECM) on day 21. CONCLUSION Our study showed that ADSC-SS with supplemented 10% PRP medium can effectively support chondrogenesis of ADSCs in vitro and promising for further development as an alternative for cartilage tissue engineering in vivo.
Collapse
Affiliation(s)
- Imam Rosadi
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, West Java, Indonesia.
- HayandraLab, Yayasan Hayandra Peduli, Jakarta, DKI Jakarta, Indonesia.
| | - Karina Karina
- HayandraLab, Yayasan Hayandra Peduli, Jakarta, DKI Jakarta, Indonesia
- Klinik Hayandra, Yayasan Hayandra Peduli, Jakarta, DKI Jakarta, Indonesia
- Biomedic, Universitas Indonesia, Jakarta, DKI Jakarta, Indonesia
| | - Iis Rosliana
- HayandraLab, Yayasan Hayandra Peduli, Jakarta, DKI Jakarta, Indonesia
| | - Siti Sobariah
- HayandraLab, Yayasan Hayandra Peduli, Jakarta, DKI Jakarta, Indonesia
| | - Irsyah Afini
- HayandraLab, Yayasan Hayandra Peduli, Jakarta, DKI Jakarta, Indonesia
| | - Tias Widyastuti
- HayandraLab, Yayasan Hayandra Peduli, Jakarta, DKI Jakarta, Indonesia
| | - Anggraini Barlian
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, West Java, Indonesia
| |
Collapse
|
28
|
Li X, Yin HM, Luo E, Zhu S, Wang P, Zhang Z, Liao GQ, Xu JZ, Li ZM, Li JH. Accelerating Bone Healing by Decorating BMP-2 on Porous Composite Scaffolds. ACS APPLIED BIO MATERIALS 2019; 2:5717-5726. [PMID: 35021565 DOI: 10.1021/acsabm.9b00761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Xiang Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Hua-Mo Yin
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Peng Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhen Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Gui-Qing Liao
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Jia-Zhuang Xu
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhong-Ming Li
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Ji-Hua Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
29
|
Jin L, Zhao W, Ren B, Li L, Hu X, Zhang X, Cai Q, Ao Y, Yang X. Osteochondral tissue regenerated via a strategy by stacking pre-differentiated BMSC sheet on fibrous mesh in a gradient. ACTA ACUST UNITED AC 2019; 14:065017. [PMID: 31574486 DOI: 10.1088/1748-605x/ab49e2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The reconstruction of osteochondral tissue remains a challenging task in clinical therapy because of its heterogeneous structure. The best way to face the challenge is to develop a biomimetic construct to mimic the multilayered gradient from cartilage, to calcified cartilage and subchondral bone. In this study, bone marrow mesenchymal stromal cells (BMSCs) were cultured on electrospun fibrous meshes and cell sheets were incubated. The fibrous meshes were composed of 50% poly(L-lactide) and 50% gelatin, displaying excellent biocompatibility, cell affinity and degradability. Differentiation of BMSC sheets on fibrous meshes was induced chondrogenically or osteogenically. In particular, the BMSC sheets were able to be efficiently induced differentiating towards calcified cartilage by using a 1:1 (v/v) mixed medium of chondrogenic and osteogenic inductive media. Thus, a gradient 3D construct was built by stacking the differently pre-differentiated cell/mesh complexes layer by layer from top to bottom to mimic the cartilage-to-bone transition. With this gradient construct being implanted in the rabbit knee osteochondral defect, it was confirmed that it could promote the tissue regeneration with intact cartilage layer formation in comparison with the multilayered construct without a gradient. The strategy of using properly pre-differentiated BMSC sheet on fibrous mesh to build the osteochondral interface was thus suggested as being feasible and effective in mimicking its hierarchical complexity, and favored the repairing of injured joint cartilage.
Collapse
Affiliation(s)
- Le Jin
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Adipose-Derived Stem Cells in Bone Tissue Engineering: Useful Tools with New Applications. Stem Cells Int 2019; 2019:3673857. [PMID: 31781238 PMCID: PMC6875209 DOI: 10.1155/2019/3673857] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022] Open
Abstract
Adipose stem cells (ASCs) are a crucial element in bone tissue engineering (BTE). They are easy to harvest and isolate, and they are available in significative quantities, thus offering a feasible and valid alternative to other sources of mesenchymal stem cells (MSCs), like bone marrow. Together with an advantageous proliferative and differentiative profile, they also offer a high paracrine activity through the secretion of several bioactive molecules (such as growth factors and miRNAs) via a sustained exosomal release which can exert efficient conditioning on the surrounding microenvironment. BTE relies on three key elements: (1) scaffold, (2) osteoprogenitor cells, and (3) bioactive factors. These elements have been thoroughly investigated over the years. The use of ASCs has offered significative new advancements in the efficacy of each of these elements. Notably, the phenotypic study of ASCs allowed discovering cell subpopulations, which have enhanced osteogenic and vasculogenic capacity. ASCs favored a better vascularization and integration of the scaffolds, while improvements in scaffolds' materials and design tried to exploit the osteogenic features of ASCs, thus reducing the need for external bioactive factors. At the same time, ASCs proved to be an incredible source of bioactive, proosteogenic factors that are released through their abundant exosome secretion. ASC exosomes can exert significant paracrine effects in the surroundings, even in the absence of the primary cells. These paracrine signals recruit progenitor cells from the host tissues and enhance regeneration. In this review, we will focus on the recent discoveries which have involved the use of ASCs in BTE. In particular, we are going to analyze the different ASCs' subpopulations, the interaction between ASCs and scaffolds, and the bioactive factors which are secreted by ASCs or can induce their osteogenic commitment. All these advancements are ultimately intended for a faster translational and clinical application of BTE.
Collapse
|
31
|
Nakamuta Y, Arahira T, Todo M. Effects of culture conditions on the mechanical and biological properties of engineered cartilage constructed with collagen hybrid scaffold and human mesenchymal stem cells. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:119. [PMID: 31630248 DOI: 10.1007/s10856-019-6321-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
Mesenchymal stem cells (MSCs) has been used as one of the new cell sources in osteochondral tissue engineering. It has been well known that control of their differentiation into chondrocytes plays a key role in developing engineered cartilages. Therefore, this study aims to develop a fundamental protocol to control the differentiation and proliferation of MSCs to construct an engineered cartilage. We compared the effects of three different culture conditions on cell proliferation, extracellular matrix formation and the mechanical response of engineered cartilage constructed using a collagen-based hybrid scaffold and human MSCs. The experimental results clearly showed that the combined culture condition of the chondrogenic differentiation culture and the chondrocyte growth culture exhibited statistically significant cell proliferation, ECM formation and stiffness responses as compared to the other two combinations. It is thus concluded that the combination of the differentiation culture with the subsequent growth culture is recommended as the culture condition for chondrogenic tissue engineering using hMSCs.
Collapse
Affiliation(s)
- Yusuke Nakamuta
- Department of mechanical Engineering, Sojo University, Fukuoka, Japan
| | | | - Mitsugu Todo
- Research Institute for Applied Mechanics, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
32
|
Li Y, Liu Y, Xun X, Zhang W, Xu Y, Gu D. Three-Dimensional Porous Scaffolds with Biomimetic Microarchitecture and Bioactivity for Cartilage Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2019; 11:36359-36370. [PMID: 31509372 DOI: 10.1021/acsami.9b12206] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ideal tissue-engineering cartilage scaffolds should possess the same nanofibrous structure as the microstructure of native cartilage as well as the same biological function provided by the microenvironment for neocartilage regeneration. In the present study, three-dimensional composite biomimetic scaffolds with different concentration ratios of electrospun gelatin-polycaprolactone (gelatin-PCL) nanofibers and decellularized cartilage extracellular matrix (DCECM) were fabricated. The nanofibers with the biomimetic microarchitecture of native cartilage served as a skeleton with excellent mechanical properties, and the DCECM served as a biological functionalization platform for the induction of cell response and the promotion of cartilage regeneration. Experimental results showed that the composite nanofiber/DCECM (NF/DCECM) scaffolds had stronger mechanical properties and structural stability in wet state compared with those of DCECM scaffolds. In vitro experiments demonstrated that all scaffolds had good biocompatibility, but the chondrocyte proliferation rate of the composite NF/DCECM scaffolds was higher than that of the NF scaffolds. In vitro and in vivo cartilage regeneration results indicated that the DCECM component of the composite scaffolds facilitated early maturation of the cartilage lacuna and the secretion of collagen and glycosaminoglycan. The macroscopic and histological results at 12 weeks postsurgery exhibited that the composite NF/DCECM scaffolds yielded better cartilage repair outcomes than those of the nontreated group and NF scaffolds group. Overall, the present study demonstrated that the structurally and functionally biomimetic NF/DCECM scaffold is a promising tissue engineering scaffold for cartilage regeneration and cartilage defect repair.
Collapse
Affiliation(s)
| | | | - Xiaowei Xun
- Institute of Advanced Materials , East China Jiaotong University , Nanchang 330013 , China
| | - Wei Zhang
- Institute of Plastic Surgery, Shandong Provincial Key Laboratory of Plastic and Microscopic Repair Technology , Weifang Medical University , Weifang , Shandong 261041 , China
| | - Yong Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital , Tongji University School of Medicine , Shanghai 200433 , China
| | | |
Collapse
|
33
|
Promoting Osteogenic Differentiation of Human Adipose-Derived Stem Cells by Altering the Expression of Exosomal miRNA. Stem Cells Int 2019; 2019:1351860. [PMID: 31354836 PMCID: PMC6636464 DOI: 10.1155/2019/1351860] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/07/2019] [Accepted: 05/23/2019] [Indexed: 12/20/2022] Open
Abstract
Human adipose-derived stem cells (ADSCs) can release exosomes; however, their specific functions remain elusive. In this study, we verified that exosomes derived from osteogenically differentiated ADSCs can promote osteogenic differentiation of ADSCs. Furthermore, in order to investigate the importance of exosomal microRNAs (miRNAs) in osteogenic differentiation of ADSCs, we used microarray assays to analyze the expression profiles of exosomal miRNAs derived from undifferentiated as well as osteogenically differentiated ADSCs; 201 miRNAs were upregulated and 33 miRNAs were downregulated between the two types of exosomes. Additionally, bioinformatic analyses, which included gene ontology analyses, pathway analysis, and miRNA-mRNA-network investigations, were performed. The results of these analyses revealed that the differentially expressed exosomal miRNAs participate in multiple biological processes, such as gene expression, synthesis of biomolecules, cell development, differentiation, and signal transduction, among others. Moreover, we found that these differentially expressed exosomal miRNAs connect osteogenic differentiation to processes such as axon guidance, MAPK signaling, and Wnt signaling. To the best of our knowledge, this is the first study to identify and characterize exosomal miRNAs derived from osteogenically differentiated ADSCs. This study confirms that alterations in the expression of exosomal miRNAs can promote osteogenic differentiation of ADSCs, which also provides the foundation for further research on the regulatory functions of exosomal miRNAs in the context of ADSC osteogenesis.
Collapse
|
34
|
Zhao F, Melke J, Ito K, van Rietbergen B, Hofmann S. A multiscale computational fluid dynamics approach to simulate the micro-fluidic environment within a tissue engineering scaffold with highly irregular pore geometry. Biomech Model Mechanobiol 2019; 18:1965-1977. [PMID: 31201621 PMCID: PMC6825226 DOI: 10.1007/s10237-019-01188-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022]
Abstract
Mechanical stimulation can regulate cellular behavior, e.g., differentiation, proliferation, matrix production and mineralization. To apply fluid-induced wall shear stress (WSS) on cells, perfusion bioreactors have been commonly used in tissue engineering experiments. The WSS on cells depends on the nature of the micro-fluidic environment within scaffolds under medium perfusion. Simulating the fluidic environment within scaffolds will be important for gaining a better insight into the actual mechanical stimulation on cells in a tissue engineering experiment. However, biomaterial scaffolds used in tissue engineering experiments typically have highly irregular pore geometries. This complexity in scaffold geometry implies high computational costs for simulating the precise fluidic environment within the scaffolds. In this study, we propose a low-computational cost and feasible technique for quantifying the micro-fluidic environment within the scaffolds, which have highly irregular pore geometries. This technique is based on a multiscale computational fluid dynamics approach. It is demonstrated that this approach can capture the WSS distribution in most regions within the scaffold. Importantly, the central process unit time needed to run the model is considerably low.
Collapse
Affiliation(s)
- Feihu Zhao
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Johanna Melke
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Bert van Rietbergen
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.
| | - Sandra Hofmann
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands. .,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.
| |
Collapse
|
35
|
Farokhi M, Mottaghitalab F, Fatahi Y, Saeb MR, Zarrintaj P, Kundu SC, Khademhosseini A. Silk fibroin scaffolds for common cartilage injuries: Possibilities for future clinical applications. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.03.035] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
36
|
Binhong T, Yanhong Z, Lianyong W, Qiang Y, Hongfa L, Yunjie L. [Preparation and characterization of oriented scaffolds derived from cartilage extracellular matrix and silk fibroin]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2019; 36:17-22. [PMID: 29594990 DOI: 10.7518/hxkq.2018.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE This study aims to prepare oriented scaffolds derived from a cartilage extracellular matrix (CECM) and silk fibroin (SF) and use to investigate their physicochemical property in cartilage tissue engineering. METHODS Oriented SF-CECM scaffolds were prepared from 6% mixed slurry (CECM:SF=1:1) through modified temperature gradient-guided thermal-induced phase separation, followed by freeze drying. The SF-CECM scaffolds were evaluated by scanning electron microscopy (SEM) and histological staining analyses and determination of porosity, water absorption, and compressive elastic modulus of the materials. RESULTS The SEM image showed that the SF-CECM scaffolds contained homogeneous reticular porous structures in the cross-section and vertical tubular structures in the longitudinal sections. Histological staining showed that cells were completely removed, and the hybrid scaffolds retained proteogly can and collagen. The composition of the scaffold was similar to that of natural cartilage. The porosity, water absorption rate, and vertical compressive elastic modulus of the scaffolds were 95.733%±1.010%, 94.309%±1.302%, and (65.40±4.09) kPa, respectively. CONCLUSIONS The fabricated SF-CECM scaffolds exhibit satisfactory physicochemical and biomechanical properties and thus could be an ideal scaffold in cartilage tissue engineering.
Collapse
Affiliation(s)
- Teng Binhong
- Dept. of Orthodontics, Stomatological Hospital of Tianjin Medical University, Tianjin 300070, China
| | - Zhao Yanhong
- Dept. of Orthodontics, Stomatological Hospital of Tianjin Medical University, Tianjin 300070, China
| | - Wang Lianyong
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yang Qiang
- Dept. of Spine Surgery, Tianjin Hospital, Tianjin 300211, China
| | - Li Hongfa
- Dept. of Orthodontics, Stomatological Hospital of Tianjin Medical University, Tianjin 300070, China
| | - Li Yunjie
- Dept. of Orthodontics, Stomatological Hospital of Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
37
|
Ribeiro VP, Pina S, Costa JB, Cengiz IF, García-Fernández L, Fernández-Gutiérrez MDM, Paiva OC, Oliveira AL, San-Román J, Oliveira JM, Reis RL. Enzymatically Cross-Linked Silk Fibroin-Based Hierarchical Scaffolds for Osteochondral Regeneration. ACS APPLIED MATERIALS & INTERFACES 2019; 11:3781-3799. [PMID: 30609898 DOI: 10.1021/acsami.8b21259] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Osteochondral (OC) regeneration faces several limitations in orthopedic surgery, owing to the complexity of the OC tissue that simultaneously entails the restoration of articular cartilage and subchondral bone diseases. In this study, novel biofunctional hierarchical scaffolds composed of a horseradish peroxidase (HRP)-cross-linked silk fibroin (SF) cartilage-like layer (HRP-SF layer) fully integrated into a HRP-SF/ZnSr-doped β-tricalcium phosphate (β-TCP) subchondral bone-like layer (HRP-SF/dTCP layer) were proposed as a promising strategy for OC tissue regeneration. For comparative purposes, a similar bilayered structure produced with no ion incorporation (HRP-SF/TCP layer) was used. A homogeneous porosity distribution was achieved throughout the scaffolds, as shown by micro-computed tomography analysis. The ion-doped bilayered scaffolds presented a wet compressive modulus (226.56 ± 60.34 kPa) and dynamic mechanical properties (ranging from 403.56 ± 111.62 to 593.56 ± 206.90 kPa) superior to that of the control bilayered scaffolds (189.18 ± 90.80 kPa and ranging from 262.72 ± 59.92 to 347.68 ± 93.37 kPa, respectively). Apatite crystal formation, after immersion in simulated body fluid (SBF), was observed in the subchondral bone-like layers for the scaffolds incorporating TCP powders. Human osteoblasts (hOBs) and human articular chondrocytes (hACs) were co-cultured onto the bilayered structures and monocultured in the respective cartilage and subchondral bone half of the partitioned scaffolds. Both cell types showed good adhesion and proliferation in the scaffold compartments, as well as adequate integration of the interface regions. Osteoblasts produced a mineralized extracellular matrix (ECM) in the subchondral bone-like layers, and chondrocytes showed GAG deposition. The gene expression profile was different in the distinct zones of the bilayered constructs, and the intermediate regions showed pre-hypertrophic chondrocyte gene expression, especially on the BdTCP constructs. Immunofluorescence analysis supported these observations. This study showed that the proposed bilayered scaffolds allowed a specific stimulation of the chondrogenic and osteogenic cells in the co-culture system together with the formation of an osteochondral-like tissue interface. Hence, the structural adaptability, suitable mechanical properties, and biological performance of the hierarchical scaffolds make these constructs a desired strategy for OC defect regeneration.
Collapse
Affiliation(s)
- Viviana P Ribeiro
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , Avepark, Parque de Ciência e Tecnologia Zona Industrial da Gandra, 4805-017 Barco, Guimarães , Portugal
- ICVS/3B's-PT Government Associate Laboratory , 4805-017 Braga/Guimarães , Portugal
| | - Sandra Pina
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , Avepark, Parque de Ciência e Tecnologia Zona Industrial da Gandra, 4805-017 Barco, Guimarães , Portugal
- ICVS/3B's-PT Government Associate Laboratory , 4805-017 Braga/Guimarães , Portugal
| | - João B Costa
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , Avepark, Parque de Ciência e Tecnologia Zona Industrial da Gandra, 4805-017 Barco, Guimarães , Portugal
- ICVS/3B's-PT Government Associate Laboratory , 4805-017 Braga/Guimarães , Portugal
| | - Ibrahim Fatih Cengiz
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , Avepark, Parque de Ciência e Tecnologia Zona Industrial da Gandra, 4805-017 Barco, Guimarães , Portugal
- ICVS/3B's-PT Government Associate Laboratory , 4805-017 Braga/Guimarães , Portugal
| | - Luis García-Fernández
- Institute of Polymer Science and Technology, Polymeric Nanomaterials and Biomaterials Department , Spanish Council for Scientific Research (ICTP-CSIC) , 28006 Madrid , Spain
- Centro de Investigación Biomédica en Red. Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 28029 Madrid , Spain
| | - Maria Del Mar Fernández-Gutiérrez
- Institute of Polymer Science and Technology, Polymeric Nanomaterials and Biomaterials Department , Spanish Council for Scientific Research (ICTP-CSIC) , 28006 Madrid , Spain
- Centro de Investigación Biomédica en Red. Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 28029 Madrid , Spain
| | - Olga C Paiva
- ISEP-School of Engineering , Polytechnic Institute of Porto , 4200-072 Porto , Portugal
| | - Ana L Oliveira
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia , Universidade Católica Portuguesa , 4200-072 Porto , Portugal
| | - Julio San-Román
- Institute of Polymer Science and Technology, Polymeric Nanomaterials and Biomaterials Department , Spanish Council for Scientific Research (ICTP-CSIC) , 28006 Madrid , Spain
- Centro de Investigación Biomédica en Red. Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 28029 Madrid , Spain
| | - Joaquim M Oliveira
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , Avepark, Parque de Ciência e Tecnologia Zona Industrial da Gandra, 4805-017 Barco, Guimarães , Portugal
- ICVS/3B's-PT Government Associate Laboratory , 4805-017 Braga/Guimarães , Portugal
- The Discoveries Centre for Regenerative and Precision Medicine , Headquarters at University of Minho , Avepark, 4805-017 Barco, Guimarães , Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , Avepark, Parque de Ciência e Tecnologia Zona Industrial da Gandra, 4805-017 Barco, Guimarães , Portugal
- ICVS/3B's-PT Government Associate Laboratory , 4805-017 Braga/Guimarães , Portugal
- The Discoveries Centre for Regenerative and Precision Medicine , Headquarters at University of Minho , Avepark, 4805-017 Barco, Guimarães , Portugal
| |
Collapse
|
38
|
Cai H, Yao Y, Xu Y, Wang Q, Zou W, Liang J, Sun Y, Zhou C, Fan Y, Zhang X. A Col I and BCP ceramic bi-layer scaffold implant promotes regeneration in osteochondral defects. RSC Adv 2019; 9:3740-3748. [PMID: 35518063 PMCID: PMC9060255 DOI: 10.1039/c8ra09171d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 12/21/2018] [Indexed: 11/21/2022] Open
Abstract
Osteochondral defects occur in the superficial cartilage region, intermediate calcified cartilage, and subchondral bone. Due to the limited regenerative capacity and complex zonal structure, it is critically difficult to develop strategies for osteochondral defect repair that could meet clinical requirements. In this study, type I collagen (Col I) and BCP ceramics were used to fabricate a new bi-layer scaffold for regeneration in osteochondral defects. The in vitro studies showed that the bi-layer scaffold provided special functions for cell migration, proliferation and secretion due to the layered scaffold structure. The in vivo results demonstrated that the bi-layered scaffold could effectively promote the regeneration of both the cartilage and the subchondral bone, and the newly formed cartilage layer, with a similar structure and thickness to the natural cartilaginous layer, could seamlessly integrate with the surrounding natural cartilage and regenerate an interface layer to mimic the native osteochondral structure. A new bi-layer scaffold composed of Col I and BCP ceramic was prepared to regenerate osteochondral defect. The result demonstrated the bi-layer scaffold could effectively promote the regeneration of both the cartilage and the subchondral bone layer.![]()
Collapse
Affiliation(s)
- Hanxu Cai
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Ya Yao
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Yang Xu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Qing Wang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Wen Zou
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
- Sichuan Testing Center for Biomaterials and Medical Devices
| | - Jie Liang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
- Sichuan Testing Center for Biomaterials and Medical Devices
| | - Yong Sun
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| |
Collapse
|
39
|
In Vivo Performance of Hierarchical HRP-Crosslinked Silk Fibroin/β-TCP Scaffolds for Osteochondral Tissue Regeneration. ACTA ACUST UNITED AC 2019. [DOI: 10.20900/rmf20190007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
40
|
Fazal N, Latief N. Bombyx mori derived scaffolds and their use in cartilage regeneration: a systematic review. Osteoarthritis Cartilage 2018; 26:1583-1594. [PMID: 30059787 DOI: 10.1016/j.joca.2018.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/05/2018] [Accepted: 07/11/2018] [Indexed: 02/02/2023]
Abstract
For the last two decades, silk has been extensively used as scaffolds in tissue engineering because of its remarkable properties. Unfortunately, the aneural property of cartilage limits its regenerative potential which can be achieved using tissue engineering approach. A lot of research has been published searching for the optimization of silk fibroin (SF) and its blends in order to get the best cartilage mimicking properties. However, according to our best knowledge, there is no systematic review available regarding the use of Bombyx mori derived biomaterials limited to cartilage related studies. This systematic review highlights the in vitro and in vivo work done for the past 7 years on structural and functional properties of B. mori derived biomaterials together with different parameters for cartilage regeneration. PubMed database was searched focusing on in vitro and in vivo studies using the search thread "silk fibroin" and "cartilage". A total of 40 articles met the inclusion criteria. All the articles were deeply studied for cell types, scaffold types and animal models used along with study design and results. Five types of cells were used for in vitro while seven types of cells were used for in vivo studies. Three types of animal models were used for scaffold implantation purpose. Moreover, different types of scaffolds either seeded with cells or supplemented with various factors were explored and discussed in detail. Results suggest the suitability of silk as a better biomaterial because of its cartilage mimicking properties.
Collapse
Affiliation(s)
- N Fazal
- Centre of Excellence in Molecular Biology, University of the Punjab, Pakistan
| | - N Latief
- Centre of Excellence in Molecular Biology, University of the Punjab, Pakistan.
| |
Collapse
|
41
|
Liu J, Fang Q, Yu X, Wan Y, Xiao B. Chitosan-Based Nanofibrous Membrane Unit with Gradient Compositional and Structural Features for Mimicking Calcified Layer in Osteochondral Matrix. Int J Mol Sci 2018; 19:E2330. [PMID: 30096842 PMCID: PMC6121876 DOI: 10.3390/ijms19082330] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 01/03/2023] Open
Abstract
Chitosan (CH), silk fibroin (SF), and hydroxyapatite (HA) were used to prepare CH/SF/HA composites and the resulting composites were electrospun into nanofibrous membrane units with gradient compositional and structural features. The optimal membrane unit was used together with CH/HA and CH/SF composites to fabricate a type of three-layer scaffold that is intended for osteochondral repair. The bottom layer of the scaffold was built with CH/HA composites and it served as a subchondral layer, the integrated nanofibrous membrane unit functioned as the middle layer for mimicking the calcified layer and the top layer was constructed using CH/SF composites for acting as a chondral layer. The nanofibrous membrane unit was found to be permeable to some molecules with limited molecular weight and was able to prevent the seeded cells from migrating cross the unit, functioning approximately like the calcified layer in the osteochondral matrix. Layered scaffolds showed abilities to promote the growth of both chondrocytes and osteoblasts that were seeded in their chondral layer and bony layer, respectively, and they were also able to support the phenotype preservation of seeded chondrocytes and the mineralization of neotissue in the bony layer. Results suggest that this type of layered scaffolds can function as an analogue of the osteochondral matrix and it has potential in osteochondral repair.
Collapse
Affiliation(s)
- Jiaoyan Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Qing Fang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xiaofeng Yu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Ying Wan
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Bo Xiao
- Institute for Clean Energy and Advanced Materials, Faculty for Materials and Energy, Southwest University, Chongqing 400715, China.
| |
Collapse
|
42
|
Singh YP, Moses JC, Bhunia BK, Nandi SK, Mandal BB. Hierarchically structured seamless silk scaffolds for osteochondral interface tissue engineering. J Mater Chem B 2018; 6:5671-5688. [PMID: 32254974 DOI: 10.1039/c8tb01344f] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The osteochondral healthcare market is driven by the increasing demand for affordable and biomimetic scaffolds. To meet this demand, silk fibroin (SF) from Bombyx mori and Antheraea assamensis is used to fabricate a biphasic scaffold, with fiber-free and fiber-reinforced phases, stimulating cartilage and bone revival. The fabrication is a facile reproducible process using single polymer (SF), for both phases, designed in a continuous and integrated manner. Physicochemical and mechanical scaffold characterization, display interconnected pores with differential swelling and tunable degradation. The compressive modulus values, extend to 40 kPa and 25%, for tensile strain, at elongation. The scaffold support, for growth and proliferation of chondrocytes and osteoblasts, for respective cartilage and bone regeneration, is verified from in vitro assessment. Up-regulation of alkaline phosphatase (ALP) activity, extracellular matrix secretion and gene expression are significant; with acceptable in vitro immune response. Upon implantation in rabbit osteochondral defects for 8 weeks, the histological and micro-CT examinations show biphasic scaffolds significantly enhance regeneration of cartilage and subchondral bone tissues, as compared to monophasic scaffolds. The regenerated bone mineral density (BMD) ranges from 600-700 mg hydroxyapatite (HA) per cm3. The results, therefore, showcase the critically positive characteristics of in vitro ECM deposition, and in vivo regeneration of osteochondral tissue by this hierarchically structured biphasic scaffold.
Collapse
Affiliation(s)
- Yogendra Pratap Singh
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | | | | | | | | |
Collapse
|
43
|
Jia S, Wang J, Zhang T, Pan W, Li Z, He X, Yang C, Wu Q, Sun W, Xiong Z, Hao D. Multilayered Scaffold with a Compact Interfacial Layer Enhances Osteochondral Defect Repair. ACS APPLIED MATERIALS & INTERFACES 2018; 10:20296-20305. [PMID: 29808989 DOI: 10.1021/acsami.8b03445] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Repairing osteochondral defect (OCD) using advanced biomaterials that structurally, biologically, and mechanically fulfill the criteria for stratified tissue regeneration remains a significant challenge for researchers. Here, a multilayered scaffold (MLS) with hierarchical organization and heterogeneous composition is developed to mimic the stratified structure and complex components of natural osteochondral tissues. Specifically, the intermediate compact interfacial layer within the MLS is designed to resemble the osteochondral interface to realize the closely integrated layered structure. Subsequently, macroscopic observations, histological evaluation, and biomechanical and biochemical assessments are performed to evaluate the ability of the MLS of repairing OCD in a goat model. By 48 weeks postimplantation, superior hyalinelike cartilage and sound subchondral bone are observed in the MLS group. Furthermore, the biomimetic MLS significantly enhances the biomechanical and biochemical properties of the neo-osteochondral tissue. Taken together, these results confirm the potential of this optimized MLS as an advanced strategy for OCD repair.
Collapse
Affiliation(s)
- Shuaijun Jia
- Department of Orthopaedics, Hong Hui Hospital , Medical College of Xi'an Jiaotong University , Xi'an 710054 , P. R. China
| | - Jing Wang
- Science and Techonology on Thermostructural Composite Materials Laboratory , Northwestern Polytechnical University , Xi'an 710068 , P. R. China
| | - Ting Zhang
- Science and Techonology on Thermostructural Composite Materials Laboratory , Northwestern Polytechnical University , Xi'an 710068 , P. R. China
| | - Weimin Pan
- Department of Human Movement Studies , Xi'an Physical Education University , Xi'an 710068 , P. R. China
| | - Zhong Li
- Department of Orthopaedics, Hong Hui Hospital , Medical College of Xi'an Jiaotong University , Xi'an 710054 , P. R. China
| | - Xin He
- Department of Orthopaedics, Hong Hui Hospital , Medical College of Xi'an Jiaotong University , Xi'an 710054 , P. R. China
| | - Chongfei Yang
- Department of Orthopaedics, Xijing Hospital , The Fourth Military Medical University , Xi'an 710032 , P. R. China
| | - Qining Wu
- Department of Orthopaedics, Hong Hui Hospital , Medical College of Xi'an Jiaotong University , Xi'an 710054 , P. R. China
| | - Wei Sun
- Biomanufacturing Center, Department of Mechanical Engineering , Tsinghua University , Beijing 100084 , P. R. China
| | - Zhuo Xiong
- Biomanufacturing Center, Department of Mechanical Engineering , Tsinghua University , Beijing 100084 , P. R. China
| | - Dingjun Hao
- Department of Orthopaedics, Hong Hui Hospital , Medical College of Xi'an Jiaotong University , Xi'an 710054 , P. R. China
| |
Collapse
|
44
|
Natural Origin Materials for Osteochondral Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1058:3-30. [DOI: 10.1007/978-3-319-76711-6_1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
45
|
Pereira DR, Reis RL, Oliveira JM. Layered Scaffolds for Osteochondral Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1058:193-218. [DOI: 10.1007/978-3-319-76711-6_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
46
|
Silk fibroin/hydroxyapatite composites for bone tissue engineering. Biotechnol Adv 2018; 36:68-91. [DOI: 10.1016/j.biotechadv.2017.10.001] [Citation(s) in RCA: 239] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/12/2017] [Accepted: 10/04/2017] [Indexed: 12/22/2022]
|
47
|
Ribeiro VP, Pina S, Oliveira JM, Reis RL. Silk Fibroin-Based Hydrogels and Scaffolds for Osteochondral Repair and Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1058:305-325. [DOI: 10.1007/978-3-319-76711-6_14] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Yang Q, Teng BH, Wang LN, Li K, Xu C, Ma XL, Zhang Y, Kong DL, Wang LY, Zhao YH. Silk fibroin/cartilage extracellular matrix scaffolds with sequential delivery of TGF-β3 for chondrogenic differentiation of adipose-derived stem cells. Int J Nanomedicine 2017; 12:6721-6733. [PMID: 28932116 PMCID: PMC5600265 DOI: 10.2147/ijn.s141888] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A 3-D scaffold that simulates the microenvironment in vivo for regenerating cartilage is ideal. In this study, we combined silk fibroin and decellularized cartilage extracellular matrix by temperature gradient-guided thermal-induced phase separation to produce composite scaffolds (S/D). Resulting scaffolds had remarkable mechanical properties and biomimeticstructure, for a suitable substrate for attachment and proliferation of adipose-derived stem cells (ADSCs). Moreover, transforming growth factor β3 (TGF-β3) loaded on scaffolds showed a controlled release profile and enhanced the chondrogenic differentiation of ADSCs during the 28-day culture. The S/D scaffold itself can provide a sustained release system without the introduction of other controlled release media, which has potential for commercial and clinical applications. The results of toluidine blue, Safranin O, and immunohistochemical staining and analysis of collagen II expression showed maintenance of a chondrogenic phenotype in all scaffolds after 28-day culture. The most obvious phenomenon was with the addition of TGF-β3. S/D composite scaffolds with sequential delivery of TGF-β3 may mimic the regenerative microenvironment to enhance the chondrogenic differentiation of ADSCs in vitro.
Collapse
Affiliation(s)
- Qiang Yang
- Department of Spine Surgery, Tianjin Hospital, Tianjin, People's Republic of China
| | - Bin-Hong Teng
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Li-Na Wang
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Kun Li
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Chen Xu
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Xin-Long Ma
- Department of Spine Surgery, Tianjin Hospital, Tianjin, People's Republic of China
| | - Yang Zhang
- Department of Spine Surgery, Tianjin Hospital, Tianjin, People's Republic of China
| | - De-Ling Kong
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Lian-Yong Wang
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Yan-Hong Zhao
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
49
|
Boys AJ, McCorry MC, Rodeo S, Bonassar LJ, Estroff LA. Next Generation Tissue Engineering of Orthopedic Soft Tissue-to-Bone Interfaces. MRS COMMUNICATIONS 2017; 7:289-308. [PMID: 29333332 PMCID: PMC5761353 DOI: 10.1557/mrc.2017.91] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/28/2017] [Indexed: 05/17/2023]
Abstract
Soft tissue-to-bone interfaces are complex structures that consist of gradients of extracellular matrix materials, cell phenotypes, and biochemical signals. These interfaces, called entheses for ligaments, tendons, and the meniscus, are crucial to joint function, transferring mechanical loads and stabilizing orthopedic joints. When injuries occur to connected soft tissue, the enthesis must be re-established to restore function, but due to structural complexity, repair has proven challenging. Tissue engineering offers a promising solution for regenerating these tissues. This prospective review discusses methodologies for tissue engineering the enthesis, outlined in three key design inputs: materials processing methods, cellular contributions, and biochemical factors.
Collapse
Affiliation(s)
- Alexander J Boys
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY
| | | | - Scott Rodeo
- Orthopedic Surgery, Hospital for Special Surgery, New York, NY
- Sports Medicine and Shoulder Service, Hospital for Special Surgery, New York, NY
- Tissue Engineering, Regeneration, and Repair Program, Hospital for Special Surgery, New York, NY
- Orthopedic Surgery, Weill Medical College of Cornell University, Cornell University, New York, NY
- New York Giants, East Rutherford, NJ
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY
| | - Lawrence J Bonassar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY
| | - Lara A Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY
- Kavli Institute at Cornell, Cornell University, Ithaca, NY
| |
Collapse
|
50
|
Font Tellado S, Bonani W, Balmayor ER, Foehr P, Motta A, Migliaresi C, van Griensven M. * Fabrication and Characterization of Biphasic Silk Fibroin Scaffolds for Tendon/Ligament-to-Bone Tissue Engineering. Tissue Eng Part A 2017; 23:859-872. [PMID: 28330431 DOI: 10.1089/ten.tea.2016.0460] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Tissue engineering is an attractive strategy for tendon/ligament-to-bone interface repair. The structure and extracellular matrix composition of the interface are complex and allow for a gradual mechanical stress transfer between tendons/ligaments and bone. Thus, scaffolds mimicking the structural features of the native interface may be able to better support functional tissue regeneration. In this study, we fabricated biphasic silk fibroin scaffolds designed to mimic the gradient in collagen molecule alignment present at the interface. The scaffolds had two different pore alignments: anisotropic at the tendon/ligament side and isotropic at the bone side. Total porosity ranged from 50% to 80% and the majority of pores (80-90%) were <100-300 μm. Young's modulus varied from 689 to 1322 kPa depending on the type of construct. In addition, human adipose-derived mesenchymal stem cells were cultured on the scaffolds to evaluate the effect of pore morphology on cell proliferation and gene expression. Biphasic scaffolds supported cell attachment and influenced cytoskeleton organization depending on pore alignment. In addition, the gene expression of tendon/ligament, enthesis, and cartilage markers significantly changed depending on pore alignment in each region of the scaffolds. In conclusion, the biphasic scaffolds fabricated in this study show promising features for tendon/ligament-to-bone tissue engineering.
Collapse
Affiliation(s)
- Sònia Font Tellado
- 1 Department of Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich , Munich, Germany
| | - Walter Bonani
- 2 Department of Industrial Engineering, BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Trento , Trento, Italy .,3 Trento Research Unit, INSTM-National Interuniversity Consortium of Materials Science and Technology , Trento, Italy
| | - Elizabeth R Balmayor
- 1 Department of Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich , Munich, Germany
| | - Peter Foehr
- 4 Department of Orthopaedics and Sports Orthopaedics, Klinikum rechts der Isar, Technical University of Munich , Munich, Germany
| | - Antonella Motta
- 2 Department of Industrial Engineering, BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Trento , Trento, Italy
| | - Claudio Migliaresi
- 2 Department of Industrial Engineering, BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Trento , Trento, Italy .,3 Trento Research Unit, INSTM-National Interuniversity Consortium of Materials Science and Technology , Trento, Italy
| | - Martijn van Griensven
- 1 Department of Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich , Munich, Germany
| |
Collapse
|