1
|
Bai J, Wu M, He Q, Wang H, Liao Y, Chen L, Chen S. Emerging Doped Metal-Organic Frameworks: Recent Progress in Synthesis, Applications, and First-Principles Calculations. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306616. [PMID: 38342672 DOI: 10.1002/smll.202306616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/14/2024] [Indexed: 02/13/2024]
Abstract
Metal-organic frameworks (MOFs) are crystalline porous materials with a long-range ordered structure and excellent specific surface area and have found a wide range of applications in diverse fields, such as catalysis, energy storage, sensing, and biomedicine. However, their poor electrical conductivity and chemical stability, low capacity, and weak adhesion to substrates have greatly limited their performance. Doping has emerged as a unique strategy to mitigate the issues. In this review, the concept, classification, and characterization methods of doped MOFs are first introduced, and recent progress in the synthesis and applications of doped MOFs, as well as the rapid advancements and applications of first-principles calculations based on the density functional theory (DFT) in unraveling the mechanistic origin of the enhanced performance are summarized. Finally, a perspective is included to highlight the key challenges in doping MOF materials and an outlook is provided on future research directions.
Collapse
Affiliation(s)
- Jie Bai
- Department of Applied Chemistry, School of Chemical and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Mengcheng Wu
- Department of Applied Chemistry, School of Chemical and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Qingqing He
- Department of Applied Chemistry, School of Chemical and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Huayu Wang
- Department of Applied Chemistry, School of Chemical and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Yanxin Liao
- Department of Applied Chemistry, School of Chemical and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Lingyun Chen
- Department of Applied Chemistry, School of Chemical and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA, 95060, United States
| |
Collapse
|
2
|
Liu Q, Li R, Li J, Zheng B, Song S, Chen L, Li T, Ma Y. The Utilization of Metal-Organic Frameworks and Their Derivatives Composite in Supercapacitor Electrodes. Chemistry 2024; 30:e202400157. [PMID: 38520385 DOI: 10.1002/chem.202400157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/10/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Up to now, the mainstream adoption of renewable energy has brought about substantial transformations in the electricity and energy sector. This shift has garnered considerable attention within the scientific community. Supercapacitors, known for their exceptional performance metrics like good charge/discharge capability, strong power density, as well as extended cycle longevity, have gained widespread traction across various sectors, including transportation and aviation. Metal-organic frameworks (MOFs) with unique traits including adaptable structure, highly customizable synthetic methods, and high specific surface area, have emerged as strong candidates for electrode materials. For enhancing the performance, MOFs are commonly compounded with other conducting materials to increase capacitance. This paper provides a detailed analysis of various common preparation strategies and characteristics of MOFs. It summarizes the recent application of MOFs and their derivatives as supercapacitor electrodes alongside other carbon materials, metal compounds, and conductive polymers. Additionally, the challenges encountered by MOFs in the realm of supercapacitor applications are thoroughly discussed. Compared to previous reviews, the content of this paper is more comprehensive, offering readers a deeper understanding of the diverse applications of MOFs. Furthermore, it provides valuable suggestions and guidance for future progress and development in the field of MOFs.
Collapse
Affiliation(s)
- Qianwen Liu
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Ruidong Li
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Jie Li
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Bingyue Zheng
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Shuxin Song
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Lihua Chen
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Tingxi Li
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Yong Ma
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| |
Collapse
|
3
|
Cheng H, Li J, Meng T, Shu D. Advances in Mn-Based MOFs and Their Derivatives for High-Performance Supercapacitor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308804. [PMID: 38073335 DOI: 10.1002/smll.202308804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/19/2023] [Indexed: 05/18/2024]
Abstract
As the most widely used metal material in supercapacitors, manganese (Mn)-based materials possess the merits of high theoretical capacitance, stable structure as well as environmental friendliness. However, due to poor conductivity and easy accumulation, the practical capacitance of Mn-based materials is far lower than that of theoretical value. Therefore, accurate structural adjustment and controllable strategies are urgently needed to optimize the electrochemical properties of Mn-based materials. Metal-organic frameworks (MOFs) are porous materials with high specific surface area (SSA), tunable pore size, and controllable structure. These features make them attractive as precursors or scaffold for the synthesis of metal-based materials and composites, which are important for electrochemical energy storage applications. Therefore, a timely and comprehensive review on the classification, design, preparation and application of Mn-based MOFs and their derivatives for supercapacitors has been given in this paper. The recent advancement of Mn-based MOFs and their derivatives applied in supercapacitor electrodes are particularly highlighted. Finally, the challenges faced by Mn-MOFs and their derivatives for supercapacitors are summarized, and strategies to further improve their performance are proposed. The aspiration is that this review will serve as a beneficial compass, guiding the logical creation of Mn-based MOFs and their derivatives in the future.
Collapse
Affiliation(s)
- Honghong Cheng
- School of Chemistry and Materials Science, Guangdong University of Education, Guangzhou, 510800, P. R. China
| | - Jianping Li
- School of Chemistry and Materials Science, Guangdong University of Education, Guangzhou, 510800, P. R. China
| | - Tao Meng
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Dong Shu
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
4
|
Khan MY, Husain A, Mahajan DK, Muaz M, Shahid M, Zeeshan M, Sama F, Ahmad S. Facile synthesis of a three-dimensional Ln-MOF@FCNT composite for the fabrication of a symmetric supercapacitor device with ultra-high energy density: overcoming the energy storage barrier. Dalton Trans 2024; 53:7477-7497. [PMID: 38596884 DOI: 10.1039/d4dt00136b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
In order to quench the thirst for efficient energy storage devices, a novel praseodymium-based state-of-the-art three-dimensional metal-organic framework (MOF), {[Pr(pdc)2]Me2NH2}n (YK-1), has been synthesized by using a simple solvothermal method employing a readily available ligand. YK-1 was characterised by single-crystal XRD and crystallographic analysis. The electrochemical measurements of YK-1 show that it exhibits a specific capacitance of 363.5 F g-1 at a current density of 1.5 A g-1 with 83.8% retention after 5000 cycles. In order to enhance its electrochemical performance for practical application, two composites of YK-1 with graphene oxide (GO) and functionalised multi-walled carbon nanotubes (FCNTs), namely YK-1@GO and YK-1@FCNT, were fabricated by employing a facile ultrasonication technique. The as-synthesized MOF and the composites were characterized by PXRD, FTIR, SEM, and TEM techniques. YK-1@GO and YK-1@FCNT offer enhanced specific capacitances of 488.2 F g-1 and 730.2 F g-1 at the same current density with 93.8% and 97.7% capacity retention after 5000 cycles, respectively (at 16 A g-1). Fascinated by the outstanding results shown by YK-1@FCNT, a symmetric supercapacitor device (SSC) based on it was fabricated. The assembled SSC achieved a remarkable energy density (87.6 W h kg-1) and power density (750.2 W kg-1) at a current density of 1 A g-1, along with very good cycling stability of 91.4% even after 5000 GCD cycles. The SSC device was able to power up several LED lights and even operated a DC brushless fan for a significant amount of time. To the best of our knowledge, the assembled SSC device exhibits the highest energy density among the MOF composite-based SSCs reported so far.
Collapse
Affiliation(s)
- Mohammad Yasir Khan
- Functional Inorganic Materials Lab (FIML), Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Ahmad Husain
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Dhiraj K Mahajan
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Mohammad Muaz
- Interdisciplinary Nanotechnology Center, Aligarh Muslim University, Aligarh 202002, India
| | - M Shahid
- Functional Inorganic Materials Lab (FIML), Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Mohd Zeeshan
- Functional Inorganic Materials Lab (FIML), Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Farasha Sama
- Department of Industrial Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Sharique Ahmad
- Applied Science and Humanities Section, University Polytechnic, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
5
|
Gautam S, Rialach S, Paul S, Goyal N. MOF/graphene oxide based composites in smart supercapacitors: a comprehensive review on the electrochemical evaluation and material development for advanced energy storage devices. RSC Adv 2024; 14:14311-14339. [PMID: 38690108 PMCID: PMC11060142 DOI: 10.1039/d4ra01027b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024] Open
Abstract
The surge in interest surrounding energy storage solutions, driven by the demand for electric vehicles and the global energy crisis, has spotlighted the effectiveness of carbon-based supercapacitors in meeting high-power requirements. Concurrently, metal-organic frameworks (MOFs) have gained attention as a template for their integration with graphene oxide (GO) in composite materials which have emerged as a promising avenue for developing high-power supercapacitors, elevating smart supercapacitor efficiency, cyclic stability, and durability, providing crucial insights for overcoming contemporary energy storage obstacles. The identified combination leverages the strengths of both materials, showcasing significant potential for advancing energy storage technologies in a sustainable and efficient manner. In this research, an in-depth review has been presented, in which properties, rationale and integration of MOF/GO composites have been critically examined. Various fabrication techniques have been thoroughly analyzed, emphasizing the specific attributes of MOFs, such as high surface area and modifiable porosity, in tandem with the conductive and stabilizing features of graphene oxide. Electrochemical characterizations and physicochemical mechanisms underlying MOF/GO composites have been examined, emphasizing their synergistic interaction, leading to superior electrical conductivity, mechanical robustness, and energy storage capacity. The article concludes by identifying future research directions, emphasizing sustainable production, material optimization, and integration strategies to address the persistent challenges in the field of energy storage. In essence, this research article aims to offer a concise and insightful resource for researchers engaged in overcoming the pressing energy storage issues of our time through the exploration of MOF/GO composites in smart supercapacitors.
Collapse
Affiliation(s)
- Sanjeev Gautam
- Advanced Functional Materials Lab, Dr S.S. Bhatnagar University Institute of Chemical Engineering & Technology, Panjab University Chandigarh-160014 India +91 97797 13212
| | - Shruti Rialach
- Department of Physics and Astronomical Science, Central University of Himachal Pradesh Dharamshala 176215 India
- Energy Research Centre, Panjab University Chandigarh-160014 India
| | - Surinder Paul
- Department of Physics and Astronomical Science, Central University of Himachal Pradesh Dharamshala 176215 India
| | - Navdeep Goyal
- Department of Physics, Panjab University Chandigarh-160014 India
| |
Collapse
|
6
|
Yang D, Cai C, Liu K, Peng Z, Yan C, Xi J, Xie F, Li X. Recent advances in glucose-oxidase-based nanocomposites for diabetes diagnosis and treatment. J Mater Chem B 2023; 11:7582-7608. [PMID: 37522237 DOI: 10.1039/d3tb01097j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Glucose oxidase (GOx) has attracted a lot of attention in the field of diabetes diagnosis and treatment in recent years owing to its inherent biocompatibility and glucose-specific catalysis. GOx can effectively catalyze the oxidation of glucose in the blood to hydrogen peroxide (H2O2) and glucuronic acid and can be used as a sensitive element in biosensors to detect blood glucose concentrations. Nanomaterials based on the immobilization of GOx can significantly improve the performance of glucose sensors through, for example, reduced electron tunneling distance. Moreover, various insulin-loaded nanomaterials (e.g., metal-organic backbones, and mesoporous silica nanoparticles) have been developed for the control of blood glucose concentrations based on GOx catalytic chemistry. These nano-delivery carriers are capable of releasing insulin in response to GOx-mediated changes in the microenvironment, allowing for a rapid return of the blood microenvironment to a normal state. Therefore, glucose biosensors and insulin delivery vehicles immobilized with GOx are important tools for the diagnosis and treatment of diabetes. This paper reviews the characteristics of various GOx-based nanomaterials developed for glucose biosensing and insulin-responsive release as well as research progress, and also highlights the current challenges and opportunities facing this field.
Collapse
Affiliation(s)
- Dejun Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Chunyan Cai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Kai Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Zhaolei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jingjing Xi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Fan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China.
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
7
|
Hekmat F, Ataei Kachouei M, Taghaddosi Foshtomi S, Shahrokhian S, Zhu Z. Direct decoration of commercial cotton fabrics by binary nickel-cobalt metal-organic frameworks for flexible glucose sensing in next-generation wearable sensors. Talanta 2023; 257:124375. [PMID: 36821966 DOI: 10.1016/j.talanta.2023.124375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/21/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Having a prime significance in diagonsing and predicting the dangerous symptoms of chronic diseases in the early stages, special attention has been drawn by wearable glucose-sensing platforms in recent years. Herein, modified commercial cotton fabrics, decorated with binary Ni-Co metal-organic frameworks (NC-MOFs) through a one-pot scalable hydrothermal route, were directly utilized as flexible electrodes for non-enzymatic glucose amperometric sensing. Glucose sensitivities of 105.2 μA mM-1 cm-2 and 23 μA mM-1 cm-2 were acheived within two distinct linear dynamic ranges of 0.04-3.13 mM and 3.63-8.28 mM, respectively. Receiving benefits from a remarkable glucose sensitivity behavior in co-existence of iso-structures and interferences, rapid response (4.2 s), and remarkable reproducibility and repeatability, NC-MOF-modified cotton fabric electrodes are imensilly promising for developing high-performance wearable glucose sensing platfroms. The sensing performance of fabricated electrodes was further investigated in human blood serum and saliva.
Collapse
Affiliation(s)
- Farzaneh Hekmat
- Department of Chemistry, Sharif University of Technology, Azadi Avenue, Tehran, 11155-9516, Iran
| | - Matin Ataei Kachouei
- Department of Chemistry, Sharif University of Technology, Azadi Avenue, Tehran, 11155-9516, Iran
| | | | - Saeed Shahrokhian
- Department of Chemistry, Sharif University of Technology, Azadi Avenue, Tehran, 11155-9516, Iran.
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
8
|
Prabhakar Vattikuti SV, To Hoai N, Zeng J, Ramaraghavulu R, Nguyen Dang N, Shim J, Julien CM. Pouch-Type Asymmetric Supercapacitor Based on Nickel-Cobalt Metal-Organic Framework. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2423. [PMID: 36984303 PMCID: PMC10052718 DOI: 10.3390/ma16062423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/27/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Bimetal-organic frameworks (BMOFs) have attracted considerable attention as electrode materials for energy storage devices because of the precise control of their porous structure, surface area, and pore volume. BMOFs can promote multiple redox reactions because of the enhanced charge transfer between different metal ions. Therefore, the electroactivity of the electrodes can be significantly improved. Herein, we report a NiCo-MOF (NCMF) with a three-dimensional hierarchical nanorod-like structure prepared using a facile solvo-hydrothermal method. The as-prepared NCMF was used as the positive electrode in a hybrid pouch-type asymmetric supercapacitor device (HPASD) with a gel electrolyte (KOH+PVA) and activated carbon as the negative electrode. Because of the matchable potential windows and specific capacitances of the two electrodes, the assembled HPASD exhibits a specific capacitance of 161 F·g-1 at 0.5 A·g-1, an energy density of 50.3 Wh·kg-1 at a power density of 375 W·kg-1, and a cycling stability of 87.6% after 6000 cycles. The reported unique synthesis strategy is promising for producing high-energy-density electrode materials for supercapacitors.
Collapse
Affiliation(s)
- Surya. V. Prabhakar Vattikuti
- School of Mechanical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 712-749, Gyeongbuk, Republic of Korea
| | - Nguyen To Hoai
- Future Materials & Devices Laboratory, Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam
- The Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam
| | - Jie Zeng
- School of Mechanical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 712-749, Gyeongbuk, Republic of Korea
| | | | - Nam Nguyen Dang
- Future Materials & Devices Laboratory, Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam
- The Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam
| | - Jaesool Shim
- School of Mechanical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 712-749, Gyeongbuk, Republic of Korea
| | - Christian M. Julien
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, CNRS-UMR 7590, 4 Place Jussieu, 75252 Paris, France
| |
Collapse
|
9
|
Chettiannan B, Srinivasan AK, Arumugam G, Shajahan S, Haija MA, Rajendran R. Incorporation of α-MnO 2 Nanoflowers into Zinc-Terephthalate Metal-Organic Frameworks for High-Performance Asymmetric Supercapacitors. ACS OMEGA 2023; 8:6982-6993. [PMID: 36844521 PMCID: PMC9948164 DOI: 10.1021/acsomega.2c07808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Herein, we report the synthesis of α-MnO2 nanoflower-incorporated zinc-terephthalate MOFs (MnO2@Zn-MOFs) via the conventional solution phase synthesis technique as an electrode material for supercapacitor applications. The material was characterized by powder-X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy techniques. The prepared electrode material exhibited a specific capacitance of 880.58 F g-1 at 5 A g-1, which is higher than the pure Zn-BDC (610.83 F g-1) and pure α-MnO2 (541.69 F g-1). Also, it showed a 94% capacitance retention of its initial value after 10,000 cycles at 10 A g-1. The improved performance is attributed to the increased number of reactive sites and improved redox activity due to MnO2 inclusion. Moreover, an asymmetric supercapacitor assembled using MnO2@Zn-MOF as the anode and carbon black as the cathode delivered a specific capacitance of 160 F g-1 at 3 A g-1 with a high energy density of 40.68 W h kg-1 at a power density of 20.24 kW kg-1 with an operating potential of 0-1.35 V. The ASC also exhibited a good cycle stability of 90% of its initial capacitance.
Collapse
Affiliation(s)
- Balaji Chettiannan
- Department
of Physics, Periyar University, Salem 636011, Tamil Nadu, India
| | | | - Gowdhaman Arumugam
- Department
of Physics, Periyar University, Salem 636011, Tamil Nadu, India
| | - Shanavas Shajahan
- Department
of Chemistry, Khalifa University, P.O. Box, 127788, Abu Dhabi 127788, United Arab Emirates
| | - Mohammad Abu Haija
- Center
for Catalysis and Separations, Khalifa University
of Science and Technology, P.O. Box,
127788, Abu Dhabi 127788, United Arab Emirates
| | - Ramesh Rajendran
- Department
of Physics, Periyar University, Salem 636011, Tamil Nadu, India
| |
Collapse
|
10
|
Shah R, Ali S, Raziq F, Ali S, Ismail PM, Shah S, Iqbal R, Wu X, He W, Zu X, Zada A, Adnan, Mabood F, Vinu A, Jhung SH, Yi J, Qiao L. Exploration of metal organic frameworks and covalent organic frameworks for energy-related applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Jayaramulu K, Mukherjee S, Morales DM, Dubal DP, Nanjundan AK, Schneemann A, Masa J, Kment S, Schuhmann W, Otyepka M, Zbořil R, Fischer RA. Graphene-Based Metal-Organic Framework Hybrids for Applications in Catalysis, Environmental, and Energy Technologies. Chem Rev 2022; 122:17241-17338. [PMID: 36318747 PMCID: PMC9801388 DOI: 10.1021/acs.chemrev.2c00270] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Indexed: 11/06/2022]
Abstract
Current energy and environmental challenges demand the development and design of multifunctional porous materials with tunable properties for catalysis, water purification, and energy conversion and storage. Because of their amenability to de novo reticular chemistry, metal-organic frameworks (MOFs) have become key materials in this area. However, their usefulness is often limited by low chemical stability, conductivity and inappropriate pore sizes. Conductive two-dimensional (2D) materials with robust structural skeletons and/or functionalized surfaces can form stabilizing interactions with MOF components, enabling the fabrication of MOF nanocomposites with tunable pore characteristics. Graphene and its functional derivatives are the largest class of 2D materials and possess remarkable compositional versatility, structural diversity, and controllable surface chemistry. Here, we critically review current knowledge concerning the growth, structure, and properties of graphene derivatives, MOFs, and their graphene@MOF composites as well as the associated structure-property-performance relationships. Synthetic strategies for preparing graphene@MOF composites and tuning their properties are also comprehensively reviewed together with their applications in gas storage/separation, water purification, catalysis (organo-, electro-, and photocatalysis), and electrochemical energy storage and conversion. Current challenges in the development of graphene@MOF hybrids and their practical applications are addressed, revealing areas for future investigation. We hope that this review will inspire further exploration of new graphene@MOF hybrids for energy, electronic, biomedical, and photocatalysis applications as well as studies on previously unreported properties of known hybrids to reveal potential "diamonds in the rough".
Collapse
Affiliation(s)
- Kolleboyina Jayaramulu
- Department
of Chemistry, Indian Institute of Technology
Jammu, Jammu
and Kashmir 181221, India
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Soumya Mukherjee
- Inorganic
and Metal−Organic Chemistry, Department of Chemistry and Catalysis
Research Centre, Technical University of
Munich, Garching 85748, Germany
| | - Dulce M. Morales
- Analytical
Chemistry, Center for Electrochemical Sciences (CES), Faculty of Chemistry
and Biochemistry, Ruhr-Universität
Bochum, Universitätsstrasse 150, Bochum D-44780, Germany
- Nachwuchsgruppe
Gestaltung des Sauerstoffentwicklungsmechanismus, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, Berlin 14109, Germany
| | - Deepak P. Dubal
- School
of Chemistry and Physics, Queensland University
of Technology (QUT), 2 George Street, Brisbane, Queensland 4001, Australia
| | - Ashok Kumar Nanjundan
- School
of Chemistry and Physics, Queensland University
of Technology (QUT), 2 George Street, Brisbane, Queensland 4001, Australia
| | - Andreas Schneemann
- Lehrstuhl
für Anorganische Chemie I, Technische
Universität Dresden, Bergstrasse 66, Dresden 01067, Germany
| | - Justus Masa
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, Mülheim an der Ruhr D-45470, Germany
| | - Stepan Kment
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
- Nanotechnology
Centre, CEET, VŠB-Technical University
of Ostrava, 17 Listopadu
2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Wolfgang Schuhmann
- Analytical
Chemistry, Center for Electrochemical Sciences (CES), Faculty of Chemistry
and Biochemistry, Ruhr-Universität
Bochum, Universitätsstrasse 150, Bochum D-44780, Germany
| | - Michal Otyepka
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
- IT4Innovations, VŠB-Technical University of Ostrava, 17 Listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Radek Zbořil
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
- Nanotechnology
Centre, CEET, VŠB-Technical University
of Ostrava, 17 Listopadu
2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Roland A. Fischer
- Inorganic
and Metal−Organic Chemistry, Department of Chemistry and Catalysis
Research Centre, Technical University of
Munich, Garching 85748, Germany
| |
Collapse
|
12
|
Liu X, Yang H, Diao Y, He Q, Lu C, Singh A, Kumar A, Liu J, Lan Q. Recent advances in the electrochemical applications of Ni-based metal organic frameworks (Ni-MOFs) and their derivatives. CHEMOSPHERE 2022; 307:135729. [PMID: 35931255 DOI: 10.1016/j.chemosphere.2022.135729] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Nickel-based metal-organic skeletal materials (Ni-MOFs) are a new class of inorganic materials that have aroused attention of investigators during past couple of years. They offer advantages such as high specific surface area, structural diversity, tunable framework etc. This assorted class of materials exhibited catalytic activity and electrochemical properties and display wide range of applications in the fields of electrochemical sensing, electrical energy storage and electrocatalysis. In this context, the presented review focuses on strategies to improve the electrochemical performance and stability of Ni-MOFs through the optimization of synthesis conditions, the construction of composite materials, and the preparation of derivatives of precursors. The review also presents the applications of Ni-MOFs and their derivatives as electrochemical sensors, energy storage devices, and electrocatalysts. In addition, the challenges and further electrochemical development prospects of Ni-MOFs have been discussed.
Collapse
Affiliation(s)
- Xuezhang Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan,523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Hanping Yang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan,523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Yingyao Diao
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan,523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Qi He
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan,523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Chengyu Lu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China.
| | - Ayushi Singh
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226 007, India
| | - Abhinav Kumar
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226 007, India.
| | - Jianqiang Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan,523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China.
| | - Qian Lan
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan,523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China.
| |
Collapse
|
13
|
Review on Recent Modifications in Nickel Metal-Organic Framework Derived Electrode (Ni-MOF) Materials for Supercapacitors. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02503-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
14
|
Lattice-strain engineering of CoOOH induced by NiMn-MOF for high-efficiency supercapacitor and water oxidation electrocatalysis. J Colloid Interface Sci 2022. [DOI: 10.1016/j.jcis.2022.04.126] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Zeng J, Devarayapalli KC, Li C, Vattikuti SVP, Shim J. Pseudocapacitive features of freestanding nickel-zinc organometallic nanostructured arrays for high-energy density coin-cell asymmetric supercapacitors. Chem Asian J 2022; 17:e202200685. [PMID: 36052888 DOI: 10.1002/asia.202200685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/02/2022] [Indexed: 11/11/2022]
Abstract
Binder-free two-dimensional mesh-like structure of nickel-zinc metal-organic framework on in-situ-coated carbon cloth (Ni-Zn MOF/CC) and Ni-Zn MOF powder were developed via a solvo-hydrothermal reaction for electrochemical storage application. The electrochemical properties of these electrodes show that the electrodes self-assembled on carbon cloth substrates exhibit remarkably excellent performance. The Ni-Zn MOF/CC electrode exhibited a capacitance of 653.54 F/g at 1 A/g through a capacity retaining of 87.65 % after 10000 cycles. Furthermore, the Ni-Zn MOF//AC coin-cell asymmetric supercapacitor device (CASD) exhibited remarkable energy and power densities of 54.31 Wh/kg and 825 W/kg, respectively, with adequate capacitance retention up to 94.63% over 5000 cycles at 1.5 V. The CASD also exhibited a significant power density of 4950 W/kg at 19.67 W h/kg, which suggests that these in-situ developed MOF-based electrodes may discover application in energy storage devices.
Collapse
Affiliation(s)
- Jie Zeng
- Yeungnam University, School of Mechanical Engineering, KOREA, REPUBLIC OF
| | | | - Changping Li
- Hunan University of Science and Technology, college of Mechanical and electrical engineering, CHINA
| | - S V Prabhakar Vattikuti
- Yeungnam University, School of Mechanical Engineering, lab 512, 412427, Daegu, KOREA, REPUBLIC OF
| | - Jaesool Shim
- Yeungnam University, School of Mechanical Engineering, KOREA, REPUBLIC OF
| |
Collapse
|
16
|
Metal-organic framework of Zn(Ⅱ) based on 2,4,6-tris(4-carboxyphenyl)-1,3,5-triazine as a highly effective and dual-responsive fluorescent chemosensor target for Fe3+ and Cr2O72− ions in aqueous solutions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Ling Y, Wang Y, Zhao W, Zhou J, Chen K, Tao K, Han L. Controllable In Situ Transformation of Layered Double Hydroxides into Ultrathin Metal-Organic Framework Nanosheet Arrays for Energy Storage. Inorg Chem 2022; 61:3832-3842. [PMID: 35192761 DOI: 10.1021/acs.inorgchem.1c03087] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ultrathin two-dimensional metal-organic frameworks (MOFs) have convincing performances in energy storage, which can be put down to their accessible active sites with rapid charge transfer. Herein, NiCo-layered double hydroxide (LDH) nanosheet arrays are used as self-sacrificial templates to in situ fabricate ultrathin NiCo-MOF nanosheet arrays on Ni foam (NS/NF) by using organic ligands without adding metal sources. Two ultrathin MOF nanosheets with different ligands, terephthalate (BDC) and 2-aminoterephthalate (NH2-BDC), are synthesized, characterized, and discussed in detail. Specifically, NiCo-NH2-BDC-MOF NS/NF exhibits the best electrochemical performance as a battery-type electrode for supercapacitors, achieves an areal capacitance of 12.13 F cm-2 at a current density of 2 mA cm-2, and retains the original capacitance of 73.08 % after 5000 cycles at a current density of 50 mA cm-2. Furthermore, when NiCo-NH2-BDC-MOF NS/NF is assembled with activated carbon (AC) to form an asymmetric supercapacitor (ASC), an energy density of 0.81 mWh cm-2 can be provided at a power density of 1.60 mW cm-2. These results offer an effective and controllable synthetic strategy to in situ prepare ultrathin MOF nanosheet arrays with different ligands and metal ions from LDH precursors.
Collapse
Affiliation(s)
- Yuanyuan Ling
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yingchao Wang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Wenna Zhao
- School of Biological and Chemical Engineering, Ningbotech University, Ningbo, Zhejiang 315100, China
| | - Jiachao Zhou
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Kang Chen
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Kai Tao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Lei Han
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
18
|
Abazari R, Sanati S, Morsali A. Mixed Metal Fe 2Ni MIL-88B Metal-Organic Frameworks Decorated on Reduced Graphene Oxide as a Robust and Highly Efficient Electrocatalyst for Alkaline Water Oxidation. Inorg Chem 2022; 61:3396-3405. [PMID: 35157424 DOI: 10.1021/acs.inorgchem.1c03216] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The development of cost-effective and efficient oxygen evolution reaction (OER) catalysts has found increasing popularity due to the sluggish kinetics of OER, which has hampered the H2 production by H2O electrolysis. In this study, Fe2Ni MIL-88 (denoted FeNi) was composited by reduced graphene oxide (rGO, denoted R). Owing to the high porosity and abundant active sites of bimetallic MOF, proper conductivity of rGO, and the synergistic impact of Ni and Fe, the optimal composite (R@FeNi (1:1)) offered remarkable OER activity in alkaline environments. The obtained composite was employed in the OER, which led to a low overpotential of 264 mV at a current density of 10 mA cm-2 with a Tafel slope of 62 mV dec-1. Also, the bimetallic Fe2Ni MIL-88 nanorods grown on rGO led to a reduction in the onset potential of the OER. These findings exceeded the results of standard IrO2-based catalysts; they are also comparable or even better than the previously reported MOF-based catalysts.
Collapse
Affiliation(s)
- Reza Abazari
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, Iran 14115-175
| | - Soheila Sanati
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, Iran 14115-175
| | - Ali Morsali
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, Iran 14115-175
| |
Collapse
|
19
|
Shinde SK, Kim DY, Kumar M, Murugadoss G, Ramesh S, Tamboli AM, Yadav HM. MOFs-Graphene Composites Synthesis and Application for Electrochemical Supercapacitor: A Review. Polymers (Basel) 2022; 14:511. [PMID: 35160499 PMCID: PMC8839617 DOI: 10.3390/polym14030511] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 11/16/2022] Open
Abstract
Today's world requires high-performance energy storage devices such as hybrid supercapacitors (HSc), which play an important role in the modern electronic market because supercapacitors (Sc) show better electrical properties for electronics devices. In the last few years, the scientific community has focused on the coupling of Sc and battery-type materials to improve energy and power density. Recently, various hybrid electrode materials have been reported in the literature; out of these, coordination polymers such as metal-organic frameworks (MOFs) are highly porous, stable, and widely explored for various applications. The poor conductivity of classical MOFs restricts their applications. The composite of MOFs with highly porous graphene (G), graphene oxide (GO), or reduced graphene oxide (rGO) nanomaterials is a promising strategy in the field of electrochemical applications. In this review, we have discussed the strategy, device structure, and function of the MOFs/G, MOFs/GO, and MOFs/rGO nanocomposites on Sc. The structural, morphological, and electrochemical performance of coordination polymers composites towards Sc application has been discussed. The reported results indicate the considerable improvement in the structural, surface morphological, and electrochemical performance of the Sc due to their positive synergistic effect. Finally, we focused on the recent development in preparation methods optimization, and the opportunities for MOFs/G based nanomaterials as electrode materials for energy storage applications have been discussed in detail.
Collapse
Affiliation(s)
- Surendra K. Shinde
- Department of Biological and Environmental Science, College of Life Science and Biotechnology, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Siksa-dong, Goyang-si 10326, Gyeonggi-do, Korea; (S.K.S.); (D.-Y.K.)
| | - Dae-Young Kim
- Department of Biological and Environmental Science, College of Life Science and Biotechnology, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Siksa-dong, Goyang-si 10326, Gyeonggi-do, Korea; (S.K.S.); (D.-Y.K.)
| | - Manu Kumar
- Department of Life Science, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Korea;
| | - Govindhasamy Murugadoss
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India;
| | - Sivalingam Ramesh
- Department of Mechanical, Robotics and Energy Engineering, Dongguk University, Seoul 04620, Korea;
| | - Asiya M. Tamboli
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea
| | - Hemraj M. Yadav
- Department of Biological and Environmental Science, College of Life Science and Biotechnology, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Siksa-dong, Goyang-si 10326, Gyeonggi-do, Korea; (S.K.S.); (D.-Y.K.)
- School of Nanoscience and Biotechnology, Shivaji University, Kolhapur 416004, Maharashtra, India
| |
Collapse
|
20
|
Zeeshan M, Shahid M. State of the art developments and prospects of metal-organic frameworks for energy applications. Dalton Trans 2021; 51:1675-1723. [PMID: 34919099 DOI: 10.1039/d1dt03113a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The progress on technologies for the cleaner and ecological transformation and storage of energy to combat effluence or pollution and the impending energy dilemma has recently attracted interest from energy research groups, particularly in the field of coordination chemistry, among inorganic chemists. Carriers for storing energy or facilitating mass and e- transport are considered significant for energy conversion. Accordingly, considering their properties such as large surface area, low cost, customizable pore diameter, tunable topologies, low densities, and variable frameworks, MOFs (metal-organic frameworks) and their derivatives are well-suited for this purpose. MOFs are an innovative category of porous and crystalline materials, which have gained significant interest in recent years. Thus, herein, we highlight the state of the art progress on MOFs for energy-based applications, as perfect compounds and elements in compound assemblies for converting solar energy, lithium-ion arrays, fuel devices, hydrogen production, photocatalytic CO2 reduction, proton conduction, etc. In addition, the substantial progress achieved in the production of various composites and derivatives containing MOFs with particular focus on supercapacitors and gas adsorption and storage is summarized, concentrating on the correlation between their coordination structural frameworks and applications in the field of energy. The current improved strategies, challenges, and future prospects are also presented in view of the coordination chemistry governing the structural modification of MOFs for energy applications.
Collapse
Affiliation(s)
- Mohd Zeeshan
- Functional Inorganic Materials Lab (FIML), Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - M Shahid
- Functional Inorganic Materials Lab (FIML), Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
21
|
Feng K, Li T, Ye C, Gao X, Yang T, Liang X, Yue X, Ding S, Dong Q, Yang M, Xiong C, Huang G, Zhang J. A label-free electrochemical immunosensor for rapid detection of salmonella in milk by using CoFe-MOFs-graphene modified electrode. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108357] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Abd
El Khalk AA, Betiha MA, Mansour AS, Abd El Wahed MG, Al-Sabagh AM. High Degradation of Methylene Blue Using a New Nanocomposite Based on Zeolitic Imidazolate Framework-8. ACS OMEGA 2021; 6:26210-26220. [PMID: 34660980 PMCID: PMC8515569 DOI: 10.1021/acsomega.1c03195] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/16/2021] [Indexed: 05/28/2023]
Abstract
The development of broad-spectrum ultraviolet- and visible-light photocatalysts constitutes one of the most significant challenges in the field of photocatalytic pollutant removal. Here, the efficiency of the directly prepared nitrogen-doped quantum zeolitic imidazolate framework (ZIF)-8-dot catalyst for the photocatalytic degradation of the methylene blue dye was reported. The prepared catalysts were characterized using Brunauer-Emmett-Teller, X-ray diffraction, ultraviolet-visible spectroscopy, photoluminescence spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy techniques. Under sunlight irradiation, the 1% nitrogen-doped quantum-ZIF-8-dot catalyst showed 75% photodegradation in half an hour and ≈93% photodegradation after 3 hours compared to ≈87% for the ZIF-8 metal-organic framework. The high performance of the 1% nitrogen-doped quantum-ZIF-8-dot catalyst was attributed to the synergism between the catalyst components, upconverted fluorescence property of nitrogen-doped quantum dots, and charge (electrons-holes) separation. The reactive radical test revealed that the hydroxyl radical was dominant. The step-scheme heterojunction mechanism for photocatalytic degradation was also deduced. The kinetic study through the photocatalytic isotherms revealed that the pseudo-first-order kinetic model can describe the reaction mechanism.
Collapse
Affiliation(s)
| | | | - Ahmed Sadek Mansour
- National
Institute of Laser Enhanced Sciences (NILES), Cairo University, Cairo 12613, Egypt
| | | | | |
Collapse
|
23
|
Gorle DB, Ponnada S, Kiai MS, Nair KK, Nowduri A, Swart HC, Ang EH, Nanda KK. Review on recent progress in metal-organic framework-based materials for fabricating electrochemical glucose sensors. J Mater Chem B 2021; 9:7927-7954. [PMID: 34612291 DOI: 10.1039/d1tb01403j] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Diabetes is a type of disease that threatens human health, which can be diagnosed based on the level of glucose in the blood. Recently, various MOF-based materials have been developed as efficient electrochemical glucose sensors because of their tunable pore channels, large specific surface area well dispersed metallic active sites, etc. In this review, the significance of glucose detection and the advantages of MOF-based materials for this application are primarily discussed. Then, the application of MOF-based materials can be categorized into two types of glucose sensors: enzymatic biosensors and non-enzymatic sensors. Finally, insights into the current research challenges and future breakthrough possibilities regarding electrochemical glucose sensors are considered.
Collapse
Affiliation(s)
- Demudu Babu Gorle
- Materials Research Centre, Indian Institute of Science, Bangalore-560012, India.
| | - Srikanth Ponnada
- Department of Engineering Chemistry, Andhra University College of Engineering, Andhra University, Visakhapatnam-530003, India
| | - Maryam Sadat Kiai
- Nano-Science and Nano-Engineering Program, Graduate School of Science, Engineering and Technology, Istanbul Technical University, Istanbul-34469, Turkey
| | - Kishore Kumar Nair
- Department of Physics, University of Free state, Bloemfontein-9300, South Africa
| | - Annapurna Nowduri
- Department of Engineering Chemistry, Andhra University College of Engineering, Andhra University, Visakhapatnam-530003, India
| | - Hendrik C Swart
- Department of Physics, University of Free state, Bloemfontein-9300, South Africa
| | - Edison Huixiang Ang
- Natural Sciences and Science Education, National Institute of Education Singapore, Nanyang Technological University Singapore, Nanyang Walk-637616, Singapore
| | - Karuna Kar Nanda
- Materials Research Centre, Indian Institute of Science, Bangalore-560012, India.
| |
Collapse
|
24
|
Li L, Mi H, Jin Y, Ren D, Zhou K, Zhang Q, Liu J, Wang H. Fabrication of Vertical-Standing Co-MOF Nanoarrays with 2D Parallelogram-like Morphology for Aqueous Asymmetric Electrochemical Capacitors. Molecules 2021; 26:molecules26175394. [PMID: 34500830 PMCID: PMC8434315 DOI: 10.3390/molecules26175394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/26/2021] [Accepted: 09/02/2021] [Indexed: 11/24/2022] Open
Abstract
Metal organic frameworks (MOFs) have been considered as one of the most promising electrode materials for electrochemical capacitors due to their large specific surface area and abundant pore structure. Herein, we report a Co-MOF electrode with a vertical-standing 2D parallelogram-like nanoarray structure on a Ni foam substrate via a one-step solvothermal method. The as-prepared Co-MOF on a Ni foam electrode delivered a high area-specific capacitance of 582.0 mC cm−2 at a current density of 2 mA cm−2 and a good performance rate of 350.0 mC cm−2 at 50 mA cm−2. Moreover, an asymmetric electrochemical capacitor (AEC) device (Co-MOF on Ni foam//AC) was assembled by using the as-prepared Co-MOF on a Ni foam as the cathode and a active carbon-coated Ni foam as the anode to achieve a maximum energy density of 0.082 mW cm−2 at a power density of 0.8 mW cm−2, which still maintained 0.065 mW cm−2 at a high power density of 11.94 mW cm−2. Meanwhile, our assembled device exhibited an excellent cycling stability with a capacitance retention of nearly 100% after 1000 cycles. Therefore, this work provides a simple method to prepare MOF-based material for the application of energy storage and conversion.
Collapse
Affiliation(s)
| | | | - Yuhong Jin
- Correspondence: (Y.J.); (H.W.); Tel.: +86-010-67396288 (Y.J. & H.W.)
| | | | | | | | | | - Hao Wang
- Correspondence: (Y.J.); (H.W.); Tel.: +86-010-67396288 (Y.J. & H.W.)
| |
Collapse
|
25
|
Wang C, Li X, Yang W, Xu Y, Pang H. Solvent regulation strategy of Co-MOF-74 microflower for supercapacitors. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.04.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
26
|
Spectroscopic Analyses of Changes in Photocatalytic and Catalytic Activities of Mn- and Ni-Ion Doped and Base-Treated Reduced Graphene Oxide. Catalysts 2021. [DOI: 10.3390/catal11080990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
While reduced graphene oxide (rGO) is used widely as a catalyst, its catalytic activity can be improved significantly by modifying it with a metal. In this study, we compared the photocatalytic and catalytic properties of base-treated rGO particles and transition-metal-ion-doped rGO based on the oxidation reaction of thiophenol and the photocatalytic degradation of 4-chlorophenol. Since the two catalytic activities are related to the changes in the electronic structure of rGO, X-ray photoemission spectroscopy, X-ray absorption spectroscopy, and Raman spectroscopy were performed. When rGO was doped with Mn2+ ions, its catalytic properties improved with respect to both reactions. The changes in the electronic structure of rGO are attributed to the formation of defect structures on the rGO surface via a reaction between the doped Mn2+ ions and oxygen of the rGO surface. Thus, the results show that the doping of rGO with Mn ions in the +2-charge state (stable oxide form: MnO) enhances its catalytic and photocatalytic activities. Hence, this study provides new insights into the use of defect-controlled rGO as a novel catalyst.
Collapse
|
27
|
Application of Metal-Organic Framework-Based Composites for Gas Sensing and Effects of Synthesis Strategies on Gas-Sensitive Performance. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9080226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Gas sensing materials, such as semiconducting metal oxides (SMOx), carbon-based materials, and polymers have been studied in recent years. Among of them, SMOx-based gas sensors have higher operating temperatures; sensors crafted from carbon-based materials have poor selectivity for gases and longer response times; and polymer gas sensors have poor stability and selectivity, so it is necessary to develop high-performance gas sensors. As a porous material constructed from inorganic nodes and multidentate organic bridging linkers, the metal-organic framework (MOF) shows viable applications in gas sensors due to its inherent large specific surface area and high porosity. Thus, compounding sensor materials with MOFs can create a synergistic effect. Many studies have been conducted on composite MOFs with three materials to control the synergistic effects to improve gas sensing performance. Therefore, this review summarizes the application of MOFs in sensor materials and emphasizes the synthesis progress of MOF composites. The challenges and development prospects of MOF-based composites are also discussed.
Collapse
|
28
|
Multi-applications of new trinuclear Zr-SMI complex. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Tian D, Ao Y, Li W, Xu J, Wang C. General fabrication of metal-organic frameworks on electrospun modified carbon nanofibers for high-performance asymmetric supercapacitors. J Colloid Interface Sci 2021; 603:199-209. [PMID: 34186398 DOI: 10.1016/j.jcis.2021.05.138] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/18/2021] [Accepted: 05/23/2021] [Indexed: 10/21/2022]
Abstract
Metal-organic framework (MOF)-based electrode materials have become a hot subject for supercapaitors. Herein, Ni-MOFs grown on Co nanoparticles modified carbon nanofibers (CNFs) (C-Co@MOF) are prepared via a facile process. Interestingly, the presence of Co nanoparticles in CNFs not only boosts the hybridization of CNF and MOFs, but also releases Co ions to participate in the growth of MOF, leading to a favorable electrochemical behavior. In detail, the specific capacitance of C-Co@MOF reaches 1201.6 F g-1 that exceeds those of C-M@MOFs (M = Ni, V, Mo, Mn, Fe, Cu and Zn) and CNF@MOF. More importantly, an asymmetric solid-state supercapacitor is assembled using C-Co@MOF and nitrogen-doped carbon nanotubes derived from polyaniline as positive and negative electrode materials, respectively, representing a high energy density of 37.0 Wh kg-1 and outstanding durability. This work highlights the superiority of electrospun CNFs modified by metal nanoparticles for the growth of MOF, showing great potential for electrochemical energy storage and conversion applications.
Collapse
Affiliation(s)
- Di Tian
- Key Laboratory of State Forestry Administration for Highly-Efficient Utilization of Forestry Biomass Resources in Southwest, Southwest Forestry University, NO. 300 Bailongsi, Kunming 650224, PR China
| | - Yue Ao
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, NO. 2699 Qianjin Street, Changchun 130012, PR China
| | - Weimo Li
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, NO. 2699 Qianjin Street, Changchun 130012, PR China
| | - Jiaqi Xu
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, NO. 2699 Qianjin Street, Changchun 130012, PR China
| | - Ce Wang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, NO. 2699 Qianjin Street, Changchun 130012, PR China.
| |
Collapse
|
30
|
Abstract
Metal–organic frameworks (MOFs) are emerging porous materials with highly tunable structures developed in the 1990s, while organometallic chemistry is of fundamental importance for catalytic transformation in the academic and industrial world for many decades. Through the years, organometallic chemistry has been incorporated into functional MOF construction for diverse applications. Here, we will focus on how organometallic chemistry is applied in MOF design and modifications from linker-centric and metal-cluster-centric perspectives, respectively. Through structural design, MOFs can function as a tailorable platform for traditional organometallic transformations, including reaction of alkenes, cross-coupling reactions, and C–H activations. Besides, an overview will be made on other application categories of organometallic MOFs, such as gas adsorption, magnetism, quantum computing, and therapeutics.
Collapse
|
31
|
Liu R, Peng X, Han X, Mak CH, Cheng KC, Permatasari Santoso S, Shen HH, Ruan Q, Cao F, Yu ET, Chu PK, Hsu HY. Cost-effective liquid-junction solar devices with plasma-implanted Ni/TiN/CNF hierarchically structured nanofibers. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
32
|
Zhang S, Zhang S, Yin N, Huang Z, Xu W, Yue K, Li X, Li D. Exploring Reversible Thermochromic Behavior in a Rare Ni(II)-MOF System. ACS APPLIED MATERIALS & INTERFACES 2021; 13:6430-6441. [PMID: 33525879 DOI: 10.1021/acsami.0c21116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Thermochromic metal-organic frameworks (MOFs) are promising functional materials for a wide range of applications due to their ability to exhibit color variation under external temperature stimuli, yet the development of them with high cyclability and efficient regeneration processes remains challenging. Here, presented is a rare example of an ultrastable Ni(II)-MOF exhibiting an unprecedented reversible four-step color change between two complementary colors in a wide temperature range, which could be repeated for at least 500 cycles without losing crystallinity and thermochromic performance. Notably, the regeneration can be achieved within 1 min by simply letting the crystals cool naturally in the air, facilitated by the unique nature of the channels' inner surface. The reversible thermochromic behavior is owing to a series of reversible crystal structure changes with temperature, including the stepwise dehydration/rehydration process, and structural changes. This work facilitates the future development of more MOF-based reversible thermochromic materials with excellent performance and improved practical applicability.
Collapse
Affiliation(s)
- Shihui Zhang
- College of Chemistry and Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, No. 1, Xuefu Ave., Xi'an 710127, China
| | - Shuyu Zhang
- College of Chemistry and Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, No. 1, Xuefu Ave., Xi'an 710127, China
| | - Nan Yin
- Thermochemistry Laboratory, Liaoning Province Key Laboratory of Thermochemistry for Energy and Materials, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhenqi Huang
- College of Chemistry and Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, No. 1, Xuefu Ave., Xi'an 710127, China
| | - Wenhua Xu
- College of Chemistry and Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, No. 1, Xuefu Ave., Xi'an 710127, China
| | - Kefen Yue
- College of Chemistry and Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, No. 1, Xuefu Ave., Xi'an 710127, China
| | - Xiuyuan Li
- Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710032, China
| | - Dongsheng Li
- College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, No. 8, Daxue Road, Yichang 443002, China
| |
Collapse
|
33
|
Naskar P, Chakraborty P, Kundu D, Maiti A, Biswas B, Banerjee A. Envisaging Future Energy Storage Materials for Supercapacitors: An Ensemble of Preliminary Attempts. ChemistrySelect 2021. [DOI: 10.1002/slct.202100049] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pappu Naskar
- Department of Chemistry Presidency University-Kolkata 86/1 College Street Kolkata 700073 India
| | - Priyanka Chakraborty
- Department of Chemistry Presidency University-Kolkata 86/1 College Street Kolkata 700073 India
| | - Debojyoti Kundu
- Department of Chemistry Presidency University-Kolkata 86/1 College Street Kolkata 700073 India
| | - Apurba Maiti
- Department of Chemistry Presidency University-Kolkata 86/1 College Street Kolkata 700073 India
| | - Biplab Biswas
- Department of Chemistry Presidency University-Kolkata 86/1 College Street Kolkata 700073 India
| | - Anjan Banerjee
- Department of Chemistry Presidency University-Kolkata 86/1 College Street Kolkata 700073 India
| |
Collapse
|
34
|
Zhao Y, Yang M, Rong S, Wang X, Ma H, Pang H, Tan L, Gao K. Polyoxotungstates-supported NiII/CoII-containing 3D inorganic-organic hybrids as supercapacitor electrodes toward boosting capacitor performance. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Han Y, Zhou J, Wang L, Xing L, Xue Z, Jiao Y, Pang Y. Redox-active nanostructure electrode of Mn/Ni bimetal organic frameworks anchoring on multi-walled carbon nanotubes for advanced supercapacitor. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.114993] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Makkar P, Ghosh NN. High-Performance All-Solid-State Flexible Asymmetric Supercapacitor Device Based on a Ag–Ni Nanoparticle-Decorated Reduced Graphene Oxide Nanocomposite as an Advanced Cathode Material. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05516] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Priyanka Makkar
- Nano-materials Lab, Department of Chemistry, Birla Institute of Technology and Science, Pilani K K Birla Goa Campus, Goa 403726, India
| | - Narendra Nath Ghosh
- Nano-materials Lab, Department of Chemistry, Birla Institute of Technology and Science, Pilani K K Birla Goa Campus, Goa 403726, India
| |
Collapse
|
37
|
Wu J, Li T, Meng G, Xiang Y, Hai J, Wang B. Carbon nanofiber supported Ni–ZnO catalyst for efficient and selective hydrogenation of pyrolysis gasoline. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00548k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Ni–ZnO/C nanofibers could be used directly for the hydrogenation of the model feed of pyrolysis gasoline without any passivation and exhibited better activity, selectivity, and stability than commercial Ni/Al2O3 catalyst.
Collapse
Affiliation(s)
- Jie Wu
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Lanzhou University
- Lanzhou 730000
- China
- Tianshui Normal University
| | - Tianrong Li
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Lanzhou University
- Lanzhou 730000
- China
| | - Genping Meng
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Lanzhou University
- Lanzhou 730000
- China
| | - Yongsheng Xiang
- Lanzhou Petrochemical Research Center
- PetroChina
- Lanzhou 730060
- China
| | - Jun Hai
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Lanzhou University
- Lanzhou 730000
- China
| | - Baodui Wang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Lanzhou University
- Lanzhou 730000
- China
| |
Collapse
|
38
|
Boorboor Ajdari F, Kowsari E, Niknam Shahrak M, Ehsani A, Kiaei Z, Torkzaban H, Ershadi M, Kholghi Eshkalak S, Haddadi-Asl V, Chinnappan A, Ramakrishna S. A review on the field patents and recent developments over the application of metal organic frameworks (MOFs) in supercapacitors. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213441] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
39
|
Ju H, Liu XD, Tao CY, Yang F, Wang Y, Luo X, Zhang L. Oxygen plasma functionalization of hexacyanocobaltates for high-capacity supercapacitor electrodes. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Du M, Li Q, Zhao Y, Liu CS, Pang H. A review of electrochemical energy storage behaviors based on pristine metal–organic frameworks and their composites. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213341] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
41
|
Advances in transition-metal (Zn, Mn, Cu)-based MOFs and their derivatives for anode of lithium-ion batteries. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213221] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Wang K, Bi R, Huang M, Lv B, Wang H, Li C, Wu H, Zhang Q. Porous Cobalt Metal–Organic Frameworks as Active Elements in Battery–Supercapacitor Hybrid Devices. Inorg Chem 2020; 59:6808-6814. [DOI: 10.1021/acs.inorgchem.0c00060] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Kuaibing Wang
- Department of Chemistry, College of Sciences Nanjing Agricultural University Nanjing 210095, Jiangsu, P. R. China
- School of Materials Science & Engineering Nanyang Technological University Singapore 639678, Singapore
| | - Rong Bi
- Department of Chemistry, College of Sciences Nanjing Agricultural University Nanjing 210095, Jiangsu, P. R. China
| | - Menglu Huang
- Department of Chemistry, College of Sciences Nanjing Agricultural University Nanjing 210095, Jiangsu, P. R. China
| | - Bo Lv
- Department of Chemistry, College of Sciences Nanjing Agricultural University Nanjing 210095, Jiangsu, P. R. China
| | - Huijian Wang
- Department of Chemistry, College of Sciences Nanjing Agricultural University Nanjing 210095, Jiangsu, P. R. China
| | - Chao Li
- School of Materials Science & Engineering Nanyang Technological University Singapore 639678, Singapore
| | - Hua Wu
- Department of Chemistry, College of Sciences Nanjing Agricultural University Nanjing 210095, Jiangsu, P. R. China
| | - Qichun Zhang
- School of Materials Science & Engineering Nanyang Technological University Singapore 639678, Singapore
| |
Collapse
|
43
|
Tian D, Song N, Zhong M, Lu X, Wang C. Bimetallic MOF Nanosheets Decorated on Electrospun Nanofibers for High-Performance Asymmetric Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:1280-1291. [PMID: 31834776 DOI: 10.1021/acsami.9b16420] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The rational design of metal-organic framework (MOF)-based materials with a huge specific surface area, high redox activity, and favorable conductivity is currently a hot subject for their potential usage in supercapacitor electrodes. Herein, novel bimetallic MOFs with a flowerlike nanosheet structure grown on the electrospun nanofibers (PPNF@M-Ni MOF, M = Co, Zn, Cu, Fe) have been prepared by controlling the incorporation of various types of metal ions, which display superior electrochemical performance. For example, PPNF@Co-Ni MOF possesses a large specific capacitance of 1096.2 F g-1 (specific capacity of 548.1 C g-1) at 1 A g-1 and excellent rate performance. In addition, an asymmetric solid-state device composed of PPNF@Co-Ni MOF (positive materials) and KOH-activated carbon nanofibers embedded with reduced graphene oxide (negative materials) reaches a maximum energy density of 93.6 Wh kg-1 at the power density of 1600.0 W kg-1 and long cycling life. This work may greatly advance the research toward the design of supported MOF-based electrode materials for a promising prospect in energy conversion and storage.
Collapse
Affiliation(s)
- Di Tian
- Alan G. MacDiarmid Institute, College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , P. R. China
| | - Na Song
- Alan G. MacDiarmid Institute, College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , P. R. China
| | - Mengxiao Zhong
- Alan G. MacDiarmid Institute, College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , P. R. China
| | - Xiaofeng Lu
- Alan G. MacDiarmid Institute, College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , P. R. China
| | - Ce Wang
- Alan G. MacDiarmid Institute, College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , P. R. China
| |
Collapse
|
44
|
Wang KB, Bi R, Wang ZK, Chu Y, Wu H. Metal–organic frameworks with different spatial dimensions for supercapacitors. NEW J CHEM 2020. [DOI: 10.1039/c9nj05198h] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Recent progress in MOF materials for SCs with different spatial dimensions, such as 2D MOFs, including conductive MOFs and nanosheets, and 3D MOFs, categorized as single metallic and multiple metallic MOFs, are reviewed.
Collapse
Affiliation(s)
- Kuai-Bing Wang
- Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing
- P. R. China
| | - Rong Bi
- Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing
- P. R. China
| | - Zi-Kai Wang
- Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing
- P. R. China
| | - Yang Chu
- Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing
- P. R. China
| | - Hua Wu
- Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing
- P. R. China
| |
Collapse
|
45
|
Cheng KP, Gu RJ, Wen LX. Application of a clustered countercurrent-flow micro-channel reactor in the preparation of KMnF3 perovskite for asymmetric supercapacitors. RSC Adv 2020; 10:11681-11693. [PMID: 35496586 PMCID: PMC9052370 DOI: 10.1039/d0ra01411g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/14/2020] [Indexed: 11/21/2022] Open
Abstract
KMnF3 ultrafine particles were prepared for supercapacitors by novel microreactors with intensified micromixing efficiency and a weak amplification effect.
Collapse
Affiliation(s)
- Kun-Peng Cheng
- Research Center of the Ministry of Education for High Gravity Engineering and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- China
- College of Chemical Engineering
| | - Ren-Jie Gu
- Research Center of the Ministry of Education for High Gravity Engineering and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- China
- College of Chemical Engineering
| | - Li-Xiong Wen
- Research Center of the Ministry of Education for High Gravity Engineering and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- China
- College of Chemical Engineering
| |
Collapse
|
46
|
Wang K, Lv B, Wang Z, Wu H, Xu J, Zhang Q. Two-fold interpenetrated Mn-based metal–organic frameworks (MOFs) as battery-type electrode materials for charge storage. Dalton Trans 2020; 49:411-417. [DOI: 10.1039/c9dt04101j] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two novel interpenetrated 2-fold Mn-MOFs were successfully prepared and applied for the first time in a charge-storage field. As a result, the bulk electrodes behave as alkaline batteries and deliver high capacities of 1004 and 619 C g−1 at 1 A g−1.
Collapse
Affiliation(s)
- Kuaibing Wang
- Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
- P. R. China
| | - Bo Lv
- Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
- P. R. China
| | - Zikai Wang
- Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
- P. R. China
| | - Hua Wu
- Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
- P. R. China
| | - Jiangyan Xu
- Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
- P. R. China
| | - Qichun Zhang
- School of Materials Science & Engineering
- Nanyang Technological University
- Singapore 639678
- Singapore
| |
Collapse
|
47
|
Li Q, Zhou J, Liu R, Han L. An amino-functionalized metal-organic framework nanosheet array as a battery-type electrode for an advanced supercapattery. Dalton Trans 2019; 48:17163-17168. [PMID: 31728484 DOI: 10.1039/c9dt03821c] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
An amino-functionalized metal-organic framework nanosheet array supported on nickel foam (NH2-Co-MOF-NS/NF) was fabricated and served as a binder-free battery-type electrode, which exhibited maximum areal specific capacities of 6.7 C cm-2 (1861 μA h cm-2) and 2.9 C cm-2 (806 μA h cm-2) in a three-electrode device and in a supercapattery device, respectively. Moreover, the advanced supercapattery device delivered a high energy density of 0.351 mW h cm-2 at a power density of 1.70 mW cm-2, with superior capacity retention of 91.8% after 5000 cycles. This work can provide an efficient strategy to construct amino-functionalized 2D MOF nanosheets for energy storage and conversion.
Collapse
Affiliation(s)
- Qin Li
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | | | | | | |
Collapse
|
48
|
Li G, Cai H, Li X, Zhang J, Zhang D, Yang Y, Xiong J. Construction of Hierarchical NiCo 2O 4@Ni-MOF Hybrid Arrays on Carbon Cloth as Superior Battery-Type Electrodes for Flexible Solid-State Hybrid Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:37675-37684. [PMID: 31532185 DOI: 10.1021/acsami.9b11994] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Metal-organic frameworks (MOFs) have been considered as a class of promising electrode materials for supercapacitors owing to their large surface area, rich porosity, and variable redox sites; however, direct application of pristine MOFs in energy storage has been largely hindered by their poor electrical conductivity and stability issues. In this work, we demonstrate a facile two-step approach to address the controlled growth of Ni-MOF arrays on the surface of NiCo2O4 nanowires by modulating the formation reaction of MOFs. By taking advantage of the intriguing merits from the NiCo2O4 core and Ni-MOF shell as well as their synergistic effects, the optimized NiCo2O4@Ni-MOF hybrid electrode exhibits boosted electrochemical performance, in terms of high specific capacity (208.8 mA h/g at 2 mA/cm2) and good rate capability. In addition, the assembled flexible solid-state HSC device based on the optimized NiCo2O4@Ni-MOF and activated carbon as the cathode and anode achieves a maximum energy density of 32.6 W h/kg at a power density of 348.9 W/kg without sacrificing its outstanding cycling performance (nearly 100% retention over 6000 cycles at 8 mA/cm2) and mechanical stability, outperforming most recently reported MOF-based HSC devices in an aqueous electrolyte. Our work demonstrates the possibility of exploiting novel MOF-based hybrid arrays as battery-type electrodes with enhanced electrochemical properties, which exhibits great potential in flexible energy storage devices.
Collapse
Affiliation(s)
| | | | | | | | - Desuo Zhang
- College of Textile and Clothing Engineering , Soochow University , Suzhou 215123 , China
| | | | | |
Collapse
|
49
|
Enhanced electrochemical properties of manganese-based metal organic framework materials for supercapacitors. J APPL ELECTROCHEM 2019. [DOI: 10.1007/s10800-019-01352-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
50
|
Gupta AK, Saraf M, Bharadwaj PK, Mobin SM. Dual Functionalized CuMOF-Based Composite for High-Performance Supercapacitors. Inorg Chem 2019; 58:9844-9854. [PMID: 31343867 DOI: 10.1021/acs.inorgchem.9b00909] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we utilized our previously reported highly porous CuMOF, {[Cu2(L)(H2O)2]·(5DMF)·(4H2O)}n, decorated with amine and trifluoromethyl functional groups for energy storage application. This robust framework in CuMOF enhances the chemical and thermal stabilities as well as improves the interfacial binding interactions. The poor conductivity of CuMOF usually restricts its practical utility in energy storage systems, due to which rGO was introduced along with CuMOF to form a CuMOF/rGO composite (1) through a facile ultrasonication technique. The synergistic effects between CuMOF and rGO induce a dramatic enhancement in specific capacitance (462 F g-1 at 0.8 A g-1) of 1 with a cycle life of 93.75% up to 1000 cycles. The results highlight 1 as an emerging contestant for next generation supercapacitors.
Collapse
Affiliation(s)
| | | | - Parimal K Bharadwaj
- Department of Chemistry , Indian Institute of Technology Kanpur , Kanpur - 208016 , India
| | | |
Collapse
|