1
|
Kilgore R, Minzoni A, Shastry S, Smith W, Barbieri E, Wu Y, LeBarre JP, Chu W, O'Brien J, Menegatti S. The downstream bioprocess toolbox for therapeutic viral vectors. J Chromatogr A 2023; 1709:464337. [PMID: 37722177 DOI: 10.1016/j.chroma.2023.464337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/20/2023]
Abstract
Viral vectors are poised to acquire a prominent position in modern medicine and biotechnology owing to their role as delivery agents for gene therapies, oncolytic agents, vaccine platforms, and a gateway to engineer cell therapies as well as plants and animals for sustainable agriculture. The success of viral vectors will critically depend on the availability of flexible and affordable biomanufacturing strategies that can meet the growing demand by clinics and biotech companies worldwide. In this context, a key role will be played by downstream process technology: while initially adapted from protein purification media, the purification toolbox for viral vectors is currently undergoing a rapid expansion to fit the unique biomolecular characteristics of these products. Innovation efforts are articulated on two fronts, namely (i) the discovery of affinity ligands that target adeno-associated virus, lentivirus, adenovirus, etc.; (ii) the development of adsorbents with innovative morphologies, such as membranes and 3D printed monoliths, that fit the size of viral vectors. Complementing these efforts are the design of novel process layouts that capitalize on novel ligands and adsorbents to ensure high yield and purity of the product while safeguarding its therapeutic efficacy and safety; and a growing panel of analytical methods that monitor the complex array of critical quality attributes of viral vectors and correlate them to the purification strategies. To help explore this complex and evolving environment, this study presents a comprehensive overview of the downstream bioprocess toolbox for viral vectors established in the last decade, and discusses present efforts and future directions contributing to the success of this promising class of biological medicines.
Collapse
Affiliation(s)
- Ryan Kilgore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States.
| | - Arianna Minzoni
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Shriarjun Shastry
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695, United States
| | - Will Smith
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Eduardo Barbieri
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Yuxuan Wu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Jacob P LeBarre
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Wenning Chu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Juliana O'Brien
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695, United States; North Carolina Viral Vector Initiative in Research and Learning, North Carolina State University, Raleigh, NC 27695, United States
| |
Collapse
|
2
|
Vitek R, do Nascimento FH, Masini JC. Polymer monoliths for the concentration of viruses from environmental waters: A review. J Sep Sci 2021; 45:134-148. [PMID: 34128332 DOI: 10.1002/jssc.202100282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/13/2022]
Abstract
Even at low concentrations in environmental waters, some viruses are highly infective, making them a threat to human health. They are the leading cause of waterborne enteric diseases. In agriculture, plant viruses in irrigation and runoff water threat the crops. The low concentrations pose a challenge to early contamination detection. Thus, concentrating the virus particles into a small volume may be mandatory to achieve reliable detection in molecular techniques. This paper reviews the organic monoliths developments and their applications to concentrate virus particles from waters (waste, surface, tap, sea, and irrigation waters). Free-radical polymerization and polyaddition reactions are the most common strategies to prepare the monoliths currently used for virus concentration. Here, the routes for preparing and functionalizing both methacrylate and epoxy-based monoliths will be shortly described, following a revision of their retention mechanisms and applications in the concentration of enteric and plant viruses in several kinds of waters.
Collapse
Affiliation(s)
- Renan Vitek
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.,Instituto Federal de Educação Ciência e Tecnologia de Mato Grosso, Cuiabá, Brazil
| | - Fernando H do Nascimento
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Jorge C Masini
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
3D-printed ordered bed structures for chromatographic purification of enveloped and non-enveloped viral particles. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117681] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
4
|
Junter GA, Lebrun L. Polysaccharide-based chromatographic adsorbents for virus purification and viral clearance. J Pharm Anal 2020; 10:291-312. [PMID: 32292625 PMCID: PMC7104128 DOI: 10.1016/j.jpha.2020.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/20/2022] Open
Abstract
Viruses still pose a significant threat to human and animal health worldwide. In the fight against viral infections, high-purity viral stocks are needed for manufacture of safer vaccines. It is also a priority to ensure the viral safety of biopharmaceuticals such as blood products. Chromatography techniques are widely implemented at both academic and industrial levels in the purification of viral particles, whole viruses and virus-like particles to remove viral contaminants from biopharmaceutical products. This paper focuses on polysaccharide adsorbents, particulate resins and membrane adsorbers, used in virus purification/removal chromatography processes. Different chromatographic modes are surveyed, with particular attention to ion exchange and affinity/pseudo-affinity adsorbents among which commercially available agarose-based resins (Sepharose®) and cellulose-based membrane adsorbers (Sartobind®) occupy a dominant position. Mainly built on the development of new ligands coupled to conventional agarose/cellulose matrices, the development perspectives of polysaccharide-based chromatography media in this antiviral area are stressed in the conclusive part.
Collapse
Affiliation(s)
- Guy-Alain Junter
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 76000, Rouen, France
| | - Laurent Lebrun
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 76000, Rouen, France
| |
Collapse
|
5
|
Roque ACA, Pina AS, Azevedo AM, Aires‐Barros R, Jungbauer A, Di Profio G, Heng JYY, Haigh J, Ottens M. Anything but Conventional Chromatography Approaches in Bioseparation. Biotechnol J 2020; 15:e1900274. [DOI: 10.1002/biot.201900274] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/03/2020] [Indexed: 12/28/2022]
Affiliation(s)
| | - Ana Sofia Pina
- UCIBIOChemistry DepartmentNOVA School of Science and Technology Caparica 2829‐516 Portugal
| | - Ana Margarida Azevedo
- IBB – Institute for Bioengineering and BiosciencesDepartment of BioengineeringInstituto Superior TécnicoUniversidade de Lisboa Av. Rovisco Pais Lisbon 1049‐001 Portugal
| | - Raquel Aires‐Barros
- IBB – Institute for Bioengineering and BiosciencesDepartment of BioengineeringInstituto Superior TécnicoUniversidade de Lisboa Av. Rovisco Pais Lisbon 1049‐001 Portugal
| | - Alois Jungbauer
- Department of BiotechnologyUniversity of Natural Resources and Life Sciences Muthgasse 18 Vienna Muthgasse 1190 Austria
| | - Gianluca Di Profio
- National Research Council of Italy (CNR) – Institute on Membrane Technology (ITM) via P. Bucci Cubo 17/C Rende (CS) 87036 Italy
| | - Jerry Y. Y. Heng
- Department of Chemical EngineeringImperial College London South Kensington Campus London SW7 2AZ UK
| | - Jonathan Haigh
- FUJIFILM Diosynth Biotechnologies UK Limited Belasis Avenue Billingham TS23 1LH UK
| | - Marcel Ottens
- Department of BiotechnologyDelft University of Technology Van der Maasweg 9 Delft 2629 HZ The Netherlands
| |
Collapse
|
6
|
Current trends in affinity-based monoliths in microextraction approaches: A review. Anal Chim Acta 2019; 1084:1-20. [DOI: 10.1016/j.aca.2019.07.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/15/2022]
|
7
|
Sharma A, Bracewell DG. Characterisation of porous anodic alumina membranes for ultrafiltration of protein nanoparticles as a size mimic of virus particles. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Chang Z, Henkensmeier D, Chen R. One-Step Cationic Grafting of 4-Hydroxy-TEMPO and its Application in a Hybrid Redox Flow Battery with a Crosslinked PBI Membrane. CHEMSUSCHEM 2017; 10:3193-3197. [PMID: 28714295 DOI: 10.1002/cssc.201701060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Indexed: 06/07/2023]
Abstract
By using a one-step epoxide ring-opening reaction between 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (4-hydroxy-TEMPO) and glycidyltrimethylammonium cation (GTMA+ ), we synthesized a cation-grafted TEMPO (g+ -TEMPO) and studied its electrochemical performance against a Zn2+ /Zn anode in a hybrid redox flow battery. To conduct Cl- counter anions, a crosslinked methylated polybenzimidazole (PBI) membrane was prepared and placed between the catholyte and anolyte. Compared to 4-hydroxy-TEMPO, the positively charged g+ - TEMPO exhibits enhanced reaction kinetics. Moreover, flow battery tests with g+ -TEMPO show improved Coulombic, voltage, and energy efficiencies and cycling stability over 140 cycles. Crossover of active species through the membrane was not detected.
Collapse
Affiliation(s)
- Zhenjun Chang
- Transfercenter Sustainable Electrochemistry, Saarland University, 66125, Saarbrücken, Germany
- KIST Europe, Campus E7 1, 66123, Saarbrücken, Germany
- College of Materials Science and Engineering, Jiangsu University of Science and Technology (JUST), 212003, Zhenjiang, P. R. China
| | - Dirk Henkensmeier
- Fuel Cell Research Center, Korea Institute of Science and Technology, KIST), 02792, Seoul, Republic of Korea
- ET-GT, University of Science and Technology, UST), 02792, Seoul, Republic of Korea
| | - Ruiyong Chen
- Transfercenter Sustainable Electrochemistry, Saarland University, 66125, Saarbrücken, Germany
- KIST Europe, Campus E7 1, 66123, Saarbrücken, Germany
| |
Collapse
|
9
|
Correia VG, Ferraria AM, Pinho MG, Aguiar-Ricardo A. Antimicrobial Contact-Active Oligo(2-oxazoline)s-Grafted Surfaces for Fast Water Disinfection at the Point-of-Use. Biomacromolecules 2015; 16:3904-15. [DOI: 10.1021/acs.biomac.5b01243] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Vanessa G. Correia
- LAQV-REQUIMTE,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
- Bacterial
Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Av. da República (EAN) 2780-157 Oeiras, Portugal
| | - Ana M. Ferraria
- Centro
de Química-Física Molecular (CQFM) and Institute of
Nanoscience and Nanotechnology (IN), Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Mariana G. Pinho
- Bacterial
Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Av. da República (EAN) 2780-157 Oeiras, Portugal
| | - Ana Aguiar-Ricardo
- LAQV-REQUIMTE,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
10
|
Qi X, Wei W, Li J, Liu Y, Hu X, Zhang J, Bi L, Dong W. Fabrication and Characterization of a Novel Anticancer Drug Delivery System: Salecan/Poly(methacrylic acid) Semi-interpenetrating Polymer Network Hydrogel. ACS Biomater Sci Eng 2015; 1:1287-1299. [PMID: 33429676 DOI: 10.1021/acsbiomaterials.5b00346] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Salecan is a novel linear extracellular polysaccharide with a linear backbone of 1-3-linked glucopyranosyl units. Salecan is suitable for preparing hydrogels for biomedical applications due to its prominent physicochemical and biological profiles. In this contribution, a variety of innovative semi-interpenetrating polymer network (semi-IPN) hydrogels consisting of Salecan and poly(methacrylic acid) (PMAA) were developed via free radical polymerization for controlled drug delivery. The successful fabrication of the semi-IPNs was verified by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and thermogravimetric (TGA) measurements. Scanning electron microscopy (SEM) and rheology analyses demonstrated that the morphological and mechanical behaviors of the resultant hydrogels were strongly affected by the contents of Salecan and cross-linker N,N'-methylenebis(acrylamide) (BIS). Moreover, the swelling properties of these hydrogels were systematically investigated, and the results indicated that they exhibited pH sensitivity. The drug delivery applications of such fabricated hydrogels were further evaluated from which doxorubicin (Dox) was chosen as a model drug for in vitro release and cell viability studies. It was found that the Dox release from the Dox-loaded hydrogels was significantly accelerated when the pH of the release media decreased from 7.4 to 5.0. Toxicity assays confirmed that the blank hydrogels had negligible toxicity to normal cells, whereas the Dox-loaded hydrogels remained high in cytotoxicity for A549 and HepG2 cancer cells. All of these attributes implied that the new proposed semi-IPNs serve as potential drug delivery platforms for cancer therapy.
Collapse
Affiliation(s)
- Xiaoliang Qi
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Wei Wei
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Junjian Li
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Yucheng Liu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Xinyu Hu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Lirong Bi
- The First Bethune Hospital of Jilin University, ChangChun 130000, China
| | - Wei Dong
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| |
Collapse
|