1
|
Xing L, Sun Y, Chu R, Li W, Chen X, Hou S, Xu L, Li L, Chen G, Xing T. Preparation of Flower-like Nanosilver Based on Bioderived Caffeic Acid for Raman Enhancement and Dye Degradation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8665-8677. [PMID: 38598258 DOI: 10.1021/acs.langmuir.4c00478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
In this study, a simple, green, and low-cost room temperature synthesis of broccoli-like silver nanoflowers (AgNF) with a particle size of about 300-500 nm was developed using plant-derived caffeic acid as a reducing agent and polyvinylpyrrolidone as a dispersant under ultrasound assistance. The flower clusters covered by small nanocrystals of 20-50 nm significantly enhance the electromagnetic field signals. AgNF was deposited on the surface of silicon wafers as a surface-enhanced Raman spectroscopy sensor for the detection of probe molecules such as rhodamine 6G (R6G) and malachite green with high sensitivity, homogeneity, and reproducibility. AgNF was deposited on cotton fabrics in the form of composites to catalyze the degradation of dye pollutants such as R6G, MG, and methyl orange in the presence of sodium borohydride. 0.1 g of AgNF/cotton fabric could assist 15 mmol/L NaBH4 to achieve over 90% degradation of various dyes as well as a high concentration of dyes in 12 min with good reusability and recyclability. The AgNF synthesized in this work can not only monitor the type and amounts of pollutants (dyes) in wastewater but also catalyze the rapid degradation of dyes, which is expected to be valuable for industrial applications.
Collapse
Affiliation(s)
- Lili Xing
- College of Textile and Clothing Engineering, Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou 215123, China
| | - Yurong Sun
- College of Textile and Clothing Engineering, Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou 215123, China
| | - Runshan Chu
- College of Textile and Clothing Engineering, Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou 215123, China
| | - Wenji Li
- College of Textile and Clothing Engineering, Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou 215123, China
| | - Xinpeng Chen
- College of Textile and Clothing Engineering, Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou 215123, China
| | - Shuaijie Hou
- College of Textile and Clothing Engineering, Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou 215123, China
| | - Lei Xu
- College of Textile Science and Engineering, Zhejiang SCI-TECH University, Hangzhou 310018, China
- School of Textile and Clothing, Suzhou Institute of Trade and Commerce, Suzhou 215009, China
| | - Ling Li
- College of Textile and Clothing Engineering, Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou 215123, China
| | - Guoqiang Chen
- College of Textile and Clothing Engineering, Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou 215123, China
| | - Tieling Xing
- College of Textile and Clothing Engineering, Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou 215123, China
| |
Collapse
|
2
|
Sherpa L, Nimmala A, Rao SVSN, Khan SA, Pathak AP, Tripathi A, Tiwari A. Refining shape and size of silver nanoparticles using ion irradiation for enhanced and homogeneous SERS activity. DISCOVER NANO 2024; 19:51. [PMID: 38502359 PMCID: PMC11329486 DOI: 10.1186/s11671-024-03994-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/09/2024] [Indexed: 03/21/2024]
Abstract
We present green synthesis of silver nanoparticles in water using unirradiated and Ag15 + ion irradiated phytoextracts of Bergenia Ciliata leaf, Eupatorium adenophorum leaf, Rhododendron arboreum leaf and flower. The use of different plant extracts and their subsequent ion irradiation allow for successful refinement of nanoparticle size and morphology. Due to changes in reducing and capping agents the nanoparticle surface functionalization also varies which not only controls the morphology but also allows for surface oxidation and aggregation processes. In this work, we have synthesized silver nanoparticles which exhibit sizes in the range from 13 to 24 nm and having shapes like spherical, quasispherical, trigonal, hexagonal, cylindrical, dendritic assemblies, and porous nanoparticles. Owing to changes in the size and shape of the nanoparticles, their direct bandgap (2.05 eV - 2.48 eV) and local surface plasmon resonance (420 nm - 490 nm) could also be tuned. These nanoparticles are examined as SERS substrates, where their enhancement factors, limit of detection for methylene blue, and SERS substrate homogeneity have been tested. It has been observed the nanoparticles synthesized using unirradiated plant extracts present an enhancement factor of 106 with a limit of detection 10- 8 M. Whereas nanoparticles with refined morphology and shapes upon irradiation present high enhancement factors of >107 and detection limit down to 10- 9 M. In addition, uniformity in Raman spectra over the SERS substrates has been obtained for selected Ag NPs substrates synthesized using irradiated extracts with minimum relative standard deviation in enhancement factor < 12%.
Collapse
Affiliation(s)
- Laden Sherpa
- Department of Physics, Sikkim University, Tadong, Gangtok, Sikkim, 737102, India
| | - Arun Nimmala
- Centre for Advanced Studies in Electronics Science and Technology (CASEST), School of Physics, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - S V S Nageswara Rao
- Centre for Advanced Studies in Electronics Science and Technology (CASEST), School of Physics, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - S A Khan
- Inter University Accelerator Centre, (IUAC), New Delhi, New Delhi, 110067, India
| | - Anand P Pathak
- School of Physics University of Hyderabad, Hyderabad, Telangana, 5000046, India
| | - Ajay Tripathi
- Department of Physics, Sikkim University, Tadong, Gangtok, Sikkim, 737102, India
| | - Archana Tiwari
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
3
|
Shaikh N, Som NN, Jha PK, Pamidimukkala P. Chitosan supported silver nanostructures as surface-enhanced Raman scattering sensor: Spectroscopic and density functional theory insights. Int J Biol Macromol 2023; 253:127444. [PMID: 37839595 DOI: 10.1016/j.ijbiomac.2023.127444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/03/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
In this work, nanostructures comprising silver nanoparticles supported on a wrinkled chitosan matrix (Ag@Ch) were successfully synthesized by a simple aging process at room temperature for four days through self-assembly. Chitosan, a natural polysaccharide was used as a support as well as a reducing agent for the formation of Ag nanostructures and the creation of hotspots for SERS activity. The fabricated Ag@Ch nanostructures were characterized by several spectroscopic techniques and were used as a surface-enhanced Raman scattering (SERS) substrate. The effect of wet, dry, and liquid samples on the SERS enhancement has been studied and was found to be effective for sensing Methylene blue, Crystal Violet, and p-Nitrophenol with detection limits of 3.8, 8.1, and 8.2 ppb respectively. The SERS enhancement of the Ag@Ch was attributed to the combination of both electromagnetic (EM) and chemical effects (CE). Density functional theory (DFT) calculations were used to explain the observed surface enhancement. Good agreement was observed between the experimental and simulated spectra.
Collapse
Affiliation(s)
- Naznin Shaikh
- Department of Chemistry, Faculty of Science, The M. S. University of Baroda, Sayajigunj, Vadodara 390002, India
| | - Narayan N Som
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Wołoska Str., 02-507 Warsaw, Poland
| | - Prafaulla K Jha
- Department of Physics, Faculty of Science, The M. S. University of Baroda, Vadodara, Gujarat 390002, India
| | - Padmaja Pamidimukkala
- Department of Chemistry, Faculty of Science, The M. S. University of Baroda, Sayajigunj, Vadodara 390002, India.
| |
Collapse
|
4
|
Mahalingam S, Govindaraji PK, Solomon VG, Kesavan H, Neelan YD, Bakthavatchalam S, Kim J, Bakthavatchalam P. Biogenic Synthesis and Characterization of Silver Nanoparticles: Evaluation of Their Larvicidal, Antibacterial, and Cytotoxic Activities. ACS OMEGA 2023; 8:11923-11930. [PMID: 37033866 PMCID: PMC10077534 DOI: 10.1021/acsomega.2c07531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
To explore the larvicidal activity of the silver nanoparticles (AgNPs) synthesized using the ethanolic Catharanthus roseus flower extract (CRE) against the larvae of Aedes aegypti (A. aegypti), AgNPs were synthesized by an eco-friendly method and characterized by Ultraviolet-Visible (UV-Vis) spectroscopy, Fourier Transform Infrared spectroscopy (FTIR), X-Ray Diffraction (XRD), Particle Size Analysis, Transmission Electron Microscopy (TEM), and Energy-Dispersive X-Ray spectrometry (EDX) analysis. The resultant AgNPs showed a spherically well-defined, highly stable, and monodispersed shape with an average particle size ranging from 15 to 25 nm. The absorbance of the AgNPs was measured by using a UV-Vis spectrophotometer at a wavelength of 416 nm. The presence and binding of the phenolic functional group with the AgNPs were confirmed using FTIR analysis. Particle size analysis revealed an average particle diameter of 90 nm with 80 % distribution. XRD analysis revealed the highly crystalline nature of the CRE-AgNPs. The LC50 and LC90 values of CRE-AgNPs and the extract were calculated. The mortality percentage of the extract and synthesized CRE-AgNPs was observed after 24 h. The maximum larvicidal activity with 100 % mortality of A. aegypti was observed in AgNPs synthesized using ethanolic CRE. The LC50 and LC90 values are 8.963 and 20.515 ppm for CRE-AgNPs against A. aegypti larvae, respectively. The CRE-AgNPs revealed superior antibacterial activity against human pathogenic bacteria; the zone of inhibition (ZOI) was measured for all of the pathogens, and the results revealed that different concentrations of CRE-AgNPs showed a remarkable ZOI of about (a) 10-14 mm for Salmonella typhimurium, (b) 6-11 mm for Bacillus subtilis, (c) 11-14 mm for Enterococcus faecalis, and (d) 9-10 mm for Shigella boydii. The maximum ZOI was observed in E. faecalis. Impeccably, the cytotoxicity of CRE-AgNPs at 250 μg/mL is 82% against the HaCaT cell lines. The synthesized CRE-AgNPs showed maximum effectiveness of paradoxical activity on mosquito larvae.
Collapse
Affiliation(s)
- Shanmugam Mahalingam
- Department
of Materials System Engineering, Pukyong
National University, Busan 48513, Republic
of Korea
| | - Praveen Kumar Govindaraji
- Department
of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Ramapuram Campus, Chennai 600089, India
| | - Vasthi Gnanarani Solomon
- Department
of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Ramapuram Campus, Chennai 600089, India
| | - Hema Kesavan
- Department
of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Ramapuram Campus, Chennai 600089, India
| | - Yalini Devi Neelan
- Department
of Materials Science and Engineering, Chungnam
National University, Daejeon 34134, Republic
of Korea
| | - Senthil Bakthavatchalam
- Department
of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Ramapuram Campus, Chennai 600089, India
| | - Junghwan Kim
- Department
of Materials System Engineering, Pukyong
National University, Busan 48513, Republic
of Korea
| | | |
Collapse
|
5
|
Fu CP, Li KJ, He JY, Yu WH, Zhou CH. Controlled fabrication of Ag@clay nanomaterials for ultrasensitive and rapid surface-enhanced Raman spectroscopic detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1001-1015. [PMID: 36541705 DOI: 10.1039/d2ay01262f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The nanostructure of Ag nanoparticles (NPs) plays a critical role in their surface-enhanced Raman scattering (SERS) activity. Despite many efforts to tune the nanostructure of Ag NPs, it remains a great challenge as Ag NPs tend to agglomerate and their nanostructure is difficult to control. Herein, newly-discovered clay-surfactant-Ag+ materials and interfacial processes were developed and used to prepare uniform spherical Ag@synthetic hectorite (Ag@Hct) nanomaterials for ultrasensitive SERS assay. Sodium dodecyl sulfate (SDS), an anionic surfactant, acted as a bridge to conjugate the positively charged edge of Hct NPs and Ag+via electrostatic interaction to form the bridging nanostructure of Hct-SDS-Ag+, which promoted the uniform dispersion of Hct NPs. Following this, Ag+ was reduced to Ag0 by the reductant, and Ag0 grew on the surface of disc-like Hct NPs to form spherical Ag@Hct nanomaterials with an average particle size of ∼24 nm. The prepared Ag@Hct nanomaterials showed an ultrasensitive SERS response to methylene blue (MB) with a detection limit of 10-12 M. The detection limit of MB in sewage was 10-11 M. The prepared Ag@Hct nanomaterials also exhibited great SERS enhancement for malachite green and crystal violet. This work provides a novel and simple approach to prepare Ag@Hct nanomaterials with uniform spheres and adjustable particle size, allowing more sensitive and reproducible detection of MB.
Collapse
Affiliation(s)
- Chao Peng Fu
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, China.
| | - Ke Jin Li
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, China.
| | - Jia Yong He
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, China.
| | - Wei Hua Yu
- Zhijiang College, Zhejiang University of Technology, Shaoxing, 312030, China
| | - Chun Hui Zhou
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, China.
- Qing Yang Institute for Industrial Minerals, Youhua, Qingyang, Chizhou, 242804, China
- Engineering Research Center of Non-metallic Minerals of Zhejiang Province, Zhejiang Institute of Geology and Mineral Resources, Hangzhou, 310007, China
| |
Collapse
|
6
|
Green Synthesis of Flower-Like Carrageenan-Silver Nanoparticles and Elucidation of Its Physicochemical and Antibacterial Properties. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020907. [PMID: 36677963 PMCID: PMC9860806 DOI: 10.3390/molecules28020907] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
Herein, we report the green synthesis of flower-like carrageenan-silver nanoparticles (c-AgNPs) through a facile hydrothermal reaction at 90 °C for 2 h. The reduction of silver nitrate (AgNO3) to c-AgNPs was evident by the colour change of the solution from colourless to dark brown and further confirmed by a UV-Vis surface plasmon resonance (SPR) peak at ~420 nm. The FTIR spectra showed that the abundance of functional groups present in the carrageenan were responsible for the reduction and stabilisation of the c-AgNPs. The XRD pattern confirmed the crystalline nature and face-centred cubic structure of the c-AgNPs, while the EDX analysis showed the presence of a high composition of elemental silver (85.87 wt%). Interestingly, the morphological characterisations by SEM and FE-SEM revealed the formation of flower-like c-AgNPs composed of intercrossed and random lamellar petals of approximately 50 nm in thickness. The growth mechanism of flower-like c-AgNPs were elucidated based on the TEM and AFM analyses. The c-AgNPs displayed promising antibacterial properties against E. coli and S. aureus, with zones of inhibition ranging from 8.0 ± 0.0 to 11.7 ± 0.6 mm and 7.3 ± 0.6 to 9.7 ± 0.6 mm, respectively, as the concentration of c-AgNPs increased from 0.1 to 4 mg/mL.
Collapse
|
7
|
Landeros-Páramo L, Saavedra-Molina A, Cholico-González D, Rosas G. A comparative study of the catalytic activity between Ag nanoparticles and Ag flower-like particles synthesized by the Sedum praealtum aqueous extract. PARTICULATE SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1080/02726351.2022.2156415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Luis Landeros-Páramo
- Instituto de Investigación en Metalurgia y Materiales, UMSNH, edificio U., Ciudad Universitaria, Morelia, México
| | - Alfredo Saavedra-Molina
- Instituto de Investigaciones Químico Biológicas, UMSNH, edificio B-3., Ciudad Universitaria, Morelia, México
| | - Diana Cholico-González
- Instituto de Investigación en Metalurgia y Materiales, UMSNH, edificio U., Ciudad Universitaria, Morelia, México
| | - G. Rosas
- Instituto de Investigación en Metalurgia y Materiales, UMSNH, edificio U., Ciudad Universitaria, Morelia, México
| |
Collapse
|
8
|
In situ synthesis of MXene/Ag nanocomposites based flexible SERS substrates on PDMS for detection on fruit surfaces. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Nguyen MC, Ngan Luong TQ, Vu TT, Anh CT, Dao TC. Synthesis of wool roll-like silver nanoflowers in an ethanol/water mixture and their application to detect traces of the fungicide carbendazim by SERS technique. RSC Adv 2022; 12:11583-11590. [PMID: 35425087 PMCID: PMC9006241 DOI: 10.1039/d1ra09286c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/07/2022] [Indexed: 12/19/2022] Open
Abstract
The Raman signal enhancement ability of the surface-enhanced Raman scattering (SERS) technique is largely determined by the SERS substrate, which is usually a collection of precious metal (such as silver or gold) nanoparticles. For use in the SERS substrate, anisotropic metal nanoparticles, e.g. flower-like, will be preferred over the isotropic ones since they will give higher Raman enhancement. The problem is that it is very difficult to fabricate anisotropic metal nanoparticles as small as the isotropic ones that are best suited for use as SERS substrates. This study deals with the synthesis of wool roll-like silver nanoflowers (AgNFs) in a mixed ethanol/water solution instead of the usual aqueous solution when reducing silver nitrate with ascorbic acid in the presence of citric acid, which acts as a structure-directing agent. The size of the wool roll-shaped AgNFs was reduced from about 700 nm when the solution was purely aqueous to about 280 nm when in the mixed solution the ethanol/water volume ratio was 75/25. Thanks to the size reduction of AgNFs, the enhancement factor of SERS substrates made from them has increased dramatically, from 2.7 × 106 when the size of AgNFs is 700 nm to 5.4 × 109 when their size is 280 nm (the calculation is based on rhodamine 6G Raman and SERS spectroscopy). The application of the above AgNFs to recording the SERS spectrum of carbendazim (CBZ), a typical fungicide, at low concentrations has also shown that the smaller the size of the AgNFs, the higher the intensity of the CBZ characteristic bands. The wool roll-shaped AgNFs with a size of 280 nm allowed CBZ to be detected down to a concentration of 0.01 ppm (4.2 × 10-8 M) with a detection limit of 3.2 ppb (13.4 × 10-9 M).
Collapse
Affiliation(s)
- Manh Cuong Nguyen
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay 100000 Hanoi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay 100000 Hanoi Vietnam
| | - Truc Quynh Ngan Luong
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay 100000 Hanoi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay 100000 Hanoi Vietnam
| | - Thi Thu Vu
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay 100000 Hanoi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay 100000 Hanoi Vietnam
| | - Cao Tuan Anh
- Tantrao University Yen Son Trung Mon 22000 Tuyenquang Vietnam
| | - Tran Cao Dao
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay 100000 Hanoi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay 100000 Hanoi Vietnam
| |
Collapse
|
10
|
Sherpa L, Arun N, Nageswara Rao S, Khan S, Pathak A, Tripathi A, Tiwari A. 200 MeV Ag ion irradiation mediated green synthesis and self assembly of silver nanoparticles into dendrites for enhanced SERS applications. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.109966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
11
|
Zhao B, Lou C, Zhou Q, Zhu Y, Li W, Jingshan M. Synthesis of chitosan/TCN nanocomposites with the carbon dioxide assisted phase inversion. RSC Adv 2022; 12:8256-8262. [PMID: 35424763 PMCID: PMC8982325 DOI: 10.1039/d2ra00296e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/09/2022] [Indexed: 11/21/2022] Open
Abstract
The chitosan (CS)/bis(2-hydroxyethyl)methyl tallow ammonium modified montmorillonite (TCN) nanocomposites are synthesized by the phase inversion procedure via the assistance of carbon dioxide (CO2). The viscosity of CS/formic acid solution is reduced with the incorporation of CO2 owing to the formation of carbamic acid. However, the incorporation of TCN promotes the viscosity of CS solution due to the interaction between TCN and carbamic acid. The morphology of CS/TCN nanocomposites is studied by scanning electron microscopy (SEM), where the surface of the membrane is dense and non-porous. The microstructure of the synthesized CS/TCN composite is further investigated by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra, X-ray diffraction (XRD), differential scanning calorimetry (DSC), and transmission electron microscopy (TEM). It is found that the incorporation of TCN without the presence of CO2 disturbs the crystallization of CS. Interestingly, the melting enthalpy of the CS/TCN composite is notably increased with the introduction of CO2, demonstrating that the interaction between the TCN and carbamic acid enhances the formation of CS crystals. XRD and TEM results show that this interaction is able to promote the homogeneous distribution of TCN in the nanoscale with the non-exfoliated form, enhancing the mechanical properties of the synthesized nanocomposites. In particular, the synthesized CS/TCN nanocomposites with the assistance of CO2 present exceptional mechanical properties, where the tensile strength (65.82 MPa) and Young's modulus (3512.48 MPa) are twice as high as that of the CO2 free system.
Collapse
Affiliation(s)
- Binqing Zhao
- School of Material Science and Chemical Engineering, Ningbo University Ningbo 315211 Zhejiang P. R. China .,School of Materials and Chemical Engineering, Ningbo University of Technology Ningbo 315211 Zhejiang P. R. China
| | - Chenxi Lou
- School of Material Science and Chemical Engineering, Ningbo University Ningbo 315211 Zhejiang P. R. China .,School of Materials and Chemical Engineering, Ningbo University of Technology Ningbo 315211 Zhejiang P. R. China
| | - Qi Zhou
- School of Materials and Chemical Engineering, Ningbo University of Technology Ningbo 315211 Zhejiang P. R. China
| | - Yating Zhu
- School of Materials and Chemical Engineering, Ningbo University of Technology Ningbo 315211 Zhejiang P. R. China
| | - Wei Li
- School of Material Science and Chemical Engineering, Ningbo University Ningbo 315211 Zhejiang P. R. China .,Ningbo Research Institute, Zhejiang University Ningbo 315100 Zhejiang P. R. China
| | - Mu Jingshan
- School of Material Science and Chemical Engineering, Ningbo University Ningbo 315211 Zhejiang P. R. China
| |
Collapse
|
12
|
Tran Truc Phuong N, Xoan Hoang T, La Ngoc Tran N, Gia Phuc L, Phung VD, Kieu Thi Ta H, Ngoc Bach T, Hoa Thi Tran N, The Loan Trinh K. Rapid and sensitive detection of Rhodamine B in food using the plasmonic silver nanocube-based sensor as SERS active substrate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 263:120179. [PMID: 34298280 DOI: 10.1016/j.saa.2021.120179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/21/2021] [Accepted: 07/09/2021] [Indexed: 05/21/2023]
Abstract
The use of dye in food is harmful to human health and is prohibited nowadays. However, it is still used because of the benefits, such as cheap prices and abundant resources. Rhodamine B is usually used as the colorant in food such as chili powder, chili oil, etc. It is colorless at very low concentration 10-7 M. The sensitive detection of RhB at ultra-low concentration help to prevent some risk for human. Surface-enhanced Raman scattering (SERS) is a great technique to detect the analytes at ultra-low concentration and provide the molecule's information as a fingerprint. In this study, silver nano-cube was facilely synthesized by reducing Ag+ in ethylene glycol and upgraded to thin-film as a SERS active substrate. RhB was detected at 10-10 M by a silver nano-cube sensor. The dynamic linear regression between the Raman intensity and RhB concentration over seven orders of magnitude (from 10-4 to 10-10 M) was excellent with high reliability (R2 = 0.99). Moreover, the substrate can be used after storing in a dark area for 60 days. This proposed nano-cube silver could serve as a potential substrate for detecting RhB in food at very low concentration.
Collapse
Affiliation(s)
- Nguyen Tran Truc Phuong
- Faculty of Materials Science and Technology, University of Science, HoChiMinh City, Viet Nam; Vietnam National University, HoChiMinh City, Viet Nam
| | - Thi Xoan Hoang
- Department of Life Science, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Nguyen La Ngoc Tran
- Faculty of Materials Science and Technology, University of Science, HoChiMinh City, Viet Nam; Vietnam National University, HoChiMinh City, Viet Nam
| | - Lam Gia Phuc
- Faculty of Materials Science and Technology, University of Science, HoChiMinh City, Viet Nam; Vietnam National University, HoChiMinh City, Viet Nam
| | - Viet-Duc Phung
- Future Materials and Devices Laboratory, Duy Tan University, Ho Chi Minh City 700000, Viet Nam; Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 550000, Viet Nam
| | - Hanh Kieu Thi Ta
- Faculty of Materials Science and Technology, University of Science, HoChiMinh City, Viet Nam; Vietnam National University, HoChiMinh City, Viet Nam; Center for Innovative Materials and Architectures (INOMAR), HoChiMinh City, Viet Nam
| | - Ta Ngoc Bach
- Institute of Materials Science, Vietnam Academy of Science and Technology, Ha Noi, Viet Nam
| | - Nhu Hoa Thi Tran
- Faculty of Materials Science and Technology, University of Science, HoChiMinh City, Viet Nam; Vietnam National University, HoChiMinh City, Viet Nam.
| | - Kieu The Loan Trinh
- Department of Industrial Environmental Engineering, College of Industrial Environmental Engineering, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
| |
Collapse
|
13
|
Murugan E, Santhoshkumar S, Govindaraju S, Palanichamy M. Silver nanoparticles decorated g-C 3N 4: An efficient SERS substrate for monitoring catalytic reduction and selective Hg 2+ions detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:119036. [PMID: 33070011 DOI: 10.1016/j.saa.2020.119036] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/02/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Graphitic carbon nitride supported Ag NPs(AgNPs@g-C3N4) were synthesized by an in-situ chemical reduction using a green reducing agent, tannic acid. They were characterized by UV-Vis, FTIR, XPS, XRD, FESEM, EDAX and HRTEM. They were very much SERS sensitive, and capable of detecting methylene blue and 4-aminothiophenol at 1 × 10-12 M and 1 × 10-10 M, respectively with the corresponding SERS enhancement factor of 1.4 × 108 and 4.7 × 107. Apart from its high SERS sensitivity, it exhibited high catalytic activity for the reduction of MB with NaBH4. So, their SERS activity and catalytic activity were combined successfully to monitor catalytic reduction of MB by SERS technique. Further, the SERS activity towards MB was also employed for the detection/quantification of free Hg2+ ions in aqueous solution. The SERS intensity of MB drastically decreased in the presence of Hg2+ ions, and hence it provides novel route to detect and quantify the latter. Presence of Ca2+, Mg2+, Cu2+ and Cd2+ions showed zero interference for it. So, this study proves that Ag NPs@g-C3N4 as a unique substrate for multiple SERS applications.
Collapse
Affiliation(s)
- E Murugan
- Department of Physical Chemistry, School of Chemical Science, University of Madras, Guindy Campus, Chennai 600 025, Tamilnadu, India.
| | - S Santhoshkumar
- Department of Physical Chemistry, School of Chemical Science, University of Madras, Guindy Campus, Chennai 600 025, Tamilnadu, India
| | - S Govindaraju
- Department of Physical Chemistry, School of Chemical Science, University of Madras, Guindy Campus, Chennai 600 025, Tamilnadu, India
| | - M Palanichamy
- Department of Physical Chemistry, School of Chemical Science, University of Madras, Guindy Campus, Chennai 600 025, Tamilnadu, India
| |
Collapse
|
14
|
Liu M. Growth of Nanostructured Silver Flowers by Metal-Mediated Catalysis for Surface-Enhanced Raman Spectroscopy Application. ACS OMEGA 2020; 5:32655-32659. [PMID: 33376902 PMCID: PMC7758958 DOI: 10.1021/acsomega.0c05021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/24/2020] [Indexed: 05/13/2023]
Abstract
Metallic flowers with nanoscale surface roughness can provide a platform for highly sensitive and reproductive surface-enhanced Raman spectroscopy (SERS). Here, we present a method to grow a nanostructured silver flower (NSF) at the apex of a plasmonic tip based on metal-mediated catalysis, where the NSF was rapidly generated in no more than 1 min. The NSF was used as the SERS substrate under linear polarization beam (LPB) excitation to achieve a 10-9 M detection sensitivity for the malachite green analyte. The reproducibility for SERS is examined to have been guaranteed by comparing Raman intensity enhanced by different NSFs. Compared with the LPB, the azimuthal vector beam (AVB) excitation can further improve the SERS activity of the NSF, which is consistent with the simulation result that the gap mode can be effectively generated between two adjacent Ag nanoparticles (NPs) and between the NPs and the Ag pyramids on the surface of the NSF under AVB illumination. This work makes it promising for plasmonic tip-mediated catalysis to be applied in nanofabrication, the products of which can be further exploited in nanostructure-based ultrasensitive detection.
Collapse
Affiliation(s)
- Min Liu
- School
of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071, China
- MOE
Key Laboratory of Material Physics and Chemistry under Extraordinary
Conditions and Shaanxi Key Laboratory of Optical Information Technology,
School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
15
|
Zare EN, Padil VV, Mokhtari B, Venkateshaiah A, Wacławek S, Černík M, Tay FR, Varma RS, Makvandi P. Advances in biogenically synthesized shaped metal- and carbon-based nanoarchitectures and their medicinal applications. Adv Colloid Interface Sci 2020; 283:102236. [PMID: 32829011 DOI: 10.1016/j.cis.2020.102236] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 02/08/2023]
Abstract
Non-spherical metal-based and carbon-based nanostructures have found applications in every facet of scientific endeavors, including engineering and biomedical fields. These nanostructures attract attention because of their biocompatibility and negligible cytotoxicity. Chemical and physical methods have been used for synthesizing earlier generations of metal-based and carbon-based nanostructures with variable architectures, including nanorods, nanowires, nanodots and nanosheets. However, these synthesis strategies utilize organic passivators which are toxic to the environment and the human body. Biogenic synthesis of nanoparticles is becoming increasing popular because of the necessity to develop eco-friendly and non-toxic strategies. Nanoparticles synthesized by natural compounds have immense potential in the biomedical arena. The present review focuses on plant-mediated synthesis of metal-based and carbon-based non-spherical nanoarchitectures and the role of green synthesis in improving their activities for biomedical applications.
Collapse
|
16
|
Ionic liquid – Assisted synthesis of silver mesoparticles as efficient surface enhanced Raman scattering substrates. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Zhang CY, Zhao BC, Hao R, Wang Z, Hao YW, Zhao B, Liu YQ. Graphene oxide-highly anisotropic noble metal hybrid systems for intensified surface enhanced Raman scattering and direct capture and sensitive discrimination in PCBs monitoring. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121510. [PMID: 31704120 DOI: 10.1016/j.jhazmat.2019.121510] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/13/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Graphene oxide (GO)-anisotropic noble metal hybrid systems were developed as highly sensitive and reproducible surface enhanced Raman scattering (SERS) platform, in which ultrathin GO was embedded between two metallic layers of flower-like Ag nanoparticles (AgNFs) and gold nanostars (AuNSts). Due to multi-dimensional plasmonic coupling effect, the well-designed AgNFs-GO-AuNSts sandwich structures possessed ultrahigh sensitivity with the detection limit of R6G as low as 1.0 × 10-13 M and high enhancement factor of 2.59 × 107. Additionally, the GO interlayer could function as protective shell to suppress the oxidation of bottom silver layer and efficiently position the target analytes within hot spots. These features endow the substrate with high stability and excellent reproducibility (Signal variations < 7%). Particularly, the GO sandwiched substrate can be explored for the direct capture and sensitive detection of polychlorinated biphenyls (PCBs) without any organic modifier as molecule harvester. This minimum detected concentration was estimated as low as 3.4 × 10-6 M. The detection method based on GO mediated sandwich substrate avoids complicated surface modification manipulations and improves the substrate cleanness. Moreover, the resultant sandwich substrates can be used to recognize fingerprint peaks of different PCBs in their complex mixture, revealing great potential applications in SERS-based simultaneous detection of multiple pollutants with low affinity.
Collapse
Affiliation(s)
- Cong-Yun Zhang
- Shanxi Province Key Laboratory of Functional Nanocomposites, School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
| | - Bai-Chuan Zhao
- Shanxi Province Key Laboratory of Functional Nanocomposites, School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
| | - Rui Hao
- Shanxi Province Key Laboratory of Functional Nanocomposites, School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
| | - Zhi Wang
- Shanxi Province Key Laboratory of Functional Nanocomposites, School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
| | - Yao-Wu Hao
- The Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas 76019, USA
| | - Bin Zhao
- Shanxi Province Key Laboratory of Functional Nanocomposites, School of Materials Science and Engineering, North University of China, Taiyuan 030051, China.
| | - Ya-Qing Liu
- Shanxi Province Key Laboratory of Functional Nanocomposites, School of Materials Science and Engineering, North University of China, Taiyuan 030051, China.
| |
Collapse
|
18
|
El-Sabagh HA, Mohamed S, Amin AM. Efficiency of Radiolabeled Silver Nanoflowers as Theranostic Agent. RADIOCHEMISTRY 2020. [DOI: 10.1134/s1066362220020101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Regulacio MD, Yang DP, Ye E. Toward greener methods of producing branched metal nanostructures. CrystEngComm 2020. [DOI: 10.1039/c9ce01561b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This review highlights the use of biogenic resources (i.e., plant extracts, microorganisms, and biomolecules) as green reagents for the production of technologically promising branched metal nanomaterials.
Collapse
Affiliation(s)
- Michelle D. Regulacio
- Institute of Chemistry
- University of the Philippines Diliman
- Quezon City 1101
- Philippines
| | - Da-Peng Yang
- College of Chemical Engineering and Materials Science
- Quanzhou Normal University
- Quanzhou 362000
- PR China
| | - Enyi Ye
- Institute of Materials Research and Engineering
- Agency for Science, Technology and Research (A*STAR)
- Singapore
| |
Collapse
|
20
|
Phung VD, Kook JK, Koh DY, Lee SW. Hierarchical Au nanoclusters electrodeposited on amine-terminated ITO glass as a SERS-active substrate for the reliable and sensitive detection of serotonin in a Tris-HCl buffer solution. Dalton Trans 2019; 48:16026-16033. [DOI: 10.1039/c9dt03269j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this study, a SERS-active substrate was fabricated by electrodepositing hierarchical Au nanostructures on amine-terminated ITO (indium tin oxide) glass to achieve an enhanced Raman signal of 5-HT.
Collapse
Affiliation(s)
- Viet-Duc Phung
- Future Materials and Devices Laboratory
- Institute of Fundamental and Applied Sciences
- Duy Tan University
- Ho Chi Minh City
- Viet Nam
| | - Jeong-Keun Kook
- Dept. of Chemical & Biological Engineering
- Gachon University
- Seongnam-si
- Republic of Korea
| | - Do Yeung Koh
- Dept. of Chemical & Biological Engineering
- Gachon University
- Seongnam-si
- Republic of Korea
| | - Sang-Wha Lee
- Dept. of Chemical & Biological Engineering
- Gachon University
- Seongnam-si
- Republic of Korea
| |
Collapse
|
21
|
Phung VD, Jung WS, Nguyen TA, Kim JH, Lee SW. Reliable and quantitative SERS detection of dopamine levels in human blood plasma using a plasmonic Au/Ag nanocluster substrate. NANOSCALE 2018; 10:22493-22503. [PMID: 30480292 DOI: 10.1039/c8nr06444j] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Accurate and rapid blood-based detection of dopamine levels can aid in the diagnosis and monitoring of diseases related to dopaminergic dysfunction. For the sensitive detection of dopamine levels in human blood plasma (i.e., plasma dopamine levels), a silver-plated Au bimetallic nanocluster (so called plasmonic Au/Ag nanocluster) was prepared as a surface-enhanced Raman scattering (SERS) substrate by the combination of electrodeposition and electroless plating methods. The plasmonic effect of the Au/Ag nanocluster substrate was optimized by controlling the particle morphology, packing density, and interparticle distance, showing the best performance in its SERS activity. The lowest detection limit of dopamine was ∼10-11 M. A linear standard curve was obtained by plotting the log-scale of dopamine concentration (log C) versus Raman intensity at 1152 cm-1. The optimized SERS substrate quantified the plasma dopamine levels of patients with antipsychotic drug-induced Parkinsonism (n = 15) as 3.24 × 10-9 M and healthy control subjects (n = 15) as 2.31 × 10-8 M. Patients with drug-induced Parkinsonism had ∼86% lower plasma dopamine concentration than healthy subjects (two-tailed p-value = 0.000002), indicating a clear separation between the groups. Our study provides the first report on the quantitative SERS detection of dopamine levels in human blood plasma with Parkinsonism. The results highlight the potential clinical utility of the optimized SERS technique in screening clinical populations with dopaminergic dysfunction, i.e., differentiating between healthy subjects and patients with Parkinsonism.
Collapse
Affiliation(s)
- Viet-Duc Phung
- Dept. of Chemical & Biological Engineering, Gachon University, 1342 Seonnamdaero, Sujeong-gu, Seongnam-si, Republic of Korea.
| | | | | | | | | |
Collapse
|
22
|
El-Nagar GA, Lauermann I, Sarhan RM, Roth C. Hierarchically structured iron-doped silver (Ag-Fe) lotus flowers for an efficient oxygen reduction reaction. NANOSCALE 2018; 10:7304-7310. [PMID: 29634067 DOI: 10.1039/c8nr00020d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The development of cheap and efficient electrocatalysts for the oxygen reduction reaction (ORR) is vital for the immediate commercialization of fuel cells which are still limited by the high cost and low performance of the utilized commercial Pt-based electrodes. As a promising alternative, this study reports on the synthesis of hierarchical iron-doped silver lotus flowers (AgFelotus) by a facile chemical procedure as robust and efficient ORR electrocatalysts. Succinic acid was used as a structure directing agent to tune the morphology of undoped and iron-doped silver particles. In the absence of succinic acid, ball-like silver particles were obtained, while using 2 mM succinic acid led to peony-like flower structures. The doping of silver peony-flowers with iron resulted in lotus-like flower structures with high electrocatalytic activity for ORR together with outstanding tolerance against poisoning with various hydrocarbon (HC) impurities, in situ generated during fuel cell operation, as well as different fuels from anodic crossover. AgFelotus exhibited a superior ORR activity with more than 40 times higher stability than the commercial Pt/C catalyst in alkaline media. This substantial performance enhancement is attributed to the unique lotus-like flower structures providing more electroactive surface sites, in addition to the iron dopants which facilitate ORR charge transfer.
Collapse
Affiliation(s)
- Gumaa A El-Nagar
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | | | | | | |
Collapse
|
23
|
Roy S, Muhammed Ajmal C, Baik S, Kim J. Silver nanoflowers for single-particle SERS with 10 pM sensitivity. NANOTECHNOLOGY 2017; 28:465705. [PMID: 28901949 DOI: 10.1088/1361-6528/aa8c57] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Surface-enhanced Raman scattering (SERS) has received considerable attention as a noninvasive optical sensing technique with ultrahigh sensitivity. While numerous types of metallic particles have been actively investigated as SERS substrates, the development of new SERS agents with high sensitivity and their reliable characterization are still required. Here we report the preparation and characterization of flower-shaped silver (Ag) nanoparticles that exhibit high-sensitivity single-particle SERS performance. Ag nanoflowers (NFs) with bud sizes in the range 220-620 nm were synthesized by the wet synthesis method. The densely packed nanoscale petals with thicknesses in the range 9-22 nm exhibit a large number of hot spots that significantly enhance their plasmonic activity. A single Ag NF particle (530-620 nm) can detect as little as 10-11 M 4-mercaptobenzoic acid, and thus provides a sensitivity three orders of SERS magnitude greater than that of a spherical Ag nanoparticle. The analytical enhancement factors for single Ag NF particles were found to be as high as 8.0 × 109, providing unprecedented high SERS detectivity at the single particle level. Here we present an unambiguous and systematic assessment of the SERS performances of the Ag NFs and demonstrate that they provide highly sensitive sensing platforms by single SERS particle.
Collapse
Affiliation(s)
- Shrawan Roy
- IBS Center for Integrated Nanostructure Physics, Institute for Basic Science, Suwon 16419, Republic of Korea. Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | | | | | | |
Collapse
|
24
|
Effect of electrodeposition cycles on the performance of gold nanostructures as SERS-active substrates. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Cao Q, Wang X, Cui Q, Yang Y, Li L. Synthesis and application of bifunctional gold/gelatin nanocomposites with enhanced fluorescence and Raman scattering. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2016.11.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
26
|
Xia Y, Gao Z, Liao X, Pan C, Zhang Y, Feng X. Rapid synthesis of hierarchical, flower-like Ag microstructures with a gemini surfactant as a directing agent for SERS applications. CrystEngComm 2017. [DOI: 10.1039/c7ce01573a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Various hierarchical Ag microstructures, including sensitive SERS substrate flower-like structures, can be designed and rapidly synthesized under different conditions.
Collapse
Affiliation(s)
- Yan Xia
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P.R. China
- Key Laboratory of Biomedical Polymers
| | - Zhinong Gao
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P.R. China
- Key Laboratory of Biomedical Polymers
| | - Xueming Liao
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P.R. China
- Key Laboratory of Biomedical Polymers
| | - Chenchen Pan
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P.R. China
- Key Laboratory of Biomedical Polymers
| | - Yingfang Zhang
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P.R. China
- Key Laboratory of Biomedical Polymers
| | - Xuesong Feng
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P.R. China
| |
Collapse
|
27
|
Wang W, Zou H, Xing G, Shang M, Chen T. Poly(2-vinylpyridine) brushes as a reaction chamber to fabricate spiky gold nanoparticles. RSC Adv 2017. [DOI: 10.1039/c7ra02906c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
AuCl4− ions loaded in poly(2-vinylpyridine) brushes were reduced by pyrrole, one-step synthesized spiky gold nanoparticles and polypyrrole.
Collapse
Affiliation(s)
- Wenqin Wang
- School of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo 315211
- P. R. China
| | - Hanzhi Zou
- School of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo 315211
- P. R. China
| | - Guoke Xing
- School of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo 315211
- P. R. China
| | - Mengying Shang
- School of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo 315211
- P. R. China
| | - Tao Chen
- Division of Polymer and Composite Materials
- Ningbo Institute of Material Technology and Engineering
- Chinese Academy of Science
- Ningbo 315201
- P. R. China
| |
Collapse
|
28
|
Wang C, Wang J, Li P, Rong Z, Jia X, Ma Q, Xiao R, Wang S. Sonochemical synthesis of highly branched flower-like Fe 3O 4@SiO 2@Ag microcomposites and their application as versatile SERS substrates. NANOSCALE 2016; 8:19816-19828. [PMID: 27878199 DOI: 10.1039/c6nr07295j] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We report a novel strategy for the synthesis of magnetic-based flower-like silver composite microspheres (Fe3O4@SiO2@Ag microflowers) with a highly branched shell structure through a sonochemical-assisted method. The obtained Fe3O4@SiO2@Ag microflowers possess good dispersity, high magnetic responsiveness, and highly reproducible structures. The size and morphology of the silver petal shell of these microflowers can be easily controlled by varying the experimental parameters. The silver petal provides an effectively large surface area for forming sufficient plasmonic hot spots and capturing target molecules. The microscale magnetic core endows microflowers with superior magnetic nature to enrich targeted analytes and create abundant interparticle hot spots through magnetism-induced aggregation. Hence, Fe3O4@SiO2@Ag microflowers could be a versatile SERS substrate, as verified by the detection of the non-adsorbed R6G molecules and the adsorbed pesticide thiram, with a detection limit as low as 1 × 10-14 M and 1 × 10-11 M, respectively. We further demonstrate that aptamer-functionalized microflowers can easily capture S. aureus in tap water and significantly enhance their SERS signal. Moreover, the microflowers can be easily recycled because of the intrinsic magnetism of the Fe3O4 cores, which indicate a new route in eliminating the "single-use" problem of traditional SERS substrates. These advantages make the microflowers powerful SERS probes for chemical and biological analyses.
Collapse
Affiliation(s)
- Chongwen Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China. and College of Life Sciences & Bio-Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Junfeng Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China. and College of Mechatronics and Automation, National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Ping Li
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China.
| | - Zhen Rong
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China.
| | - Xiaofei Jia
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China. and College of Life Sciences & Bio-Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Qiuling Ma
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China.
| | - Rui Xiao
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China.
| | - Shengqi Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China. and College of Life Sciences & Bio-Engineering, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
29
|
C MA, K P F, Singh S, Baik S. Hierarchically-structured silver nanoflowers for highly conductive metallic inks with dramatically reduced filler concentration. Sci Rep 2016; 6:34894. [PMID: 27713510 PMCID: PMC5054671 DOI: 10.1038/srep34894] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/21/2016] [Indexed: 11/19/2022] Open
Abstract
Silver has long been employed as an electrically conductive component, and morphology-dependent properties have been actively investigated. Here we present a novel scalable synthesis method of flower-shaped silver nanoparticles (silver nanoflowers, Ag NFs). The preferential affinity of citrate molecules on (111) surface of silver enabled spontaneous anisotropic growth of Ag NFs (bud size: 250~580 nm, single crystalline petal thickness: 9~22 nm) with high reproducibility and a high yield of >99.5%. The unique hierarchical structure resulted in coalescence of petals over 80~120 °C which was practically employed in conductive inks to construct percolation pathways among Ag NFs. The ink with only 3 wt% of Ag NFs provided two orders of magnitude greater conductivity (1.008 × 105 Scm-1), at a low curing temperature of 120 °C, compared with the silver nanoparticle ink with a much higher silver concentration (50 wt%). This extraordinary property may provide an excellent opportunity for Ag NFs for practical applications in printable and flexible electronics.
Collapse
Affiliation(s)
- Muhammed Ajmal C
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Faseela K P
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Swati Singh
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seunghyun Baik
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
| |
Collapse
|
30
|
Tang H, Zheng P, Meng G, Li Z, Zhu C, Han F, Ke Y, Wang Z, Zhou F, Wu N. Fabrication of hexagonally patterned flower-like silver particle arrays as surface-enhanced Raman scattering substrates. NANOTECHNOLOGY 2016; 27:325303. [PMID: 27363662 PMCID: PMC4972613 DOI: 10.1088/0957-4484/27/32/325303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Hierarchical assembly of plasmonic nanostructures can induce high surface-enhanced Raman scattering (SERS) activity. However, it is a challenge to uniformly disperse the hierarchical nanostructures onto a planar substrate to achieve SERS signal reproducibility. This report presents a facile route to fabricate a hexagonally patterned flower-like silver particle array as the SERS substrate. First, hexagonally ordered silver hemisphere arrays with smooth surface are molded in the pores of an anodic aluminum oxide template. Ag-nanosheets are then electrodeposited onto the surface of individual silver hemispheres. The numerous nano-edges and nano-gaps between adjacent nanosheets render a large number of hot spots, leading to high SERS activity over a larger area of chip. The silver flower-like array is employed as the SERS substrate, which is able to detect 0.1 nM rhodamine 6 G and 1 μM 3,3',4,4'-tetrachlorobiphenyl (PCB-77, a persistent organic pollutant).
Collapse
Affiliation(s)
- Haibin Tang
- Key Laboratory of Materials Physics, CAS Center for Excellence in Nanoscience, and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Peng Zheng
- Department of Mechanical and Aerospace Engineering, West Virginia University, P.O. Box 6106, Morgantown, WV 26506, USA
| | - Guowen Meng
- Key Laboratory of Materials Physics, CAS Center for Excellence in Nanoscience, and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhongbo Li
- Key Laboratory of Materials Physics, CAS Center for Excellence in Nanoscience, and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Chuhong Zhu
- Key Laboratory of Materials Physics, CAS Center for Excellence in Nanoscience, and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Fangming Han
- Key Laboratory of Materials Physics, CAS Center for Excellence in Nanoscience, and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Yan Ke
- Key Laboratory of Materials Physics, CAS Center for Excellence in Nanoscience, and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Zhaoming Wang
- Key Laboratory of Materials Physics, CAS Center for Excellence in Nanoscience, and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Fei Zhou
- Key Laboratory of Materials Physics, CAS Center for Excellence in Nanoscience, and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Nianqiang Wu
- Department of Mechanical and Aerospace Engineering, West Virginia University, P.O. Box 6106, Morgantown, WV 26506, USA
| |
Collapse
|
31
|
Synthesis of Ball-Like Ag Nanorod Aggregates for Surface-Enhanced Raman Scattering and Catalytic Reduction. NANOMATERIALS 2016; 6:nano6060099. [PMID: 28335227 PMCID: PMC5302632 DOI: 10.3390/nano6060099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/18/2016] [Accepted: 05/18/2016] [Indexed: 01/01/2023]
Abstract
In this work, ball-like Ag nanorod aggregates have been synthesized via a simple seed-mediated method. These Ag mesostructures were characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), ultraviolet-visible spectroscopy (UV-Vis), and X-ray diffraction (XRD). Adding a certain amount of polyvinyl pyrrolidone (PVP) can prolong its coagulation time. These Ag nanorod aggregates exhibit effective SERS effect, evaluated by Rhodamine 6G (R6G) and doxorubicin (DOX) as probe molecules. The limit of detection (LOD) for R6G and DOX are as low as 5 × 10-9 M and 5 × 10-6 M, respectively. Moreover, these Ag nanorod aggregates were found to be potential catalysts for the reduction of 4-nitrophenol (4-NP) in the presence of NaBH₄.
Collapse
|
32
|
Manjamadha VP, Muthukumar K. Ultrasound assisted green synthesis of silver nanoparticles using weed plant. Bioprocess Biosyst Eng 2016; 39:401-11. [DOI: 10.1007/s00449-015-1523-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 12/11/2015] [Indexed: 11/29/2022]
|
33
|
Song CY, Zhou N, Yang BY, Yang YJ, Wang LH. Facile synthesis of hydrangea flower-like hierarchical gold nanostructures with tunable surface topographies for single-particle surface-enhanced Raman scattering. NANOSCALE 2015; 7:17004-17011. [PMID: 26416701 DOI: 10.1039/c5nr04827c] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The physicochemical properties of noble metal nanocrystals depend strongly on their size and shape, and it is becoming clear that the design and facile synthesis of particular nanostructures with tailored shape and size is especially important. Herein a novel class of hydrangea flower-like hierarchical gold nanostructures with tunable surface topographies and optical properties are prepared for the first time by a facile, one-pot, seedless synthesis using ascorbic acid (AA) to reduce hydrogen tetrachloroaurate (HAuCl4) in the presence of (1-hexadecyl)trimethylammonium chloride (CTAC). The morphologies of the synthesized gold nanoflowers are controlled and fine-tuned by varying the synthetic conditions such as the concentration of reagents and the growth temperature. Due to their unique hierarchical three-dimensional (3D) structures with rich hot spots, these gold nanoflowers exhibit an efficient performance in single-particle surface-enhanced Raman scattering (SERS). The work stands out as an interesting approach for anisotropic particle synthesis and morphological control, and the proposed novel, hierarchical gold nanoflowers have a number of exciting potential applications in SERS-based sensors.
Collapse
Affiliation(s)
- C Y Song
- Key Lab for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), Synergetic Innovation Center for Organic Electronics and Information Displays, Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | | | | | | | | |
Collapse
|
34
|
Flower-like gold nanostructures electrodeposited on indium tin oxide (ITO) glass as a SERS-active substrate for sensing dopamine. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1453-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|