1
|
Hemmerová E, Homola J. Combining plasmonic and electrochemical biosensing methods. Biosens Bioelectron 2024; 251:116098. [PMID: 38359667 DOI: 10.1016/j.bios.2024.116098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/17/2024]
Abstract
The idea of combining electrochemical (EC) and plasmonic biosensor methods was introduced almost thirty years ago and the potential of electrochemical-plasmonic (EC-P) biosensors has been highlighted ever since. Despite that, the use of EC-P biosensors in analytics has been rather limited so far and the search for unique applications of the EC-P method continues. In this paper, we review the advances in the field of EC-P biosensors and discuss the features and benefits they can provide. In addition, we identify the main challenges for the development of EC-P biosensors and the limitations that prevent EC-P biosensors from more widespread use. Finally, we review applications of EC-P biosensors for the investigation and quantification of biomolecules, and for the study of biomolecular and cellular processes.
Collapse
Affiliation(s)
- Erika Hemmerová
- Institute of Photonics and Electronics, Czech Academy of Sciences, Chaberská 1014/57, 182 51, Prague, Czech Republic
| | - Jiří Homola
- Institute of Photonics and Electronics, Czech Academy of Sciences, Chaberská 1014/57, 182 51, Prague, Czech Republic.
| |
Collapse
|
2
|
Chen R, Gu X, Wang X. α-Synuclein in Parkinson's disease and advances in detection. Clin Chim Acta 2022; 529:76-86. [PMID: 35176268 DOI: 10.1016/j.cca.2022.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/26/2022]
Abstract
Parkinson's disease (PD) is a threatening neurodegenerative disorder that seriously affects patients' life quality. Substantial evidence links the overexpression and abnormal aggregation of alpha-synuclein (α-Syn) to PD. α-Syn has been identified as a characteristic biomarker of PD, which indicates its great value of diagnosis and designing effective therapeutic strategy. This article systematically summarizes the pathogenic process of α-Syn based on recent researches, outlines and compares commonly used analysis and detection technologies of α-Syn. Specifically, the detection of α-Syn by new electrochemical, photochemical, and crystal biosensors is mainly examined. Furthermore, the speculation of future study orientation is discussed, which provides reference for the further research and application of α-Syn as biomarker.
Collapse
Affiliation(s)
- Rong Chen
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Xuan Gu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xiaoying Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
3
|
Chen Z, Lu Y, Zhang Q, Zhang D, Li S, Liu Q. Electrochemistry Coupling Localized Surface Plasmon Resonance for Biochemical Detection. Methods Mol Biol 2022; 2393:15-35. [PMID: 34837172 DOI: 10.1007/978-1-0716-1803-5_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Localized surface plasmon resonance (LSPR) associated with metal nanostructures has developed into highly useful sensor techniques. LSPR spectroscopy often shows absorption peaks which could be used for biomedical detection. Here we report nanoplasmonic sensors using LSPR on nanostructures such as nanoparticles, nanocups, and nanocones to recognize biomolecular. These sensors can be modified for quantitative detection of explosives and evaluation of enzymatic activity. Electrochemical LSPR sensors can also be designed by coupling electrochemistry and LSPR spectroscopy measurements for biochemical detection. Multiple sensing information can be obtained and electrochemical LSPR property can be investigated for biosensors. In some applications, the electrochemical LSPR biosensor can be used to quantify heavy metal ions, neurotransmitters, and sialic acid. The biosensors exhibit better performance than those of conventional optical LSPR measurements. With multitransducers, the nanoplasmonic biosensor can provide a promising approach for biochemical detection in environmental monitoring, healthcare diagnostics, and food quality control.
Collapse
Affiliation(s)
- Zetao Chen
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Yanli Lu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Qingqing Zhang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Diming Zhang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Shuang Li
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Qingjun Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, P. R. China.
| |
Collapse
|
4
|
Biosensors in Parkinson's disease. Clin Chim Acta 2021; 518:51-58. [PMID: 33753044 DOI: 10.1016/j.cca.2021.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is one of the most critical disorders of the elderly and strongly associated with increased disability, and reduced quality of life. PD is a progressive neurodegenerative disease affecting more than six million people worldwide. Evaluation of clinical manifestations, as well as movement disorders by a neurologist and some routine laboratory tests are the most important diagnostic methods for PD. However, routine and old methods have several disadvantages and limitations such as low sensitivity and selectivity, high cost, and need for advanced equipment. Biosensors technology opens up new diagnoses approach for PD with the use of a new platform that allows reliable, repeatable, and multidimensional identification to be made with minimal problem and discomfort for patients. For instance, biosensing systems can provide promising tools for PD treatment and monitoring. Amongst biosensor technology, electrochemical techniques have been at the frontline of this progress, thanks to the developments in material science, such as gold nanoparticles (AuNPs), quantum dots (QDs), and carbon nanotubes (CNTs). This paper evaluates the latest progress in electrochemical and optical biosensors for PD diagnosis.
Collapse
|
5
|
Okazaki T, Taniguchi H, Wagata H, Ito M, Kuramitz H, Watanabe T. Spectroelectrochemical Evaluation of a ZnO Optically Transparent Electrode Prepared by the Spin‐spray Technique. ELECTROANAL 2020. [DOI: 10.1002/elan.202000028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Takuya Okazaki
- Department of Applied Chemistry, School of Science and TechnologyMeiji University 1-1-1, Higashimita, Tama-ku, Kawasaki Kanagawa 214-8571 Japan
| | - Hiroaki Taniguchi
- Department of Applied Chemistry, School of Science and TechnologyMeiji University 1-1-1, Higashimita, Tama-ku, Kawasaki Kanagawa 214-8571 Japan
| | - Hajime Wagata
- Department of Applied Chemistry, School of Science and TechnologyMeiji University 1-1-1, Higashimita, Tama-ku, Kawasaki Kanagawa 214-8571 Japan
| | - Mizuki Ito
- Department of Applied Chemistry, School of Science and TechnologyMeiji University 1-1-1, Higashimita, Tama-ku, Kawasaki Kanagawa 214-8571 Japan
| | - Hideki Kuramitz
- Department of Environmental Biology and Chemistry, Graduate School of Science and Engineering for ResearchUniversity of Toyama 3190 Gofuku Toyama 930-8555 Japan
| | - Tomoaki Watanabe
- Department of Applied Chemistry, School of Science and TechnologyMeiji University 1-1-1, Higashimita, Tama-ku, Kawasaki Kanagawa 214-8571 Japan
| |
Collapse
|
6
|
Okazaki T, Orii T, Tan SY, Watanabe T, Taguchi A, Rahman FA, Kuramitz H. Electrochemical Long Period Fiber Grating Sensing for Electroactive Species. Anal Chem 2020; 92:9714-9721. [PMID: 32551577 DOI: 10.1021/acs.analchem.0c01062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present an electrochemical long period fiber grating (LPFG) sensor for electroactive species with an optically transparent electrode. The sensor was fabricated by coating indium tin oxide onto the surface of LPFG using a polygonal barrel-sputtering method. LPFG was produced by an electric arc-induced technique. The sensing is based on change in the detection of electron density on the electrode surface during potential application and its reduction by electrochemical redox of analytes. Four typical electroactive species of methylene blue, hexaammineruthenium(III), ferrocyanide, and ferrocenedimethanol were used to investigate the sensor performance. The concentrations of analytes were determined by the modulation of the potential as the change in transmittance around the resonance band of LPFG. The sensitivity of the sensor, particularly to methylene blue, was high, and the sensor responded to a wide concentration range of 0.001 mM to 1 mM.
Collapse
Affiliation(s)
- Takuya Okazaki
- Department of Environmental Biology and Chemistry, Graduate School of Science and Engineering for Research, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan.,Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Tatsuya Orii
- Department of Environmental Biology and Chemistry, Graduate School of Science and Engineering for Research, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | - Shin-Yinn Tan
- Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 39100 Kampar, Malaysia
| | - Tomoaki Watanabe
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Akira Taguchi
- Hydrogen Isotope Research Center, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | - Faidz A Rahman
- Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Sungai Long, 43000 Selangor, Malaysia
| | - Hideki Kuramitz
- Department of Environmental Biology and Chemistry, Graduate School of Science and Engineering for Research, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| |
Collapse
|
7
|
Electrochemical biosensors for the detection and study of α-synuclein related to Parkinson's disease - A review. Anal Chim Acta 2019; 1089:32-39. [PMID: 31627816 DOI: 10.1016/j.aca.2019.09.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 09/01/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is a long-term degenerative disorder that affects predominately dopaminergic neurons in the substantia nigra, which mainly control movement. Alpha-synuclein (α-syn) is a major constituent of Lewy bodies that are reported to be the most important toxic species in the brain of PD patients. In this critical review, we highlight novel electrochemical biosensors that have been recently developed utilizing aptamers and antibodies in connection with various nanomaterials to study biomarkers related to PD such as α-syn. We also review several research articles that have utilized electrochemical biosensors to study the interaction of α-syn with biometals as well as small molecules such as clioquinol, (-)-epigallocatechin-3-gallate (EGCG) and baicalein. Due to the significant advances in nanomaterials in the past decade, electrochemical biosensors capable of detecting multiple biomarkers in clinically relevant samples in real-time have been achieved. This may facilitate the path towards commercialization of electrochemical biosensors for clinical applications and high-throughput screening of small molecules for structure-activity relationship (SAR) studies.
Collapse
|
8
|
Su H, Li S, Kerman K. Novel thiolated-PEG linker molecule for biosensor development on gold surfaces. Biosens Bioelectron 2019; 141:111477. [DOI: 10.1016/j.bios.2019.111477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/05/2019] [Accepted: 06/24/2019] [Indexed: 01/01/2023]
|
9
|
Ko W, Chang C, Chiang Y, Huang L, Huang L, Lin K. Immunoassay of plasmonic gold‐nanoparticle clusters: Plasmon coupling effects for Parkinson biomarker detection. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201900072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Wen‐Yin Ko
- Department of Chemistry and Research Center for Sustainable Energy and NanotechnologyNational Chung Hsing University Taichung Taiwan
| | - Chia‐Yu Chang
- Department of Chemistry and Research Center for Sustainable Energy and NanotechnologyNational Chung Hsing University Taichung Taiwan
| | - Yun‐Ting Chiang
- Department of Chemistry and Research Center for Sustainable Energy and NanotechnologyNational Chung Hsing University Taichung Taiwan
| | - Li‐Ting Huang
- Department of Chemistry and Research Center for Sustainable Energy and NanotechnologyNational Chung Hsing University Taichung Taiwan
| | - Lih‐Wen Huang
- Section of Neurology, Department of Internal MedicineFar Eastern Memorial Hospital New Taipei City Taiwan
| | - Kuan‐Jiuh Lin
- Department of Chemistry and Research Center for Sustainable Energy and NanotechnologyNational Chung Hsing University Taichung Taiwan
| |
Collapse
|
10
|
Javed H, Nagoor Meeran MF, Azimullah S, Adem A, Sadek B, Ojha SK. Plant Extracts and Phytochemicals Targeting α-Synuclein Aggregation in Parkinson's Disease Models. Front Pharmacol 2019; 9:1555. [PMID: 30941047 PMCID: PMC6433754 DOI: 10.3389/fphar.2018.01555] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 12/20/2018] [Indexed: 12/21/2022] Open
Abstract
α-Synuclein (α-syn) is a presynaptic protein that regulates the release of neurotransmitters from synaptic vesicles in the brain. α-Syn aggregates, including Lewy bodies, are features of both sporadic and familial forms of Parkinson's disease (PD). These aggregates undergo several key stages of fibrillation, oligomerization, and aggregation. Therapeutic benefits of drugs decline with disease progression and offer only symptomatic treatment. Novel therapeutic strategies are required which can either prevent or delay the progression of the disease. The link between α-syn and the etiopathogenesis and progression of PD are well-established in the literature. Studies indicate that α-syn is an important therapeutic target and inhibition of α-syn aggregation, oligomerization, and fibrillation are an important disease modification strategy. However, recent studies have shown that plant extracts and phytochemicals have neuroprotective effects on α-syn oligomerization and fibrillation by targeting different key stages of its formation. Although many reviews on the antioxidant-mediated, neuroprotective effect of plant extracts and phytochemicals on PD symptoms have been well-highlighted, the antioxidant mechanisms show limited success for translation to clinical studies. The identification of specific plant extracts and phytochemicals that target α-syn aggregation will provide selective molecules to develop new drugs for PD. The present review provides an overview of plant extracts and phytochemicals that target α-syn in PD and summarizes the observed effects and the underlying mechanisms. Furthermore, we provide a synopsis of current experimental models and techniques used to evaluate plant extracts and phytochemicals. Plant extracts and phytochemicals were found to inhibit the aggregation or fibril formation of oligomers. These also appear to direct α-syn oligomer formation into its unstructured form or promote non-toxic pathways and suggested to be valuable drug candidates for PD and related synucleinopathy. Current evidences from in vitro studies require confirmation in the in vivo studies. Further studies are needed to ascertain their potential effects and safety in preclinical studies for pharmaceutical/nutritional development of these phytochemicals or dietary inclusion of the plant extracts in PD treatment.
Collapse
Affiliation(s)
- Hayate Javed
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohamed Fizur Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sheikh Azimullah
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Abdu Adem
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Shreesh Kumar Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
11
|
Label-free evaluation of small-molecule-protein interaction using magnetic capture and electrochemical detection. Anal Bioanal Chem 2019; 411:2111-2119. [PMID: 30739194 DOI: 10.1007/s00216-019-01636-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 01/22/2019] [Indexed: 12/17/2022]
Abstract
The evaluation of interaction between small molecules and protein is an important step in the discovery of new drugs and to study complex biological systems. In this work, an alternative method was presented to evaluate small-molecule-protein interaction by using ligand capture by protein-coated magnetic particles (MPs) and disposable electrochemical cells. The interaction study was conducted using [10]-gingerol from ginger rhizome and a transmembrane protein αVβ3 integrin. Initially, the electrochemical behavior of the natural compound [10]-gingerol was evaluated with the disposable carbon-based electrodes and presented an irreversible oxidation process controlled by diffusion. The analytical curve for [10]-gingerol was obtained in the range of 1.0 to 20.0 μmol L-1, with limit of detection of 0.26 μmol L-1. Then MPs coated with αVβ3 integrin were incubated with standard solutions and extracts of ginger rhizome for [10]-gingerol capture and separation. The bioconjugate obtained was dropped to the disposable electrochemical cells, keeping a permanent magnet behind the working electrode, and the binding process was evaluated by the electrochemical detection of [10]-gingerol. The assay method proposed was also employed to calculate the [10]-gingerol-αVβ3 integrin association constant, which was calculated as 4.3 × 107 M-1. The method proposed proved to be a good label-free alternative to ligand-protein interaction studies. Graphical abstract ᅟ.
Collapse
|
12
|
Koneti S, Borges J, Roiban L, Rodrigues MS, Martin N, Epicier T, Vaz F, Steyer P. Electron Tomography of Plasmonic Au Nanoparticles Dispersed in a TiO 2 Dielectric Matrix. ACS APPLIED MATERIALS & INTERFACES 2018; 10:42882-42890. [PMID: 30457319 DOI: 10.1021/acsami.8b16436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Plasmonic Au nanoparticles (AuNPs) embedded into a TiO2 dielectric matrix were analyzed by combining two-dimensional and three-dimensional electron microscopy techniques. The preparation method was reactive magnetron sputtering, followed by thermal annealing treatments at 400 and 600 °C. The goal was to assess the nanostructural characteristics and correlate them with the optical properties of the AuNPs, particularly the localized surface plasmon resonance (LSPR) behavior. High-angle annular dark field-scanning transmission electron microscopy results showed the presence of small-sized AuNPs (quantum size regime) in the as-deposited Au-TiO2 film, resulting in a negligible LSPR response. The in-vacuum thermal annealing at 400 °C induced the formation of intermediate-sized nanoparticles (NPs), in the range of 10-40 nm, which led to the appearance of a well-defined LSPR band, positioned at 636 nm. Electron tomography revealed that most of the NPs are small-sized and are embedded into the TiO2 matrix, whereas the larger NPs are located at the surface. Annealing at 600 °C promotes a bimodal size distribution with intermediate-sized NPs embedded in the matrix and big-sized NPs, up to 100 nm, appearing at the surface. The latter are responsible for a broadening and a redshift, to 645 nm, in the LSPR band because of increase of scattering-to-absorption ratio. Beyond differentiating and quantifying the surface and embedded NPs, electron tomography also provided the identification of "hot-spots". The presence of NPs at the surface, individual or in dimers, permits adsorption sites for LSPR sensing and for surface-enhanced spectroscopies, such as surface-enhanced Raman scattering.
Collapse
Affiliation(s)
- Siddardha Koneti
- Université Lyon, INSA-Lyon, MATEIS UMR CNRS 5510 , 21 Avenue Jean Capelle , 69621 Villeurbanne Cedex , France
| | - Joel Borges
- Centro de Física , Universidade do Minho , Campus de Gualtar , 4710 057 Braga , Portugal
| | - Lucian Roiban
- Université Lyon, INSA-Lyon, MATEIS UMR CNRS 5510 , 21 Avenue Jean Capelle , 69621 Villeurbanne Cedex , France
| | - Marco S Rodrigues
- Centro de Física , Universidade do Minho , Campus de Gualtar , 4710 057 Braga , Portugal
| | - Nicolas Martin
- Institut FEMTO-ST, UMR 6174 CNRS, Université Bourgogne Franche-Comté , 15B, Avenue des Montboucons , 25030 Besançon Cedex , France
| | - Thierry Epicier
- Université Lyon, INSA-Lyon, MATEIS UMR CNRS 5510 , 21 Avenue Jean Capelle , 69621 Villeurbanne Cedex , France
| | - Filipe Vaz
- Centro de Física , Universidade do Minho , Campus de Gualtar , 4710 057 Braga , Portugal
| | - Philippe Steyer
- Université Lyon, INSA-Lyon, MATEIS UMR CNRS 5510 , 21 Avenue Jean Capelle , 69621 Villeurbanne Cedex , France
| |
Collapse
|
13
|
Su H, Cheng XR, Endo T, Kerman K. Photonic crystals on copolymer film for label-free detection of DNA hybridization. Biosens Bioelectron 2018; 103:158-162. [PMID: 29291596 DOI: 10.1016/j.bios.2017.12.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/09/2017] [Accepted: 12/07/2017] [Indexed: 11/28/2022]
Abstract
The presence of a single-nucleotide polymorphism in Apolipoprotein E4 gene is implicated with the increased risk of developing Alzheimer's disease (AD). In this study, detection of AD-related DNA oligonucleotide sequence associated with Apolipoprotein E4 gene sequence was achieved using localized-surface plasmon resonance (LSPR) on 2D-Photonic crystal (2D-PC) and Au-coated 2D-PC surfaces. 2D-PC surfaces were fabricated on a flexible copolymer film using nano-imprint lithography (NIL). The film surface was then coated with a dual-functionalized polymer to react with surface immobilized DNA probe. DNA hybridization was detected by monitoring the optical responses of either a Fresnel decrease in reflectance on 2D-PC surfaces or an increase in LSPR on Au-coated 2D-PC surfaces. The change in response due to DNA hybridization on the modified surfaces was also investigated using mismatched and non-complementary oligonucleotides sequences. The proof-of-concept results are promising towards the development of 2D-PC on copolymer film surfaces as miniaturized and wearable biosensors for various diagnostic and defense applications.
Collapse
Affiliation(s)
- Han Su
- Dept. of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada M1C 1A4
| | - Xin R Cheng
- Dept. of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada M1C 1A4
| | - Tatsuro Endo
- Dept. of Applied Chemistry, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai-shi, Osaka 599-8531, Japan
| | - Kagan Kerman
- Dept. of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada M1C 1A4.
| |
Collapse
|
14
|
Ferhan AR, Jackman JA, Sut TN, Cho NJ. Quantitative Comparison of Protein Adsorption and Conformational Changes on Dielectric-Coated Nanoplasmonic Sensing Arrays. SENSORS 2018; 18:s18041283. [PMID: 29690554 PMCID: PMC5948918 DOI: 10.3390/s18041283] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 12/22/2022]
Abstract
Nanoplasmonic sensors are a popular, surface-sensitive measurement tool to investigate biomacromolecular interactions at solid-liquid interfaces, opening the door to a wide range of applications. In addition to high surface sensitivity, nanoplasmonic sensors have versatile surface chemistry options as plasmonic metal nanoparticles can be coated with thin dielectric layers. Within this scope, nanoplasmonic sensors have demonstrated promise for tracking protein adsorption and substrate-induced conformational changes on oxide film-coated arrays, although existing studies have been limited to single substrates. Herein, we investigated human serum albumin (HSA) adsorption onto silica- and titania-coated arrays of plasmonic gold nanodisks by localized surface plasmon resonance (LSPR) measurements and established an analytical framework to compare responses across multiple substrates with different sensitivities. While similar responses were recorded on the two substrates for HSA adsorption under physiologically-relevant ionic strength conditions, distinct substrate-specific behavior was observed at lower ionic strength conditions. With decreasing ionic strength, larger measurement responses occurred for HSA adsorption onto silica surfaces, whereas HSA adsorption onto titania surfaces occurred independently of ionic strength condition. Complementary quartz crystal microbalance-dissipation (QCM-D) measurements were also performed, and the trend in adsorption behavior was similar. Of note, the magnitudes of the ionic strength-dependent LSPR and QCM-D measurement responses varied, and are discussed with respect to the measurement principle and surface sensitivity of each technique. Taken together, our findings demonstrate how the high surface sensitivity of nanoplasmonic sensors can be applied to quantitatively characterize protein adsorption across multiple surfaces, and outline broadly-applicable measurement strategies for biointerfacial science applications.
Collapse
Affiliation(s)
- Abdul Rahim Ferhan
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive 637553, Singapore.
| | - Joshua A Jackman
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive 637553, Singapore.
| | - Tun Naw Sut
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive 637553, Singapore.
| | - Nam-Joon Cho
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive 637553, Singapore.
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive 637459, Singapore.
| |
Collapse
|
15
|
Jackman JA, Rahim Ferhan A, Cho NJ. Nanoplasmonic sensors for biointerfacial science. Chem Soc Rev 2018; 46:3615-3660. [PMID: 28383083 DOI: 10.1039/c6cs00494f] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In recent years, nanoplasmonic sensors have become widely used for the label-free detection of biomolecules across medical, biotechnology, and environmental science applications. To date, many nanoplasmonic sensing strategies have been developed with outstanding measurement capabilities, enabling detection down to the single-molecule level. One of the most promising directions has been surface-based nanoplasmonic sensors, and the potential of such technologies is still emerging. Going beyond detection, surface-based nanoplasmonic sensors open the door to enhanced, quantitative measurement capabilities across the biointerfacial sciences by taking advantage of high surface sensitivity that pairs well with the size of medically important biomacromolecules and biological particulates such as viruses and exosomes. The goal of this review is to introduce the latest advances in nanoplasmonic sensors for the biointerfacial sciences, including ongoing development of nanoparticle and nanohole arrays for exploring different classes of biomacromolecules interacting at solid-liquid interfaces. The measurement principles for nanoplasmonic sensors based on utilizing the localized surface plasmon resonance (LSPR) and extraordinary optical transmission (EOT) phenomena are first introduced. The following sections are then categorized around different themes within the biointerfacial sciences, specifically protein binding and conformational changes, lipid membrane fabrication, membrane-protein interactions, exosome and virus detection and analysis, and probing nucleic acid conformations and binding interactions. Across these themes, we discuss the growing trend to utilize nanoplasmonic sensors for advanced measurement capabilities, including positional sensing, biomacromolecular conformation analysis, and real-time kinetic monitoring of complex biological interactions. Altogether, these advances highlight the rich potential of nanoplasmonic sensors and the future growth prospects of the community as a whole. With ongoing development of commercial nanoplasmonic sensors and analytical models to interpret corresponding measurement data in the context of biologically relevant interactions, there is significant opportunity to utilize nanoplasmonic sensing strategies for not only fundamental biointerfacial science, but also translational science applications related to clinical medicine and pharmaceutical drug development among countless possibilities.
Collapse
Affiliation(s)
- Joshua A Jackman
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
| | | | | |
Collapse
|
16
|
Zhang D, Zhang Q, Lu Y, Yao Y, Li S, Liu Q. Nanoplasmonic Biosensor Using Localized Surface Plasmon Resonance Spectroscopy for Biochemical Detection. Methods Mol Biol 2017; 1571:89-107. [PMID: 28281251 DOI: 10.1007/978-1-4939-6848-0_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Localized surface plasmon resonance (LSPR) associated with metal nanostructures has developed into a highly useful sensor technique. Optical LSPR spectroscopy of nanostructures often shows sharp absorption and scattering peaks, which can be used to probe several bio-molecular interactions. Here, we report nanoplasmonic biosensors using LSPR on nanocup arrays (nanoCA) to recognize bio-molecular binding for biochemical detection. These sensors can be modified to quantify binding of small molecules to proteins for odorant and explosive detections. Electrochemical LSPR biosensors can also be designed by coupling electrochemistry and LSPR spectroscopy measurements. Multiple sensing information can be obtained and electrochemical LSPR property can be investigated for biosensors. In some applications, the electrochemical LSPR biosensor can be used to quantify immunoreactions and enzymatic activity. The biosensors exhibit better performance than those of conventional optical LSPR measurements. With multi-transducers, the nanoplasmonic biosensor can provide a promising approach for bio-detection in environmental monitoring, healthcare diagnostics, and food quality control.
Collapse
Affiliation(s)
- Diming Zhang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qian Zhang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yanli Lu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yao Yao
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shuang Li
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qingjun Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
17
|
Surface Plasmon Resonance Sensors: Methods of Surface Functionalization and Sensitivity Enhancement. THEOR EXP CHEM+ 2015. [DOI: 10.1007/s11237-015-9427-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Wallace GQ, Tabatabaei M, Zuin MS, Workentin MS, Lagugné-Labarthet F. A nanoaggregate-on-mirror platform for molecular and biomolecular detection by surface-enhanced Raman spectroscopy. Anal Bioanal Chem 2015; 408:609-18. [PMID: 26521177 DOI: 10.1007/s00216-015-9142-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 10/07/2015] [Accepted: 10/21/2015] [Indexed: 12/13/2022]
Abstract
A nanoaggregate-on-mirror (NAOM) structure has been developed for molecular and biomolecular detection using surface-enhanced Raman spectroscopy (SERS). The smooth surface of the gold mirror allows for simple and homogeneous functionalization, while the introduction of the nanoaggregates enhances the Raman signal of the molecule(s) in the vicinity of the aggregate-mirror junction. This is evidenced by functionalizing the gold mirror with 4-nitrothiophenol, and the further addition of gold nanoaggregates promotes local SERS activity only in the areas with the nanoaggregates. The application of the NAOM platform for biomolecular detection is highlighted using glucose and H2O2 as molecules of interest. In both cases, the gold mirror is functionalized with 4-mercaptophenylboronic acid (4-MPBA). Upon exposure to glucose, the boronic acid moiety of 4-MPBA forms a cyclic boronate ester. Once the nanoaggregates are added to the surface, detection of glucose is possible without the use of an enzyme. This method of indirect detection provides a limit of detection of 0.05 mM, along with a linear range of detection from 0.1 to 15 mM for glucose, encompassing the physiological range of blood glucose concentration. The detection of H2O2 is achieved with optical inspection and SERS. The H2O2 interferes with the coating of the gold mirror, enabling qualitative detection by visual inspection. Simultaneously, the H2O2 reacts with the boronic acid to form a phenol, a change that is detected by SERS.
Collapse
Affiliation(s)
- Gregory Q Wallace
- Department of Chemistry, University of Western Ontario, 1151 Richmond St., London, Ontario, N6A 5B7, Canada.,Centre for Advanced Materials and Biomaterials Research, University of Western Ontario, 1151 Richmond St., London, Ontario, N6A 5B7, Canada
| | - Mohammadali Tabatabaei
- Department of Chemistry, University of Western Ontario, 1151 Richmond St., London, Ontario, N6A 5B7, Canada.,Centre for Advanced Materials and Biomaterials Research, University of Western Ontario, 1151 Richmond St., London, Ontario, N6A 5B7, Canada
| | - Mariachiara S Zuin
- Department of Chemistry, University of Western Ontario, 1151 Richmond St., London, Ontario, N6A 5B7, Canada.,Centre for Advanced Materials and Biomaterials Research, University of Western Ontario, 1151 Richmond St., London, Ontario, N6A 5B7, Canada
| | - Mark S Workentin
- Department of Chemistry, University of Western Ontario, 1151 Richmond St., London, Ontario, N6A 5B7, Canada.,Centre for Advanced Materials and Biomaterials Research, University of Western Ontario, 1151 Richmond St., London, Ontario, N6A 5B7, Canada
| | - François Lagugné-Labarthet
- Department of Chemistry, University of Western Ontario, 1151 Richmond St., London, Ontario, N6A 5B7, Canada. .,Centre for Advanced Materials and Biomaterials Research, University of Western Ontario, 1151 Richmond St., London, Ontario, N6A 5B7, Canada.
| |
Collapse
|