1
|
She JW, Young CM, Chou SJ, Wu YR, Lin YT, Huang TY, Shen MY, Chen CY, Yang YP, Chien Y, Ayalew H, Liao WH, Tung YC, Shyue JJ, Chiou SH, Yu HH. Gradient conducting polymer surfaces with netrin-1-conjugation promote axon guidance and neuron transmission of human iPSC-derived retinal ganglion cells. Biomaterials 2025; 313:122770. [PMID: 39226653 DOI: 10.1016/j.biomaterials.2024.122770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/30/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024]
Abstract
Major advances have been made in utilizing human-induced pluripotent stem cells (hiPSCs) for regenerative medicine. Nevertheless, the delivery and integration of hiPSCs into target tissues remain significant challenges, particularly in the context of retinal ganglion cell (RGC) restoration. In this study, we introduce a promising avenue for providing directional guidance to regenerated cells in the retina. First, we developed a technique for construction of gradient interfaces based on functionalized conductive polymers, which could be applied with various functionalized ehthylenedioxythiophene (EDOT) monomers. Using a tree-shaped channel encapsulated with a thin PDMS and a specially designed electrochemical chamber, gradient flow generation could be converted into a functionalized-PEDOT gradient film by cyclic voltammetry. The characteristics of the successfully fabricated gradient flow and surface were analyzed using fluorescent labels, time of flight secondary ion mass spectrometry (TOF-SIMS), and X-ray photoelectron spectroscopy (XPS). Remarkably, hiPSC-RGCs seeded on PEDOT exhibited improvements in neurite outgrowth, axon guidance and neuronal electrophysiology measurements. These results suggest that our novel gradient PEDOT may be used with hiPSC-based technologies as a potential biomedical engineering scaffold for functional restoration of RGCs in retinal degenerative diseases and optic neuropathies.
Collapse
Affiliation(s)
- Jia-Wei She
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei, 11529, Taiwan; Taiwan International Graduate Program (TIGP), Nano Science & Technology Program, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei, 11529, Taiwan; Department of Engineering and System Science, National Tsing Hua University, No. 101, Section 2, Guangfu Road, East District, 300, Hsinchu City, Taiwan
| | - Chia-Mei Young
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11217, Taiwan
| | - Shih-Jie Chou
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11217, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - You-Ren Wu
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11217, Taiwan
| | - Yu-Ting Lin
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei, 11529, Taiwan
| | - Tzu-Yang Huang
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei, 11529, Taiwan
| | - Mo-Yuan Shen
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei, 11529, Taiwan
| | - Chih-Ying Chen
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Hailemichael Ayalew
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei, 11529, Taiwan
| | - Wei-Hao Liao
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Chung Tung
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Jing-Jong Shyue
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Shih-Hwa Chiou
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11217, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan; Genomic Research Center, Academia Sinica, Taipei, 11529, Taiwan.
| | - Hsiao-Hua Yu
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei, 11529, Taiwan.
| |
Collapse
|
2
|
Yang B, Gordiyenko K, Schäfer A, Dadfar SMM, Yang W, Riehemann K, Kumar R, Niemeyer CM, Hirtz M. Fluorescence Imaging Study of Film Coating Structure and Composition Effects on DNA Hybridization. ADVANCED NANOBIOMED RESEARCH 2023. [DOI: 10.1002/anbr.202200133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Bingquan Yang
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMFi) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Klavdiya Gordiyenko
- Institute of Biological Interfaces (IBG-1) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Andreas Schäfer
- nanoAnalytics GmbH Heisenbergstraße 11 48149 Münster Germany
| | - Seyed Mohammad Mahdi Dadfar
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMFi) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Wenwu Yang
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMFi) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Kristina Riehemann
- Physical Institute and Center for Nanotechnology (CeNTech) University of Münster Wilhelm-Klemm-Straße 10 48149 Münster Germany
| | - Ravi Kumar
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMFi) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Christof M. Niemeyer
- Institute of Biological Interfaces (IBG-1) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Michael Hirtz
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMFi) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
3
|
Li L, Chen L, Chen Z. High throughput sensing of multiple amino acids with differential pulse voltammetry measurement. Anal Biochem 2022; 647:114684. [DOI: 10.1016/j.ab.2022.114684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 11/24/2022]
|
4
|
Aerathupalathu Janardhanan J, Valaboju A, Dhawan U, Mansoure TH, Yan CCS, Yang CH, Gautam B, Hsu CP, Yu HH. Molecular and nano structures of chiral PEDOT derivatives influence the enantiorecognition of biomolecules. In silico analysis of chiral recognition. Analyst 2021; 146:7118-7125. [PMID: 34739011 DOI: 10.1039/d1an01465j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this study we investigated the synergistic effects of the chirality (molecular structure) and surface morphology (nanostructure) of a newly designed sensing platform for the stereoselective recognition of biomolecules. We synthesized 3,4-ethylenedioxythiophene monomers presenting an OH functional group on the side chain (EDOT-OH) with either R or S chirality and then electropolymerized them in a template-free manner to engineer poly(EDOT-OH) nanotubes and smooth films with R or S chirality. We used a quartz crystal microbalance (QCM) to examine the differential binding of fetal bovine serum, RGD peptide, insulin, and (R)- and (S)-mandelic acid (MA) on these chiral polymeric platforms. All of these biomolecules bound stereoselectively and with greater affinity toward the nanotubes than to the smooth films. The sensitive chiral recognition of (S)- and (R)-MA on the (R)-poly(EDOT-OH) nanotube surface occurred with the highest chiral discrepancy ratio of 1.80. In vitro experiments revealed a greater degree of protein deposition from MCF-7 cells on the chiral nanotube surfaces. We employed ab initio molecular dynamics simulations and density functional theory calculations to investigate the mechanism underlying the sensitive chiral recognition between the chiral sensing platforms and the chiral analyte molecules.
Collapse
Affiliation(s)
- Jayakrishnan Aerathupalathu Janardhanan
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan. .,Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan. .,Taiwan International Graduate Program (TIGP), Sustainable Chemical Science & Technology (SCST), Academia Sinica, Taipei 11529, Taiwan.,Department of Applied Chemistry, National Yang Ming Chiao Tung University (NYCU), Hsinchu 300, Taiwan
| | - Anusha Valaboju
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan. .,Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Udesh Dhawan
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan. .,Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan.
| | - Tharwat Hassan Mansoure
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan. .,Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan.
| | | | - Chou-Hsun Yang
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan.
| | - Bhaskarchand Gautam
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan. .,Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan.
| | - Chao-Ping Hsu
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan. .,National Center for Theoretical Sciences, Physics Division, Taipei 10617, Taiwan
| | - Hsiao-Hua Yu
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan. .,Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
5
|
RF plasma-enhanced conducting Polymer/W5O14 based self-propelled micromotors for miRNA detection. Anal Chim Acta 2020; 1138:69-78. [DOI: 10.1016/j.aca.2020.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022]
|
6
|
Chin M, Tada S, Tsai MH, Ito Y, Luo SC. Strategy to Immobilize Peptide Probe Selected through In Vitro Ribosome Display for Electrochemical Aptasensor Application. Anal Chem 2020; 92:11260-11267. [DOI: 10.1021/acs.analchem.0c01891] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mi Chin
- Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Seiichi Tada
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, Saitama 351-0198, Japan
| | - Min-Han Tsai
- Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Yoshihiro Ito
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, Saitama 351-0198, Japan
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shyh-Chyang Luo
- Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| |
Collapse
|
7
|
Meng L, Turner APF, Mak WC. Tunable 3D nanofibrous and bio-functionalised PEDOT network explored as a conducting polymer-based biosensor. Biosens Bioelectron 2020; 159:112181. [PMID: 32364937 DOI: 10.1016/j.bios.2020.112181] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/16/2020] [Accepted: 03/29/2020] [Indexed: 01/16/2023]
Abstract
Conducting polymers that possess good electrochemical properties, nanostructured morphology and functionality for bioconjugation are essential to realise the concept of all-polymer-based biosensors that do not depend on traditional nanocatalysts such as carbon materials, metal, metal oxides or dyes. In this research, we demonstrated a facile approach for the simultaneous preparation of a bi-functional PEDOT interface with a tunable 3D nanofibrous network and carboxylic acid groups (i.e. Nano-PEDOT-COOH) via controlled co-polymerisation of EDOT and EDOT-COOH monomers, using tetrabutylammonium perchlorate as a soft-template. By tuning the ratio between EDOT and EDOT-COOH monomer, the nanofibrous structure and carboxylic acid functionalisation of Nano-PEDOT-COOH were varied over a fibre diameter range of 15.6 ± 3.7 to 70.0 ± 9.5 nm and a carboxylic acid group density from 0.03 to 0.18 μmol cm-2. The nanofibres assembled into a three-dimensional network with a high specific surface area, which contributed to low charge transfer resistance and high transduction activity towards the co-enzyme NADH, delivering a wide linear range of 20-960 μM and a high sensitivity of 0.224 μA μM-1 cm-2 at the Nano-PEDOT-COOH50% interface. Furthermore, the carboxylic acid groups provide an anchoring site for the stable immobilisation of an NADH-dependent dehydrogenase (i.e. lactate dehydrogenase), via EDC/S-NHS chemistry, for the fabrication of a Bio-Nano-PEDOT-based biosensor for lactate detection which had a response time of less than 10 s over the range of 0.05-1.8 mM. Our developed bio-Nano-PEDOT interface shows future potential for coupling with multi-biorecognition molecules via carboxylic acid groups for the development of a range of advanced all-polymer biosensors.
Collapse
Affiliation(s)
- Lingyin Meng
- Biosensors and Bioelectronics Centre, Division of Sensor and Actuator Systems, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83, Linköping, Sweden
| | - Anthony P F Turner
- Biosensors and Bioelectronics Centre, Division of Sensor and Actuator Systems, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83, Linköping, Sweden
| | - Wing Cheung Mak
- Biosensors and Bioelectronics Centre, Division of Sensor and Actuator Systems, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83, Linköping, Sweden.
| |
Collapse
|
8
|
Meng L, Turner APF, Mak WC. Modulating Electrode Kinetics for Discrimination of Dopamine by a PEDOT:COOH Interface Doped with Negatively Charged Tricarboxylate. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34497-34506. [PMID: 31449380 DOI: 10.1021/acsami.9b12946] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The rapidly developing field of conducting polymers in organic electronics has many implications for bioelectronics. For biosensing applications, tailoring the functionalities of the conducting polymer's surface is an efficient approach to improve both sensitivity and selectivity. Here, we demonstrated a facile and economic approach for the fabrication of a high-density, negatively charged carboxylic-acid-group-functionalized PEDOT (PEDOT:COOH) using an inexpensive ternary carboxylic acid, citrate, as a dopant. The polymerization efficiency was significantly improved by the addition of LiClO4 as a supporting electrolyte yielding a dense PEDOT:COOH sensing interface. The resulting PEDOT:COOH interface had a high surface density of carboxylic acid groups of 0.129 μmol/cm2 as quantified by the toluidine blue O (TBO) staining technique. The dopamine response measured with the PEDOT:COOH sensing interface was characterized by cyclic voltammetry with a significantly reduced ΔEp of 90 mV and a 3-fold increase in the Ipa value compared with those of the nonfunctionalized PEDOT sensing interface. Moreover, the cyclic voltammetry and electrochemical impedance spectroscopy results demonstrated the increased electrode kinetics and highly selective discrimination of dopamine (DA) in the presence of the interferents ascorbic acid (AA) and uric acid (UA), which resulted from the introduction of negatively charged carboxylic acid groups. The negatively charged carboxylic acid groups could favor the transfer, preconcentration, and permeation of positively charged DA to deliver improved sensing performance while repelling the negatively charged AA and UA interferents. The PEDOT:COOH interface facilitated measurement of dopamine over the range of 1-85 μM, with a sensitivity of 0.228 μA μM-1, which is 4.1 times higher than that of a nonfunctionalized PEDOT electrode (0.055 μA μM-1). Our results demonstrate the feasibility of a simple and economic fabrication of a high-density PEDOT:COOH interface for chemical sensing, which also has the potential for coupling with other biorecognition molecules via carboxylic acid moieties for the development of a range of advanced PEDOT-based biosensors.
Collapse
Affiliation(s)
- Lingyin Meng
- Biosensors and Bioelectronics Centre, Division of Sensor and Actuator Systems, Department of Physics, Chemistry and Biology , Linköping University , SE-581 83 Linköping , Sweden
| | - Anthony P F Turner
- Biosensors and Bioelectronics Centre, Division of Sensor and Actuator Systems, Department of Physics, Chemistry and Biology , Linköping University , SE-581 83 Linköping , Sweden
| | - Wing Cheung Mak
- Biosensors and Bioelectronics Centre, Division of Sensor and Actuator Systems, Department of Physics, Chemistry and Biology , Linköping University , SE-581 83 Linköping , Sweden
| |
Collapse
|
9
|
Wu JG, Chen JH, Liu KT, Luo SC. Engineering Antifouling Conducting Polymers for Modern Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21294-21307. [PMID: 31120722 DOI: 10.1021/acsami.9b04924] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Conducting polymers are considered to be favorable electrode materials for implanted biosensors and bioelectronics, because their mechanical properties are similar to those of biological tissues such as nerve and brain tissues. However, one of the primary challenges for implanted devices is to prevent the unwanted protein adhesion or cell binding within biological fluids. The nonspecific adsorption generally causes the malfunction of implanted devices, which is problematic for long-term applications. When responding to the requirements of solving the problems caused by nonspecific adsorption, an increasing number of studies on antifouling conducting polymers has been recently published. In this review, synthetic strategies for preparing antifouling conducting polymers, including direct synthesis of functional monomers and post-functionalization, are introduced. The applications of antifouling conducting polymers in modern biomedical applications are particularly highlighted. This paper presents focuses on the features of antifouling conducting polymers and the challenges of modern biomedical applications.
Collapse
Affiliation(s)
- Jhih-Guang Wu
- Department of Materials Science and Engineering , National Taiwan University , No. 1, Sec. 4, Roosevelt Road , Taipei 10617 , Taiwan
| | - Jie-Hao Chen
- Department of Materials Science and Engineering , National Taiwan University , No. 1, Sec. 4, Roosevelt Road , Taipei 10617 , Taiwan
| | - Kuan-Ting Liu
- Department of Materials Science and Engineering , National Taiwan University , No. 1, Sec. 4, Roosevelt Road , Taipei 10617 , Taiwan
| | - Shyh-Chyang Luo
- Department of Materials Science and Engineering , National Taiwan University , No. 1, Sec. 4, Roosevelt Road , Taipei 10617 , Taiwan
- Advanced Research Center for Green Materials Science and Technology , National Taiwan University , Taipei 10617 , Taiwan
| |
Collapse
|
10
|
Meng L, Turner APF, Mak WC. Soft and flexible material-based affinity sensors. Biotechnol Adv 2019; 39:107398. [PMID: 31071431 DOI: 10.1016/j.biotechadv.2019.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 05/01/2019] [Accepted: 05/04/2019] [Indexed: 01/11/2023]
Abstract
Recent advances in biosensors and point-of-care (PoC) devices are poised to change and expand the delivery of diagnostics from conventional lateral-flow assays and test strips that dominate the market currently, to newly emerging wearable and implantable devices that can provide continuous monitoring. Soft and flexible materials are playing a key role in propelling these trends towards real-time and remote health monitoring. Affinity biosensors have the capability to provide for diagnosis and monitoring of cancerous, cardiovascular, infectious and genetic diseases by the detection of biomarkers using affinity interactions. This review tracks the evolution of affinity sensors from conventional lateral-flow test strips to wearable/implantable devices enabled by soft and flexible materials. Initially, we highlight conventional affinity sensors exploiting membrane and paper materials which have been so successfully applied in point-of-care tests, such as lateral-flow immunoassay strips and emerging microfluidic paper-based devices. We then turn our attention to the multifarious polymer designs that provide both the base materials for sensor designs, such as PDMS, and more advanced functionalised materials that are capable of both recognition and transduction, such as conducting and molecularly imprinted polymers. The subsequent content discusses wearable soft and flexible material-based affinity sensors, classified as flexible and skin-mountable, textile materials-based and contact lens-based affinity sensors. In the final sections, we explore the possibilities for implantable/injectable soft and flexible material-based affinity sensors, including hydrogels, microencapsulated sensors and optical fibers. This area is truly a work in progress and we trust that this review will help pull together the many technological streams that are contributing to the field.
Collapse
Affiliation(s)
- Lingyin Meng
- Biosensors and Bioelectronics Centre, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | | | - Wing Cheung Mak
- Biosensors and Bioelectronics Centre, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden.
| |
Collapse
|
11
|
Ayalew H, Wang TL, Yu HH. Deprotonation-Induced Conductivity Shift of Polyethylenedioxythiophenes in Aqueous Solutions: The Effects of Side-Chain Length and Polymer Composition. Polymers (Basel) 2019; 11:E659. [PMID: 30974910 PMCID: PMC6523877 DOI: 10.3390/polym11040659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 11/16/2022] Open
Abstract
Deprotonation-induced conductivity shift of poly(3,4-ethylenedixoythiophene)s (PEDOTs) in aqueous solutions is a promising platform for chemical or biological sensor due to its large signal output and minimum effect from material morphology. Carboxylic acid group functionalized poly(Cn-EDOT-COOH)s are synthesized and electrodeposited on microelectrodes. The microelectrodes are utilized to study the effect of carboxylic acid side-chain length on the conductivity curve profiles in aqueous buffer with different pH. The conductivity shifts due to the buffer pH are effected by the length of the carboxylic acid side-chains. The shifts can be explained by the carboxylic acid dissociation property (pKa) at the solid-liquid interface, self-doping effect, and effective conjugation length. Conductivity profiles of poly(EDOT-OH-co-C₂-EDOT-COOH) copolymers are also studied. The shifts show linear relationship with the feed monomer composition used in electrochemical polymerization.
Collapse
Affiliation(s)
- Hailemichael Ayalew
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, 128 Sec. 2, Academia Road, Nankang, Taipei 11529, Taiwan.
- Taiwan International Graduate Program (TIGP), Sustainable Chemical Science and Technology (SCST), Academia Sinica, Taipei 11529, Taiwan.
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan.
| | - Tian-Lin Wang
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, 128 Sec. 2, Academia Road, Nankang, Taipei 11529, Taiwan.
| | - Hsiao-Hua Yu
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, 128 Sec. 2, Academia Road, Nankang, Taipei 11529, Taiwan.
- Taiwan International Graduate Program (TIGP), Sustainable Chemical Science and Technology (SCST), Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
12
|
Gu Y, Tseng PY, Bi X, Yang JHC. Quantification of DNA by a Thermal-Durable Biosensor Modified with Conductive Poly(3,4-ethylenedioxythiophene). SENSORS 2018; 18:s18113684. [PMID: 30380711 PMCID: PMC6264125 DOI: 10.3390/s18113684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/22/2018] [Accepted: 10/25/2018] [Indexed: 01/19/2023]
Abstract
The general clinical procedure for viral DNA detection or gene mutation diagnosis following polymerase chain reaction (PCR) often involves gel electrophoresis and DNA sequencing, which is usually time-consuming. In this study, we have proposed a facile strategy to construct a DNA biosensor, in which the platinum electrode was modified with a dual-film of electrochemically synthesized poly(3,4-ethylenedioxythiophene) (PEDOT) resulting in immobilized gold nanoparticles, with the gold nanoparticles easily immobilized in a uniform distribution. The DNA probe labeled with a SH group was then assembled to the fabricated electrode and employed to capture the target DNA based on the complementary sequence. The hybridization efficiency was evaluated with differential pulse voltammetry (DPV) in the presence of daunorubicin hydrochloride. Our results demonstrated that the peak current in DPV exhibited a linear correlation the concentration of target DNA that was complementary to the probe DNA. Moreover, the electrode could be reused by heating denaturation and re-hybridization, which only brought slight signal decay. In addition, the addition of the oxidized form of nicotinamide adenine dinucleotide (NAD+) could dramatically enhance the sensitivity by more than 5.45-fold, and the limit-of-detection reached about 100 pM.
Collapse
Affiliation(s)
- Yesong Gu
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 40704, Taiwan.
| | - Po-Yuan Tseng
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 40704, Taiwan.
| | - Xiang Bi
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 40704, Taiwan.
| | - Jason H C Yang
- Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan.
| |
Collapse
|
13
|
K C TB, Tada S, Zhu L, Uzawa T, Minagawa N, Luo SC, Zhao H, Yu HH, Aigaki T, Ito Y. In vitro selection of electrochemical peptide probes using bioorthogonal tRNA for influenza virus detection. Chem Commun (Camb) 2018; 54:5201-5204. [PMID: 29718049 DOI: 10.1039/c8cc01775a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An electrosensitive peptide probe has been developed from an in vitro selection technique using biorthogonal tRNA prepared with an electroreactive non-natural amino acid, 3,4-ethylenedioxythiophene-conjugated aminophenylalanine. The selected probe quantitatively detected the influenza virus based on a signal "turn-on" mechanism. The developed strategy could be used to develop electrochemical biosensors toward a variety of targets.
Collapse
Affiliation(s)
- Tara Bahadur K C
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, Saitama 351-0198, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Xu F, Ren S, Li J, Bi X, Gu Y. Molecular Assembly of a Durable HRP-AuNPs/PEDOT:BSA/Pt Biosensor with Detailed Characterizations. SENSORS 2018; 18:s18061823. [PMID: 29874796 PMCID: PMC6021847 DOI: 10.3390/s18061823] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/21/2018] [Accepted: 06/01/2018] [Indexed: 12/20/2022]
Abstract
In this study, we provided the detailed characterizations of our recent HRP-AuNPs/PEDOT:BSA/Pt biosensor, constructed through a simple fabrication procedure with improved stability and good sensitivity. Raman and Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy not only confirmed the synthesis of conductive PEDOT where BSA was the template for the polymerization, but also provided further insights into the stable immobilization of AuNP on the PEDOT:BSA film. Scanning electron microscopy revealed that the attachment of AuNPs were stable under a high salt environment. The current technology demonstrates a feasible procedure to form a functional AuNPs/PEDOT:BSA film that has potential applications in the fabrication of various biosensors and electric devices.
Collapse
Affiliation(s)
- Fangcheng Xu
- Department of Chemical and Biochemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Shuaibin Ren
- Department of Chemical and Biochemical Engineering, Xiamen University, Xiamen 361005, China.
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan.
| | - Jiansin Li
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan.
| | - Xiang Bi
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan.
| | - Yesong Gu
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan.
| |
Collapse
|
15
|
Shen MY, Chen JF, Luo CH, Lee S, Li CH, Yang YL, Tsai YH, Ho BC, Bao LR, Lee TJ, Jan YJ, Zhu YZ, Cheng S, Feng FY, Chen P, Hou S, Agopian V, Hsiao YS, Tseng HR, Posadas EM, Yu HH. Glycan Stimulation Enables Purification of Prostate Cancer Circulating Tumor Cells on PEDOT NanoVelcro Chips for RNA Biomarker Detection. Adv Healthc Mater 2018; 7:10.1002/adhm.201700701. [PMID: 28892262 PMCID: PMC5803304 DOI: 10.1002/adhm.201700701] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/31/2017] [Indexed: 12/30/2022]
Abstract
A glycan-stimulated and poly(3,4-ethylene-dioxythiophene)s (PEDOT)-based nanomaterial platform is fabricated to purify circulating tumor cells (CTCs) from blood samples of prostate cancer (PCa) patients. This new platform, phenylboronic acid (PBA)-grafted PEDOT NanoVelcro, combines the 3D PEDOT nanosubstrate, which greatly enhances CTC capturing efficiency, with a poly(EDOT-PBA-co-EDOT-EG3) interfacial layer, which not only provides high specificity for CTC capture upon antibody conjugation but also enables competitive binding of sorbitol to gently release the captured cells. CTCs purified by this PEDOT NanoVelcro chip provide well-preserved RNA transcripts for the analysis of the expression level of several PCa-specific RNA biomarkers, which may provide clinical insights into the disease.
Collapse
Affiliation(s)
- Mo-Yuan Shen
- Smart Organic Material Laboratory, Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Rd., Nankang, Taipei, 11529, Taiwan
| | - Jie-Fu Chen
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA, 90048, USA
| | - Chun-Hao Luo
- Smart Organic Material Laboratory, Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Rd., Nankang, Taipei, 11529, Taiwan
| | - Sangjun Lee
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA, 90095-1770, USA
| | - Cheng-Hsuan Li
- Smart Organic Material Laboratory, Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Rd., Nankang, Taipei, 11529, Taiwan
| | - Yung-Ling Yang
- Smart Organic Material Laboratory, Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Rd., Nankang, Taipei, 11529, Taiwan
| | - Yu-Han Tsai
- Smart Organic Material Laboratory, Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Rd., Nankang, Taipei, 11529, Taiwan
| | - Bo-Cheng Ho
- Department of Material Engineering, Ming Chi University of Technology, 84 Gungjuan Rd., Taishan Dist., New Taipei City, 24301, Taiwan
| | - Li-Rong Bao
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA, 90095-1770, USA
| | - Tien-Jung Lee
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA, 90095-1770, USA
| | - Yu Jen Jan
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA, 90095-1770, USA
| | - Ya-Zhen Zhu
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA, 90095-1770, USA
| | - Shirley Cheng
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA, 90048, USA
| | - Felix Y Feng
- Departments of Radiation Oncology, Urology, and Medicine, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Peilin Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Shuang Hou
- Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Vatche Agopian
- Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Yu-Sheng Hsiao
- Department of Material Engineering, Ming Chi University of Technology, 84 Gungjuan Rd., Taishan Dist., New Taipei City, 24301, Taiwan
| | - Hsian-Rong Tseng
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA, 90095-1770, USA
| | - Edwin M Posadas
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA, 90048, USA
| | - Hsiao-Hua Yu
- Smart Organic Material Laboratory, Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Rd., Nankang, Taipei, 11529, Taiwan
| |
Collapse
|
16
|
Wu JG, Lee CY, Wu SS, Luo SC. Ionic Liquid-Assisted Electropolymerization for Lithographical Perfluorocarbon Deposition and Hydrophobic Patterning. ACS APPLIED MATERIALS & INTERFACES 2016; 8:22688-22695. [PMID: 27509480 DOI: 10.1021/acsami.6b07578] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We developed a novel approach for hydrophobic patterning: combining the photolithography technique with ionic-liquid (IL)-based electropolymerization to fabricate a hydrophobic pattern. Perfluoro-functionalized 3,4-ethylenedioxythiophene (EDOT-F) dispersed in ILs was directly electropolymerized on substrates, which were patterned in advance with positive photoresists. The positive photoresists did not dissolve in ionic liquids during the electropolymerization process, and the poly(EDOT-F) film created hydrophobic domains, which resulted in hydrophobic patterning. This approach provides desired patterns with a lateral resolution consistent with the mask for photolithography. Two kinds of modified indium-tin-oxide-coated glass (ITO-glass) substrates were used to demonstrate the feasibility of process for creating a hydrophobic pattern: ITO-glass substrates coated with nanostructured PEDOT, and the same substrates coated with Au nanoparticles. By confining water droplets on these two patterned substrates to form droplet arrays, we demonstrated two potential applications: multiple droplet-type electrochemical cells and surface-enhanced Raman scattering platforms. In addition, we also applied this approach to create hydrophobic patterning on ITO-coated polyethylene terephthalate (ITO-PET) substrates. The droplet arrays remained well-organized on the ITO-PET substrates even when the substrates were bent. Our work successfully introduced ILs into the photolithography process, implying great potential for these green solvents.
Collapse
Affiliation(s)
- Jhih-Guang Wu
- Department of Materials Science and Engineering, College of Engineering, National Taiwan University , No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Cheng-Yang Lee
- Department of Materials Science and Engineering, National Cheng Kung University , 1 University Road, Tainan 70101, Taiwan
| | - Shao-Shuo Wu
- Department of Materials Science and Engineering, National Cheng Kung University , 1 University Road, Tainan 70101, Taiwan
| | - Shyh-Chyang Luo
- Department of Materials Science and Engineering, College of Engineering, National Taiwan University , No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| |
Collapse
|
17
|
Xu F, Ren S, Gu Y. A Novel Conductive Poly(3,4-ethylenedioxythiophene)-BSA Film for the Construction of a Durable HRP Biosensor Modified with NanoAu Particles. SENSORS 2016; 16:s16030374. [PMID: 26999133 PMCID: PMC4813949 DOI: 10.3390/s16030374] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 12/05/2022]
Abstract
In this study, we have investigated the contribution of bovine serum albumin (BSA) to the durability of the electrochemically synthesized poly(3,4-ethylenedioxythiophene) (PEDOT) film on a platinum (Pt) electrode. The electrode was capable to effectively adsorb the nano Au particles (AuNPs) to form a uniform layout, which was then able to immobilize the horseradish peroxidase (HRP) to construct a functional HRP/AuNPs/PEDOT(BSA)/Pt biosensor. Cyclic voltammetry was employed to evaluate the performance of the biosensor through the measurement of hydrogen peroxide. Our results revealed a satisfied linear correlation between the cathodic current and the concentration of H2O2. Furthermore, the addition of oxidized form of nicotinamide adenine dinucleotide, or NAD+, as the electron transfer mediator in the detection solution could dramatically enhance the sensitivity of detection by about 35.5%. The main advantages of the current biosensor are its durability, sensitivity, reliability, and biocompatibility.
Collapse
Affiliation(s)
- Fangcheng Xu
- Department of Chemical and Biochemical Engineering, Xiamen University, No. 422, Siming South Road, Xiamen 361005, Fujian, China.
| | - Shuaibin Ren
- Department of Chemical and Biochemical Engineering, Xiamen University, No. 422, Siming South Road, Xiamen 361005, Fujian, China.
- Department of Chemical and Materials Engineering, Tunghai University, No.1727, Sec.4, Taiwan Boulevard, Xitun District, Taichung 40704, Taiwan.
| | - Yesong Gu
- Department of Chemical and Materials Engineering, Tunghai University, No.1727, Sec.4, Taiwan Boulevard, Xitun District, Taichung 40704, Taiwan.
| |
Collapse
|
18
|
Goda T, Toya M, Matsumoto A, Miyahara Y. Poly(3,4-ethylenedioxythiophene) Bearing Phosphorylcholine Groups for Metal-Free, Antibody-Free, and Low-Impedance Biosensors Specific for C-Reactive Protein. ACS APPLIED MATERIALS & INTERFACES 2015; 7:27440-27448. [PMID: 26588324 DOI: 10.1021/acsami.5b09325] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Conducting polymers possessing biorecognition elements are essential for developing electrical biosensors sensitive and specific to clinically relevant biomolecules. We developed a new 3,4-ethylenedioxythiophene (EDOT) derivative bearing a zwitterionic phosphorylcholine group via a facile synthesis through the Michael-type addition thiol-ene "click" reaction for the detection of an acute-phase biomarker human C-reactive protein (CRP). The phosphorylcholine group, a major headgroup in phospholipid, which is the main constituent of plasma membrane, was also expected to resist nonspecific adsorption of other proteins at the electrode/solution interface. The biomimetic EDOT derivative was randomly copolymerized with EDOT, via an electropolymerization technique with a dopant sodium perchlorate, onto a glassy carbon electrode to make the synthesized polymer film both conductive and target-responsive. The conducting copolymer films were characterized by cyclic voltammetry, scanning electron microscopy, attenuated total reflection Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy. The specific interaction of CRP with phosphorylcholine in a calcium-containing buffer solution was determined by differential pulse voltammetry, which measures the altered redox reaction between the indicators ferricyanide/ferrocyanide as a result of the binding event. The conducting polymer-based protein sensor achieved a limit of detection of 37 nM with a dynamic range of 10-160 nM, covering the dynamically changing CRP levels in circulation during the acute phase. The results will enable the development of metal-free, antibody-free, and low-impedance electrochemical biosensors for the screening of nonspecific biomarkers of inflammation and infection.
Collapse
Affiliation(s)
- Tatsuro Goda
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University , 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Masahiro Toya
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University , 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Akira Matsumoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University , 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Yuji Miyahara
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University , 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| |
Collapse
|
19
|
Liu CY, Chong H, Lin HA, Yamashita Y, Zhang B, Huang KW, Hashizume D, Yu HH. Palladium-catalyzed direct C–H arylations of dioxythiophenes bearing reactive functional groups: a step-economical approach for functional π-conjugated oligoarenes. Org Biomol Chem 2015; 13:8505-11. [DOI: 10.1039/c5ob00705d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A phosphine-free C–H arylation of dioxythiophenes bearing unprotected functional groups affords oligoarenes with good yields.
Collapse
Affiliation(s)
- Ching-Yuan Liu
- Responsive Organic Materials Laboratory
- Wako
- Japan
- Department of Chemical and Material Engineering
- National Central University
| | - Hui Chong
- Responsive Organic Materials Laboratory
- Wako
- Japan
| | - Hsing-An Lin
- Responsive Organic Materials Laboratory
- Wako
- Japan
- Department of Electronic Chemistry
- Interdisciplinary Graduate School of Science and Engineering
| | - Yoshiro Yamashita
- Department of Electronic Chemistry
- Interdisciplinary Graduate School of Science and Engineering
- Tokyo Institute of Technology
- Japan
| | - Bin Zhang
- KAUST Catalysis Center and Division of Physical Sciences and Engineering
- King Abdullah University of Science and Technology
- Thuwal 23955-6900
- Saudi Arabia
| | - Kuo-wei Huang
- KAUST Catalysis Center and Division of Physical Sciences and Engineering
- King Abdullah University of Science and Technology
- Thuwal 23955-6900
- Saudi Arabia
| | - Daizuke Hashizume
- Materials Characterization Support Unit
- RIKEN Center for Emergent Matter Science
- Japan
| | - Hsiao-hua Yu
- Responsive Organic Materials Laboratory
- Wako
- Japan
- Institute of Chemistry
- Nankang
| |
Collapse
|
20
|
Lee JE, Luo SC, Zhu B, Park JW, Yu HH. Nanoscale analysis of functionalized polythiophene surfaces: the effects of electropolymerization methods and thermal treatment. RSC Adv 2014. [DOI: 10.1039/c4ra10135a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
21
|
A dopamine sensor based on a carbon paste electrode modified with DNA-doped poly(3,4-ethylenedioxythiophene). Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1373-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Fabregat G, Teixeira-Dias B, del Valle LJ, Armelin E, Estrany F, Alemán C. Incorporation of a clot-binding peptide into polythiophene: properties of composites for biomedical applications. ACS APPLIED MATERIALS & INTERFACES 2014; 6:11940-11954. [PMID: 25069384 DOI: 10.1021/am503904h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Biocomposites formed by a pentapeptide (CREKA), which recognizes clotted plasma proteins, entrapped into the poly(3,4-ethylenedioxythiophene) (PEDOT) matrix have been prepared using three very different procedures. X-ray photoelectron spectroscopy analyses indicate that PEDOT-CREKA films, prepared by chronoamperometry in basic aqueous solution (pH = 10.3) and deposited onto a PEDOT internal layer, present the higher concentration of peptide: one CREKA molecule per six polymer repeat units. The surface of this bilayered system shows numerous folds homogeneously distributed, which have been exhaustively characterized by scanning electron microscopy and atomic force microscopy. Indeed, the morphology and topography of such bilayered films is completely different from those of biocomposite-prepared acid aqueous and organic solutions as polymerization media. The impact of the entrapped peptide molecules in the electrochemical properties of the conducting polymer has been found to be practically negligible. In contrast, biocompatibility assays with two different cellular lines indicate that PEDOT-CREKA favors cellular proliferation, which has been attributed to the binding of the peptide to the fibrin molecules from the serum used as a supplement in the culture medium. The latter assumption has been corroborated examining the ability of PEDOT-CREKA to bind fibrin. The latter ability has been also used to explore an alternative strategy based on the treatment of PEDOT-CREKA with fibrin to promote cell attachment and growth. Overall, the results suggest that PEDOT-CREKA is appropriated for multiple biomedical applications combining the electrochemical properties of conducting polymer and the ability of the peptide to recognize and bind proteins.
Collapse
Affiliation(s)
- Georgina Fabregat
- Departament d'Enginyeria Química, ETSEIB, Universitat Politècnica de Catalunya , Avda. Diagonal 647, Barcelona E-08028, Spain
| | | | | | | | | | | |
Collapse
|
23
|
Lee JE, Kwak JW, Park JW, Luo SC, Zhu B, Yu HH. Nanoscale Analysis of a Functionalized Polythiophene Surface by Adhesion Mapping. Anal Chem 2014; 86:6865-71. [DOI: 10.1021/ac500138x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jae-Eun Lee
- Department
of Chemistry, Pohang University of Science and Technology, San 31
Hyoja-dong, Pohang 790-784, Korea
| | - Ju-Won Kwak
- Department
of Chemistry, Pohang University of Science and Technology, San 31
Hyoja-dong, Pohang 790-784, Korea
| | - Joon Won Park
- Department
of Chemistry, Pohang University of Science and Technology, San 31
Hyoja-dong, Pohang 790-784, Korea
| | - Shyh-Chyang Luo
- Responsive Organic
Materials Laboratory, RIKEN 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Bo Zhu
- Responsive Organic
Materials Laboratory, RIKEN 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hsiao-hua Yu
- Responsive Organic
Materials Laboratory, RIKEN 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Institute
of Chemistry, Academia Sinica, 128 Academic Road Sec. 2, Nankang, Taipei 115, Taiwan
| |
Collapse
|
24
|
Electrochemical sensor based on f-SWCNT and carboxylic group functionalized PEDOT for the sensitive determination of bisphenol A. CHINESE CHEM LETT 2014. [DOI: 10.1016/j.cclet.2013.12.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Synthesis and Characterization of PEDOT Derivative with Carboxyl Group and Its Chemo/Bio Sensing Application as Nanocomposite, Immobilized Biological and Enhanced Optical Materials. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2013.11.042] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
26
|
Luo SC. Conducting Polymers as Biointerfaces and Biomaterials: A Perspective for a Special Issue of Polymer Reviews. POLYM REV 2013. [DOI: 10.1080/15583724.2013.805773] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
27
|
Adela Booth M, Vogel R, Curran JM, Harbison S, Travas-Sejdic J. Detection of target-probe oligonucleotide hybridization using synthetic nanopore resistive pulse sensing. Biosens Bioelectron 2013; 45:136-40. [DOI: 10.1016/j.bios.2013.01.044] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 01/08/2013] [Accepted: 01/24/2013] [Indexed: 01/23/2023]
|
28
|
Malmström J, Nieuwoudt MK, Strover LT, Hackett A, Laita O, Brimble MA, Williams DE, Travas-Sejdic J. Grafting from Poly(3,4-ethylenedioxythiophene): A Simple Route to Versatile Electrically Addressable Surfaces. Macromolecules 2013. [DOI: 10.1021/ma400803j] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jenny Malmström
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington,
New Zealand
| | - Michel K Nieuwoudt
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Lisa T Strover
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington,
New Zealand
| | - Alissa Hackett
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Olivia Laita
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - David E Williams
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington,
New Zealand
| | - Jadranka Travas-Sejdic
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington,
New Zealand
| |
Collapse
|
29
|
Lu CH, Hsiao YS, Kuo CW, Chen P. Electrically tunable organic bioelectronics for spatial and temporal manipulation of neuron-like pheochromocytoma (PC-12) cells. Biochim Biophys Acta Gen Subj 2012; 1830:4321-8. [PMID: 22982010 DOI: 10.1016/j.bbagen.2012.08.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 08/30/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Organic bioelectronic devices consisting of alternating poly(3,4-ethylenedioxythiophene) (PEDOT) and reduced graphite oxide (rGO) striped microelectrode arrays were fabricated by lithography technology. It has been demonstrated that the organic bioelectronic devices can be used to spatially and temporally manipulate the location and proliferation of the neuron-like pheochromocytoma cells (PC-12 cells). METHODS By coating an electrically labile contact repulsion layer of poly(l-lysine-graft-ethylene glycol) (PLL-g-PEG) on the PEDOT electrode, the location and polarity of the PC-12 cells were confined to the rGO electrodes. RESULTS The outgrowth of spatially confined bipolar neurites was found to align along the direction of the 20μm wide electrode. The location of the PC-12 cells can also be manipulated temporally by applying electrical stimulation during the neurite differentiation of PC-12 cells, allowing the PC-12 cells to cross over the boundary between the PEDOT and the rGO regions and construct neurite networks in an unconfined manner where the contact repulsive coating of PLL-g-PEG was removed. CONCLUSIONS This adsorption and desorption of the PLL-g-PEG without and with electrical stimulation can be attributed to the tunable surface properties of the PEDOT microelectrodes, whose surface charge can switch from being negative to positive under electrical stimulation. GENERAL SIGNIFICANCE The electrically tunable organic bioelectronics reported here could potentially be applied to tissue engineering related to the development and regeneration of mammalian nervous systems. The spatial and temporal control in this device would also be used to study the synapse junctions of neuron-neuron contacts in both time and space domains. This article is part of a Special Issue entitled Organic Bioelectronics - Novel Applications in Biomedicine.
Collapse
Affiliation(s)
- Chu-Hua Lu
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | | | | | | |
Collapse
|
30
|
Donavan KC, Arter JA, Weiss GA, Penner RM. Virus-poly(3,4-ethylenedioxythiophene) biocomposite films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:12581-7. [PMID: 22856875 PMCID: PMC3683562 DOI: 10.1021/la302473j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Virus-poly(3,4-ethylenedioxythiophene) (virus-PEDOT) biocomposite films are prepared by electropolymerizing 3,4-ethylenedioxythiophene (EDOT) in aqueous electrolytes containing 12 mM LiClO(4) and the bacteriophage M13. The concentration of virus in these solutions, [virus](soln), is varied from 3 to 15 nM. A quartz crystal microbalance is used to directly measure the total mass of the biocomposite film during its electrodeposition. In combination with a measurement of the electrodeposition charge, the mass of the virus incorporated into the film is calculated. These data show that the concentration of the M13 within the electropolymerized film, [virus](film), increases linearly with [virus](soln). The incorporation of virus particles into the PEDOT film from solution is efficient, resulting in a concentration ratio of [virus](film):[virus](soln) ≈ 450. Virus incorporation into the PEDOT causes roughening of the film topography that is observed using scanning electron microscopy and atomic force microscopy (AFM). The electrical conductivity of the virus-PEDOT film, measured perpendicular to the plane of the film using conductive tip AFM, decreases linearly with virus loading, from 270 μS/cm for pure PEDOT films to 50 μS/cm for films containing 100 μM virus. The presence on the virus surface of displayed affinity peptides did not significantly influence the efficiency of incorporation into virus-PEDOT biocomposite films.
Collapse
Affiliation(s)
- Keith C. Donavan
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Jessica A. Arter
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Gregory A. Weiss
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Reginald M. Penner
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
31
|
Voge CM, Johns J, Raghavan M, Morris MD, Stegemann JP. Wrapping and dispersion of multiwalled carbon nanotubes improves electrical conductivity of protein-nanotube composite biomaterials. J Biomed Mater Res A 2012; 101:231-8. [PMID: 22865813 DOI: 10.1002/jbm.a.34310] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 04/17/2012] [Accepted: 05/24/2012] [Indexed: 11/08/2022]
Abstract
Composites of extracellular matrix proteins reinforced with carbon nanotubes have the potential to be used as conductive biopolymers in a variety of biomaterial applications. In this study, the effect of functionalization and polymer wrapping on the dispersion of multiwalled carbon nanotubes (MWCNT) in aqueous media was examined. Carboxylated MWCNT were wrapped in either Pluronic(®) F127 or gelatin. Raman spectroscopy and X-ray photoelectron spectroscopy showed that covalent functionalization of the pristine nanotubes disrupted the carbon lattice and added carboxyl groups. Polymer and gelatin wrapping resulted in increased surface adsorbed oxygen and nitrogen, respectively. Wrapping also markedly increased the stability of MWCNT suspensions in water as measured by settling time and zeta potential, with Pluronic(®)-wrapped nanotubes showing the greatest effect. Treated MWCNT were used to make 3D collagen-fibrin-MWCNT composite materials. Carboxylated MWCNT resulted in a decrease in construct impedance by an order of magnitude, and wrapping with Pluronic(®) resulted in a further order of magnitude decrease. Functionalization and wrapping also were associated with maintenance of fibroblast function within protein-MWCNT materials. These data show that increased dispersion of nanotubes in protein-MWCNT composites leads to higher conductivity and improved cytocompatibility. Understanding how nanotubes interact with biological systems is important in enabling the development of new biomedical technologies.
Collapse
Affiliation(s)
- Christopher M Voge
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
32
|
Lacher S, Obata N, Luo SC, Matsuo Y, Zhu B, Yu HH, Nakamura E. Electropolymerized conjugated polyelectrolytes with tunable work function and hydrophobicity as an anode buffer in organic optoelectronics. ACS APPLIED MATERIALS & INTERFACES 2012; 4:3396-3404. [PMID: 22738167 DOI: 10.1021/am300366d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A new class of conductive polyelectrolyte films with tunable work function and hydrophobicity has been developed for the anode buffer layer in organic electronic devices. The work function of these films featuring a copolymer of ethylenedioxythiophene (EDOT), and its functionalized analogues were found to be easily tunable over a range of almost 1 eV and reach values as high as those of PEDOT:PSS. The new buffer material does not need the addition of any insulating or acidic material that might limit the film conductivity or device lifetime. Organic photovoltaic devices built with these films showed improved open-circuit voltage over those of the known PSS-free conductive EDOT-based polymers with values as high as that obtained for PEDOT:PSS. Furthermore, the surface hydrophobicity of these new copolymer films was found to be sensitive to the chemical groups attached to the polymer backbone, offering an attractive method for surface energy tuning.
Collapse
Affiliation(s)
- Sebastian Lacher
- Department of Chemistry, The University of Tokyo , Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Luo SC, Sekine J, Zhu B, Zhao H, Nakao A, Yu HH. Polydioxythiophene nanodots, nonowires, nano-networks, and tubular structures: the effect of functional groups and temperature in template-free electropolymerization. ACS NANO 2012; 6:3018-3026. [PMID: 22424318 DOI: 10.1021/nn300737e] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Various nanostructures, including nanofibers, nanodots, nanonetwork, and nano- to microsize tubes of functionalized poly(3,4-ethylenedioxythiophene) (EDOT) and poly(3,4-propylenedioxythiophene) (ProDOT) are created by using a template-free electropolymerization method on indium-tin-oxide substrates. By investigating conducting polymer nanostructures containing various functional groups prepared at different polymerization temperature, we conclude a synergistic effect of functional groups and temperature on the formation of polymer nanostructures when a template-free electropolymerization method is applied. For unfunctionalized EDOT and ProDOT, or EDOT containing alkyl functional groups, nanofibers and nanoporous structures are usually found. Interesting, when polar functional groups are attached, conducting polymers tend to form nanodots at room temperature while grow tubular structures at low temperature. The relationship between surface properties and their nanostructures is evaluated by contact angle measurements. The capacity and electrochemical impedance spectroscopy measurements were conducted to understand the electrical properties of using these materials as electrodes. The results provide the relationship between the functional groups, nanostructures, and electrical properties. We also discuss the potential restriction of using this method to create nanostructures. The copolymerization of different functionalized EDOTs may cause irregular and unexpected nanostructures, which indicates the complex interaction between different functionalized monomers during the electropolymerization.
Collapse
Affiliation(s)
- Shyh-Chyang Luo
- Yu Initiative Research Unit, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | | | | | | | | | | |
Collapse
|
34
|
Luo SC, Kantchev EAB, Zhu B, Siang YW, Yu HH. Tunable, dynamic and electrically stimulated lectin–carbohydrate recognition on a glycan-grafted conjugated polymer. Chem Commun (Camb) 2012; 48:6942-4. [DOI: 10.1039/c2cc31789c] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
35
|
Hsiao YS, Lin CC, Hsieh HJ, Tsai SM, Kuo CW, Chu CW, Chen P. Manipulating location, polarity, and outgrowth length of neuron-like pheochromocytoma (PC-12) cells on patterned organic electrode arrays. LAB ON A CHIP 2011; 11:3674-80. [PMID: 21922117 DOI: 10.1039/c1lc20675c] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In this manuscript, we describe a biocompatible organic electrode system, comprising poly(3,4-ethylenedioxythiophene) (PEDOT) microelectrode arrays on indium tin oxide (ITO) glass, that can be used to regulate the neuron type, location, polarity, and outgrown length of neuron-like cells (PC-12). We fabricated a PEDOT microelectrode array with four different sizes (flat; 20, 50, and 100 μm) through electrochemical polymerization. Extracellular matrix proteins absorbed well on these organic electrodes; cells absorbed selectively on the organic electrodes when we used polyethylene oxide/polypropylene oxide/polyethylene oxide triblock copolymers (PEO/PPO/PEO, Pluronic™ F108) as the anti-adhesive coating. In this system, the neurite polarities and neuron types could be manipulated by varying the width of the PEDOT microelectrode arrays. On the unpatterned PEDOT electrode, PC-12 cells were randomly polarized, with approximately 80% having multi-polar cell types. In contrast, when we cultured PC-12 cells on the 20 μm wide PEDOT line array, the neurites aligned along the direction of the organic electrodes, with the percentage of uni- and bipolar PC-12 cells increasing to greater than 90%. The outgrowth of neurites on the microelectrodes was promoted by ~60% with an applied electrical stimulation. Therefore, these electroactive PEDOT microelectrode arrays have potential for use in tissue engineering related to the development and regeneration of mammalian nervous systems.
Collapse
Affiliation(s)
- Yu-Sheng Hsiao
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan 11529
| | | | | | | | | | | | | |
Collapse
|
36
|
Sekine J, Luo SC, Wang S, Zhu B, Tseng HR, Yu HH. Functionalized conducting polymer nanodots for enhanced cell capturing: the synergistic effect of capture agents and nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2011; 23:4788-92. [PMID: 21954025 DOI: 10.1002/adma.201102151] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 08/19/2011] [Indexed: 05/21/2023]
Affiliation(s)
- Jun Sekine
- Yu Initiative Research Unit, RIKEN Advanced Science Institute, Hirosawa, Wako, Saitama, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Booth MA, Harbison S, Travas-Sejdic J. Development of an electrochemical polypyrrole-based DNA sensor and subsequent studies on the effects of probe and target length on performance. Biosens Bioelectron 2011; 28:362-7. [DOI: 10.1016/j.bios.2011.07.051] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 06/30/2011] [Accepted: 07/18/2011] [Indexed: 12/30/2022]
|
38
|
Tansil NC, Kantchev EAB, Gao Z, Yu HH. Electropolymerization of intercalator-grafted conducting polymer for direct and amplified DNA detection. Chem Commun (Camb) 2011; 47:1533-5. [DOI: 10.1039/c0cc03698f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
39
|
Travas-Sejdic J, Peng H, Yu HH, Luo SC. DNA detection using functionalized conducting polymers. Methods Mol Biol 2011; 751:437-52. [PMID: 21674347 DOI: 10.1007/978-1-61779-151-2_27] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A well-defined DNA bioconjugated surface is a key component in the development of efficient biosensor platforms for diseases, ranging from point-of-care detection of pathogens and viruses to personalized diagnostics and medication, as well as for drug discovery, forensics, and food technology. We herein describe a universal and rapid methodology to construct such surfaces based on functionalized conducting polymer thin films. The conducting polymers combine sensing properties with the ability to act as signal transducers for the biorecognition event. We have shown that biosensor designs based on conducting polymers display a number of advantageous features, such as a long-term stability, label-free sensing, fast analysis, and the capability to apply both electrochemical and fluorescent protocols for DNA detection.
Collapse
Affiliation(s)
- Jadranka Travas-Sejdic
- Polymer Electronics Research Centre, Department of Chemistry, The University of Auckland, Auckland, New Zealand.
| | | | | | | |
Collapse
|
40
|
Trujillo NJ, Barr MC, Im SG, Gleason KK. Oxidative chemical vapor deposition (oCVD) of patterned and functional grafted conducting polymer nanostructures. ACTA ACUST UNITED AC 2010. [DOI: 10.1039/b925736e] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|