1
|
Zheng J, Nozaki K, Hashimoto K, Yamashita K, Wakabayashi N. Exploring the Biological Impact of β-TCP Surface Polarization on Osteoblast and Osteoclast Activity. Int J Mol Sci 2024; 26:141. [PMID: 39796000 PMCID: PMC11719610 DOI: 10.3390/ijms26010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
β-tricalcium phosphate (β-TCP) is a widely utilized resorbable bone graft material, whose surface charge can be modified by electrical polarization. However, the specific effects of such a charge modification on osteoblast and osteoclast functions remain insufficiently studied. In this work, electrically polarized β-TCP with a high surface charge density was synthesized and evaluated in vitro in terms of its physicochemical properties and biological activity. Polarization was performed to achieve a high surface charge density, which was quantified using a thermally stimulated depolarization current. The proliferation and differentiation of MC3T3-E1 osteoblast-like cells were assessed via WST-8 and alkaline phosphatase assays. Tartrate-resistant acid phosphatase (TRAP) activity and a resorption pit assay were used to evaluate the impact of surface charge on RAW264.7 osteoclast-like cell activity. Polarized β-TCP exhibited a surface charge of 1.3 mC cm-2. Electrically polarized surfaces significantly enhanced osteoblast proliferation and differentiation. TRAP activity assays demonstrated effective osteoclast differentiation of RAW264.7 cells, with enhanced activity observed on charged surfaces. Resorption pit assays further revealed improved osteoclast resorption capacity on β-TCP surfaces with a polarized charge. These findings indicate that β-TCP with a highly dense surface charge promotes osteoblast proliferation and differentiation, as well as osteoclast activity and resorption capacity.
Collapse
Affiliation(s)
- Jingpu Zheng
- Department of Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Yushima, Tokyo 1138549, Japan; (J.Z.); (K.Y.); (N.W.)
| | - Kosuke Nozaki
- Department of Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Yushima, Tokyo 1138549, Japan; (J.Z.); (K.Y.); (N.W.)
| | - Kazuaki Hashimoto
- Department of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, Narashino 2750016, Japan;
| | - Kimihiro Yamashita
- Department of Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Yushima, Tokyo 1138549, Japan; (J.Z.); (K.Y.); (N.W.)
- Advanced Comprehensive Research Organization, Teikyo University, Itabashi, Tokyo 1730003, Japan
| | - Noriyuki Wakabayashi
- Department of Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Yushima, Tokyo 1138549, Japan; (J.Z.); (K.Y.); (N.W.)
| |
Collapse
|
2
|
Li J, Jiang P, Yang J, Zhang Q, Chen H, Wang Z, Liu C, Fan T, Cao L, Sui J. Self-Reinforced PTLG Copolymer with Shish Kebab Structures and a Bionic Surface as Bioimplant Materials for Tissue Engineering Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11062-11075. [PMID: 38378449 PMCID: PMC10910444 DOI: 10.1021/acsami.3c18093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024]
Abstract
Green and biodegradable materials with great mechanical properties and biocompatibility will offer new opportunities for next-generation high-performance biological materials. Herein, the novel oriented shish kebab crystals of a novel poly(trimethylene carbonate-lactide-glycolide) (PTLG) vascular stent are first reported to be successfully fabricated through a feasible solid-state drawing process to simultaneously enhance the mechanical performance and biocompatibility. The crystal structure of this self-reinforced vascular stent was transformed from spherulites to a shish kebab crystal, which indicates the mechanical interlocking effect and prevents the lamellae from slipping with a significant improvement of mechanical strength to 333 MPa. Meanwhile, it is different from typical biomedical polymers with smooth surface structures, and the as-obtained PTLG vascular stent exhibits a bionic surface morphology with a parallel micro groove and ridge structure. These ridges and grooves were attributed to the reorganization of cytoskeleton fiber bundles following the direction of blood flow shear stress. The structure and parameters of these morphologies were highly similar to the inner surface of blood vessels of the human, which facilitates cell adhesion growth to improve its proliferation, differentiation, and activity on the surface of PTLG.
Collapse
Affiliation(s)
- Jiafeng Li
- China
Coal Research Institute, Coal Mining Branch, Beijing 400037, P. R. China
- CCTEG
Coal Mining Research Institute, Beijing 100013, P. R. China
- State
Key Laboratory of Coal Mining and Clean Utilization, Beijing 100013, P. R. China
| | - Pengfei Jiang
- China
Coal Research Institute, Coal Mining Branch, Beijing 400037, P. R. China
- CCTEG
Coal Mining Research Institute, Beijing 100013, P. R. China
- State
Key Laboratory of Coal Mining and Clean Utilization, Beijing 100013, P. R. China
| | - Jianwei Yang
- China
Coal Research Institute, Coal Mining Branch, Beijing 400037, P. R. China
- CCTEG
Coal Mining Research Institute, Beijing 100013, P. R. China
- State
Key Laboratory of Coal Mining and Clean Utilization, Beijing 100013, P. R. China
| | - Quntao Zhang
- China
Coal Research Institute, Coal Mining Branch, Beijing 400037, P. R. China
- CCTEG
Coal Mining Research Institute, Beijing 100013, P. R. China
- State
Key Laboratory of Coal Mining and Clean Utilization, Beijing 100013, P. R. China
| | - Huiyuan Chen
- China
Coal Research Institute, Coal Mining Branch, Beijing 400037, P. R. China
- CCTEG
Coal Mining Research Institute, Beijing 100013, P. R. China
- State
Key Laboratory of Coal Mining and Clean Utilization, Beijing 100013, P. R. China
| | - Ziyue Wang
- China
Coal Research Institute, Coal Mining Branch, Beijing 400037, P. R. China
- CCTEG
Coal Mining Research Institute, Beijing 100013, P. R. China
- State
Key Laboratory of Coal Mining and Clean Utilization, Beijing 100013, P. R. China
| | - Chang Liu
- China
Coal Research Institute, Coal Mining Branch, Beijing 400037, P. R. China
- CCTEG
Coal Mining Research Institute, Beijing 100013, P. R. China
- State
Key Laboratory of Coal Mining and Clean Utilization, Beijing 100013, P. R. China
| | - Tiantang Fan
- College
of
Medical Engineering & The Key Laboratory for Medical Functional
Nanomaterials, Jining Medical University, Jining 272111, P. R. China
| | - Lu Cao
- Department
of Orthopedic Surgery, Zhongshan Hospital,
Fudan University, Shanghai 200031, P. R. China
- Fudan
Zhangjiang Institute, Fudan University, Shanghai 200437, P. R. China
| | - Junhui Sui
- School
of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| |
Collapse
|
3
|
Inter-Laboratory Study on Measuring the Surface Charge of Electrically Polarized Hydroxyapatite. J Funct Biomater 2023; 14:jfb14020100. [PMID: 36826898 PMCID: PMC9967400 DOI: 10.3390/jfb14020100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/04/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Surface charges on implants improve integration into bone and so require a clear protocol for achieving a surface charge and comparable results from different laboratories. This study sintered hydroxyapatite (HAp) at one laboratory to remove the influence of the microstructure on surface charge and then polarized/depolarized the pellets at two different laboratories (in Tokyo and Riga). Surface charges on HAp pellets induced by electric polarization at 400 °C in a 5 kV/cm DC electric field were measured by the thermally stimulated depolarization current (TSDC) method as 6-9 µC/cm2. The surface charge results were comparable between laboratories and also agreed with previously documented values. Recommendations describe conditions for polarization and depolarization to generate a surface charge and repeatedly achieve a comparable outcome. A visual display of the polarization mechanisms and the contribution to surface charge point to further aspects that need further development.
Collapse
|
4
|
Bergara-Muguruza L, Mäkelä K, Yrjälä T, Salonen J, Yamashita K, Nakamura M. Surface Electric Fields Increase Human Osteoclast Resorption through Improved Wettability on Carbonate-Incorporated Apatite. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58270-58278. [PMID: 34860490 PMCID: PMC8678988 DOI: 10.1021/acsami.1c14358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/23/2021] [Indexed: 06/02/2023]
Abstract
Osteoclast-mediated bioresorption can be an efficient means of incorporating the dissolution of biomaterials in the bone remodeling process. Because of the compositionally and structurally close resemblance of biomaterials with the natural mineral phases of the bone matrix, synthetic carbonate-substituted apatite (CA) is considered as an ideal biomaterial for clinical use. The present study therefore investigated the effects of electrical polarization on the surface characteristics and interactions with human osteoclasts of hydroxyapatite (HA) and CA. Electrical polarization was found to improve the surface wettability of these materials by increasing the surface free energy, and this effect was maintained for 1 month. Analyses of human osteoclast cultures established that CA subjected to a polarization treatment enhanced osteoclast resorption but did not affect the early differentiation phase or the adherent morphology of the osteoclasts as evaluated by staining. These data suggest that the surface characteristics of the CA promoted osteoclast resorption. The results of this work are expected to contribute to the future design of cell-mediated bioresorbable biomaterials capable of resorption by osteoclasts and of serving as a scaffold for bone regeneration.
Collapse
Affiliation(s)
- Leire Bergara-Muguruza
- Medicity
Research Laboratory, Faculty of Medicine, University of Turku, Tykistökatu 6, 20520 Turku, Finland
| | - Keijo Mäkelä
- Turku
University Hospital, University of Turku, Luolavuorentie 2, 20700 Turku, Finland
| | - Tommi Yrjälä
- Turku
University Hospital, University of Turku, Luolavuorentie 2, 20700 Turku, Finland
- Department
of Anesthesia and Intensive Care, University
of Turku, Luolavuorentie
2, 20700 Turku, Finland
| | - Jukka Salonen
- Medicity
Research Laboratory, Faculty of Medicine, University of Turku, Tykistökatu 6, 20520 Turku, Finland
| | - Kimihiro Yamashita
- Graduate
School of Medical and Dental Science, Tokyo
Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Miho Nakamura
- Medicity
Research Laboratory, Faculty of Medicine, University of Turku, Tykistökatu 6, 20520 Turku, Finland
- Institute
of Biomaterials and Bioengineering, Tokyo
Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 1010062 Japan
- Graduate
School of Engineering, Tohoku University, 6-6 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 9808579 Japan
| |
Collapse
|
5
|
Sans J, Sanz V, del Valle LJ, Puiggalí J, Turon P, Alemán C. Optimization of permanently polarized hydroxyapatite catalyst. Implications for the electrophotosynthesis of amino acids by nitrogen and carbon fixation. J Catal 2021. [DOI: 10.1016/j.jcat.2021.03.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Zheng T, Huang Y, Zhang X, Cai Q, Deng X, Yang X. Mimicking the electrophysiological microenvironment of bone tissue using electroactive materials to promote its regeneration. J Mater Chem B 2020; 8:10221-10256. [PMID: 33084727 DOI: 10.1039/d0tb01601b] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The process of bone tissue repair and regeneration is complex and requires a variety of physiological signals, including biochemical, electrical and mechanical signals, which collaborate to ensure functional recovery. The inherent piezoelectric properties of bone tissues can convert mechanical stimulation into electrical effects, which play significant roles in bone maturation, remodeling and reconstruction. Electroactive materials, including conductive materials, piezoelectric materials and electret materials, can simulate the physiological and electrical microenvironment of bone tissue, thereby promoting bone regeneration and reconstruction. In this paper, the structures and performances of different types of electroactive materials and their applications in the field of bone repair and regeneration are reviewed, particularly by providing the results from in vivo evaluations using various animal models. Their advantages and disadvantages as bone repair materials are discussed, and the methods for tuning their performances are also described, with the aim of providing an up-to-date account of the proposed topics.
Collapse
Affiliation(s)
- Tianyi Zheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Yiqian Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| |
Collapse
|
7
|
Verma AS, Sharma A, Kumar A, Mukhopadhyay A, Kumar D, Dubey AK. Multifunctional Response of Piezoelectric Sodium Potassium Niobate (NKN)-Toughened Hydroxyapatite-Based Biocomposites. ACS APPLIED BIO MATERIALS 2020; 3:5287-5299. [DOI: 10.1021/acsabm.0c00642] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alok Singh Verma
- Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Ankur Sharma
- High Temperature and Energy Materials Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology (IIT) Bombay, Mumbai 400076, India
| | - Ajay Kumar
- High Temperature and Energy Materials Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology (IIT) Bombay, Mumbai 400076, India
| | - Amartya Mukhopadhyay
- High Temperature and Energy Materials Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology (IIT) Bombay, Mumbai 400076, India
| | - Devendra Kumar
- Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Ashutosh Kumar Dubey
- Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| |
Collapse
|
8
|
Verma AS, Kumar D, Dubey AK. Antibacterial and cellular response of piezoelectric Na 0.5K 0.5NbO 3modified 1393 bioactive glass. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111138. [PMID: 32806311 DOI: 10.1016/j.msec.2020.111138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022]
Abstract
In the present study, the combined effect of addition of varying concentrations (10-30 vol%) of biocompatible piezoelectric Na0.5K0.5NbO3 (NKN) as well as electrostatic and dynamic pulsed electrical treatment on antibacterial and cellular response of 1393 bioactive glass (1393 BG) has been examined. The phase analyses of the sintered (at 800 °C for 30 min) samples revealed the formation of 1393 BG - NKN composites without any appearance of secondary phases. The addition of 10-30 vol% NKN significantly improved the mechanical behaviour of 1393 BG like, hardness (1.7 to 2 times), fracture toughness (1.3 to 2.6 times), compressive (2.3 to 8 times) and flexural strengths (2 to 3.5 times) than monolithic 1393 BG. The piezoelectric NKN is observed to induce the antibacterial activity in 1393 BG - (10- 30 vol%) NKN composites, while Staphylococcus aureus (S. aureus, gram positive) and Escherichia coli (E. coli, gram negative) bacterial cells were exposed to unpolarized and polarized (20 kV, 500°C for 30 min) sample surfaces. The antibacterial response was examined using disc diffusion, nitro blue tetrazolium (NBT) and MTT assays. The statistical analyses revealed the significant reduction in the viability of bacterial cells on polarized 1393 BG - (10- 30 vol%) NKN composite samples. In addition, the combined effect of electrostatic and dynamic pulsed electrical stimulation (1 V/cm, 500 μs pulses) on the cellular response of 1393 BG and 1393 BG - 30 vol% NKN composites has been analysed with MG-63 osteoblast-like cells. The cell proliferation was observed to increase significantly for the dynamic pulsed electric field treated negatively charged surfaces.
Collapse
Affiliation(s)
- Alok Singh Verma
- Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Devendra Kumar
- Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Ashutosh Kumar Dubey
- Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India.
| |
Collapse
|
9
|
Li J, Chen Q, Zhang Q, Fan T, Gong L, Ye W, Fan Z, Cao L. Improving Mechanical Properties and Biocompatibilities by Highly Oriented Long Chain Branching Poly(lactic acid) with Bionic Surface Structures. ACS APPLIED MATERIALS & INTERFACES 2020; 12:14365-14375. [PMID: 32129593 DOI: 10.1021/acsami.9b20264] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Exploiting the solid-state drawing (SSD) process toward polymer materials for medical implant devices is of significance to simultaneously improve the mechanical property and biocompatibility. Herein, for the first time, the bionic implants with a microvalley surface of oriented long chain branching PLA (b-PLA) was fabricated by a feasible SSD process. The as-obtained b-PLAs could not only show a high tensile strength (278.1 MPa) and modulus (4.32 GPa) but also bear a superior protein adsorption as high as 622 ng/cm2. Such exceptional mechanical properties and biocompatibility could be ascribed to the SSD process-induced highly orientation degree and the morphology of parallel grooves within ridges structures, resulting in the greatly enhanced crystallinity and surface hydrophobicity as well as a biocompatible vascular endothelial microstructure for cell to adhesion and growth and thus an improved proliferation, differentiation, and activity of osteoblasts with spindle-shaped and spread morphology on surface of the b-PLAs. These findings may pave the way for designing the novel biomaterials for vascular stent or tissue engineering devices by the SSD process.
Collapse
Affiliation(s)
- Jiafeng Li
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China
| | - Qian Chen
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200433, P. R. China
| | - Qin Zhang
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China
| | - Tiantang Fan
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China
| | - Li Gong
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China
| | - Wuyou Ye
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China
| | - Zhongyong Fan
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China
| | - Lu Cao
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
10
|
Jiafeng L, Qin Z, Tiantang F, Li G, Wuyou Y, Zhongyong F, Lu C, Qing L. Crystallization and biocompatibility enhancement of 3D-printed poly(l-lactide) vascular stents with long chain branching structures. CrystEngComm 2020. [DOI: 10.1039/c9ce01477b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The long chain branching poly(L-lactide)s were prepared by reactive processing of linear PLA using pyromellitic dianhydride and polyfunctional epoxy ether as the branching agent and their vascular stents were fabricated via 3D-printing.
Collapse
Affiliation(s)
- Li Jiafeng
- Department of Materials Science
- Fudan University
- Shanghai
- PR China
| | - Zhang Qin
- Department of Materials Science
- Fudan University
- Shanghai
- PR China
| | - Fan Tiantang
- Department of Materials Science
- Fudan University
- Shanghai
- PR China
| | - Gong Li
- Department of Materials Science
- Fudan University
- Shanghai
- PR China
| | - Ye Wuyou
- Department of Materials Science
- Fudan University
- Shanghai
- PR China
| | - Fan Zhongyong
- Department of Materials Science
- Fudan University
- Shanghai
- PR China
| | - Cao Lu
- Department of Orthopedic Surgery
- Zhongshan Hospital
- Fudan University
- Shanghai
- PR China
| | - Liu Qing
- Beijing Advanced Medical Technologies, Ltd. Inc
- Beijing
- PR China
| |
Collapse
|
11
|
Metwally S, Stachewicz U. Surface potential and charges impact on cell responses on biomaterials interfaces for medical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109883. [DOI: 10.1016/j.msec.2019.109883] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/02/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022]
|
12
|
Bandyopadhyay A, Shivaram A, Mitra I, Bose S. Electrically polarized TiO 2 nanotubes on Ti implants to enhance early-stage osseointegration. Acta Biomater 2019; 96:686-693. [PMID: 31326668 PMCID: PMC6717678 DOI: 10.1016/j.actbio.2019.07.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/18/2019] [Accepted: 07/16/2019] [Indexed: 10/26/2022]
Abstract
Ti is characteristically bioinert and is supplemented with modifications in surface topography and chemistry to find use in biomedical applications. The aim of this study is to understand the effects of surface charge on TiO2 nanotubes (TNT) on Ti implants towards early stage osseointegration. We hypothesize that charge storage on TNT will improve bioactivity and enhance early-stage osseointegration in vivo. Commercially pure Ti surface was altered by growing TNT via anodic oxidation followed by the introduction of surface charge through electrothermal polarization to form bioelectret. Our results indicate a stored charge of 37.15 ± 14 mC/cm2 for TNT surfaces. The polarized TNT (TNT-Ps) samples did not show any charge leakage up to 18 months, and improved wettability with a measured contact angle less than 1°. No cellular toxicity through osteoblast proliferation and differentiation in vitro were shown by the TNT-Ps. Enhanced new bone formation at 5 weeks post-implantation for the TNT-Ps in contrast to TNTs was observed in vivo. Histomorphometric analyses show ∼40% increase in mineralized bone formation around the TNT-P implants than the TNTs at 5 weeks, which is indicative of accelerated bone remodeling cycle. These results show that stored surface charge on TiO2 nanotubes helped to accelerate bone healing due to early-stage osseointegration in vivo. STATEMENT OF SIGNIFICANCE: To improve surface bioactivity of metallic biomaterials, various approaches have been proposed and implemented. Among them, stored surface charge has been explored to enhance biological responses for hydroxyapatite ceramics where charged surfaces show favorable bone tissue ingrowth. However, surface charge effects have not yet been explored as a way to mitigate bio-inertness of titanium. This study intends to understand novel integration of bioactive titania-nanotubes and charge storage as surface modification for titanium implants. Our results show excellent biological response due to surface charge on titania-nanotubes offering possibilities of faster healing particularly for patients with compromised bone health.
Collapse
Affiliation(s)
- Amit Bandyopadhyay
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920, USA.
| | - Anish Shivaram
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920, USA
| | - Indranath Mitra
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920, USA
| | - Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920, USA
| |
Collapse
|
13
|
Saxena A, Pandey M, Dubey AK. Induced Electroactive Response of Hydroxyapatite: A Review. J Indian Inst Sci 2019. [DOI: 10.1007/s41745-019-00117-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
do Nascimento RM, Ramos AP, Ciancaglini P, Hernandes AC. Blood droplets on functionalized surfaces: Chemical, roughness and superhydrophobic effects. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.04.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Zhang X, Wang J, Wu J, Jiang X, Pei X, Chen J, Wan Q, Huang C. Dimethyloxalylglycine improves angiogenesis of ZIF-8-coated implant. J Biomater Appl 2019; 34:396-407. [PMID: 31117856 DOI: 10.1177/0885328219850976] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Xin Zhang
- 1 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jian Wang
- 1 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,2 Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiaxin Wu
- 1 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoge Jiang
- 1 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xibo Pei
- 1 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,2 Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Junyu Chen
- 1 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,2 Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianbing Wan
- 1 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,2 Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chao Huang
- 3 College of Chemistry, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
do Nascimento RM, Sarig U, da Cruz NC, de Carvalho VR, Eyssartier C, Siad L, Ganghoffer J, Hernandes AC, Rahouadj R. Optimized‐Surface Wettability: A New Experimental 3D Modeling Approach Predicting Favorable Biomaterial–Cell Interactions. ADVANCED THEORY AND SIMULATIONS 2019. [DOI: 10.1002/adts.201900079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Rodney Marcelo do Nascimento
- São Carlos Institute of PhysicsUniversity of São Paulo USP 13566‐590 Brazil
- Laboratoire d'Etude des Microstructures et de Mécanique des MatériauxLEM3 UMR CNRS 7239University of Lorraine Nancy‐Metz 57070 France
- Departamento de FisicaUniversidade Federal de Santa CatarinaCampus Reitor Joao David Ferreira Lima, s/n, Trindade Florianopolis 88040‐900 Brazil
| | - Udi Sarig
- Biotechnology & Food EngineeringTechnion – Israel Institute of Technology 32000 Haifa Israel
- Biotechnology & Food EngineeringGuangdong‐Technion Israel Institute of Technology 515063 Shantou Guangdong Province P. R. China
| | | | | | - Camille Eyssartier
- Ecole Nationale Supérieure des Mines de Nancy Campus Artem – CS 14 234, 92 France
| | - Larbi Siad
- Biomatériaux et inflammation en site osseuxBIOSUniversité de Reims EA 4691 CNRS 51095 France
| | - Jean‐François Ganghoffer
- Laboratoire d'Etude des Microstructures et de Mécanique des MatériauxLEM3 UMR CNRS 7239University of Lorraine Nancy‐Metz 57070 France
| | | | - Rachid Rahouadj
- Laboratoire d'Etude des Microstructures et de Mécanique des MatériauxLEM3 UMR CNRS 7239University of Lorraine Nancy‐Metz 57070 France
| |
Collapse
|
17
|
Nascimento RMD, Ramos SMM, Bechtold IH, Hernandes AC. Wettability Study on Natural Rubber Surfaces for Applications as Biomembranes. ACS Biomater Sci Eng 2018; 4:2784-2793. [DOI: 10.1021/acsbiomaterials.8b00723] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Rodney Marcelo do Nascimento
- São Carlos Institute of Physics, University of São Paulo, Avenida João
Dagnone, 1100, Jardim Santa Angelina, CEP 13563-120, São Carlos, SP, Brazil
| | - Stella M. M. Ramos
- Institut Lumière Matière, UMR5306 Université Claude Bernard Lyon 1-CNRS, Université de Lyon, 43 Boulevard du 11 Novembre 1918, 69100, Villeurbanne, France
| | - Ivan Helmuth Bechtold
- Departamento de Fisica, Universidade Federal de Santa Catarina. Campus Reitor João David Ferreira Lima, s/n, Trindade, CEP 88040-900, Florianopolis, SC, Brazil
| | - Antônio Carlos Hernandes
- São Carlos Institute of Physics, University of São Paulo, Avenida João
Dagnone, 1100, Jardim Santa Angelina, CEP 13563-120, São Carlos, SP, Brazil
| |
Collapse
|
18
|
Khlusov IA, Dekhtyar Y, Sharkeev YP, Pichugin VF, Khlusova MY, Polyaka N, Tyulkin F, Vendinya V, Legostaeva EV, Litvinova LS, Shupletsova VV, Khaziakhmatova OG, Yurova KA, Prosolov KA. Nanoscale Electrical Potential and Roughness of a Calcium Phosphate Surface Promotes the Osteogenic Phenotype of Stromal Cells. MATERIALS 2018; 11:ma11060978. [PMID: 29890754 PMCID: PMC6024922 DOI: 10.3390/ma11060978] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/29/2018] [Accepted: 06/07/2018] [Indexed: 12/31/2022]
Abstract
Mesenchymal stem cells (MSCs) and osteoblasts respond to the surface electrical charge and topography of biomaterials. This work focuses on the connection between the roughness of calcium phosphate (CP) surfaces and their electrical potential (EP) at the micro- and nanoscales and the possible role of these parameters in jointly affecting human MSC osteogenic differentiation and maturation in vitro. A microarc CP coating was deposited on titanium substrates and characterized at the micro- and nanoscale. Human adult adipose-derived MSCs (hAMSCs) or prenatal stromal cells from the human lung (HLPSCs) were cultured on the CP surface to estimate MSC behavior. The roughness, nonuniform charge polarity, and EP of CP microarc coatings on a titanium substrate were shown to affect the osteogenic differentiation and maturation of hAMSCs and HLPSCs in vitro. The surface EP induced by the negative charge increased with increasing surface roughness at the microscale. The surface relief at the nanoscale had an impact on the sign of the EP. Negative electrical charges were mainly located within the micro- and nanosockets of the coating surface, whereas positive charges were detected predominantly at the nanorelief peaks. HLPSCs located in the sockets of the CP surface expressed the osteoblastic markers osteocalcin and alkaline phosphatase. The CP multilevel topography induced charge polarity and an EP and overall promoted the osteoblast phenotype of HLPSCs. The negative sign of the EP and its magnitude at the micro- and nanosockets might be sensitive factors that can trigger osteoblastic differentiation and maturation of human stromal cells.
Collapse
Affiliation(s)
- Igor A Khlusov
- Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia.
- Basic Laboratory of Immunology and Cell Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad 236041, Russia.
| | - Yuri Dekhtyar
- Institute of Biomedical Engineering and Nanotechnologies, Riga Technical University, Riga LV-1658, Latvia.
| | - Yurii P Sharkeev
- Research School of High-Energy Physics, National Research Tomsk Polytechnic University, Tomsk 634050, Russia.
- Institute of Strength Physics and Materials Science of SB RAS, Tomsk 634055, Russia.
| | - Vladimir F Pichugin
- Research School of High-Energy Physics, National Research Tomsk Polytechnic University, Tomsk 634050, Russia.
| | - Marina Y Khlusova
- Department of Pathophysiology, Siberian State Medical University, Tomsk 634050, Russia.
| | - Nataliya Polyaka
- Institute of Biomedical Engineering and Nanotechnologies, Riga Technical University, Riga LV-1658, Latvia.
| | - Fedor Tyulkin
- Institute of Biomedical Engineering and Nanotechnologies, Riga Technical University, Riga LV-1658, Latvia.
| | - Viktorija Vendinya
- Institute of Biomedical Engineering and Nanotechnologies, Riga Technical University, Riga LV-1658, Latvia.
| | - Elena V Legostaeva
- Institute of Strength Physics and Materials Science of SB RAS, Tomsk 634055, Russia.
| | - Larisa S Litvinova
- Basic Laboratory of Immunology and Cell Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad 236041, Russia.
| | - Valeria V Shupletsova
- Basic Laboratory of Immunology and Cell Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad 236041, Russia.
| | - Olga G Khaziakhmatova
- Basic Laboratory of Immunology and Cell Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad 236041, Russia.
| | - Kristina A Yurova
- Basic Laboratory of Immunology and Cell Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad 236041, Russia.
| | - Konstantin A Prosolov
- Research School of High-Energy Physics, National Research Tomsk Polytechnic University, Tomsk 634050, Russia.
- Institute of Strength Physics and Materials Science of SB RAS, Tomsk 634055, Russia.
| |
Collapse
|
19
|
Rivas M, del Valle LJ, Armelin E, Bertran O, Turon P, Puiggalí J, Alemán C. Hydroxyapatite with Permanent Electrical Polarization: Preparation, Characterization, and Response against Inorganic Adsorbates. Chemphyschem 2018; 19:1746-1755. [DOI: 10.1002/cphc.201800196] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Manuel Rivas
- Department of Chemical EngineeringUniversitat Politècnica de Catalunya EEBE, C/Eduard Maristany 10–14, Ed. I2 08019 Barcelona Spain
| | - Luis J. del Valle
- Department of Chemical EngineeringUniversitat Politècnica de Catalunya EEBE, C/Eduard Maristany 10–14, Ed. I2 08019 Barcelona Spain
- Barcelona Research Center for Multiscale Science and EngineeringUniversitat Politècnica de Catalunya Institution EEBE, C/ Eduard Maristany 10–14, Ed. I2 08019 Barcelona Spain
| | - Elaine Armelin
- Department of Chemical EngineeringUniversitat Politècnica de Catalunya EEBE, C/Eduard Maristany 10–14, Ed. I2 08019 Barcelona Spain
- Barcelona Research Center for Multiscale Science and EngineeringUniversitat Politècnica de Catalunya Institution EEBE, C/ Eduard Maristany 10–14, Ed. I2 08019 Barcelona Spain
| | - Oscar Bertran
- Department of PhysicsUniversitat Politècnica de Catalunya EEI, Av. Pla de la Massa, 8 08700 Igualada Spain
| | - Pau Turon
- Department of Chemical EngineeringUniversitat Politècnica de Catalunya EEBE, C/Eduard Maristany 10–14, Ed. I2 08019 Barcelona Spain
- B. Braun Surgical, S.A Carretera de Terrassa 121 08191 Rubí (Barcelona) Spain
| | - Jordi Puiggalí
- Department of Chemical EngineeringUniversitat Politècnica de Catalunya EEBE, C/Eduard Maristany 10–14, Ed. I2 08019 Barcelona Spain
- Barcelona Research Center for Multiscale Science and EngineeringUniversitat Politècnica de Catalunya Institution EEBE, C/ Eduard Maristany 10–14, Ed. I2 08019 Barcelona Spain
| | - Carlos Alemán
- Department of Chemical EngineeringUniversitat Politècnica de Catalunya EEBE, C/Eduard Maristany 10–14, Ed. I2 08019 Barcelona Spain
- Barcelona Research Center for Multiscale Science and EngineeringUniversitat Politècnica de Catalunya Institution EEBE, C/ Eduard Maristany 10–14, Ed. I2 08019 Barcelona Spain
| |
Collapse
|
20
|
Tandon B, Magaz A, Balint R, Blaker JJ, Cartmell SH. Electroactive biomaterials: Vehicles for controlled delivery of therapeutic agents for drug delivery and tissue regeneration. Adv Drug Deliv Rev 2018; 129:148-168. [PMID: 29262296 DOI: 10.1016/j.addr.2017.12.012] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/24/2017] [Accepted: 12/16/2017] [Indexed: 01/09/2023]
Abstract
Electrical stimulation for delivery of biochemical agents such as genes, proteins and RNA molecules amongst others, holds great potential for controlled therapeutic delivery and in promoting tissue regeneration. Electroactive biomaterials have the capability of delivering these agents in a localized, controlled, responsive and efficient manner. These systems have also been combined for the delivery of both physical and biochemical cues and can be programmed to achieve enhanced effects on healing by establishing control over the microenvironment. This review focuses on current state-of-the-art research in electroactive-based materials towards the delivery of drugs and other therapeutic signalling agents for wound care treatment. Future directions and current challenges for developing effective electroactive approach based therapies for wound care are discussed.
Collapse
|
21
|
Li J, Li Z, Ye L, Zhao X, Coates P, Caton-Rose F. Structure and biocompatibility improvement mechanism of highly oriented poly(lactic acid) produced by solid die drawing. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.09.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Lettieri S, Rega R, Pallotti DK, Gennari O, Mecozzi L, Maddalena P, Ferraro P, Grilli S. Direct Evidence of Polar Ordering and Investigation on Cytophilic Properties of Pyroelectrified Polymer Films by Optical Second Harmonic Generation Analysis. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00794] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Stefano Lettieri
- National Research Council, Institute of Applied Sciences & Intelligent Systems (ISASI-CNR) “E. Caianiello”, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Romina Rega
- National Research Council, Institute of Applied Sciences & Intelligent Systems (ISASI-CNR) “E. Caianiello”, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Deborah K. Pallotti
- National Research Council, Institute of Applied Sciences & Intelligent Systems (ISASI-CNR) “E. Caianiello”, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Oriella Gennari
- National Research Council, Institute of Applied Sciences & Intelligent Systems (ISASI-CNR) “E. Caianiello”, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Laura Mecozzi
- National Research Council, Institute of Applied Sciences & Intelligent Systems (ISASI-CNR) “E. Caianiello”, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Pasqualino Maddalena
- Physics
Department, Università degli Studi di Napoli “Federico II”, Via Cintia, 80126 Napoli, Italy
| | - Pietro Ferraro
- National Research Council, Institute of Applied Sciences & Intelligent Systems (ISASI-CNR) “E. Caianiello”, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Simonetta Grilli
- National Research Council, Institute of Applied Sciences & Intelligent Systems (ISASI-CNR) “E. Caianiello”, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| |
Collapse
|
23
|
Santos NF, Cicuéndez M, Holz T, Silva VS, Fernandes AJS, Vila M, Costa FM. Diamond-Graphite Nanoplatelet Surfaces as Conductive Substrates for the Electrical Stimulation of Cell Functions. ACS APPLIED MATERIALS & INTERFACES 2017; 9:1331-1342. [PMID: 28001360 DOI: 10.1021/acsami.6b14407] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The nanocarbon allotropes constitute valid alternatives when designing control and actuation devices for electrically assisted tissue regeneration purposes, gathering among them important characteristics such as chemical inertness, biocompatibility, extreme mechanical properties, and, importantly, low and tailorable electrical resistivity. In this work, coatings of thin (100 nm) vertically aligned nanoplatelets composed of diamond (5 nm) and graphite were produced via a microwave plasma chemical vapor deposition (MPCVD) technique and used as substrates for electrical stimulation of MC3T3-E1 preosteoblasts. Increasing the amount of N2 up to 14.5 vol % during growth lowers the coatings' electrical resistivity by over 1 order of magnitude, triggers the nanoplatelet vertical growth, and leads to the higher crystalline quality of the nanographite phase. When preosteoblasts were cultured on these substrates and subjected to two consecutive daily cycles of 3 μA direct current stimulation, enhanced cell proliferation and metabolism were observed accompanied by high cell viability. Furthermore, in the absence of DC stimulation, alkaline phosphatase (ALP) activity is increased significantly, denoting an up-regulating effect of preosteoblastic maturation intrinsically exerted by the nanoplatelet substrates.
Collapse
Affiliation(s)
- N F Santos
- i3N and Physics Department, University of Aveiro , 3810-193 Aveiro, Portugal
| | - M Cicuéndez
- TEMA-NRG, Mechanical Engineering Department and CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro , 3810-193 Aveiro, Portugal
| | - T Holz
- i3N and Physics Department, University of Aveiro , 3810-193 Aveiro, Portugal
| | - V S Silva
- CESAM, Biology Department, University of Aveiro , 3810-193 Aveiro, Portugal
| | - A J S Fernandes
- i3N and Physics Department, University of Aveiro , 3810-193 Aveiro, Portugal
| | - M Vila
- TEMA-NRG, Mechanical Engineering Department, University of Aveiro , 3810-193 Aveiro, Portugal
| | - F M Costa
- i3N and Physics Department, University of Aveiro , 3810-193 Aveiro, Portugal
| |
Collapse
|
24
|
Petrov I, Kalinkevich O, Pogorielov M, Kalinkevich A, Stanislavov A, Sklyar A, Danilchenko S, Yovcheva T. Dielectric and electric properties of new chitosan-hydroxyapatite materials for biomedical application: Dielectric spectroscopy and corona treatment. Carbohydr Polym 2016; 151:770-778. [DOI: 10.1016/j.carbpol.2016.05.110] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/11/2016] [Accepted: 05/29/2016] [Indexed: 11/25/2022]
|
25
|
Nakamura M, Hori N, Ando H, Namba S, Toyama T, Nishimiya N, Yamashita K. Surface free energy predominates in cell adhesion to hydroxyapatite through wettability. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:283-92. [PMID: 26952425 DOI: 10.1016/j.msec.2016.01.037] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 01/04/2016] [Accepted: 01/15/2016] [Indexed: 11/16/2022]
Abstract
The initial adhesion of cells to biomaterials is critical in the regulation of subsequent cell behaviors. The purpose of this study was to investigate a mechanism through which the surface wettability of biomaterials can be improved and determine the effects of biomaterial surface characteristics on cellular behaviors. We investigated the surface characteristics of various types of hydroxyapatite after sintering in different atmospheres and examined the effects of various surface characteristics on cell adhesion to study cell-biomaterial interactions. Sintering atmosphere affects the polarization capacity of hydroxyapatite by changing hydroxide ion content and grain size. Compared with hydroxyapatite sintered in air, hydroxyapatite sintered in saturated water vapor had a higher polarization capacity that increased surface free energy and improved wettability, which in turn accelerated cell adhesion. We determined the optimal conditions of hydroxyapatite polarization for the improvement of surface wettability and acceleration of cell adhesion.
Collapse
Affiliation(s)
- Miho Nakamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 1010062, Japan.
| | - Naoko Hori
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 1010062, Japan
| | - Hiroshi Ando
- Department of Materials and Applied Chemistry, Nihon University, 1-5-1 Kanda-Surugadai, Chiyoda, Tokyo 1018308, Japan
| | - Saki Namba
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 1010062, Japan; Department of Materials and Applied Chemistry, Nihon University, 1-5-1 Kanda-Surugadai, Chiyoda, Tokyo 1018308, Japan
| | - Takeshi Toyama
- Department of Materials and Applied Chemistry, Nihon University, 1-5-1 Kanda-Surugadai, Chiyoda, Tokyo 1018308, Japan
| | - Nobuyuki Nishimiya
- Department of Materials and Applied Chemistry, Nihon University, 1-5-1 Kanda-Surugadai, Chiyoda, Tokyo 1018308, Japan
| | - Kimihiro Yamashita
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 1010062, Japan
| |
Collapse
|
26
|
Clinoenstatite coatings have high bonding strength, bioactive ion release, and osteoimmunomodulatory effects that enhance in vivo osseointegration. Biomaterials 2015; 71:35-47. [PMID: 26318815 DOI: 10.1016/j.biomaterials.2015.08.027] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 08/14/2015] [Indexed: 01/06/2023]
Abstract
A number of coating materials have been developed over past two decades seeking to improve the osseointegration of orthopedic metal implants. Despite the many candidate materials trialed, their low rate of translation into clinical applications suggests there is room for improving the current strategies for their development. We therefore propose that the ideal coating material(s) should possess the following three properties: (i) high bonding strength, (ii) release of functional ions, and (iii) favourable osteoimmunomodulatory effects. To test this proposal, we developed clinoenstatite (CLT, MgSiO3), which as a coating material has high bonding strength, cytocompability and immunomodulatory effects that are favourable for in vivo osteogenesis. The bonding strength of CLT coatings was 50.1 ± 3.2 MPa, more than twice that of hydroxyapatite (HA) coatings, at 23.5 ± 3.5 MPa. CLT coatings released Mg and Si ions, and compared to HA coatings, induced an immunomodulation more conducive for osseointegration, demonstrated by downregurelation of pro-inflammatory cytokines, enhancement of osteogenesis, and inhibition of osteoclastogenesis. In vivo studies demonstrated that CLT coatings improved osseointegration with host bone, as shown by the enhanced biomechanical strength and increased de novo bone formation, when compared with HA coatings. These results support the notion that coating materials with the proposed properties can induce an in vivo environment better suited for osseointegration. These properties could, therefore, be fundamental when developing high-performance coating materials.
Collapse
|
27
|
Nakamura M, Hori N, Namba S, Toyama T, Nishimiya N, Yamashita K. Wettability and surface free energy of polarised ceramic biomaterials. Biomed Mater 2015; 10:011001. [DOI: 10.1088/1748-6041/10/1/011001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Carville NC, Collins L, Manzo M, Gallo K, Lukasz BI, McKayed KK, Simpson JC, Rodriguez BJ. Biocompatibility of ferroelectric lithium niobate and the influence of polarization charge on osteoblast proliferation and function. J Biomed Mater Res A 2014; 103:2540-8. [DOI: 10.1002/jbm.a.35390] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 12/08/2014] [Indexed: 11/10/2022]
Affiliation(s)
- N. Craig Carville
- School of Physics; University College Dublin; Belfield Dublin 4 Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin; Belfield Dublin 4 Ireland
| | - Liam Collins
- School of Physics; University College Dublin; Belfield Dublin 4 Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin; Belfield Dublin 4 Ireland
| | - Michele Manzo
- Department of Applied Physics; KTH-Royal Institute of Technology; Roslagstullbacken 21 106 91 Stockholm Sweden
| | - Katia Gallo
- Department of Applied Physics; KTH-Royal Institute of Technology; Roslagstullbacken 21 106 91 Stockholm Sweden
| | - Bart I. Lukasz
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin; Belfield Dublin 4 Ireland
| | - Katey K. McKayed
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin; Belfield Dublin 4 Ireland
- School of Biology and Environmental Science; University College Dublin; Belfield Dublin 4 Ireland
| | - Jeremy C. Simpson
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin; Belfield Dublin 4 Ireland
- School of Biology and Environmental Science; University College Dublin; Belfield Dublin 4 Ireland
| | - Brian J. Rodriguez
- School of Physics; University College Dublin; Belfield Dublin 4 Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin; Belfield Dublin 4 Ireland
| |
Collapse
|
29
|
Wu C, Chen Z, Yi D, Chang J, Xiao Y. Multidirectional effects of Sr-, Mg-, and Si-containing bioceramic coatings with high bonding strength on inflammation, osteoclastogenesis, and osteogenesis. ACS APPLIED MATERIALS & INTERFACES 2014; 6:4264-76. [PMID: 24598408 DOI: 10.1021/am4060035] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Ideal coating materials for implants should be able to induce excellent osseointegration, which requires several important parameters, such as good bonding strength, limited inflammatory reaction, and balanced osteoclastogenesis and osteogenesis, to gain well-functioning coated implants with long-term life span after implantation. Bioactive elements, like Sr, Mg, and Si, have been found to play important roles in regulating the biological responses. It is of great interest to combine bioactive elements for developing bioactive coatings on Ti-6Al-4 V orthopedic implants to elicit multidirectional effects on the osseointegration. In this study, Sr-, Mg-, and Si-containing bioactive Sr2MgSi2O7 (SMS) ceramic coatings on Ti-6Al-4 V were successfully prepared by the plasma-spray coating method. The prepared SMS coatings have significantly higher bonding strength (∼37 MPa) than conventional pure hydroxyapatite (HA) coatings (mostly in the range of 15-25 MPa). It was also found that the prepared SMS coatings switch the macrophage phenotype into M2 extreme, inhibiting the inflammatory reaction via the inhibition of Wnt5A/Ca(2+) and Toll-like receptor (TLR) pathways of macrophages. In addition, the osteoclastic activities were also inhibited by SMS coatings. The expression of osteoclastogenesis-related genes (RANKL and MCSF) in bone-marrow-derived mesenchymal cells (BMSCs) with the involvement of macrophages was decreased, whereas OPG expression was enhanced on SMS coatings compared to HA coatings, indicating that SMS coatings also downregulated the osteoclastogenesis. However, the osteogenic differentiation of BMSCs with the involvement of macrophages was comparable between SMS and HA coatings. Therefore, the prepared SMS coatings showed multidirectional effects, such as improving bonding strength, reducing inflammatory reaction, and downregulating osteoclastic activities, but maintaining a comparable osteogenesis, as compared with HA coatings. The combination of bioactive elements of Sr, Mg, and Si into bioceramic coatings can be a promising method to develop bioactive implants with multifunctional properties for orthopedic application.
Collapse
Affiliation(s)
- Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , 1295 Dingxi Road, Shanghai 200050, People's Republic of China
| | | | | | | | | |
Collapse
|
30
|
Chen Z, Yi D, Zheng X, Chang J, Wu C, Xiao Y. Nutrient element-based bioceramic coatings on titanium alloy stimulating osteogenesis by inducing beneficial osteoimmmunomodulation. J Mater Chem B 2014; 2:6030-6043. [DOI: 10.1039/c4tb00837e] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nutrient element-based Sr2ZnSi2O7 coatings induce favorable osteoimmunomodulation. Material chemistry of Sr2ZnSi2O7 coating modulates the immune environment to induce osteogenic differentiation of BMSCs by activating BMP2 signalling pathway.
Collapse
Affiliation(s)
- Zetao Chen
- Institute of Health and Biomedical Innovation
- Queensland University of Technology
- Brisbane
- Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine
| | - Deliang Yi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai
- People's Republic of China
| | - Xuebin Zheng
- Key Laboratory of Inorganic Coating Materials
- Chinese Academy of Science
- Shanghai
- People's Republic of China
| | - Jiang Chang
- Australia-China Centre for Tissue Engineering and Regenerative Medicine
- Queensland University of Technology
- Brisbane
- Australia
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
| | - Chengtie Wu
- Australia-China Centre for Tissue Engineering and Regenerative Medicine
- Queensland University of Technology
- Brisbane
- Australia
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
| | - Yin Xiao
- Institute of Health and Biomedical Innovation
- Queensland University of Technology
- Brisbane
- Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine
| |
Collapse
|
31
|
Nozaki K, Wang W, Horiuchi N, Nakamura M, Takakuda K, Yamashita K, Nagai A. Enhanced osteoconductivity of titanium implant by polarization-induced surface charges. J Biomed Mater Res A 2013; 102:3077-86. [PMID: 24123807 DOI: 10.1002/jbm.a.34980] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 09/06/2013] [Accepted: 09/25/2013] [Indexed: 11/08/2022]
Abstract
This study introduces the application of method for electrically polarizing titanium implants coated with anatase TiO2 using microarc oxidation. It also describes the features of the electrically polarized titanium implants, on which surface charges are generated by the dipole moment of the TiO2 , and describes how the surface charges affect the implants' in vivo bone-implant integration capability. A comprehensive assessment using biomechanical, histomorphological, and radiographic analyses in a rabbit model was performed on polarized and nonpolarized implants. The electrically polarized surfaces accelerated the establishment of implant biomechanical fixation, compared with the nonpolarized surfaces. The percentage of the bone-implant contact ratio was higher using polarized implants than using nonpolarized implants. In contrast, the bone volume around the implants was not affected by polarization. Thus, using the polarized implant, this study identified that controlled surface charges have a significant effect on the properties of titanium implants. The application of the electrical polarization process and the polarization-enhanced osteoinductivity, which resulted in greater bone-implant integration, was clearly demonstrated.
Collapse
Affiliation(s)
- Kosuke Nozaki
- Department of Material Biofunctions, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Dhal J, Bose S, Bandyopadhyay A. Influence of pentavalent dopant addition to polarization and bioactivity of hydroxyapatite. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:3061-8. [PMID: 23623133 PMCID: PMC3694811 DOI: 10.1016/j.msec.2013.03.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 03/14/2013] [Accepted: 03/24/2013] [Indexed: 11/24/2022]
Abstract
Influence of pentavalent tantalum doping in bulk hydroxyapatite (HAp) ceramics has been investigated for polarizability and bioactivity. Phase analysis from X-ray diffraction measurement indicates that increasing dopant concentration decreased the amount of HAp phase and increased β-TCP and/or α-TCP phases during sintering at 1250 °C in a muffle furnace. Results from thermally stimulated depolarization current (TSDC) measurements showed that doping hindered charge storage ability in HAp ceramics, and doped samples stored fewer charge compared to pure HAp. However, doping enhanced wettability of HAp samples, which was improved further due to polarization. In vitro human osteoblast cell-material interaction study revealed an increase in bioactivity due to dopant addition and polarization compared to pure HAp. This increase in bioactivity was attributed to the increase in wettability due to surface charge and dopant addition.
Collapse
Affiliation(s)
- Jharana Dhal
- Department of Physics and Astronomy, Washington State University, Pullman, WA 99164
| | - Susmita Bose
- W. M. Keck Biomedical materials Research Lab, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164
| | - Amit Bandyopadhyay
- W. M. Keck Biomedical materials Research Lab, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164
| |
Collapse
|
33
|
Çopuroğlu M, Sezen H, Opila RL, Suzer S. Band-bending at buried SiO2/Si interface as probed by XPS. ACS APPLIED MATERIALS & INTERFACES 2013; 5:5875-5881. [PMID: 23772791 DOI: 10.1021/am401696e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
X-ray photoelectron spectroscopy is used to probe the photoinduced shifts in the binding energies of Si2p, O1s, and C1s of the SiO2/Si interfaces of a number of samples having oxide and/or thin organic layers on top of p- and n-Si wafers. Whereas the photoinduced shifts, in each and every peak related, vary from 0.2 to 0.5 eV for the p-type samples, the corresponding shifts are substantially smaller (<0.1 eV) for the n-type, regardless of (i) oxidation route (thermal or anodic), (ii) thickness of oxide layer, (iii) nature of organic layer, or (iv) color of three illuminating sources we have used. This leads us to conclude that these particular photoshifts reflect the charge state of the SiO2/Si interface, even in the case of a 20 nm thick oxide, where the interface is buried and cannot be probed directly by XPS.
Collapse
Affiliation(s)
- Mehmet Çopuroğlu
- Department of Chemistry, Bilkent University, 06800 Ankara, Turkey
| | | | | | | |
Collapse
|
34
|
Wolf-Brandstetter C, Hempel U, Clyens S, Gandhi AA, Korostynska O, Oswald S, Tofail SAM, Theilgaard N, Wiesmann HP, Scharnweber D. The impact of heat treatment on interactions of contact-poled biphasic calcium phosphates with proteins and cells. Acta Biomater 2012; 8:3468-77. [PMID: 22613184 DOI: 10.1016/j.actbio.2012.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/03/2012] [Accepted: 05/07/2012] [Indexed: 01/20/2023]
Abstract
A number of studies have reported improved bone integration for calcium phosphate based materials electrically "poled" by an external electric field prior to implantation. In our study we investigated the effects of electrical polarization of a biphasic ceramic composed of 80% hydroxyapatite and 20% β-tricalcium phosphate. As contact poling involves elevated temperatures as a prerequisite for inducing charge, we used two reference types: samples without any heat treatment and poling, and samples with no poling but heat treatment identical to that of the poled samples. All heat-treated samples (poled or unpoled) showed an improved wettability, which was attributed to a reduced hydrocarbon contamination. Heat treatment alone provoked an accelerated spreading of osteoblast-like cells, whereas on poled samples a retarded cell spreading was observed. While proliferation and several differentiation markers were not influenced by either heat treatment or poling, the release of proinflammatory cytokines interleukin-6 and -8 was significantly reduced for all heat-treated samples, irrespective of additional electrical poling. The study demonstrated that the behaviour of cells in contact with poled biphasic ceramics was influenced by two parameters: heating and charge. Our data revealed that heating of the calcium phosphate ceramics had a much more pronounced effect on cell behaviour than charge.
Collapse
|
35
|
Vila M, Cicuéndez M, Sánchez-Marcos J, Fal-Miyar V, Manzano M, Prieto C, Vallet-Regi M. Electrical stimuli to increase cell proliferation on carbon nanotubes/mesoporous silica composites for drug delivery. J Biomed Mater Res A 2012; 101:213-21. [PMID: 22847920 DOI: 10.1002/jbm.a.34325] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 07/08/2012] [Accepted: 06/21/2012] [Indexed: 12/21/2022]
Abstract
The development of smart materials as bone implants is nowadays a challenging task to optimize their fast osteointegration. Nevertheless, no attempts have been done in joining the possibility of using electrical stimulation and drug delivery together in a material intended for bone tissue engineering. Moreover, the use of this synergy to induce bone healing is still limited until novel drug reservoirs material formulations allow an efficient applicability of the electrical stimuli. Herein, we present the biological response of osteoblasts cells, cultured over carbon nanotubes-mesoporous silica composites while exposed to external electrical stimulus. Moreover, its ability to function as drug delivery systems is also demonstrated. Bone cell metabolism was stimulated and mitochondrial activity was increased up to seven times in the presence of these composites under electrical stimulus, suggesting their potential application in bone regeneration processes.
Collapse
Affiliation(s)
- M Vila
- Department of Inorganic and Bioinorganic Chemistry, Universidad Complutense de Madrid, Madrid 28040, Spain.
| | | | | | | | | | | | | |
Collapse
|
36
|
Ma C, Nagai A, Yamazaki Y, Toyama T, Tsutsumi Y, Hanawa T, Wang W, Yamashita K. Electrically polarized micro-arc oxidized TiO2 coatings with enhanced surface hydrophilicity. Acta Biomater 2012; 8:860-5. [PMID: 21971419 DOI: 10.1016/j.actbio.2011.09.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 08/09/2011] [Accepted: 09/20/2011] [Indexed: 10/17/2022]
Abstract
The use of micro-arc oxidation titania (MAO TiO2) coatings to modify titanium surfaces improves the biocompatibility of implant surfaces. To obtain hydrophilic MAO TiO2 coating surfaces electric polarization, which induces surface electric fields in the materials and produces surface charges, was performed in this study. Electric polarization of the MAO TiO2 coatings was confirmed by measuring the thermally stimulated depolarization current. After electric polarization treatment the MAO TiO2 coatings did not exhibit any obvious changes in surface roughness, morphology, or phase components. X-ray photoelectron spectroscopy results indicated that electric polarization resulted in oxidation of the cathodic-faced surfaces and reduction of the anodic-faced surfaces. This result suggests that the existence of a concentration gradient of oxide ions/oxygen vacancies produced the stored space charge in the coatings. Reduction of the deionized water contact angle on the polarized MAO TiO2 surfaces was maintained for longer periods compared with the non-polarized surface. Our study demonstrated that metastable electric fields across the MAO TiO2 coating produced by electric polarization made it durably wettable by reducing the interfacial surface tension between the material and water.
Collapse
|
37
|
Nagai A, Tanaka K, Tanaka Y, Nakamura M, Hashimoto K, Yamashita K. Electric polarization and mechanism of B-type carbonated apatite ceramics. J Biomed Mater Res A 2011; 99:116-24. [DOI: 10.1002/jbm.a.33131] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 04/02/2011] [Accepted: 04/04/2011] [Indexed: 11/06/2022]
|