1
|
Wang Z, Sun Z, Yin H, Liu X, Wang J, Zhao H, Pang CH, Wu T, Li S, Yin Z, Yu XF. Data-Driven Materials Innovation and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104113. [PMID: 35451528 DOI: 10.1002/adma.202104113] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 03/19/2022] [Indexed: 05/07/2023]
Abstract
Owing to the rapid developments to improve the accuracy and efficiency of both experimental and computational investigative methodologies, the massive amounts of data generated have led the field of materials science into the fourth paradigm of data-driven scientific research. This transition requires the development of authoritative and up-to-date frameworks for data-driven approaches for material innovation. A critical discussion on the current advances in the data-driven discovery of materials with a focus on frameworks, machine-learning algorithms, material-specific databases, descriptors, and targeted applications in the field of inorganic materials is presented. Frameworks for rationalizing data-driven material innovation are described, and a critical review of essential subdisciplines is presented, including: i) advanced data-intensive strategies and machine-learning algorithms; ii) material databases and related tools and platforms for data generation and management; iii) commonly used molecular descriptors used in data-driven processes. Furthermore, an in-depth discussion on the broad applications of material innovation, such as energy conversion and storage, environmental decontamination, flexible electronics, optoelectronics, superconductors, metallic glasses, and magnetic materials, is provided. Finally, how these subdisciplines (with insights into the synergy of materials science, computational tools, and mathematics) support data-driven paradigms is outlined, and the opportunities and challenges in data-driven material innovation are highlighted.
Collapse
Affiliation(s)
- Zhuo Wang
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, P. R. China
| | - Zhehao Sun
- Research School of Chemistry, The Australian National University, ACT, 2601, Australia
| | - Hang Yin
- Research School of Chemistry, The Australian National University, ACT, 2601, Australia
| | - Xinghui Liu
- Department of Chemistry, Sungkyunkwan University (SKKU), 2066 Seoburo, Jangan-Gu, Suwon, 16419, Republic of Korea
| | - Jinlan Wang
- School of Physics, Southeast University, Nanjing, 211189, P. R. China
| | - Haitao Zhao
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| | - Cheng Heng Pang
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, P. R. China
- Municipal Key Laboratory of Clean Energy Conversion Technologies, University of Nottingham Ningbo China, Ningbo, 315100, P. R. China
| | - Tao Wu
- Key Laboratory for Carbonaceous Wastes Processing and Process Intensification Research of Zhejiang Province, University of Nottingham Ningbo China, Ningbo, 315100, P. R. China
- New Materials Institute, University of Nottingham, Ningbo, China, Ningbo, 315100, P. R. China
| | - Shuzhou Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zongyou Yin
- Research School of Chemistry, The Australian National University, ACT, 2601, Australia
| | - Xue-Feng Yu
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| |
Collapse
|
2
|
Zhang M, Li J, Kang L, Zhang N, Huang C, He Y, Hu M, Zhou X, Zhang J. Machine learning-guided design and development of multifunctional flexible Ag/poly (amic acid) composites using the differential evolution algorithm. NANOSCALE 2020; 12:3988-3996. [PMID: 32016252 DOI: 10.1039/c9nr09146g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The development of flexible composites is of great significance in the flexible electronic field. In combination with machine learning technology, the introduction of artificial intelligence to flexible materials design, synthesis, characterization and application research will greatly promote the flexible materials research efficiency. In this study, the back propagation (BP) neural network based on the differential evolution (DE) algorithm was applied to determine the electrical properties of the flexible Ag/poly (amic acid) (PAA) composite structure and to develop flexible materials for its different applications. In the machine learning model, the concentration of PAA, the ion exchange time of AgNO3, and the concentration and reduction time of NaBH4 are set as input parameters, and the product of the sheet resistance of the Ag/PAA film and the processing time are set as output information. To overcome the situation whereby the BP neural network solution process could fall into the local optimum, the initial threshold and the weight of the BP neural network and the data import model are optimized by the DE algorithm. Utilizing 1077 learning samples and 49 predictive samples, a machine learning model with very high accuracy was established and relative errors of predictions less than 1.96% were achieved. In terms of this model, the optimized fabrication conditions of the Ag/PAA composites, which are suitable for strain sensors and electrodes, were predicted. To identify the availability and applicability of the proposed algorithm, a strain gauge sensor, a triboelectric nanogenerator (TENG) and a capacitive pressure sensor array were fabricated successfully using the optimized process parameters. This work shows that machine learning can be used to quickly optimize the process and provide guidance for material and process design, which is of significance for the development of flexible materials and devices.
Collapse
Affiliation(s)
- Mengyao Zhang
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China.
| | - Jia Li
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China.
| | - Ling Kang
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China.
| | - Nan Zhang
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China.
| | - Chun Huang
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China.
| | - Yaqin He
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China.
| | - Menghan Hu
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China.
| | - Xiaofeng Zhou
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China.
| | - Jian Zhang
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China. and Shanghai Institute of Intelligent Electronics & Systems, Fudan University, Shanghai 200433, China
| |
Collapse
|
3
|
Creasey HN, Brandel EZ, Nguyen R, Bashore MJ, Jones CM. Covalent attachment of resveratrol to stainless steel toward the development of a resveratrol-releasing bare-metal stent. J Biomed Mater Res B Appl Biomater 2020; 108:2344-2353. [PMID: 31994825 DOI: 10.1002/jbm.b.34568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/27/2019] [Accepted: 01/11/2020] [Indexed: 11/10/2022]
Abstract
Herein, we describe the covalent attachment of resveratrol, a naturally occurring antioxidant, to the surface of stainless-steel as a model for designing a novel bare-metal stent to treat coronary artery disease. Resveratrol has been shown to reduce oxidative stress in dysfunctional endothelial cells, and stimulate arterial healing. Resveratrol treatments, however, are limited by low water solubility, such that a localized delivery to the site of arterial narrowing via a coated stent presents a promising strategy for improving stent outcomes. Our attachment strategy utilizes zirconium vapor deposition to lay down a thin layer of zirconium oxide with labile hydrocarbon groups at the surface. Resveratrol can displace these hydrocarbons in aprotic solvent to afford a covalently attached layer of resveratrol. We evaluated the release of resveratrol under a range of pH levels, including physiological conditions (pH = 7.4 and 37 °C). Furthermore, we established that endothelial cells grown on a resveratrol-bound surface release elevated nitric oxide levels compared to controls, a key endothelial signaling molecule responsible for arterial health. These results are promising toward the development of a resveratrol-coated bare-metal stent to improve patient outcomes.
Collapse
Affiliation(s)
- Hannah N Creasey
- Department of Chemistry, Lewis & Clark College, Portland, Oregon
| | | | - Ryan Nguyen
- Department of Chemistry, Lewis & Clark College, Portland, Oregon
| | - Morgan J Bashore
- Department of Chemistry, Lewis & Clark College, Portland, Oregon
| | - Casey M Jones
- Department of Chemistry, Lewis & Clark College, Portland, Oregon
| |
Collapse
|
4
|
Chen JW, Lim K, Bandini SB, Harris GM, Spechler JA, Arnold CB, Fardel R, Schwarzbauer JE, Schwartz J. Controlling the Surface Chemistry of a Hydrogel for Spatially Defined Cell Adhesion. ACS APPLIED MATERIALS & INTERFACES 2019; 11:15411-15416. [PMID: 30924633 DOI: 10.1021/acsami.9b04023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A two-step synthesis is described for activating the surface of a fully hydrated hydrogel that is of interest as a possible scaffold for neural regeneration devices. The first step exploits the water content of the hydrogel and the hydrophobicity of the reaction solvent to create a thin oxide layer on the hydrogel surface using a common titanium or zirconium alkoxide. This layer serves as a reactive interface that enables rapid transformation of the hydrophilic, cell-nonadhesive hydrogel into either a highly hydrophobic surface by reaction with an alkylphosphonic acid, or into a cell-adhesive one using a (α,ω-diphosphono)alkane. Physically imprinting a mask ("debossing") into the hydrogel, followed by a two-step surface modification with a phosphonate, allows for patterning its surface to create spatially defined, cell-adhesive regions.
Collapse
|
5
|
Gonçalves AAS, Jaroniec M. Evaporation-induced self-assembly synthesis of nanostructured alumina-based mixed metal oxides with tailored porosity. J Colloid Interface Sci 2019; 537:725-735. [PMID: 30470518 DOI: 10.1016/j.jcis.2018.11.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/11/2018] [Accepted: 11/12/2018] [Indexed: 12/13/2022]
Affiliation(s)
| | - Mietek Jaroniec
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44240, United States.
| |
Collapse
|
6
|
Donnelly PE, Imbert L, Culley KL, Warren RF, Chen T, Maher SA. Self-assembled monolayers of phosphonates promote primary chondrocyte adhesion to silicon dioxide and polyvinyl alcohol materials. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2019; 30:215-232. [PMID: 30588859 PMCID: PMC6375775 DOI: 10.1080/09205063.2018.1563847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 12/22/2018] [Indexed: 10/27/2022]
Abstract
The optimal solution for articular cartilage repair has not yet been identified, in part because of the challenges in achieving integration with the host. Coatings have the potential to transform the adhesive features of surfaces, but their application to cartilage repair has been limited. Self-assembled monolayer of phosphonates (SAMPs) have been demonstrated to increase the adhesion of various immortalized cell types to metal and polymer surfaces, but their effect on primary chondrocyte adhesion has not been studied. The objective of this study was to investigate the response of primary chondrocytes to SAMP coatings. We hypothesized a SAMP terminated with an α,ω-bisphosphonic acid, in particular butane-1,4-diphosphonic acid, would increase the number of adherent primary chondrocytes to polyvinyl alcohol (PVA). To test our hypothesis, we first established our ability to successfully modify silicon dioxide (SiO2) surfaces to enable chondrocytes to attach to the surface, without substantial changes in gene expression. Secondly, we applied identical chemistry to PVA, and quantified chondrocyte adhesion. SAMP modification to SiO2 increased chondrocyte adhesion by ×3 after 4 hr and ×4.5 after 24 hr. PVA modification with SAMPs increased chondrocyte adhesion by at least ×31 after 4 and 24 hours. Changes in cell morphology indicated that SAMP modification led to improved chondrocyte adhesion and spreading, without changes in gene expression. In summary, we modified SiO2 and PVA with SAMPs and observed an increase in the number of adherent primary bovine chondrocytes at 4 and 24 hr post-seeding. Mechanisms of chondrocyte interaction with SAMP-modified surfaces require further investigation.
Collapse
Affiliation(s)
- Patrick E. Donnelly
- Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY 10021, USA
- Department of Biomechanics, Hospital for Special Surgery, New York, NY 10021, USA
| | - Laurianne Imbert
- Musculoskeletal Integrity Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Kirsty L. Culley
- Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Russell F. Warren
- Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Tony Chen
- Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY 10021, USA
- Department of Biomechanics, Hospital for Special Surgery, New York, NY 10021, USA
| | - Suzanne A. Maher
- Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY 10021, USA
- Department of Biomechanics, Hospital for Special Surgery, New York, NY 10021, USA
| |
Collapse
|
7
|
Sahasrabudhe G, Rupich SM, Jhaveri J, Berg AH, Nagamatsu KA, Man G, Chabal YJ, Kahn A, Wagner S, Sturm JC, Schwartz J. Low-Temperature Synthesis of a TiO2/Si Heterojunction. J Am Chem Soc 2015; 137:14842-5. [DOI: 10.1021/jacs.5b09750] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Girija Sahasrabudhe
- Department
of Chemistry, ‡Department of Electrical Engineering, and §Princeton Institute for the Science
and Technology of Materials, Princeton University, Princeton, New Jersey 08544, United States
| | - Sara M. Rupich
- Department of Materials Science & Engineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| | | | | | | | | | - Yves J. Chabal
- Department of Materials Science & Engineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| | | | | | | | - Jeffrey Schwartz
- Department
of Chemistry, ‡Department of Electrical Engineering, and §Princeton Institute for the Science
and Technology of Materials, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
8
|
Chan KH, Zhuo S, Ni M. Priming the Surface of Orthopedic Implants for Osteoblast Attachment in Bone Tissue Engineering. Int J Med Sci 2015; 12:701-7. [PMID: 26392807 PMCID: PMC4571547 DOI: 10.7150/ijms.12658] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 07/14/2015] [Indexed: 01/04/2023] Open
Abstract
The development of better orthopedic implants is incessant. While current implants can function reliably in the human body for a long period of time, there are still a significant number of cases for which the implants can fail prematurely due to poor osseointegration of the implant with native bone. Increasingly, it is recognized that it is extremely important to facilitate the attachment of osteoblasts on the implant so that a proper foundation of extracellular matrix (ECM) can be laid down for the growth of new bone tissue. In order to facilitate the osseointegration of the implant, both the physical nanotopography and chemical functionalization of the implant surface have to be optimized. In this short review, however, we explore how simple chemistry procedures can be used to functionalize the surfaces of three major classes of orthopedic implants, i.e. ceramics, metals, and polymers, so that the attachment of osteoblasts on implants can be facilitated in order to promote implant osseointegration.
Collapse
Affiliation(s)
- Kiat Hwa Chan
- 2. Institute of Bioengineering and Nanotechnology, Nanos, Singapore 138669, Singapore
| | - Shuangmu Zhuo
- 1. Institute of Laser and Optoelectronics Technology, Fujian Normal University, Fuzhou 350007, China
| | - Ming Ni
- 3. Institute of Bioengineering and Nanotechnology, Nanos, Singapore 138669, Singapore
| |
Collapse
|
9
|
Donnelly PE, Jones CM, Bandini SB, Singh S, Schwartz J, Schwarzbauer JE. A Simple Nanoscale Interface Directs Alignment of a Confluent Cell Layer on Oxide and Polymer Surfaces. J Mater Chem B 2013; 1:3553-3561. [PMID: 23936630 PMCID: PMC3735232 DOI: 10.1039/c3tb20565g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Templating of cell spreading and proliferation is described that yields confluent layers of cells aligned across an entire two-dimensional surface. The template is a reactive, two-component interface that is synthesized in three steps in nanometer thick, micron-scaled patterns on silicon and on several biomaterial polymers. In this method, a volatile zirconium alkoxide complex is first deposited at reduced pressure onto a surface pattern that is prepared by photolithography; the substrate is then heated to thermolyze the organic ligands to form surface-bound zirconium oxide patterns. The thickness of this oxide layer ranges from 10 to 70 nanometers, which is controlled by alkoxide complex deposition time. The oxide layer is treated with 1,4-butanediphosphonic acid to give a monolayer pattern whose composition and spatial conformity to the photolithographic mask are determined spectroscopically. NIH 3T3 fibroblasts and human bone marrow-derived mesenchymal stem cells attach and spread in alignment with the pattern without constraint by physical means or by arrays of cytophilic and cytophobic molecules. Cell alignment with the pattern is maintained as cells grow to form a confluent monolayer across the entire substrate surface.
Collapse
Affiliation(s)
- Patrick E Donnelly
- Department of Chemistry, Princeton University, Princeton, NJ 08544 (USA)
| | | | | | | | | | | |
Collapse
|
10
|
Liao KC, Anwar H, Hill IG, Vertelov GK, Schwartz J. Comparative interface metrics for metal-free monolayer-based dye-sensitized solar cells. ACS APPLIED MATERIALS & INTERFACES 2012; 4:6735-6746. [PMID: 23143856 DOI: 10.1021/am301907z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The first quantitative comparison between self-assembled monolayers of homologous carboxylate- and phosphonate-terminated organic dyes that are of use in dye-sensitized solar cells (DSSCs) is reported. (Cyanovinyl)phosphonate-terminated oligothiophenes and (cyanovinyl)carboxylate-terminated oligothiophenes were synthesized on TiO(2) thin film electrodes. Structurally analogous organics were compared for the effect of the anchoring groups on photochemical properties in solution as measured by UV/vis spectroscopy and for reactivity with the electrode surface. Monolayers were grown on the TiO(2) electrodes either by "tethering by aggregation and growth" (T-BAG) or by solution dipping. Surface roughness and homogeneity, elemental composition, and thickness of the monolayers were evaluated by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and ellipsometry. Molecular loadings for each monolayer on TiO(2) were quantified by quartz crystal microgravimetry (QCM), and the stability of bonding between each class of dyes and the TiO(2) was evaluated by measuring desorption, also by QCM; the carboxylates underwent significant dissociation in aqueous media but the phosphonates did not. DSSCs were prepared from each congener and from simple oligothiophene phosphonates to determine the effect of the cyanovinyl group on device behavior; all DSSCs were studied under irradiation from a AM 1.5G solar light source; the effect of cyanovinyl group termination was comparable to that of adding a thiophene moiety, and the DSSC using a self-assembled monolayer of (sexithiophene)phosphonate (6TP) had total power conversion efficiency (η) of ca. 5%.
Collapse
Affiliation(s)
- Kung-Ching Liao
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | | | |
Collapse
|
11
|
Cui G, Wu D, Qi S, Jin S, Wu Z, Jin R. Preparation SnO₂ nanolayer on flexible polyimide substrates via direct ion-exchange and in situ oxidation process. ACS APPLIED MATERIALS & INTERFACES 2011; 3:789-794. [PMID: 21370875 DOI: 10.1021/am1011468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Tin oxide (SnO(2)) nanolayers were formed on flexible polyimide (PI) substrate via direct ion-exchange and in situ oxidation process utilizing pyromellitic dianhydride/4,4'-oxidianiline-based poly(amic acid) films as polyimide precursor. During an ion-exchange process, stannous ions were doped into the precursor by immersion in ethanolic solution of stannous chloride. Subsequent thermal treatment of the tin(II)-containing precursor at a constant heating rate not only imidized poly(amic acid) to PI but also converted stannous ions into SnO(2) clusters, which diffused and aggregated onto the surface of polymer matrix, forming continuous tin oxide layers. Inductively coupled plasma (ICP) was used to investigate the ion-exchange process. Changes in chemical structure of the poly(amic acid) film and the crystal structure of tin oxides were analyzed by attenuated total reflection-Fourier transform infrared (ATR-FTIR) and X-ray diffraction (XRD). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to study the microstructure of the PI/SnO(2) nanocomposite films. The nanocomposite film maintained essential mechanical property and thermal stability of pristine PI films.
Collapse
Affiliation(s)
- Guanghui Cui
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| | | | | | | | | | | |
Collapse
|
12
|
Jones CM, Donnelly PE, Schwartz J. A nanoscale interface improves attachment of cast polymers to glass. ACS APPLIED MATERIALS & INTERFACES 2010; 2:2185-2188. [PMID: 20690771 DOI: 10.1021/am1004893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A novel interface was prepared on glass slides that stabilizes several cast polymers against delamination under conditions necessary for the study of cell surface interactions. This interface was synthesized by deposition of zirconium tetra(tert-butoxide) from the vapor phase onto the glass followed by mild thermolysis, which gives a surface-bound zirconium oxide coating. This oxide coating improved attachment of polymer coatings cast from formic acid or methylene chloride. Nylon, polyurethane, and polyhydroxybutyrate/polyhydroxyvalerate coatings were stable against delamination from the oxide-coated glass following sonication in ethanol for more than 30 min or immersion in water at pH 8 for at least 48 h.
Collapse
|