1
|
Hashamdar S, Parvin P, Ramezani F, Ahmadinouri F, Jafargholi A, Refahizadeh M, Akbarpour M, Aghaei M, Heidari O. PC12 differentiation to neuron cells activated by a low-level laser at 660 nm on UV pre-treated CR-39 scaffolds with parallel microchannels. BIOMEDICAL OPTICS EXPRESS 2024; 15:4655-4674. [PMID: 39347001 PMCID: PMC11427200 DOI: 10.1364/boe.530876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 10/01/2024]
Abstract
The lack of regeneration of injured neurons in the central and peripheral neural system leads to the failure of damaged tissue repair in patients. While there is no definitive cure for most neurodegenerative diseases, new therapeutic methods that cause the proliferation and differentiation of neurons are of interest. Challenges such as the inability of neuronal cells to proliferate after injury, the lack of a stimulus for initial stimulation, and the presence of the microenvironment around CNS neurons contain several inhibitory factors that prevent neuron regeneration, thus, creating a structure similar to the extracellular matrix helps the cell proliferation in current treatment. A rapid method of neuron-like cell differentiation of PC12 cells is introduced here based on a novel synthetic scaffold. Initially, poly allyldiglycol carbonate (CR-39) substrate is textured under a high dose of ArF UV excimer laser (1000 shot, 300 mJ/pulse equivalent to 300 J/cm2 at 193 nm) to create superficial periodic parallel microchannels with the micrometer spacing and sub-micron width. Ultraviolet treated CR-39 (UT CR-39) provides a suitable scaffold to speed up the transformation/differentiation of PC12 cells. The latter is pheochromocytoma of the rat adrenal medulla as an embryonic origin from the neural crest usually exposed to the nerve growth factor (NGF). In fact, PC12 cells are seeded on the microchannels and simultaneously are stimulated by coherent red photons at 660 nm within the therapeutic window. The UT CR-39 scaffold undergoes extra improvement of ∼ 30% after 12 minutes of laser activation regarding the photo-biomodulation (PBM) mechanism. The cell activation due to the coherent photons also gives rise to enhanced proliferation/differentiation. Here, PC12 cells are efficiently differentiated into neurons according to immunocytochemistry (ICC) and Western Blot verification tests based on MAP2 and synapsin-1 protein expression. In general, UT CR-39 acts as a superior bed to elevate the population of neuron-like cells up to threefold against those of untreated (control)ones. We conclude that the surface cross-linking due to UV exposure and subsequent induced hydrophilicity notably contribute to the neuron-like cell differentiation of PC12 without adding NGF.
Collapse
Affiliation(s)
- Somayeh Hashamdar
- Physics Department, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Parviz Parvin
- Physics Department, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Fatemeh Ramezani
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ahmadinouri
- Physics Department, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Amir Jafargholi
- Laboratory of Wave Engineering (LWE), School of Engineering, Ecole polytechnique fédérale de Lausanne (EPFL), Switzerland
| | - Mitra Refahizadeh
- Physics Department, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Mahzad Akbarpour
- GMP Immune Cell Development & Manufacturing Hematopoietic Cellular Therapy Program, Department of Medicine, University of Chicago Medical Center Hospitals, Chicago, USA
| | - Mohammadreza Aghaei
- Department of Ocean Operations and Civil Engineering, Norwegian University of Science and Technology (NTNU), Ålesund, Norway
- Department of Sustainable Systems Engineering (INATECH), University of Freiburg, Freiburg, Germany
| | - Omid Heidari
- Physics Department, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| |
Collapse
|
2
|
Zhang Z, Lv Y, Harati J, Song J, Du P, Ou P, Liang J, Wang H, Wang PY. Submicron-Grooved Films Modulate the Directional Alignment and Biological Function of Schwann Cells. J Funct Biomater 2023; 14:jfb14050238. [PMID: 37233348 DOI: 10.3390/jfb14050238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
Topographical cues on material surfaces are crucial for guiding the behavior of nerve cells and facilitating the repair of peripheral nerve defects. Previously, micron-grooved surfaces have shown great potential in controlling nerve cell alignment for studying the behavior and functions of those cells and peripheral nerve regeneration. However, the effects of smaller-sized topographical cues, such as those in the submicron- and nano-scales, on Schwann cell behavior remain poorly understood. In this study, four different submicron-grooved polystyrene films (800/400, 800/100, 400/400, and 400/100) were fabricated to study the behavior, gene expression, and membrane potential of Schwann cells. The results showed that all submicron-grooved films could guide the cell alignment and cytoskeleton in a groove depth-dependent manner. Cell proliferation and cell cycle assays revealed that there was no significant difference between the submicron groove samples and the flat control. However, the submicron grooves can direct the migration of cells and upregulate the expression of critical genes in axon regeneration and myelination (e.g., MBP and Smad6). Finally, the membrane potential of the Schwann cells was significantly altered on the grooved sample. In conclusion, this study sheds light on the role of submicron-grooved patterns in regulating the behavior and function of Schwann cells, which provides unique insights for the development of implants for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Zhen Zhang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanliang Lv
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Javad Harati
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianan Song
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou 325000, China
| | - Ping Du
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Peiyan Ou
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaqi Liang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Huaiyu Wang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng-Yuan Wang
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou 325000, China
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
3
|
Yang Z, Snyder D, Pagaduan JN, Waldman A, Crosby AJ, Emrick T. Mesoscale Polymer Surfactants: Photolithographic Production and Localization at Droplet Interfaces. J Am Chem Soc 2022; 144:22059-22066. [DOI: 10.1021/jacs.2c09346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhefei Yang
- Polymer Science & Engineering Department, Conte Center for Polymer Research, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Deborah Snyder
- Polymer Science & Engineering Department, Conte Center for Polymer Research, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - James Nicolas Pagaduan
- Polymer Science & Engineering Department, Conte Center for Polymer Research, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Abraham Waldman
- Polymer Science & Engineering Department, Conte Center for Polymer Research, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Alfred J. Crosby
- Polymer Science & Engineering Department, Conte Center for Polymer Research, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Todd Emrick
- Polymer Science & Engineering Department, Conte Center for Polymer Research, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
4
|
Huang L, Gao J, Wang H, Xia B, Yang Y, Xu F, Zheng X, Huang J, Luo Z. Fabrication of 3D Scaffolds Displaying Biochemical Gradients along Longitudinally Oriented Microchannels for Neural Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2020; 12:48380-48394. [PMID: 33052661 DOI: 10.1021/acsami.0c15185] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Biochemical and physical guidance cues are both pivotal for axonal guidance and nerve regeneration. However, fabrication of a platform that can integrate biochemical gradients and topographical guidance cues remains challenging, especially in a three-dimensional (3D) scaffold that closely mimics in vivo axonal outgrowth conditions and ready to be used for in vivo nerve repair. In this study, a new method was introduced to construct 3D scaffolds displaying continuous biochemical gradients along longitudinally oriented microchannels by combining the modified 3D printing and directional freezing techniques. Fluorescence analysis and ELISA results demonstrated that a continuous biochemical gradient was formed, and scanning electron microscopy revealed a longitudinally oriented microstructure. Dorsal root ganglia explants seeded on the longitudinal sections of the newly developed scaffold (scaffold with nerve growth factor gradient along oriented microstructure, G-NGF + OS) showed that 81.3 ± 4.5% of neurites oriented within ±10°, 0.3 ± 0.1 of guidance ratio, and 1.5-fold of the average length of neurites on the high-nerve growth factor (NGF) concentration side compared to that on the low-NGF concentration side, which were significantly higher than those in the other groups. In addition, the G-NGF + OS scaffold was used to repair a 15 mm sciatic nerve defect in rats. Immunofluorescence staining, Fluoro-Gold retrograde tracing, and transmission electron microscopy results confirmed that the G-NGF + OS scaffold enhanced nerve regeneration to the distal target and promoted myelination of regenerated axons. More importantly, the sciatic functional index and the von Frey test demonstrated that the G-NGF + OS scaffold accelerated sensory and motor functional recovery. These results provide new insights into the importance of combining topographical guidance cues with bioactive molecule gradient cues for neural tissue engineering. The 3D scaffold displaying biochemical gradients along longitudinally oriented microchannels represents a promising platform for the development of advanced devices for severe nervous system injuries.
Collapse
Affiliation(s)
- Liangliang Huang
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
- Department of Orthopaedics, General Hospital of Central Theater Command of Chinese People's Liberation Army, Wuhan, Hubei 430070, China
| | - Jianbo Gao
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Heran Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, Liaoning 110000, China
| | - Bing Xia
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yujie Yang
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Feng Xu
- Department of Orthopaedics, General Hospital of Central Theater Command of Chinese People's Liberation Army, Wuhan, Hubei 430070, China
| | - Xiongfei Zheng
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, Liaoning 110000, China
| | - Jinghui Huang
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhuojing Luo
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
5
|
Vishnoi T, Singh A, Teotia AK, Kumar A. Chitosan-Gelatin-Polypyrrole Cryogel Matrix for Stem Cell Differentiation into Neural Lineage and Sciatic Nerve Regeneration in Peripheral Nerve Injury Model. ACS Biomater Sci Eng 2019; 5:3007-3021. [DOI: 10.1021/acsbiomaterials.9b00242] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
6
|
Sornkamnerd S, Okajima MK, Matsumura K, Kaneko T. Micropatterned Cell Orientation of Cyanobacterial Liquid-Crystalline Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2018; 10:44834-44843. [PMID: 30480994 DOI: 10.1021/acsami.8b15825] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Control of cell extension direction is crucial for the regeneration of tissues, which are generally composed of oriented molecules. The scaffolds of highly oriented liquid crystalline polymer chains were fabricated by casting cyanobacterial mega-saccharides, sacran, on parallel-aligned micrometer bars of polystyrene (PS). Polarized microscopy revealed that the orientation was in transverse direction to the longitudinal axes of the PS bars. Swelling behavior of the micropatterned hydrogels was dependent on the distance between the PS bars. The mechanical properties of these scaffolds were dependent on the structural orientation; additionally, the Young's moduli in the transverse direction were higher than those in the parallel direction to the major axes of the PS bars. Further, fibroblast L929 cells were cultivated on the oriented scaffolds to be aligned along the orientation axis. L929 cells cultured on these scaffolds exhibited uniaxial elongation.
Collapse
Affiliation(s)
- Saranyoo Sornkamnerd
- Energy and Environment Area, Graduate School of Advanced Science and Technology , Japan Advanced Institute of Science and Technology (JAIST) , 1-1 Asahidai , Nomi , Ishikawa 923-1292 , Japan
- Department of Materials Science and Engineering, School of Molecular Science and Engineering , Vidyasirimedhi Institute of Science and Technology, (VISTEC) , Payupnai , Wang Chan 21210 , Thailand
| | - Maiko K Okajima
- Energy and Environment Area, Graduate School of Advanced Science and Technology , Japan Advanced Institute of Science and Technology (JAIST) , 1-1 Asahidai , Nomi , Ishikawa 923-1292 , Japan
| | - Kazuaki Matsumura
- Energy and Environment Area, Graduate School of Advanced Science and Technology , Japan Advanced Institute of Science and Technology (JAIST) , 1-1 Asahidai , Nomi , Ishikawa 923-1292 , Japan
| | - Tatsuo Kaneko
- Energy and Environment Area, Graduate School of Advanced Science and Technology , Japan Advanced Institute of Science and Technology (JAIST) , 1-1 Asahidai , Nomi , Ishikawa 923-1292 , Japan
| |
Collapse
|
7
|
Uz M, Das SR, Ding S, Sakaguchi DS, Claussen JC, Mallapragada SK. Advances in Controlling Differentiation of Adult Stem Cells for Peripheral Nerve Regeneration. Adv Healthc Mater 2018; 7:e1701046. [PMID: 29656561 DOI: 10.1002/adhm.201701046] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 01/08/2018] [Indexed: 01/01/2023]
Abstract
Adult stems cells, possessing the ability to grow, migrate, proliferate, and transdifferentiate into various specific phenotypes, constitute a great asset for peripheral nerve regeneration. Adult stem cells' ability to undergo transdifferentiation is sensitive to various cell-to-cell interactions and external stimuli involving interactions with physical, mechanical, and chemical cues within their microenvironment. Various studies have employed different techniques for transdifferentiating adult stem cells from distinct sources into specific lineages (e.g., glial cells and neurons). These techniques include chemical and/or electrical induction as well as cell-to-cell interactions via co-culture along with the use of various 3D conduit/scaffold designs. Such scaffolds consist of unique materials that possess controllable physical/mechanical properties mimicking cells' natural extracellular matrix. However, current limitations regarding non-scalable transdifferentiation protocols, fate commitment of transdifferentiated stem cells, and conduit/scaffold design have required new strategies for effective stem cells transdifferentiation and implantation. In this progress report, a comprehensive review of recent advances in the transdifferentiation of adult stem cells via different approaches along with multifunctional conduit/scaffolds designs is presented for peripheral nerve regeneration. Potential cellular mechanisms and signaling pathways associated with differentiation are also included. The discussion with current challenges in the field and an outlook toward future research directions is concluded.
Collapse
Affiliation(s)
- Metin Uz
- Department of Chemical and Biological Engineering Iowa State University Ames IA 50011 USA
| | - Suprem R. Das
- Department of Mechanical Engineering Iowa State University Ames IA 50011 USA
- Division of Materials Science and Engineering Ames Laboratory Ames IA 50011 USA
| | - Shaowei Ding
- Department of Mechanical Engineering Iowa State University Ames IA 50011 USA
| | - Donald S. Sakaguchi
- Neuroscience Program Iowa State University Ames IA 50011 USA
- Department of Genetics Development and Cell Biology Iowa State University Ames IA 50011 USA
| | - Jonathan C. Claussen
- Department of Mechanical Engineering Iowa State University Ames IA 50011 USA
- Division of Materials Science and Engineering Ames Laboratory Ames IA 50011 USA
| | - Surya K. Mallapragada
- Department of Chemical and Biological Engineering Iowa State University Ames IA 50011 USA
- Department of Genetics Development and Cell Biology Iowa State University Ames IA 50011 USA
| |
Collapse
|
8
|
Zhang D, Wu S, Feng J, Duan Y, Xing D, Gao C. Micropatterned biodegradable polyesters clicked with CQAASIKVAV promote cell alignment, directional migration, and neurite outgrowth. Acta Biomater 2018; 74:143-155. [PMID: 29768188 DOI: 10.1016/j.actbio.2018.05.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/28/2018] [Accepted: 05/11/2018] [Indexed: 12/31/2022]
Abstract
The interplay of microstructures and biological cues is critical to regulate the behaviors of Schwann cells (SCs) in terms of cellular spatial arrangement and directional migration as well as neurite orientation for bridging the proximal and distal stumps of the injured peripheral nervous system. In this study, stripe micropatterns having ridges/grooves of width 20/20 and 20/40 μm were fabricated on the surface of maleimide-functionalized biodegradable poly(ester carbonate) (P(LLA-MTMC)) films by the polydimethylsiloxane mold-pressing method, respectively. The laminin-derived CQAASIKVAV peptides end-capped with an SH group were then grafted by the thiol-ene click reaction under mild conditions to obtain micropatterned and peptide-grafted films. SCs cultured on these films, especially on the 20/40-μm film, displayed faster and aligned adhesion as well as a larger number of elongated cells with a higher length-to-width (L/W) ratio along the stripe direction than those on the flat-pep film. The migration rate of SCs was significantly enhanced in parallel to the stripe direction with a large net displacement. The micropatterned and peptide-grafted films, especially the 20/40-μm film, could promote SC proliferation and nerve growth factor (NGF) secretion in a manner similar to that of the peptide-grafted planar film. Moreover, the neurites of rat pheochromocytoma 12 (PC12) cells sprouted along the ridges with a longer average length on the micropatterned and peptide-grafted films. The synergistic effect of physical patterns and biological cues was evaluated by considering the results of cell adhesion force; immunofluorescence staining of vinculin; fluorescence staining of F-actin and the nucleus; as well as gene expression of neural cadherin (NCAD), neurocan (NCAN), and myelin protein zero (P0). STATEMENT OF SIGNIFICANCE The interplay of microstructures and biological cues is critical to regulate the behaviors of Schwann cells (SCs) and nerve cells, and thereby the regeneration of peripheral nerve system. In this study, the combined micropatterning and CQAASIKVAV grafting endowed the modified P(LLA-MTMC) films with both contact guidance and bioactive chemical cues to enhance cell proliferation, directional alignment and migration, longer net displacement and larger NGF secretion, and stronger neurite outgrowth of SCs and PC12 cells. Hence, the integration of physical micropatterns and bioactive molecules is an effective way to obtain featured biomaterials for the regeneration of nerves and other types of tissues.
Collapse
|
9
|
Sornkamnerd S, Okajima MK, Matsumura K, Kaneko T. Surface-Selective Control of Cell Orientation on Cyanobacterial Liquid Crystalline Gels. ACS OMEGA 2018; 3:6554-6559. [PMID: 30023952 PMCID: PMC6045405 DOI: 10.1021/acsomega.7b02027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/27/2018] [Indexed: 05/21/2023]
Abstract
Liquid crystalline hydrogels (LCGs) with layer structures and oriented pores were created using sacran which is a cyanobacterial heteropolysaccharide possessing functional sulfate, carboxylate, and amide groups in common with glycosaminoglycan. The LCG biocompatibility with L929 mouse fibroblasts was confirmed under the appropriate conditions. Enhanced growth and proliferation of L929 cells without exhibiting any toxicity were confirmed. The water contact angle and protein adsorption ability on the LCG were well-controlled by the cross-linking degree. Additionally, fibroblasts were finely oriented on the LCG side face where layer edges made a striped morphology on its surface, whereas the flat top faces of the LCG did not induce any specific cell orientation.
Collapse
Affiliation(s)
- Saranyoo Sornkamnerd
- Graduate School
of Advanced Science
and Technology, Japan Advanced Institute
of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Maiko K. Okajima
- Graduate School
of Advanced Science
and Technology, Japan Advanced Institute
of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Kazuaki Matsumura
- Graduate School
of Advanced Science
and Technology, Japan Advanced Institute
of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Tatsuo Kaneko
- E-mail: . Phone: +81-761-51-1631. Fax: +81-761-51-1635 (T.K.)
| |
Collapse
|
10
|
Zhang D, Xu S, Wu S, Gao C. Micropatterned poly(d,l-lactide-co-caprolactone) films entrapped with gelatin for promoting the alignment and directional migration of Schwann cells. J Mater Chem B 2018; 6:1226-1237. [DOI: 10.1039/c7tb03073h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Gelatin entrapped and micropatterned poly(d,l-lactide-co-caprolactone) (PLCL) film promotes the alignment and directional migration of Schwann cells.
Collapse
Affiliation(s)
- Deteng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Shengjun Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Sai Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
11
|
Badea A, McCracken JM, Tillmaand EG, Kandel ME, Oraham AW, Mevis MB, Rubakhin SS, Popescu G, Sweedler JV, Nuzzo RG. 3D-Printed pHEMA Materials for Topographical and Biochemical Modulation of Dorsal Root Ganglion Cell Response. ACS APPLIED MATERIALS & INTERFACES 2017; 9:30318-30328. [PMID: 28813592 PMCID: PMC5605921 DOI: 10.1021/acsami.7b06742] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Understanding and controlling the interactions occurring between cells and engineered materials are central challenges toward progress in the development of biomedical devices. In this work, we describe materials for direct ink writing (DIW), an extrusion-based type of 3D printing, that embed a custom synthetic protein (RGD-PDL) within the microfilaments of 3D-hydrogel scaffolds to modify these interactions and differentially direct tissue-level organization of complex cell populations in vitro. The RGD-PDL is synthesized by modifying poly-d-lysine (PDL) to varying extents with peptides containing the integrin-binding motif Arg-Gly-Asp (RGD). Compositional gradients of the RGD-PDL presented by both patterned and thin-film poly(2-hydroxyethyl) methacrylate (pHEMA) substrates allow the patterning of cell-growth compliance in a grayscale form. The surface chemistry-dependent guidance of cell growth on the RGD-PDL-modified pHEMA materials is demonstrated using a model NIH-3T3 fibroblast cell line. The formation of a more complex cellular system-organotypic primary murine dorsal root ganglion (DRG)-in culture is also achieved on these scaffolds, where distinctive forms of cell growth and migration guidance are seen depending on their RGD-PDL content and topography. This experimental platform for the study of physicochemical factors on the formation and the reorganization of organotypic cultures offers useful capabilities for studies in tissue engineering, regenerative medicine, and diagnostics.
Collapse
Affiliation(s)
- Adina Badea
- School of Chemical Sciences, University of Illinois-Urbana Champaign, Urbana, IL 61801, United States of America
| | - Joselle M. McCracken
- School of Chemical Sciences, University of Illinois-Urbana Champaign, Urbana, IL 61801, United States of America
| | - Emily G. Tillmaand
- Neuroscience Program, University of Illinois-Urbana Champaign, Urbana, IL 61801, United States of America
| | - Mikhail E. Kandel
- Department of Electrical and Computer Engineering, University of Illinois-Urbana Champaign, Urbana, IL 61801, United States of America
| | - Aaron W. Oraham
- School of Chemical Sciences, University of Illinois-Urbana Champaign, Urbana, IL 61801, United States of America
| | - Molly B. Mevis
- School of Chemical Sciences, University of Illinois-Urbana Champaign, Urbana, IL 61801, United States of America
| | - Stanislav S. Rubakhin
- School of Chemical Sciences, University of Illinois-Urbana Champaign, Urbana, IL 61801, United States of America
| | - Gabriel Popescu
- Department of Electrical and Computer Engineering, University of Illinois-Urbana Champaign, Urbana, IL 61801, United States of America
| | - Jonathan V. Sweedler
- School of Chemical Sciences, University of Illinois-Urbana Champaign, Urbana, IL 61801, United States of America
- Neuroscience Program, University of Illinois-Urbana Champaign, Urbana, IL 61801, United States of America
| | - Ralph G. Nuzzo
- School of Chemical Sciences, University of Illinois-Urbana Champaign, Urbana, IL 61801, United States of America
- School of Chemical Science and Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|