1
|
Shinoda S, Itakura A, Sasano H, Miyake R, Kawabata H, Asano Y. Rational Design of the Soluble Variant of l-Pipecolic Acid Hydroxylase using the α-Helix Rule and the Hydropathy Contradiction Rule. ACS OMEGA 2022; 7:29508-29516. [PMID: 36033675 PMCID: PMC9404520 DOI: 10.1021/acsomega.2c04247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
The production of recombinant proteins in Escherichia coli is an important application of biotechnology. 2-Oxoglutarate-dependent l-pipecolic acid hydroxylase derived from Xenorhabdus doucetiae (XdPH) is an excellent biocatalyst that catalyzes the hydroxylation of l-pipecolic acid to produce cis-5-hydroxy-l-pipecolic acid. However, the enzyme tends to form aggregates in the E. coli expression system. Our group established two rules, namely, the "α-helix rule" and the "hydropathy contradiction rule," to select residues to be altered for improving the heterologous recombinant production of proteins, by analyzing their primary structure. We rationally designed XdPH variants that are expressed in highly soluble and active forms in the E. coli expression system using these hotspot prediction methods, and the L142R variant showed a remarkably high soluble expression level compared to the wild-type XdPH. Further mutations were introduced into the L142R gene by site-directed mutagenesis. Moreover, the I28P/L142R and C76Y/L142R double variants displayed improved soluble expression levels compared to the single variants. These variants were also more thermostable than the wild-type XdPH. To analyze the effect of the alteration on one of the hotspots, L142 was replaced with various hydrophilic and positively charged residues. The remarkable increase in soluble protein expression caused by the alterations suggests that the decrease in the hydrophobicity of the protein surface and the enhancement of the interaction between nearby residues are important factors determining the solubility of the protein. Overall, this study demonstrated the effectiveness of our protocol in identifying aggregation hotspots for recombinant protein production and in basic biochemical research.
Collapse
Affiliation(s)
- Suguru Shinoda
- Biotechnology
Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu-shi, Toyama 939-0398, Japan
| | - Aoi Itakura
- Biotechnology
Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu-shi, Toyama 939-0398, Japan
| | - Haruka Sasano
- Science
& Innovation Center, Mitsubishi Chemical
Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama-shi, Kanagawa 227-8502, Japan
| | - Ryoma Miyake
- Science
& Innovation Center, Mitsubishi Chemical
Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama-shi, Kanagawa 227-8502, Japan
| | - Hiroshi Kawabata
- Science
& Innovation Center, Mitsubishi Chemical
Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama-shi, Kanagawa 227-8502, Japan
- API
Corporation, 13-4 Uchikanda
1-chome, Chiyoda-ku, Tokyo 101-0047, Japan
| | - Yasuhisa Asano
- Biotechnology
Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu-shi, Toyama 939-0398, Japan
| |
Collapse
|
2
|
Vasina M, Vanacek P, Damborsky J, Prokop Z. Exploration of enzyme diversity: High-throughput techniques for protein production and microscale biochemical characterization. Methods Enzymol 2020; 643:51-85. [PMID: 32896287 DOI: 10.1016/bs.mie.2020.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Enzymes are being increasingly utilized for acceleration of industrially and pharmaceutically critical chemical reactions. The strong demand for finding robust and efficient biocatalysts for these applications can be satisfied via the exploration of enzyme diversity. The first strategy is to mine the natural diversity, represented by millions of sequences available in the public genomic databases, by using computational approaches. Alternatively, metagenomic libraries can be targeted experimentally or computationally to explore the natural diversity of a specific environment. The second strategy, known as directed evolution, is to generate man-made diversity in the laboratory using gene mutagenesis and screen the constructed library of mutants. The selected hits must be experimentally characterized in both strategies, which currently represent the rate-limiting step in the process of diversity exploration. The traditional techniques used for biochemical characterization are time-demanding, cost, and sample volume ineffective, and low-throughput. Therefore, the development and implementation of high-throughput experimental methods are essential for discovering novel enzymes. This chapter describes the experimental protocols employing the combination of robust production and high-throughput microscale biochemical characterization of enzyme variants. We validated its applicability against the model enzyme family of haloalkane dehalogenases. These protocols can be adapted to other enzyme families, paving the way towards the functional characterization and quick identification of novel biocatalysts.
Collapse
Affiliation(s)
- Michal Vasina
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Pavel Vanacek
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
| |
Collapse
|
3
|
Antil M, Gouin SG, Gupta V. Truncation of C-Terminal Intrinsically Disordered Region of Mycobacterial Rv1915 Facilitates Production of “Difficult-to-Purify” Recombinant Drug Target. Front Bioeng Biotechnol 2020; 8:522. [PMID: 32548107 PMCID: PMC7273500 DOI: 10.3389/fbioe.2020.00522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 05/01/2020] [Indexed: 11/13/2022] Open
Abstract
Availability of purified drug target is a prerequisite for its structural and functional characterization. However, aggregation of recombinant protein as inclusion bodies (IBs) is a common problem during the large scale production of overexpressed protein in heterologous host. Such proteins can be recovered from IB pool using some mild solubilizing agents such as low concentration of denaturants or detergents, alcohols and osmolytes. This study reports optimization of solubilization buffer for recovery of soluble and biologically active recombinant mycobacterial Rv1915/ICL2a from IBs. Even though the target protein could be solubilized successfully with mild agents (sarcosine and βME) without using denaturants, it failed to bind on Ni-NTA resin. The usual factors such as loss of His6-tag due to proteolysis, masking of the tag due to its location or protein aggregation were investigated, but the actual explanation, provided through bioinformatics analysis, turned out to be presence of intrinsically disordered protein regions (IDPRs) at the C-terminus. These regions due to their inability to fold into ordered structure may lead to non-specific protein aggregation and hence reduced binding to Ni-NTA affinity matrix. With this rationale, 90 residues from the C-terminal of Rv1915/ICL2 were truncated, the variant successfully purified and characterized for ICL and MICL activities, supporting the disordered nature of Rv1915/ICL2a C-terminal. When a region that has definite structure associated in some mycobaterial strains such as CDC 1551 and disorder in others for instance Mycobacterium tuberculosis H37Rv, it stands to reason that larger interface in the later may have implication in binding to other cellular partner.
Collapse
Affiliation(s)
- Monika Antil
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Sébastien G. Gouin
- CEISAM, Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation, UMR CNRS 6230, UFR des Sciences et des Techniques, Université de Nantes, Nantes, France
| | - Vibha Gupta
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
- *Correspondence: Vibha Gupta
| |
Collapse
|
4
|
de Wijn R, Hennig O, Roche J, Engilberge S, Rollet K, Fernandez-Millan P, Brillet K, Betat H, Mörl M, Roussel A, Girard E, Mueller-Dieckmann C, Fox GC, Olieric V, Gavira JA, Lorber B, Sauter C. A simple and versatile microfluidic device for efficient biomacromolecule crystallization and structural analysis by serial crystallography. IUCRJ 2019; 6:454-464. [PMID: 31098026 PMCID: PMC6503916 DOI: 10.1107/s2052252519003622] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/14/2019] [Indexed: 05/15/2023]
Abstract
Determining optimal conditions for the production of well diffracting crystals is a key step in every biocrystallography project. Here, a microfluidic device is described that enables the production of crystals by counter-diffusion and their direct on-chip analysis by serial crystallography at room temperature. Nine 'non-model' and diverse biomacromolecules, including seven soluble proteins, a membrane protein and an RNA duplex, were crystallized and treated on-chip with a variety of standard techniques including micro-seeding, crystal soaking with ligands and crystal detection by fluorescence. Furthermore, the crystal structures of four proteins and an RNA were determined based on serial data collected on four synchrotron beamlines, demonstrating the general applicability of this multipurpose chip concept.
Collapse
Affiliation(s)
- Raphaël de Wijn
- Architecture et Réactivité de l’ARN, UPR 9002, CNRS, Institut de Biologie Moléculaire et Cellulaire (IBMC), Université de Strasbourg, 15 Rue René Descartes, 67084 Strasbourg, France
| | - Oliver Hennig
- Institute for Biochemistry, Leipzig University, Bruederstrasse 34, 04103 Leipzig, Germany
| | - Jennifer Roche
- Architecture et Fonction des Macromolécules Biologiques, UMR 7257 CNRS–Aix Marseille University, 163 Avenue de Luminy, 13288 Marseille, France
| | | | - Kevin Rollet
- Architecture et Réactivité de l’ARN, UPR 9002, CNRS, Institut de Biologie Moléculaire et Cellulaire (IBMC), Université de Strasbourg, 15 Rue René Descartes, 67084 Strasbourg, France
| | - Pablo Fernandez-Millan
- Architecture et Réactivité de l’ARN, UPR 9002, CNRS, Institut de Biologie Moléculaire et Cellulaire (IBMC), Université de Strasbourg, 15 Rue René Descartes, 67084 Strasbourg, France
| | - Karl Brillet
- Architecture et Réactivité de l’ARN, UPR 9002, CNRS, Institut de Biologie Moléculaire et Cellulaire (IBMC), Université de Strasbourg, 15 Rue René Descartes, 67084 Strasbourg, France
| | - Heike Betat
- Institute for Biochemistry, Leipzig University, Bruederstrasse 34, 04103 Leipzig, Germany
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, Bruederstrasse 34, 04103 Leipzig, Germany
| | - Alain Roussel
- Architecture et Fonction des Macromolécules Biologiques, UMR 7257 CNRS–Aix Marseille University, 163 Avenue de Luminy, 13288 Marseille, France
| | - Eric Girard
- Université Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | | | - Gavin C. Fox
- PROXIMA 2A beamline, Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, 91192 Gif-sur-Yvette, France
| | - Vincent Olieric
- Paul Scherrer Institute, Swiss Light Source, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - José A. Gavira
- Laboratorio de Estudios Cristalográficos, IACT, CSIC–Universidad de Granada, Avenida Las Palmeras 4, 18100 Armilla, Granada, Spain
| | - Bernard Lorber
- Architecture et Réactivité de l’ARN, UPR 9002, CNRS, Institut de Biologie Moléculaire et Cellulaire (IBMC), Université de Strasbourg, 15 Rue René Descartes, 67084 Strasbourg, France
| | - Claude Sauter
- Architecture et Réactivité de l’ARN, UPR 9002, CNRS, Institut de Biologie Moléculaire et Cellulaire (IBMC), Université de Strasbourg, 15 Rue René Descartes, 67084 Strasbourg, France
| |
Collapse
|
5
|
Exploration of Mycobacterium tuberculosis structural proteome: An in-silico approach. J Theor Biol 2018; 439:14-23. [DOI: 10.1016/j.jtbi.2017.11.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 07/19/2017] [Accepted: 11/28/2017] [Indexed: 12/20/2022]
|
6
|
Luo Y, Yang X, Tan X, Xu L, Liu Z, Xiao J, Peng R. Functionalized graphene oxide in microbial engineering: An effective stimulator for bacterial growth. CARBON 2016; 103:172-180. [PMID: 35431318 PMCID: PMC9012453 DOI: 10.1016/j.carbon.2016.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Whether graphene and graphene oxide (GO) would affect the activities of bacteria has been under debate. Nevertheless, how graphene derivatives with biocompatible coatings interact with microorganisms and the underlying mechanisms are important issues for nanobiotechnology, and remain to be further explored. Herein, three new types of nano-GOs functionalized with polyethylene glycol (nGO-PEGs) were synthesized by varying the PEGylation degree, and their effects on Escherichia coli (E. coli) were carefully investigated. Interestingly, nGO-PEG (1:1), the one with relatively lower PEGylation degree, could significantly stimulate bacterial growth, whereas as-made GO and the other two nGO-PEGs showed no effect. Further analysis revealed that nGO-PEG (1:1) treatment significantly accelerated FtsZ-ring assembly, shortening Phase 1 in the bacterial cell cycle. Both DNA synthesis and extracellular polymeric substance (EPS) secretion were also dramatically increased. This unique phenomenon suggests promising potentials in microbial engineering as well as in clinical detection of bacterial pathogens. As a proof-of-concept, nGO-PEG (1:1) treatment could remarkably enhance (up to 6-fold) recombinant protein production in engineered bacteria cells. To our best knowledge, this is the first demonstration of functionalized GO as a novel, positive regulator in microbial engineering. Moreover, our work highlights the critical role of surface chemistry in modulating the interactions between nanomaterials and microorganisms.
Collapse
Affiliation(s)
- Yinchan Luo
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren’ai Rd., Suzhou, Jiangsu 215123, China
| | - Xinxing Yang
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, School of Medicine, 725 N. Wolfe Street, WBSB 708, Baltimore, MD 21205, USA
| | - Xiaofang Tan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren’ai Rd., Suzhou, Jiangsu 215123, China
| | - Ligeng Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren’ai Rd., Suzhou, Jiangsu 215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren’ai Rd., Suzhou, Jiangsu 215123, China
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, School of Medicine, 725 N. Wolfe Street, WBSB 708, Baltimore, MD 21205, USA
| | - Rui Peng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren’ai Rd., Suzhou, Jiangsu 215123, China
| |
Collapse
|
7
|
The Atomic Structure of the Phage Tuc2009 Baseplate Tripod Suggests that Host Recognition Involves Two Different Carbohydrate Binding Modules. mBio 2016; 7:e01781-15. [PMID: 26814179 PMCID: PMC4742702 DOI: 10.1128/mbio.01781-15] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Gram-positive bacterium Lactococcus lactis, used for the production of cheeses and other fermented dairy products, falls victim frequently to fortuitous infection by tailed phages. The accompanying risk of dairy fermentation failures in industrial facilities has prompted in-depth investigations of these phages. Lactococcal phage Tuc2009 possesses extensive genomic homology to phage TP901-1. However, striking differences in the baseplate-encoding genes stimulated our interest in solving the structure of this host’s adhesion device. We report here the X-ray structures of phage Tuc2009 receptor binding protein (RBP) and of a “tripod” assembly of three baseplate components, BppU, BppA, and BppL (the RBP). These structures made it possible to generate a realistic atomic model of the complete Tuc2009 baseplate that consists of an 84-protein complex: 18 BppU, 12 BppA, and 54 BppL proteins. The RBP head domain possesses a different fold than those of phages p2, TP901-1, and 1358, while the so-called “stem” and “neck” domains share structural features with their equivalents in phage TP901-1. The BppA module interacts strongly with the BppU N-terminal domain. Unlike other characterized lactococcal phages, Tuc2009 baseplate harbors two different carbohydrate recognition sites: one in the bona fide RBP head domain and the other in BppA. These findings represent a major step forward in deciphering the molecular mechanism by which Tuc2009 recognizes its saccharidic receptor(s) on its host. Understanding how siphophages infect Lactococcus lactis is of commercial importance as they cause milk fermentation failures in the dairy industry. In addition, such knowledge is crucial in a general sense in order to understand how viruses recognize their host through protein-glycan interactions. We report here the lactococcal phage Tuc2009 receptor binding protein (RBP) structure as well as that of its baseplate. The RBP head domain has a different fold than those of phages p2, TP901-1, and 1358, while the so-called “stem” and “neck” share the fold characteristics also found in the equivalent baseplate proteins of phage TP901-1. The baseplate structure contains, in contrast to other characterized lactococcal phages, two different carbohydrate binding modules that may bind different motifs of the host’s surface polysaccharide.
Collapse
|
8
|
Papaneophytou C, Kontopidis G. A comparison of statistical approaches used for the optimization of soluble protein expression in Escherichia coli. Protein Expr Purif 2015; 120:126-37. [PMID: 26721705 DOI: 10.1016/j.pep.2015.12.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 11/16/2015] [Accepted: 12/18/2015] [Indexed: 01/30/2023]
Abstract
During a discovery project of potential inhibitors for three proteins, TNF-α, RANKL and HO-1, implicated in the pathogenesis of rheumatoid arthritis, significant amounts of purified proteins were required. The application of statistically designed experiments for screening and optimization of induction conditions allows rapid identification of the important factors and interactions between them. We have previously used response surface methodology (RSM) for the optimization of soluble expression of TNF-α and RANKL. In this work, we initially applied RSM for the optimization of recombinant HO-1 and a 91% increase of protein production was achieved. Subsequently, we slightly modified a published incomplete factorial approach (called IF1) in order to evaluate the effect of three expression variables (bacterial strains, induction temperatures and culture media) on soluble expression levels of the three tested proteins. However, soluble expression yields of TNF-α and RANKL obtained by the IF1 method were significantly lower (<50%) than those obtained by RSM. We further modified the IF1 approach by replacing the culture media with induction times and the resulted method called IF-STT (Incomplete Factorial-Stain/Temperature/Time) was validated using the three proteins. Interestingly, soluble expression levels of the three proteins obtained by IF-STT were only 1.2-fold lower than those obtained by RSM. Although RSM is probably the best approach for optimization of biological processes, the IF-STT is faster, it examines the most important factors (bacterial strain, temperature and time) influencing protein soluble expression in a single experiment, and can be used in any recombinant protein expression project as a starting point.
Collapse
Affiliation(s)
- Christos Papaneophytou
- Veterinary School, University of Thessaly, Trikalon 224, Karditsa 43100, Greece; Institute for Research and Technology of Thessaly (I.RE.TE.TH.), The Centre for Research & Technology Hellas (CE.R.TH.), Dimitriados 95 & Paulou Mela, Volos 383 33, Greece
| | - George Kontopidis
- Veterinary School, University of Thessaly, Trikalon 224, Karditsa 43100, Greece; Institute for Research and Technology of Thessaly (I.RE.TE.TH.), The Centre for Research & Technology Hellas (CE.R.TH.), Dimitriados 95 & Paulou Mela, Volos 383 33, Greece.
| |
Collapse
|
9
|
Tu Y, Peng F, Adawy A, Men Y, Abdelmohsen LKEA, Wilson DA. Mimicking the Cell: Bio-Inspired Functions of Supramolecular Assemblies. Chem Rev 2015; 116:2023-78. [DOI: 10.1021/acs.chemrev.5b00344] [Citation(s) in RCA: 211] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yingfeng Tu
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Fei Peng
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Alaa Adawy
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Yongjun Men
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Loai K. E. A. Abdelmohsen
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Daniela A. Wilson
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
10
|
McCabe O, Spinelli S, Farenc C, Labbé M, Tremblay D, Blangy S, Oscarson S, Moineau S, Cambillau C. The targeted recognition of Lactococcus lactis phages to their polysaccharide receptors. Mol Microbiol 2015; 96:875-86. [PMID: 25708888 DOI: 10.1111/mmi.12978] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2015] [Indexed: 01/21/2023]
Abstract
Each phage infects a limited number of bacterial strains through highly specific interactions of the receptor-binding protein (RBP) at the tip of phage tail and the receptor at the bacterial surface. Lactococcus lactis is covered with a thin polysaccharide pellicle (hexasaccharide repeating units), which is used by a subgroup of phages as a receptor. Using L. lactis and phage 1358 as a model, we investigated the interaction between the phage RBP and the pellicle hexasaccharide of the host strain. A core trisaccharide (TriS), derived from the pellicle hexasaccharide repeating unit, was chemically synthesised, and the crystal structure of the RBP/TriS complex was determined. This provided unprecedented structural details of RBP/receptor site-specific binding. The complete hexasaccharide repeating unit was modelled and found to aptly fit the extended binding site. The specificity observed in in vivo phage adhesion assays could be interpreted in view of the reported structure. Therefore, by combining synthetic carbohydrate chemistry, X-ray crystallography and phage plaquing assays, we suggest that phage adsorption results from distinct recognition of the RBP towards the core TriS or the remaining residues of the hexasacchride receptor. This study provides a novel insight into the adsorption process of phages targeting saccharides as their receptors.
Collapse
Affiliation(s)
- Orla McCabe
- Centre for Molecular Innovation and Drug Discovery, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin, Ireland
| | - Silvia Spinelli
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Marseille, UMR, 7257, France.,Aix-Marseille University, Campus de Luminy, Case 932, Marseille, 13288, France
| | - Carine Farenc
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Marseille, UMR, 7257, France.,Aix-Marseille University, Campus de Luminy, Case 932, Marseille, 13288, France
| | - Myriam Labbé
- Groupe de recherche en écologie buccale & Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, Québec, G1V 0A6, Canada.,Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, G1V 0A6, Canada
| | - Denise Tremblay
- Groupe de recherche en écologie buccale & Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, Québec, G1V 0A6, Canada
| | - Stéphanie Blangy
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Marseille, UMR, 7257, France.,Aix-Marseille University, Campus de Luminy, Case 932, Marseille, 13288, France
| | - Stefan Oscarson
- Centre for Molecular Innovation and Drug Discovery, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin, Ireland
| | - Sylvain Moineau
- Groupe de recherche en écologie buccale & Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, Québec, G1V 0A6, Canada.,Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, G1V 0A6, Canada
| | - Christian Cambillau
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Marseille, UMR, 7257, France.,Aix-Marseille University, Campus de Luminy, Case 932, Marseille, 13288, France
| |
Collapse
|
11
|
High-throughput cloning, expression and purification of glycoside hydrolases using Ligation-Independent Cloning (LIC). Protein Expr Purif 2014; 99:35-42. [DOI: 10.1016/j.pep.2014.03.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/25/2014] [Accepted: 03/15/2014] [Indexed: 12/21/2022]
|
12
|
Molecular insights on the recognition of a Lactococcus lactis cell wall pellicle by the phage 1358 receptor binding protein. J Virol 2014; 88:7005-15. [PMID: 24719416 DOI: 10.1128/jvi.00739-14] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The Gram-positive bacterium Lactococcus lactis is used for the production of cheeses and other fermented dairy products. Accidental infection of L. lactis cells by virulent lactococcal tailed phages is one of the major risks of fermentation failures in industrial dairy factories. Lactococcal phage 1358 possesses a host range limited to a few L. lactis strains and strong genomic similarities to Listeria phages. We report here the X-ray structures of phage 1358 receptor binding protein (RBP) in complex with monosaccharides. Each monomer of its trimeric RBP is formed of two domains: a "shoulder" domain linking the RBP to the rest of the phage and a jelly roll fold "head/host recognition" domain. This domain harbors a saccharide binding crevice located in the middle of a monomer. Crystal structures identified two sites at the RBP surface, ∼8 Å from each other, one accommodating a GlcNAc monosaccharide and the other accommodating a GlcNAc or a glucose 1-phosphate (Glc1P) monosaccharide. GlcNAc and GlcNAc1P are components of the polysaccharide pellicle that we identified at the cell surface of L. lactis SMQ-388, the host of phage 1358. We therefore modeled a galactofuranose (Galf) sugar bridging the two GlcNAc saccharides, suggesting that the trisaccharidic motif GlcNAc-Galf-GlcNAc (or Glc1P) might be common to receptors of genetically distinct lactococcal phages p2, TP091-1, and 1358. Strain specificity might therefore be elicited by steric clashes induced by the remaining components of the pellicle hexasaccharide. Taken together, these results provide a first insight into the molecular mechanism of host receptor recognition by lactococcal phages. IMPORTANCE Siphophages infecting the Gram-positive bacterium Lactococcus lactis are sources of milk fermentation failures in the dairy industry. We report here the structure of the pellicle polysaccharide from L. lactis SMQ-388, the specific host strain of phage 1358. We determined the X-ray structures of the lytic lactococcal phage 1358 receptor binding protein (RBP) in complex with monosaccharides. The positions and nature of monosaccharides bound to the RBP are in agreement with the pellicle structure and suggest a general binding mode of lactococcal phages to their pellicle saccharidic receptor.
Collapse
|
13
|
The Center for Optimized Structural Studies (COSS) platform for automation in cloning, expression, and purification of single proteins and protein-protein complexes. Amino Acids 2014; 46:1565-82. [PMID: 24647677 DOI: 10.1007/s00726-014-1699-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 02/14/2014] [Indexed: 10/25/2022]
Abstract
Expression in Escherichia coli represents the simplest and most cost effective means for the production of recombinant proteins. This is a routine task in structural biology and biochemistry where milligrams of the target protein are required in high purity and monodispersity. To achieve these criteria, the user often needs to screen several constructs in different expression and purification conditions in parallel. We describe a pipeline, implemented in the Center for Optimized Structural Studies, that enables the systematic screening of expression and purification conditions for recombinant proteins and relies on a series of logical decisions. We first use bioinformatics tools to design a series of protein fragments, which we clone in parallel, and subsequently screen in small scale for optimal expression and purification conditions. Based on a scoring system that assesses soluble expression, we then select the top ranking targets for large-scale purification. In the establishment of our pipeline, emphasis was put on streamlining the processes such that it can be easily but not necessarily automatized. In a typical run of about 2 weeks, we are able to prepare and perform small-scale expression screens for 20-100 different constructs followed by large-scale purification of at least 4-6 proteins. The major advantage of our approach is its flexibility, which allows for easy adoption, either partially or entirely, by any average hypothesis driven laboratory in a manual or robot-assisted manner.
Collapse
|
14
|
Gonzalez D, Hiblot J, Darbinian N, Miller JC, Gotthard G, Amini S, Chabriere E, Elias M. Ancestral mutations as a tool for solubilizing proteins: The case of a hydrophobic phosphate-binding protein. FEBS Open Bio 2014; 4:121-7. [PMID: 24490136 PMCID: PMC3907688 DOI: 10.1016/j.fob.2013.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 12/21/2013] [Accepted: 12/23/2013] [Indexed: 12/02/2022] Open
Abstract
Stable and soluble proteins are ideal candidates for functional and structural studies. Unfortunately, some proteins or enzymes can be difficult to isolate, being sometimes poorly expressed in heterologous systems, insoluble and/or unstable. Numerous methods have been developed to address these issues, from the screening of various expression systems to the modification of the target protein itself. Here we use a hydrophobic, aggregation-prone, phosphate-binding protein (HPBP) as a case study. We describe a simple and fast method that selectively uses ancestral mutations to generate a soluble, stable and functional variant of the target protein, here named sHPBP. This variant is highly expressed in Escherichia coli, is easily purified and its structure was solved at much higher resolution than its wild-type progenitor (1.3 versus 1.9 Å, respectively).
Collapse
Affiliation(s)
- Daniel Gonzalez
- URMITE UMR CNRS-IRD 6236, IFR48, Faculté de Médecine et de Pharmacie, Université de la Méditerranée, Marseille, France
| | - Julien Hiblot
- URMITE UMR CNRS-IRD 6236, IFR48, Faculté de Médecine et de Pharmacie, Université de la Méditerranée, Marseille, France
| | - Nune Darbinian
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Jernelle C. Miller
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA 19140, USA
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Guillaume Gotthard
- URMITE UMR CNRS-IRD 6236, IFR48, Faculté de Médecine et de Pharmacie, Université de la Méditerranée, Marseille, France
| | - Shohreh Amini
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA 19140, USA
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Eric Chabriere
- URMITE UMR CNRS-IRD 6236, IFR48, Faculté de Médecine et de Pharmacie, Université de la Méditerranée, Marseille, France
| | - Mikael Elias
- Weizmann Institute of Science, Biological Chemistry, Rehovot, Israel
| |
Collapse
|
15
|
Makowska-Grzyska M, Kim Y, Maltseva N, Li H, Zhou M, Joachimiak G, Babnigg G, Joachimiak A. Protein production for structural genomics using E. coli expression. Methods Mol Biol 2014; 1140:89-105. [PMID: 24590711 PMCID: PMC4108990 DOI: 10.1007/978-1-4939-0354-2_7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The goal of structural biology is to reveal details of the molecular structure of proteins in order to understand their function and mechanism. X-ray crystallography and NMR are the two best methods for atomic level structure determination. However, these methods require milligram quantities of proteins. In this chapter a reproducible methodology for large-scale protein production applicable to a diverse set of proteins is described. The approach is based on protein expression in E. coli as a fusion with a cleavable affinity tag that was tested on over 20,000 proteins. Specifically, a protocol for fermentation of large quantities of native proteins in disposable culture vessels is presented. A modified protocol that allows for the production of selenium-labeled proteins in defined media is also offered. Finally, a method for the purification of His6-tagged proteins on immobilized metal affinity chromatography columns that generates high-purity material is described in detail.
Collapse
Affiliation(s)
- Magdalena Makowska-Grzyska
- Center for Structural Genomics of Infectious Diseases, Computational Institute, University of Chicago, Chicago, IL, 60557, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Saez NJ, Vincentelli R. High-throughput expression screening and purification of recombinant proteins in E. coli. Methods Mol Biol 2014; 1091:33-53. [PMID: 24203323 DOI: 10.1007/978-1-62703-691-7_3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The protocols outlined in this chapter allow for the small-scale test expression of a single or multiple proteins concurrently using several expression conditions to identify optimal strategies for producing soluble, stable proteins. The protocols can be performed manually without the need for specialized equipment, or can be translated to robotic platforms. The high-throughput protocols begin with transformation in a 96-well format, followed by small-scale test expression using auto-induction medium in a 24-well format, finishing with purification in a 96-well format. Even from such a small scale, there is the potential to use the purified proteins for characterization in pilot studies, for sensitive micro-assays, or for the quick detection of and differentiation of the expected size and oxidation state of the protein by mass spectrometry.
Collapse
Affiliation(s)
- Natalie J Saez
- Architecture et Fonction des Macromolécules Biologiques, Aix Marseille Université, Marseille, France
| | | |
Collapse
|
17
|
Arbing MA, Chan S, Harris L, Kuo E, Zhou TT, Ahn CJ, Nguyen L, He Q, Lu J, Menchavez PT, Shin A, Holton T, Sawaya MR, Cascio D, Eisenberg D. Heterologous expression of mycobacterial Esx complexes in Escherichia coli for structural studies is facilitated by the use of maltose binding protein fusions. PLoS One 2013; 8:e81753. [PMID: 24312350 PMCID: PMC3843698 DOI: 10.1371/journal.pone.0081753] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 10/15/2013] [Indexed: 11/19/2022] Open
Abstract
The expression of heteroligomeric protein complexes for structural studies often requires a special coexpression strategy. The reason is that the solubility and proper folding of each subunit of the complex requires physical association with other subunits of the complex. The genomes of pathogenic mycobacteria encode many small protein complexes, implicated in bacterial fitness and pathogenicity, whose characterization may be further complicated by insolubility upon expression in Escherichia coli, the most common heterologous protein expression host. As protein fusions have been shown to dramatically affect the solubility of the proteins to which they are fused, we evaluated the ability of maltose binding protein fusions to produce mycobacterial Esx protein complexes. A single plasmid expression strategy using an N-terminal maltose binding protein fusion to the CFP-10 homolog proved effective in producing soluble Esx protein complexes, as determined by a small-scale expression and affinity purification screen, and coupled with intracellular proteolytic cleavage of the maltose binding protein moiety produced protein complexes of sufficient purity for structural studies. In comparison, the expression of complexes with hexahistidine affinity tags alone on the CFP-10 subunits failed to express in amounts sufficient for biochemical characterization. Using this strategy, six mycobacterial Esx complexes were expressed, purified to homogeneity, and subjected to crystallization screening and the crystal structures of the Mycobacterium abscessus EsxEF, M. smegmatis EsxGH, and M. tuberculosis EsxOP complexes were determined. Maltose binding protein fusions are thus an effective method for production of Esx complexes and this strategy may be applicable for production of other protein complexes.
Collapse
Affiliation(s)
- Mark A. Arbing
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Sum Chan
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Liam Harris
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Emmeline Kuo
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Tina T. Zhou
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Christine J. Ahn
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Lin Nguyen
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Qixin He
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jamie Lu
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Phuong T. Menchavez
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Annie Shin
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Thomas Holton
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Michael R. Sawaya
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Duilio Cascio
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
| | - David Eisenberg
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Biological Chemistry, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
18
|
Papaneophytou CP, Kontopidis G. Statistical approaches to maximize recombinant protein expression in Escherichia coli: a general review. Protein Expr Purif 2013; 94:22-32. [PMID: 24211770 DOI: 10.1016/j.pep.2013.10.016] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 10/23/2013] [Accepted: 10/25/2013] [Indexed: 11/16/2022]
Abstract
The supply of many valuable proteins that have potential clinical or industrial use is often limited by their low natural availability. With the modern advances in genomics, proteomics and bioinformatics, the number of proteins being produced using recombinant techniques is exponentially increasing and seems to guarantee an unlimited supply of recombinant proteins. The demand of recombinant proteins has increased as more applications in several fields become a commercial reality. Escherichia coli (E. coli) is the most widely used expression system for the production of recombinant proteins for structural and functional studies. However, producing soluble proteins in E. coli is still a major bottleneck for structural biology projects. One of the most challenging steps in any structural biology project is predicting which protein or protein fragment will express solubly and purify for crystallographic studies. The production of soluble and active proteins is influenced by several factors including expression host, fusion tag, induction temperature and time. Statistical designed experiments are gaining success in the production of recombinant protein because they provide information on variable interactions that escape the "one-factor-at-a-time" method. Here, we review the most important factors affecting the production of recombinant proteins in a soluble form. Moreover, we provide information about how the statistical design experiments can increase protein yield and purity as well as find conditions for crystal growth.
Collapse
Affiliation(s)
- Christos P Papaneophytou
- Veterinary School, University of Thessaly, Trikalon 224, Karditsa 43100, Greece; Institute for Research and Technology - Thessaly (I.RE.TE.TH.), The Centre for Research & Technology Hellas (CE.R.TH.), Technology Park of Thessaly, 1st Industrial Area, Volos 38500, Greece
| | - George Kontopidis
- Veterinary School, University of Thessaly, Trikalon 224, Karditsa 43100, Greece; Institute for Research and Technology - Thessaly (I.RE.TE.TH.), The Centre for Research & Technology Hellas (CE.R.TH.), Technology Park of Thessaly, 1st Industrial Area, Volos 38500, Greece.
| |
Collapse
|
19
|
Papaneophytou CP, Rinotas V, Douni E, Kontopidis G. A statistical approach for optimization of RANKL overexpression in Escherichia coli: purification and characterization of the protein. Protein Expr Purif 2013; 90:9-19. [PMID: 23623854 DOI: 10.1016/j.pep.2013.04.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 12/21/2022]
Abstract
Receptor activator of nuclear factor-κB (RANK) and its cognate ligand (RANKL) is a member of the TNF superfamily of cytokines which is essential in osteobiology and its overexpression has been implicated in the pathogenesis of bone degenerative diseases such as osteoporosis. Therefore, RANKL is considered a major therapeutic target for the suppression of bone resorption in bone metabolic diseases such as rheumatoid arthritis and cancer metastasis. To evaluate the inhibitory effect of potential RANKL inhibitors a sufficient amount of protein is required. In this work RANKL was cloned for expression at high levels in Escherichia coli with the interaction of changing cultures conditions in order to produce the protein in a soluble form. In an initial step, the effect of expression host on soluble protein production was investigated and BL21(DE3) pLysS was the most efficient one found for the production of RANKL. Central composite design experiment in the following revealed that cell density before induction, IPTG concentration, post-induction temperature and time as well as their interactions had a significant influence on soluble RANKL production. An 80% increase of protein production was achieved after the determination of the optimum induction conditions: OD600nm before induction 0.55, an IPTG concentration of 0.3mM, a post-induction temperature of 25°C and a post-induction time of 6.5h. Following RANKL purification the thermal stability of the protein was studied. The interaction of RANKL with SPD304, a patented small-molecule inhibitor of TNF-α, was also studied in a fluorescence binding assay resulting in a Kd value of 14.1 ± 0.5 μM.
Collapse
Affiliation(s)
- Christos P Papaneophytou
- Institute for Research and Technology - Thessaly, The Centre for Research & Technology Hellas, Technology Park of Thessaly, 1st Industrial Area, Volos 38500, Greece
| | | | | | | |
Collapse
|
20
|
Campanacci V, Mukherjee S, Roy CR, Cherfils J. Structure of the Legionella effector AnkX reveals the mechanism of phosphocholine transfer by the FIC domain. EMBO J 2013; 32:1469-77. [PMID: 23572077 DOI: 10.1038/emboj.2013.82] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 03/12/2013] [Indexed: 11/09/2022] Open
Abstract
The FIC motif and the eukaryotic-like ankyrin repeats are found in many bacterial type IV effectors, yet little is known about how these domains enable bacteria to modulate host cell functions. Bacterial FIC domains typically bind ATP and transfer adenosine monophosphate moiety onto target proteins. The ankyrin repeat-containing protein AnkX encoded by the intracellular pathogen Legionella pneumophila is unique in that its FIC domain binds to CDP-choline and transfers a phosphocholine residue onto proteins in the Rab1 GTPase family. By determining the structures of unbound AnkX and AnkX with bound CDP-choline, CMP/phosphocholine and CMP, we demonstrate that the orientation of substrate binding in relation to the catalytic FIC motif enables this protein to function as a phosphocholinating enzyme rather than a nucleotidyl transferase. Additionally, the structure reveals that the ankyrin repeats mediate scaffolding interactions that resemble those found in protein-protein interactions, but are unprecedented in intramolecular interactions. Together with phosphocholination experiments, our structures unify a general phosphoryl transferase mechanism common to all FIC enzymes that should be conserved from bacteria to human.
Collapse
Affiliation(s)
- Valérie Campanacci
- Laboratoire d'Enzymologie et Biochimie Structurales, Centre de Recherche de Gif, CNRS, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
21
|
Novel CAD-like enzymes from Escherichia coli K-12 as additional tools in chemical production. Appl Microbiol Biotechnol 2012; 97:5815-24. [PMID: 23093176 PMCID: PMC3684718 DOI: 10.1007/s00253-012-4474-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 09/21/2012] [Accepted: 09/24/2012] [Indexed: 12/30/2022]
Abstract
In analyzing the reductive power of Escherichia coli K-12 for metabolic engineering approaches, we identified YahK and YjgB, two medium-chain dehydrogenases/reductases subgrouped to the cinnamyl alcohol dehydrogenase family, as being important. Identification was achieved using a stepwise purification protocol starting with crude extract. For exact characterization, the genes were cloned into pET28a vector and expressed with N-terminal His tag. Substrate specificity studies revealed that a large variety of aldehydes but no ketones are converted by both enzymes. YahK and and YjgB strongly preferred NADPH as cofactor. The structure of YjgB was modeled using YahK as template for a comparison of the active center giving a first insight to the different substrate preferences. The enzyme activity for YahK, YjgB, and YqhD was determined on the basis of the temperature. YahK showed a constant increase in activity until 60 °C, whereas YjgB was most active between 37 and 50 °C. YqhD achieved the highest activity at 50 °C. Comparing YjgB and Yahk referring to the catalytic efficiency, YjgB achieved for almost all substrates higher rates (butyraldehyde 221 s−1 mM−1, benzaldehyde 1,305 s−1 mM−1). Exceptions are the two substrates glyceraldehydes (no activity for YjgB) and isobutyraldehyde (YjgB 0.26 s−1 mM−1) which are more efficiently converted by YahK (glyceraldehyde 2.8 s−1 mM−1, isobutyraldehyde 14.6 s−1 mM−1). YahK and even more so YjgB are good candidates for the reduction of aldehydes in metabolic engineering approaches and could replace the currently used YqhD.
Collapse
|
22
|
MmPPOX inhibits Mycobacterium tuberculosis lipolytic enzymes belonging to the hormone-sensitive lipase family and alters mycobacterial growth. PLoS One 2012; 7:e46493. [PMID: 23029536 PMCID: PMC3460867 DOI: 10.1371/journal.pone.0046493] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 09/05/2012] [Indexed: 11/19/2022] Open
Abstract
Lipid metabolism plays an important role during the lifetime of Mycobacterium tuberculosis, the causative agent of tuberculosis. Although M. tuberculosis possesses numerous lipolytic enzymes, very few have been characterized yet at a biochemical/pharmacological level. This study was devoted to the M. tuberculosis lipolytic enzymes belonging to the Hormone-Sensitive Lipase (HSL) family, which encompasses twelve serine hydrolases closely related to the human HSL. Among them, nine were expressed, purified and biochemically characterized using a broad range of substrates. In vitro enzymatic inhibition studies using the recombinant HSL proteins, combined with mass spectrometry analyses, revealed the potent inhibitory activity of an oxadiazolone compound, named MmPPOX. In addition, we provide evidence that MmPPOX alters mycobacterial growth. Overall, these findings suggest that the M. tuberculosis HSL family displays important metabolic functions, thus opening the way to further investigations linking the involvement of these enzymes in mycobacterial growth.
Collapse
|
23
|
Blocquel D, Habchi J, Costanzo S, Doizy A, Oglesbee M, Longhi S. Interaction between the C-terminal domains of measles virus nucleoprotein and phosphoprotein: a tight complex implying one binding site. Protein Sci 2012; 21:1577-85. [PMID: 22887965 DOI: 10.1002/pro.2138] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 06/27/2012] [Accepted: 07/17/2012] [Indexed: 11/09/2022]
Abstract
The intrinsically disordered C-terminal domain (N(TAIL) ) of the measles virus (MeV) nucleoprotein undergoes α-helical folding upon binding to the C-terminal X domain (XD) of the phosphoprotein. The N(TAIL) region involved in binding coupled to folding has been mapped to a conserved region (Box2) encompassing residues 489-506. In the previous studies published in this journal, we obtained experimental evidence supporting a K(D) for the N(TAIL) -XD binding reaction in the nM range and also showed that an additional N(TAIL) region (Box3, aa 517-525) plays a role in binding to XD. In striking contrast with these data, studies published in this journal by Kingston and coworkers pointed out a much less stable complex (K(D) in the μM range) and supported lack of involvement of Box3 in complex formation. The objective of this study was to critically re-evaluate the role of Box3 in N(TAIL) -XD binding. Since our previous studies relied on N(TAIL) -truncated forms possessing an irrelevant Flag sequence appended at their C-terminus, we, herein, generated an N(TAIL) devoid of Box3 and any additional C-terminal residues, as well as a form encompassing only residues 482-525. We then used isothermal titration calorimetry to characterize the binding reactions between XD and these N(TAIL) forms. Results effectively argue for the presence of a single XD-binding site located within Box2, in agreement with the results by Kingston et al., while providing clear experimental support for a high-affinity complex. Altogether, the present data provide mechanistic insights into the replicative machinery of MeV and clarify a hitherto highly debated point.
Collapse
Affiliation(s)
- David Blocquel
- CNRS, Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB) UMR 7257, 13288 Marseille, France
| | | | | | | | | | | |
Collapse
|
24
|
Noguère C, Larsson AM, Guyot JC, Bignon C. Fractional factorial approach combining 4 Escherichia coli strains, 3 culture media, 3 expression temperatures and 5 N-terminal fusion tags for screening the soluble expression of recombinant proteins. Protein Expr Purif 2012; 84:204-13. [DOI: 10.1016/j.pep.2012.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 05/30/2012] [Indexed: 11/24/2022]
|
25
|
One-step generation of error-prone PCR libraries using Gateway® technology. Microb Cell Fact 2012; 11:14. [PMID: 22289297 PMCID: PMC3349575 DOI: 10.1186/1475-2859-11-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 01/30/2012] [Indexed: 01/15/2023] Open
Abstract
Background Error-prone PCR (epPCR) libraries are one of the tools used in directed evolution. The Gateway® technology allows constructing epPCR libraries virtually devoid of any background (i.e., of insert-free plasmid), but requires two steps: the BP and the LR reactions and the associated E. coli cell transformations and plasmid purifications. Results We describe a method for making epPCR libraries in Gateway® plasmids using an LR reaction without intermediate BP reaction. We also describe a BP-free and LR-free sub-cloning method for in-frame transferring the coding sequence of selected clones from the plasmid used to screen the library to another one devoid of tag used for screening (such as the green fluorescent protein). We report preliminary results of a directed evolution program using this method. Conclusions The one-step method enables producing epPCR libraries of as high complexity and quality as does the regular, two-step, protocol for half the amount of work. In addition, it contributes to preserve the original complexity of the epPCR product.
Collapse
|
26
|
Audoly G, Vincentelli R, Edouard S, Georgiades K, Mediannikov O, Gimenez G, Socolovschi C, Mège JL, Cambillau C, Raoult D. Effect of rickettsial toxin VapC on its eukaryotic host. PLoS One 2011; 6:e26528. [PMID: 22046301 PMCID: PMC3203148 DOI: 10.1371/journal.pone.0026528] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 09/28/2011] [Indexed: 11/18/2022] Open
Abstract
Rickettsia are intracellular bacteria typically associated with arthropods that can be transmitted to humans by infected vectors. Rickettsia spp. can cause mild to severe human disease with a possible protection effect of corticosteroids when antibiotic treatments are initiated. We identified laterally transferred toxin-antitoxin (TA) genetic elements, including vapB/C, in several Rickettsia genomes and showed that they are functional in bacteria and eukaryotic cells. We also generated a plaque assay to monitor the formation of lytic plaques over time and demonstrated that chloramphenicol accelerates host cell lysis of vapB/C-containing Rickettsia. Whole-genome expression, TUNEL and FISH assays on the infected cells following exposure to the antibiotic revealed early apoptosis of host cells, which was linked to over-transcription of bacterial vapB/C operons and subsequent cytoplasmic VapC toxin release. VapC that is expressed in Escherichia coli and Saccharomyces cerevisiae or microinjected into mammalian cells is toxic through RNase activity and is prevented by dexamethasone. This study provides the first biological evidence that toxin-antitoxin elements act as pathogenic factors in bacterial host cells, confirming comparative genomic evidence of their role in bacterial pathogenicity. Our results suggest that early mortality following antibiotic treatment of some bacterial infections can be prevented by administration of dexamethasone.
Collapse
Affiliation(s)
- Gilles Audoly
- Unité des Rickettsies URMITE, UMR CNRS 6236- IRD 198, Marseille, France
| | | | - Sophie Edouard
- Unité des Rickettsies URMITE, UMR CNRS 6236- IRD 198, Marseille, France
| | | | - Oleg Mediannikov
- Unité des Rickettsies URMITE, UMR CNRS 6236- IRD 198, Marseille, France
| | - Grégory Gimenez
- Unité des Rickettsies URMITE, UMR CNRS 6236- IRD 198, Marseille, France
| | | | - Jean-Louis Mège
- Unité des Rickettsies URMITE, UMR CNRS 6236- IRD 198, Marseille, France
| | | | - Didier Raoult
- Unité des Rickettsies URMITE, UMR CNRS 6236- IRD 198, Marseille, France
| |
Collapse
|
27
|
Opota O, Vallet-Gély I, Vincentelli R, Kellenberger C, Iacovache I, Gonzalez MR, Roussel A, van der Goot FG, Lemaitre B. Monalysin, a novel ß-pore-forming toxin from the Drosophila pathogen Pseudomonas entomophila, contributes to host intestinal damage and lethality. PLoS Pathog 2011; 7:e1002259. [PMID: 21980286 PMCID: PMC3182943 DOI: 10.1371/journal.ppat.1002259] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 07/25/2011] [Indexed: 02/07/2023] Open
Abstract
Pseudomonas entomophila is an entomopathogenic bacterium that infects and kills Drosophila. P. entomophila pathogenicity is linked to its ability to cause irreversible damages to the Drosophila gut, preventing epithelium renewal and repair. Here we report the identification of a novel pore-forming toxin (PFT), Monalysin, which contributes to the virulence of P. entomophila against Drosophila. Our data show that Monalysin requires N-terminal cleavage to become fully active, forms oligomers in vitro, and induces pore-formation in artificial lipid membranes. The prediction of the secondary structure of the membrane-spanning domain indicates that Monalysin is a PFT of the ß-type. The expression of Monalysin is regulated by both the GacS/GacA two-component system and the Pvf regulator, two signaling systems that control P. entomophila pathogenicity. In addition, AprA, a metallo-protease secreted by P. entomophila, can induce the rapid cleavage of pro-Monalysin into its active form. Reduced cell death is observed upon infection with a mutant deficient in Monalysin production showing that Monalysin plays a role in P. entomophila ability to induce intestinal cell damages, which is consistent with its activity as a PFT. Our study together with the well-established action of Bacillus thuringiensis Cry toxins suggests that production of PFTs is a common strategy of entomopathogens to disrupt insect gut homeostasis. Insects are potential reservoirs for microbes and ideal vectors for their transmission due to their motility and capacity to live in bacteria-rich environments. This is exemplified by fruit flies that live in rotting fruits and are capable of transmitting phytopathogenic bacteria. Insects are notably resistant to microbial infection allowing them to colonize these microbe-rich environments. To study how pathogenic bacteria disrupt gut homeostasis, we investigated the interactions between Drosophila and a newly identified entomopathogen, Pseudomonas entomophila. Ingestion of P. entomophila inflicts severe damage to the Drosophila intestine. How damages are inflicted, however, remains unknown. In this study, we identified a secreted protein that plays an important role in the damage inflicted by P. entomophila to the Drosophila gut. We showed that this protein is a pore-forming toxin (PFT) that we named Monalysin. Our study reveals that Monalysin oligomerizes into ring-like structures that form pores into the plasma membrane of target cells leading to the disruption of membrane permeability and cell death. Our work together with studies on the insecticidal Cry toxins produced by Bacillus thuringiensis suggests that production of PFTs is a common strategy of entomopathogenic bacteria to interfere with insect gut homeostasis.
Collapse
Affiliation(s)
- Onya Opota
- Global Health Institute, Ecole Polytechnique Fédérale Lausanne (EPFL), Lausanne, Switzerland
- * E-mail: (OO); (BL)
| | | | - Renaud Vincentelli
- Structural Immunology, AFMB UMR 6098 CNRS/UI/UII, Case 932, Marseille, France
| | | | - Ioan Iacovache
- Global Health Institute, Ecole Polytechnique Fédérale Lausanne (EPFL), Lausanne, Switzerland
| | - Manuel Rodrigo Gonzalez
- Global Health Institute, Ecole Polytechnique Fédérale Lausanne (EPFL), Lausanne, Switzerland
| | - Alain Roussel
- Structural Immunology, AFMB UMR 6098 CNRS/UI/UII, Case 932, Marseille, France
| | | | - Bruno Lemaitre
- Global Health Institute, Ecole Polytechnique Fédérale Lausanne (EPFL), Lausanne, Switzerland
- * E-mail: (OO); (BL)
| |
Collapse
|
28
|
High-throughput protein expression screening and purification in Escherichia coli. Methods 2011; 55:65-72. [DOI: 10.1016/j.ymeth.2011.08.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 07/25/2011] [Accepted: 08/11/2011] [Indexed: 11/18/2022] Open
|
29
|
Douillard FP, O'Connell-Motherway M, Cambillau C, van Sinderen D. Expanding the molecular toolbox for Lactococcus lactis: construction of an inducible thioredoxin gene fusion expression system. Microb Cell Fact 2011; 10:66. [PMID: 21827702 PMCID: PMC3162883 DOI: 10.1186/1475-2859-10-66] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 08/09/2011] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The development of the Nisin Inducible Controlled Expression (NICE) system in the food-grade bacterium Lactococcus lactis subsp. cremoris represents a cornerstone in the use of Gram-positive bacterial expression systems for biotechnological purposes. However, proteins that are subjected to such over-expression in L. lactis may suffer from improper folding, inclusion body formation and/or protein degradation, thereby significantly reducing the yield of soluble target protein. Although such drawbacks are not specific to L. lactis, no molecular tools have been developed to prevent or circumvent these recurrent problems of protein expression in L. lactis. RESULTS Mimicking thioredoxin gene fusion systems available for E. coli, two nisin-inducible expression vectors were constructed to over-produce various proteins in L. lactis as thioredoxin fusion proteins. In this study, we demonstrate that our novel L. lactis fusion partner expression vectors allow high-level expression of soluble heterologous proteins Tuc2009 ORF40, Bbr_0140 and Tuc2009 BppU/BppL that were previously insoluble or not expressed using existing L. lactis expression vectors. Over-expressed proteins were subsequently purified by Ni-TED affinity chromatography. Intact heterologous proteins were detected by immunoblotting analyses. We also show that the thioredoxin moiety of the purified fusion protein was specifically and efficiently cleaved off by enterokinase treatment. CONCLUSIONS This study is the first description of a thioredoxin gene fusion expression system, purposely developed to circumvent problems associated with protein over-expression in L. lactis. It was shown to prevent protein insolubility and degradation, allowing sufficient production of soluble proteins for further structural and functional characterization.
Collapse
Affiliation(s)
- François P Douillard
- Department of Microbiology, University College Cork, Cork, Ireland
- Department of Veterinary Sciences, University of Helsinki, Agnes Sjöbergin katu 2, 00790 Helsinki, Finland
| | - Mary O'Connell-Motherway
- Department of Microbiology, University College Cork, Cork, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Christian Cambillau
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 Centre National de la Recherche Scientifique and Universités d'Aix-Marseille I & II, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France
| | - Douwe van Sinderen
- Department of Microbiology, University College Cork, Cork, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| |
Collapse
|
30
|
Douillard FP, Mahony J, Campanacci V, Cambillau C, van Sinderen D. Construction of two Lactococcus lactis expression vectors combining the Gateway and the NIsin Controlled Expression systems. Plasmid 2011; 66:129-35. [PMID: 21807023 DOI: 10.1016/j.plasmid.2011.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Revised: 07/11/2011] [Accepted: 07/15/2011] [Indexed: 11/16/2022]
Abstract
Over the last 10 years, the NIsin Controlled Expression (NICE) system has been extensively used in the food-grade bacterium Lactococcus lactis subsp. cremoris to produce homologous and heterologous proteins for academic and biotechnological purposes. Although various L. lactis molecular tools have been developed, no expression vectors harboring the popular Gateway recombination system are currently available for this widely used cloning host. In this study, we constructed two expression vectors that combine the NICE and the Gateway recombination systems and we tested their applicability by recombining and over-expressing genes encoding structural proteins of lactococcal phages Tuc2009 and TP901-1. Over-expressed phage proteins were analyzed by immunoblotting and purified by His-tag affinity chromatography with protein productions yielding 2.8-3.7 mg/l of culture. This therefore is the first description of L. lactis NICE expression vectors which integrate the Gateway cloning technology and which are suitable for the production of sufficient amounts of proteins to facilitate subsequent structural and functional analyses.
Collapse
Affiliation(s)
- François P Douillard
- Department of Microbiology, University College Cork, Western Road, Cork, Ireland.
| | | | | | | | | |
Collapse
|
31
|
Marín-Menéndez A, Bell A. Overexpression, purification and assessment of cyclosporin binding of a family of cyclophilins and cyclophilin-like proteins of the human malarial parasite Plasmodium falciparum. Protein Expr Purif 2011; 78:225-34. [PMID: 21549842 DOI: 10.1016/j.pep.2011.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 04/14/2011] [Accepted: 04/22/2011] [Indexed: 10/18/2022]
Abstract
Malaria represents a global health, economic and social burden of enormous magnitude. Chemotherapy is at the moment a largely effective weapon against the disease, but the appearance of drug-resistant parasites is reducing the effectiveness of most drugs. Finding new drug-target candidates is one approach to the development of new drugs. The family of cyclophilins may represent a group of potential targets. They are involved in protein folding and regulation due to their peptidyl-prolyl cis-trans isomerase and/or chaperone activities. They also mediate the action of the immunosuppressive drug cyclosporin A, which additionally has strong antimalarial activity. In the genome database of the most lethal human malarial parasite Plasmodium falciparum, 11 genes apparently encoding cyclophilin or cyclophilin-like proteins were found, but most of these have not yet been characterized. Previously a pET vector conferring a C-terminal His₆ tag was used for recombinant expression and purification of one member of the P. falciparum cyclophilin family in Escherichia coli. The approach here was to use an identical method to produce all of the other members of this family and thereby allow the most consistent functional comparisons. We were successful in generating all but three of the family, plus a single amino-acid mutant, in the same recombinant form as either full-length proteins or isolated cyclophilin-like domains. The recombinant proteins were assessed by thermal melt assay for correct folding and cyclosporin A binding.
Collapse
Affiliation(s)
- Alejandro Marín-Menéndez
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| | | |
Collapse
|
32
|
Scaltriti E, Launay H, Genois MM, Bron P, Rivetti C, Grolli S, Ploquin M, Campanacci V, Tegoni M, Cambillau C, Moineau S, Masson JY. Lactococcal phage p2 ORF35-Sak3 is an ATPase involved in DNA recombination and AbiK mechanism. Mol Microbiol 2011; 80:102-16. [PMID: 21276096 DOI: 10.1111/j.1365-2958.2011.07561.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Virulent phages of the Siphoviridae family are responsible for milk fermentation failures worldwide. Here, we report the characterization of the product of the early expressed gene orf35 from Lactococcus lactis phage p2 (936 group). ORF35(p2), also named Sak3, is involved in the sensitivity of phage p2 to the antiviral abortive infection mechanism AbiK. The localization of its gene upstream of a gene coding for a single-strand binding protein as well as its membership to a superfamily of single-strand annealing proteins (SSAPs) suggested a possible role in homologous recombination. Electron microscopy showed that purified ORF35(p2) form a hexameric ring-like structure that is often found in proteins with a conserved RecA nucleotide-binding core. Gel shift assays and surface plasmon resonance data demonstrated that ORF35(p2) interacts preferentially with single-stranded DNA with nanomolar affinity. Atomic force microscopy showed also that it preferentially binds to sticky DNA substrates over blunt ends. In addition, in vitro assays demonstrated that ORF35(p2) is able to anneal complementary strands. Sak3 also stimulates Escherichia coli RecA-mediated homologous recombination. Remarkably, Sak3 was shown to possess an ATPase activity that is required for RecA stimulation. Collectively, our results demonstrate that ORF35(p2) is a novel SSAP stimulating homologous recombination.
Collapse
Affiliation(s)
- Erika Scaltriti
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS and Universités d'Aix-Marseille I & II, Campus de Luminy, case 932, 13288 Marseille cedex 09, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Vellaiswamy M, Kowalczewska M, Merhej V, Nappez C, Vincentelli R, Renesto P, Raoult D. Characterization of rickettsial adhesin Adr2 belonging to a new group of adhesins in α-proteobacteria. Microb Pathog 2011; 50:233-42. [PMID: 21288480 DOI: 10.1016/j.micpath.2011.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/17/2011] [Accepted: 01/24/2011] [Indexed: 11/25/2022]
Abstract
BACKGROUND Rickettsia prowazekii is the etiological agent of epidemic typhus and is an obligate intracellular bacterium that grows as a parasite freely within the cytoplasm of a eukaryotic host cell. Previous studies have shown that rOmpA and rOmpB which belong to the family of rickettsial cell surface antigens are involved in vitro in the adhesion of Rickettsiae to epithelial cells. Recently, two putative rickettsial adhesins have been identified using high resolution 2D-PAGE coupled with mass spectrometry. In this study, we further characterize and describe the adhesin Adr2 from R. prowazekii. METHODOLOGY/PRINCIPAL FINDINGS Using an overlay assay coupled with mass spectrometry two adhesins, Adr1 (RP827) and Adr2 (RP828), were identified from the R. prowazekii proteome Recombinant R. prowazekii Adr2 was expressed through fusion with Dsbc in Escherichia coli, purified and concentrated, thus allowing production of specific monoclonal antibodies, as confirmed by western blot assays. Finally, inhibition of rickettsiae-induced cytotoxicity with monoclonal anti-Adr2 antibody has showed a greatest impact on bacterial cell entry at 8 h post-infection (ca50%) and then decreased progressively to attempt 18% of inhibition at day 7. These, correlated to the inhibition of rickettsiae-induced cytotoxicity with monoclonal anti-rOmpB antibody. Thus, Adr2 is sufficient to mediate R. prowazekii entry into the cell at early stage of mammalian cell infection. CONCLUSIONS Our results suggest that R. prowazekii Adr2 could be the main actor promoting the entry of rickettsiae into the host cells. The present study opens the framework for future investigations for better understanding of the Adr2 -mediated mechanisms involved in adhesion/invasion or intracellular survival of R. prowazekii.
Collapse
Affiliation(s)
- Manohari Vellaiswamy
- Université de la Méditerranée, Unité des Rickettsies, URMITE CNRS-IRD, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
34
|
Bebeacua C, Bron P, Lai L, Vegge CS, Brøndsted L, Spinelli S, Campanacci V, Veesler D, van Heel M, Cambillau C. Structure and molecular assignment of lactococcal phage TP901-1 baseplate. J Biol Chem 2010; 285:39079-86. [PMID: 20937834 PMCID: PMC2998104 DOI: 10.1074/jbc.m110.175646] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 09/23/2010] [Indexed: 12/28/2022] Open
Abstract
P335 lactococcal phages infect the gram(+) bacterium Lactococcus lactis using a large multiprotein complex located at the distal part of the tail and termed baseplate (BP). The BP harbors the receptor-binding proteins (RBPs), which allow the specific recognition of saccharidic receptors localized on the host cell surface. We report here the electron microscopic structure of the phage TP901-1 wild-type BP as well as those of two mutants bppL (-) and bppU(-), lacking BppL (the RBPs) or both peripheral BP components (BppL and BppU), respectively. We also achieved an electron microscopic reconstruction of a partial BP complex, formed by BppU and BppL. This complex exhibits a tripod shape and is composed of nine BppLs and three BppUs. These structures, combined with light-scattering measurements, led us to propose that the TP901-1 BP harbors six tripods at its periphery, located around the central tube formed by ORF46 (Dit) hexamers, at its proximal end, and a ORF47 (Tal) trimer at its distal extremity. A total of 54 BppLs (18 RBPs) are thus available to mediate host anchoring with a large apparent avidity. TP901-1 BP exhibits an infection-ready conformation and differs strikingly from the lactococcal phage p2 BP, bearing only 6 RBPs, and which needs a conformational change to reach its activated state. The comparison of several Siphoviridae structures uncovers a close organization of their central BP core whereas striking differences occur at the periphery, leading to diverse mechanisms of host recognition.
Collapse
Affiliation(s)
- Cecilia Bebeacua
- From the Department of Biological Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Patrick Bron
- the Centre de Biochimie Structurale, INSERM U554/CNRS UMR 5048, 29 rue de Navacelles, 34090 Montpellier, France
| | - Livia Lai
- From the Department of Biological Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Christina Skovgaard Vegge
- the Department of Veterinary Disease Biology, University of Copenhagen, Stigbøjlen 4, DK-1870 Frederiksberg C, Denmark, and
| | - Lone Brøndsted
- the Department of Veterinary Disease Biology, University of Copenhagen, Stigbøjlen 4, DK-1870 Frederiksberg C, Denmark, and
| | - Silvia Spinelli
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS and Universités Aix-Marseille I and II, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France
| | - Valérie Campanacci
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS and Universités Aix-Marseille I and II, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France
| | - David Veesler
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS and Universités Aix-Marseille I and II, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France
| | - Marin van Heel
- From the Department of Biological Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Christian Cambillau
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS and Universités Aix-Marseille I and II, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France
| |
Collapse
|
35
|
Veesler D, Blangy S, Spinelli S, Tavares P, Campanacci V, Cambillau C. Crystal structure of Bacillus subtilis SPP1 phage gp22 shares fold similarity with a domain of lactococcal phage p2 RBP. Protein Sci 2010; 19:1439-43. [PMID: 20506290 DOI: 10.1002/pro.416] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SPP1 is a siphophage infecting the gram-positive bacterium Bacillus subtilis. It is constituted by an icosahedric head and a long non-contractile tail formed by gene products (gp) 17-21. A group of 5 small genes (gp 22-24.1) follows in the genome those coding for the main tail components. However, the belonging of the corresponding gp to the tail or to other parts of the phage is not documented. Among these, gp22 lacks sequence identity to any known protein. We report here the gp22 structure solved by X-ray crystallography at 2.35 A resolution. We found that gp22 is a monomer in solution and possesses a significant structural similarity with lactococcal phage p2 ORF 18 N-terminal "shoulder" domain.
Collapse
Affiliation(s)
- David Veesler
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS and Universités d'Aix-Marseille I and II, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France
| | | | | | | | | | | |
Collapse
|
36
|
Mba Medie F, Vincentelli R, Drancourt M, Henrissat B. Mycobacterium tuberculosis Rv1090 and Rv1987 encode functional β-glucan-targeting proteins. Protein Expr Purif 2010; 75:172-6. [PMID: 20826214 DOI: 10.1016/j.pep.2010.08.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 08/27/2010] [Accepted: 08/30/2010] [Indexed: 01/25/2023]
Abstract
Mycobacterium tuberculosis is a facultative intracellular pathogen, and the ability of this bacterium to survive and to grow inside macrophages is central to its virulence. Multiple strategies are employed by M. tuberculosis to ensure survival in macrophages, including secretion of several proteins, which are good candidates to be virulence factors, drug targets for disease intervention, and vaccine antigens. However, some M. tuberculosis secreted proteins do not appear to play any role in the growth or survival of the bacterium in its mammalian host. Among these proteins are three putative cellulose-targeting proteins encoded by the genes Rv0062, Rv1090, and Rv1987. It has been previously shown that Rv0062 encodes an active cellulase. Here we report that Rv1090 and Rv1987 also encode functional proteins. Rv1090 is able to hydrolyze barley β-glucan while Rv1987 displays cellulose-binding activity on filter paper and on microcrystalline cellulose (Avicel). Collectively, these observations point toward a unique unknown relationship between M. tuberculosis and a cellulose-containing host. We hypothesize that amoeba could be such hosts.
Collapse
Affiliation(s)
- Felix Mba Medie
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UMR CNRS 6236, IRD 198, IFR 48, Faculté de Médecine, Université de la Méditerranée, Marseille, France
| | | | | | | |
Collapse
|
37
|
Veesler D, Blangy S, Lichière J, Ortiz-Lombardía M, Tavares P, Campanacci V, Cambillau C. Crystal structure of Bacillus subtilis SPP1 phage gp23.1, a putative chaperone. Protein Sci 2010; 19:1812-6. [PMID: 20665904 PMCID: PMC2975145 DOI: 10.1002/pro.464] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 06/23/2010] [Indexed: 12/28/2022]
Abstract
SPP1 is a siphophage infecting the gram-positive bacterium Bacillus subtilis. The SPP1 tail electron microscopy (EM) reconstruction revealed that it is mainly constituted by conserved structural proteins such as the major tail proteins (gp17.1), the tape measure protein (gp18), the Distal tail protein (Dit, gp19.1), and the Tail associated lysin (gp21). A group of five small genes (22-24.1) follows in the genome but it remains to be elucidated whether their protein products belong or not to the tail. Noteworthy, an unassigned EM density accounting for ~245 kDa is present at the distal end of the SPP1 tail-tip. We report here the gp23.1 crystal structure at 1.6 A resolution, a protein that lacks sequence identity to any known protein. We found that gp23.1 forms a hexamer both in the crystal lattice and in solution as revealed by light scattering measurements. The gp23.1 hexamer does not fit well in the unassigned SPP1 tail-tip EM density and we hypothesize that this protein might act as a chaperone.
Collapse
Affiliation(s)
- David Veesler
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS and Universités d'Aix-Marseille I & II, Campus de LuminyCase 932, 13288 Marseille Cedex 09, France
| | - Stéphanie Blangy
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS and Universités d'Aix-Marseille I & II, Campus de LuminyCase 932, 13288 Marseille Cedex 09, France
| | - Julie Lichière
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS and Universités d'Aix-Marseille I & II, Campus de LuminyCase 932, 13288 Marseille Cedex 09, France
| | - Miguel Ortiz-Lombardía
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS and Universités d'Aix-Marseille I & II, Campus de LuminyCase 932, 13288 Marseille Cedex 09, France
| | - Paulo Tavares
- Unité de Virologie Moléculaire et StructuraleCNRS UPR3296 and IFR 115, Bâtiment 14B, CNRS, Gif-sur-Yvette, France
| | - Valérie Campanacci
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS and Universités d'Aix-Marseille I & II, Campus de LuminyCase 932, 13288 Marseille Cedex 09, France
| | - Christian Cambillau
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS and Universités d'Aix-Marseille I & II, Campus de LuminyCase 932, 13288 Marseille Cedex 09, France
| |
Collapse
|
38
|
Genomics and structure/function studies of Rhabdoviridae proteins involved in replication and transcription. Antiviral Res 2010; 87:149-61. [DOI: 10.1016/j.antiviral.2010.02.322] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 02/20/2010] [Indexed: 01/19/2023]
|
39
|
Francis DM, Page R. Strategies to optimize protein expression in E. coli. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2010; Chapter 5:5.24.1-5.24.29. [PMID: 20814932 PMCID: PMC7162232 DOI: 10.1002/0471140864.ps0524s61] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Recombinant protein expression in Escherichia coli (E. coli) is simple, fast, inexpensive, and robust, with the expressed protein comprising up to 50 percent of the total cellular protein. However, it also has disadvantages. For example, the rapidity of bacterial protein expression often results in unfolded/misfolded proteins, especially for heterologous proteins that require longer times and/or molecular chaperones to fold correctly. In addition, the highly reductive environment of the bacterial cytosol and the inability of E. coli to perform several eukaryotic post-translational modifications results in the insoluble expression of proteins that require these modifications for folding and activity. Fortunately, multiple, novel reagents and techniques have been developed that allow for the efficient, soluble production of a diverse range of heterologous proteins in E. coli. This overview describes variables at each stage of a protein expression experiment that can influence solubility and offers a summary of strategies used to optimize soluble expression in E. coli.
Collapse
|
40
|
Savitsky P, Bray J, Cooper CDO, Marsden BD, Mahajan P, Burgess-Brown NA, Gileadi O. High-throughput production of human proteins for crystallization: the SGC experience. J Struct Biol 2010; 172:3-13. [PMID: 20541610 PMCID: PMC2938586 DOI: 10.1016/j.jsb.2010.06.008] [Citation(s) in RCA: 241] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2010] [Revised: 06/04/2010] [Accepted: 06/07/2010] [Indexed: 11/27/2022]
Abstract
Producing purified human proteins with high yield and purity remains a considerable challenge. We describe the methods utilized in the Structural Genomics Consortium (SGC) in Oxford, resulting in successful purification of 48% of human proteins attempted; of those, the structures of approximately 40% were solved by X-ray crystallography. The main driver has been the parallel processing of multiple (typically 9-20) truncated constructs of each target; modest diversity in vectors and host systems; and standardized purification procedures. We provide method details as well as data on the properties of the constructs leading to crystallized proteins and the impact of methodological variants. These can be used to formulate guidelines for initial approaches to expression of new eukaryotic proteins.
Collapse
Affiliation(s)
- Pavel Savitsky
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Oxford, UK.
| | | | | | | | | | | | | |
Collapse
|
41
|
Campanacci V, Veesler D, Lichière J, Blangy S, Sciara G, Moineau S, van Sinderen D, Bron P, Cambillau C. Solution and electron microscopy characterization of lactococcal phage baseplates expressed in Escherichia coli. J Struct Biol 2010; 172:75-84. [PMID: 20153432 DOI: 10.1016/j.jsb.2010.02.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 02/04/2010] [Accepted: 02/07/2010] [Indexed: 10/19/2022]
Abstract
We report here the characterization of several large structural protein complexes forming the baseplates (or part of them) of Siphoviridae phages infecting Lactococcus lactis: TP901-1, Tuc2009 and p2. We revisited a "block cloning" expression strategy and extended this approach to genomic fragments encoding proteins whose interacting partners have not yet been clearly identified. Biophysical characterization of some of these complexes using circular dichroism and size exclusion chromatography, coupled with on-line light scattering and refractometry, demonstrated that the over-produced recombinant proteins interact with each other to form large (up to 1.9MDa) and stable baseplate assemblies. Some of these complexes were characterized by electron microscopy confirming their structural homogeneity as well as providing a picture of their overall molecular shapes and symmetry. Finally, using these results, we were able to highlight similarities and differences with the well characterized much larger baseplate of the myophage T4.
Collapse
Affiliation(s)
- Valérie Campanacci
- Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 6098 CNRS and Universités Aix-Marseille I & II, Campus de Luminy, Case 932, Marseille Cedex 09, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Deciphering the function of lactococcal phage ul36 Sak domains. J Struct Biol 2009; 170:462-9. [PMID: 20036743 DOI: 10.1016/j.jsb.2009.12.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 12/14/2009] [Accepted: 12/19/2009] [Indexed: 11/20/2022]
Abstract
Virulent phages are responsible for milk fermentation failures in the dairy industry, due to their ability to infect starter cultures containing strains of Lactococcus lactis. Single-strand annealing proteins (SSAPs) have been found in several lactococcal phages, among which Sak in the phage ul36. Sak has been recently shown to be a functional homolog of the human protein RAD52, involved in homologous recombination. A comparison between full-length Sak and its N- and C-terminal domains was carried out to elucidate functional characteristics of each domain. We performed HPLC-SEC, AFM and SPR experiments to evaluate oligomerization states and compare the affinities to DNA. We have shown that the N-terminal domain (1-171) is essential and sufficient for oligomerization and binding to DNA, while the C-terminal domain (172-252) does not bind DNA nor oligomerize. Modelisation of Sak N-terminal domain suggests that DNA may bind a positively charged crevice that runs external to the ring. Annealing and stimulation of RecA strand exchange indicate that only the N-terminal domain is capable of single-strand annealing and both domains do not stimulate the RecA strand exchange reaction. We propose that Sak N-terminus is involved in DNA binding and annealing while the C-terminus may serve to contact Sak partners.
Collapse
|
43
|
Goulet A, Blangy S, Redder P, Prangishvili D, Felisberto-Rodrigues C, Forterre P, Campanacci V, Cambillau C. Acidianus filamentous virus 1 coat proteins display a helical fold spanning the filamentous archaeal viruses lineage. Proc Natl Acad Sci U S A 2009; 106:21155-60. [PMID: 19934032 PMCID: PMC2795548 DOI: 10.1073/pnas.0909893106] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Indexed: 11/18/2022] Open
Abstract
Acidianus filamentous virus 1 (AFV1), a member of the Lipothrixviridae family, infects the hyperthermophilic, acidophilic crenarchaeaon Acidianus hospitalis. The virion, covered with a lipidic outer shell, is 9,100-A long and contains a 20.8-kb linear dsDNA genome. We have identified the two major coat proteins of the virion (MCPs; 132 and 140 amino acids). They bind DNA and form filaments when incubated with linear dsDNA. A C-terminal domain is identified in their crystal structure with a four-helix-bundle fold. In the topological model of the virion filament core, the genomic dsDNA superhelix wraps around the AFV1-132 basic protein, and the AFV1-140 basic N terminus binds genomic DNA, while its lipophilic C-terminal domain is imbedded in the lipidic outer shell. The four-helix bundle fold of the MCPs from AFV1 is identical to that of the coat protein (CP) of Sulfolobus islandicus rod-shaped virus (SIRV), a member of the Rudiviridae family. Despite low sequence identity between these proteins, their high degree of structural similarity suggests that they could have derived from a common ancestor and could thus define an yet undescribed viral lineage.
Collapse
Affiliation(s)
- Adeline Goulet
- Architecture et Fonction des Macromolécules Biologiques, Centre national de la recherche scientifique and Universités Aix-Marseille I & II, Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 6098, Case 932, 163 avenue de Luminy, 13288 Marseille Cedex 9, France
| | - Stéphanie Blangy
- Architecture et Fonction des Macromolécules Biologiques, Centre national de la recherche scientifique and Universités Aix-Marseille I & II, Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 6098, Case 932, 163 avenue de Luminy, 13288 Marseille Cedex 9, France
| | - Peter Redder
- Institut Pasteur, Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, 28 Rue du Dr Roux, 75724 Paris Cedex 15, France; and
| | - David Prangishvili
- Institut Pasteur, Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, 28 Rue du Dr Roux, 75724 Paris Cedex 15, France; and
| | - Catarina Felisberto-Rodrigues
- Architecture et Fonction des Macromolécules Biologiques, Centre national de la recherche scientifique and Universités Aix-Marseille I & II, Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 6098, Case 932, 163 avenue de Luminy, 13288 Marseille Cedex 9, France
| | - Patrick Forterre
- Institut Pasteur, Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, 28 Rue du Dr Roux, 75724 Paris Cedex 15, France; and
- Institut de Génétique et Microbiologie, Université Paris-Sud and Centre national de la recherche scientifique, Unité Mixte de Recherche 8621, 91405 Orsay Cedex, France
| | - Valérie Campanacci
- Architecture et Fonction des Macromolécules Biologiques, Centre national de la recherche scientifique and Universités Aix-Marseille I & II, Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 6098, Case 932, 163 avenue de Luminy, 13288 Marseille Cedex 9, France
| | - Christian Cambillau
- Architecture et Fonction des Macromolécules Biologiques, Centre national de la recherche scientifique and Universités Aix-Marseille I & II, Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 6098, Case 932, 163 avenue de Luminy, 13288 Marseille Cedex 9, France
| |
Collapse
|
44
|
Veesler D, Dreier B, Blangy S, Lichière J, Tremblay D, Moineau S, Spinelli S, Tegoni M, Plückthun A, Campanacci V, Cambillau C. Crystal structure and function of a DARPin neutralizing inhibitor of lactococcal phage TP901-1: comparison of DARPin and camelid VHH binding mode. J Biol Chem 2009; 284:30718-26. [PMID: 19740746 DOI: 10.1074/jbc.m109.037812] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Combinatorial libraries of designed ankyrin repeat proteins (DARPins) have been proven to be a valuable source of specific binding proteins, as they can be expressed at very high levels and are very stable. We report here the selection of DARPins directed against a macromolecular multiprotein complex, the baseplate BppUxBppL complex of the lactococcal phage TP901-1. Using ribosome display, we selected several DARPins that bound specifically to the tip of the receptor-binding protein (RBP, the BppL trimer). The three selected DARPins display high specificity and affinity in the low nanomolar range and bind with a stoichiometry of one DARPin per BppL trimer. The crystal structure of a DARPin complexed with the RBP was solved at 2.1 A resolution. The DARPinxRBP interface is of the concave (DARPin)-convex (RBP) type, typical of other DARPin protein complexes and different from what is observed with a camelid VHH domain, which penetrates the phage p2 RBP inter-monomer interface. Finally, phage infection assays demonstrated that TP901-1 infection of Lactococcus lactis cells was inhibited by each of the three selected DARPins. This study provides proof of concept for the possible use of DARPins to circumvent viral infection. It also provides support for the use of DARPins in co-crystallization, due to their rigidity and their ability to provide multiple crystal contacts.
Collapse
Affiliation(s)
- David Veesler
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS and the Universités Aix-Marseille I and II, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Alberto F, Navarro D, de Vries R, Asther M, Record E. Technical advance in fungal biotechnology: development of a miniaturized culture method and an automated high-throughput screening. Lett Appl Microbiol 2009; 49:278-82. [DOI: 10.1111/j.1472-765x.2009.02655.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
Queen bee pheromone binding protein pH-induced domain swapping favors pheromone release. J Mol Biol 2009; 390:981-90. [PMID: 19481550 DOI: 10.1016/j.jmb.2009.05.067] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 05/19/2009] [Accepted: 05/22/2009] [Indexed: 11/21/2022]
Abstract
In honeybee (Apis mellifera) societies, the queen controls the development and the caste status of the members of the hive. Queen bees secrete pheromonal blends comprising 10 or more major and minor components, mainly hydrophobic. The major component, 9-keto-2(E)-decenoic acid (9-ODA), acts on the workers and male bees (drones), eliciting social or sexual responses. 9-ODA is captured in the antennal lymph and transported to the pheromone receptor(s) in the sensory neuron membranes by pheromone binding proteins (PBPs). A key issue is to understand how the pheromone, once tightly bound to its PBP, is released to activate the receptor. We report here on the structure at physiological pH of the main antennal PBP, ASP1, identified in workers and male honeybees, in its apo or complexed form, particularly with the main component of the queen mandibular pheromonal mixture (9-ODA). Contrary to the ASP1 structure at low pH, the ASP1 structure at pH 7.0 is a domain-swapped dimer with one or two ligands per monomer. This dimerization is disrupted by a unique residue mutation since Asp35 Asn and Asp35 Ala mutants remain monomeric at pH 7.0, as does native ASP1 at pH 4.0. Asp35 is conserved in only approximately 30% of medium-chain PBPs and is replaced by other residues, such as Asn, Ala and Ser, among others, thus excluding that they may perform domain swapping. Therefore, these different medium-chain PBPs, as well as PBPs from moths, very likely exhibit different mechanisms of ligand release or receptor recognition.
Collapse
|
47
|
Mammalian G-protein-coupled receptor expression in Escherichia coli: I. High-throughput large-scale production as inclusion bodies. Anal Biochem 2009; 386:147-55. [DOI: 10.1016/j.ab.2008.12.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 11/27/2008] [Accepted: 12/13/2008] [Indexed: 11/20/2022]
|
48
|
Crystal structure of ORF12 from Lactococcus lactis phage p2 identifies a tape measure protein chaperone. J Bacteriol 2008; 191:728-34. [PMID: 19047351 DOI: 10.1128/jb.01363-08] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We report here the characterization of the nonstructural protein ORF12 of the virulent lactococcal phage p2, which belongs to the Siphoviridae family. ORF12 was produced as a soluble protein, which forms large oligomers (6- to 15-mers) in solution. Using anti-ORF12 antibodies, we have confirmed that ORF12 is not found in the virion structure but is detected in the second half of the lytic cycle, indicating that it is a late-expressed protein. The structure of ORF12, solved by single anomalous diffraction and refined at 2.9-A resolution, revealed a previously unknown fold as well as the presence of a hydrophobic patch at its surface. Furthermore, crystal packing of ORF12 formed long spirals in which a hydrophobic, continuous crevice was identified. This crevice exhibited a repeated motif of aromatic residues, which coincided with the same repeated motif usually found in tape measure protein (TMP), predicted to form helices. A model of a complex between ORF12 and a repeated motif of the TMP of phage p2 (ORF14) was generated, in which the TMP helix fitted exquisitely in the crevice and the aromatic patches of ORF12. We suggest, therefore, that ORF12 might act as a chaperone for TMP hydrophobic repeats, maintaining TMP in solution during the tail assembly of the lactococcal siphophage p2.
Collapse
|
49
|
Green fluorescent protein and factorial approach: An effective partnership for screening the soluble expression of recombinant proteins in Escherichia coli. Protein Expr Purif 2008; 61:184-90. [DOI: 10.1016/j.pep.2008.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 05/22/2008] [Accepted: 05/27/2008] [Indexed: 11/17/2022]
|
50
|
Ely F, Nunes JES, Schroeder EK, Frazzon J, Palma MS, Santos DS, Basso LA. The Mycobacterium tuberculosis Rv2540c DNA sequence encodes a bifunctional chorismate synthase. BMC BIOCHEMISTRY 2008; 9:13. [PMID: 18445278 PMCID: PMC2386126 DOI: 10.1186/1471-2091-9-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Accepted: 04/29/2008] [Indexed: 12/21/2022]
Abstract
BACKGROUND The emergence of multi- and extensively-drug resistant Mycobacterium tuberculosis strains has created an urgent need for new agents to treat tuberculosis (TB). The enzymes of shikimate pathway are attractive targets to the development of antitubercular agents because it is essential for M. tuberculosis and is absent from humans. Chorismate synthase (CS) is the seventh enzyme of this route and catalyzes the NADH- and FMN-dependent synthesis of chorismate, a precursor of aromatic amino acids, naphthoquinones, menaquinones, and mycobactins. Although the M. tuberculosis Rv2540c (aroF) sequence has been annotated to encode a chorismate synthase, there has been no report on its correct assignment and functional characterization of its protein product. RESULTS In the present work, we describe DNA amplification of aroF-encoded CS from M. tuberculosis (MtCS), molecular cloning, protein expression, and purification to homogeneity. N-terminal amino acid sequencing, mass spectrometry and gel filtration chromatography were employed to determine identity, subunit molecular weight and oligomeric state in solution of homogeneous recombinant MtCS. The bifunctionality of MtCS was determined by measurements of both chorismate synthase and NADH:FMN oxidoreductase activities. The flavin reductase activity was characterized, showing the existence of a complex between FMNox and MtCS. FMNox and NADH equilibrium binding was measured. Primary deuterium, solvent and multiple kinetic isotope effects are described and suggest distinct steps for hydride and proton transfers, with the former being more rate-limiting. CONCLUSION This is the first report showing that a bacterial CS is bifunctional. Primary deuterium kinetic isotope effects show that C4-proS hydrogen is being transferred during the reduction of FMNox by NADH and that hydride transfer contributes significantly to the rate-limiting step of FMN reduction reaction. Solvent kinetic isotope effects and proton inventory results indicate that proton transfer from solvent partially limits the rate of FMN reduction and that a single proton transfer gives rise to the observed solvent isotope effect. Multiple isotope effects suggest a stepwise mechanism for the reduction of FMNox. The results on enzyme kinetics described here provide evidence for the mode of action of MtCS and should thus pave the way for the rational design of antitubercular agents.
Collapse
Affiliation(s)
- Fernanda Ely
- Centro de Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, RS 90619-900, Porto Alegre, Brazil
| | - José ES Nunes
- Centro de Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, RS 90619-900, Porto Alegre, Brazil
| | - Evelyn K Schroeder
- Centro de Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, RS 90619-900, Porto Alegre, Brazil
| | - Jeverson Frazzon
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, RS 91501-970, Porto Alegre, Brazil
| | - Mário S Palma
- Departamento de Biologia/CEIS, Universidade Estadual Paulista, SP 13506-900, Rio Claro, Brazil
| | - Diógenes S Santos
- Centro de Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, RS 90619-900, Porto Alegre, Brazil
| | - Luiz A Basso
- Centro de Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, RS 90619-900, Porto Alegre, Brazil
| |
Collapse
|