1
|
Oshchepkov AS. Buckybowl Molecular Tweezers for Recognition of Fullerenes. Chemphyschem 2024; 25:e202400435. [PMID: 38775747 DOI: 10.1002/cphc.202400435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Indexed: 07/05/2024]
Abstract
Buckybowl tweezers are a relatively young research area closely associated with the development of non-planar polycyclic aromatic systems and supramolecular chemistry. Since the appearance of the first prototypes in the early 2000s, the tweezers have undergone evolutionary changes. Nowadays they are able to effectively interact with fullerenes and the results opened up prospects for development in the field of sensing, nonlinear optics, and molecular switchers. In the present study, examples of corannulene-based and other buckybowl tweezers for the recognition of C60 and C70 fullerenes were summarized and analyzed. The main structural components of the tweezers were also reviewed in detail and their role in the formation of complexes with fullerenes was evaluated. The revealed structural patterns should trigger the development of novel recognition systems and materials with a wide range of applications.
Collapse
Affiliation(s)
- Alexander S Oshchepkov
- Organic Chemistry Department, Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Straße 2, 06120, Halle, Germany
- Department of Physics, Max Planck Institute for the Science of Light, Staudtstrasse 2, 91058, Erlangen, Germany
| |
Collapse
|
2
|
Stevenson S, Dorn HC. Fullertubes: A 30-Year Story of Prediction, Experimental Validation, and Applications for a Long-Missing Family of Soluble Carbon Molecules. Acc Chem Res 2024; 57:2154-2165. [PMID: 39042832 PMCID: PMC11309000 DOI: 10.1021/acs.accounts.4c00302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
ConspectusDuring the last 30 years, theoretical scientists imagined segmental families of monolayer carbon tubules with fullerene-based end-caps. These fullertube molecules would possess structural features of both fullerenes (hemispherical end-caps) and tubular belts of single-walled carbon nanotubes (SWCNTs). Yet, their experimental verification remained elusive for decades. It was not until 2020-2023 that segmental families of fullertubes were finally confirmed in the lab. The shocking irony is that these fullertubes were unwittingly coproduced alongside fullerenes (e.g., C60, C70, C84) in both flame and electric arc soot since the 1990s. Yet, nobody knew these "hidden" families of fullertubes were experimentally present in their extracted soot due to their low abundance and the absence of isolation methodology.This eruption of fullertube discoveries in 2020-2023 was brought to fruition by structural data, both DFT and experimental. This "Treasure Trove" of new molecules during this four-year window occurred with only microgram quantities. Typically, milligram levels of purified samples are required for X-ray crystallography and 13C NMR structural analysis. The breakthrough for experimentally verifying the missing fullertubes was an aminopropanol reagent to selectively react with and remove spheroidal carbon (e.g., C60, C70, C84) as hydrophilic derivatives. In contrast, there was suppressed reaction with fullertubes, which remained in organic solvent. It is well established that high symmetry (3-, 5-, and 6-fold) hemispheres for C60-Ih and other fullerenes and metallofullerenes are prerequisite end-caps for fullertubes. For the case of [5,5] C130 fullertubes, this requirement results in only eight 3-, 5-, and 6-fold symmetry structural isomers possible from a total of 39,393 possible isolated pentagon rule (IPR) isomers. From this C130 list of 8 candidate isolated pentagon rule (IPR) high symmetry isomers, surprisingly only one structure matched the DFT polarizability versus chromatographic retention parameter (a new gold standard for isomer identification). The simultaneous emergence of DFT computations of other properties (e.g., total energy, HOMO-LUMO gap, UV-vis) for large carbon molecules provided support for structural determination. Experimental approaches (e.g., mass spectrometry, UV-vis, XPS, Raman, and STEM) provided additional layers of structural elucidation at the microgram level. For the first time, we developed a chemical isolation protocol that would allow the preparation and isolation of soluble pristine fullertubes in the range of C90-C200. To date, applications of SWCNTs for use in nanoscale computer applications requires purities greater than 99.999%. Although this stringent mandate has not yet been demonstrated using SWCNT samples, this high level of purity appears achievable for metallic [5,5] D5d-C120 and semiconductor [10,0] D5h-C120 [10,766] fullertubes. Moreover, commercial production of pristine fullertubes should easily be feasible by the flame method due to its continuous operation and inexpensive feedstock. For application development, theoretical and electrochemical experimental data show that fullertubes exhibit high catalytic activity in oxygen reduction reactions. In the medical sector, pristine fullertube dispersions exhibit antimicrobial effects on Mycobacterium smegmatis and M. abscessus.
Collapse
Affiliation(s)
- Steven Stevenson
- Department
of Chemistry, FIRST Molecules Center of Research, Purdue University Fort Wayne, Fort Wayne, Indiana 46805, United States
| | - Harry C. Dorn
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
| |
Collapse
|
3
|
Wang J, Li Z, Zhang W. Shale Gas Nanofluid in the Curved Carbon Nanotube: A Molecular Dynamics Simulation Study. ACS OMEGA 2024; 9:30846-30858. [PMID: 39035941 PMCID: PMC11256318 DOI: 10.1021/acsomega.4c03659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/23/2024]
Abstract
Curved nanochannels are prevalent in porous and tortuous materials, with shale matrices being a noteworthy example. The tortuosity of shale matrices significantly influences the behavior of shale gas, holding crucial implications for gas recovery engineering. In this study, we employ molecular dynamics simulation (MD) to investigate the impact of curvature and radius in tortuous nanochannel formed by a curved single-walled carbon nanotube (SWCNT) on the adsorption and transport properties of methane gas fluid. Our findings reveal that the inner half surface of the SWCNT, characterized by negative curvature, exhibits enhanced methane adsorption. Methane in straighter and narrower channels displays higher flow velocities, while wider channels exhibit higher flow flux. The nonzero flow velocity alters adsorption strength, causing the outer half to surpass the inner half. Tangent and vertical velocities of the flow are heterogeneously distributed in the channel, with the outer half having higher tangent velocities. Additionally, a vertical velocity pulse near the entrance induces turbulent vortex flow, slowing down the tangent flow velocity. This research contributes to a deeper understanding of shale gas properties in matrices with bent and curved channels, offering insights into nanofluids in carbon nanotubes and porous media featuring curved nanochannels.
Collapse
Affiliation(s)
- Jiang Wang
- College
of Science, Guizhou Institute of Technology, Boshi Road, Dangwu Town, Gui’an New District, Guizhou 550025, China
| | - Zhiling Li
- College
of Science, Guizhou Institute of Technology, Boshi Road, Dangwu Town, Gui’an New District, Guizhou 550025, China
| | - Wenli Zhang
- School
of Transportation Engineering, Guizhou Institute
of Technology, Boshi
Road, Dangwu Town, Gui’an New District, Guizhou 550025, China
| |
Collapse
|
4
|
Pan Y, Chen F, Li Y, Yang W, Sun L, Yi Z. A carbon nanotube metamaterial sensor showing slow light properties based on double plasmon-induced transparency. Phys Chem Chem Phys 2024; 26:16096-16106. [PMID: 38780318 DOI: 10.1039/d4cp01553c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
In this study, we proposed a bifunctional sensor of high sensitivity and slow light based on carbon nanotubes (CNTs). An array of left semicircular ring (LSR), right semicircular ring (RSR), and circular ring (CR) resonators are utilized to form the proposed metamaterial. The proposed structure can achieve double plasmon-induced transparency (PIT) effects under the excitation of a TM-polarization wave. The double PIT originated from the destructive interference between two bright modes and a dark mode. A coupled harmonic oscillator model is used to describe the destructive interference between the two bright modes and a dark mode, and the simulation results agree well with the calculated results. Moreover, we investigate the influence of the coupling distance, period, and flare angle on the PIT spectra. The relationship between the resonant frequencies, full width at half maximum (FWHM), amplitudes, quality factors (Q), and the coupling distance is also studied. Finally, a high sensitivity of 1.02 THz RIU-1 is obtained, and the transmission performance can be maintained at a good level when the incident angle is less than 40°. Thus, the sensor can cope with situations where electromagnetic waves are not perpendicular to the structure's surface. The maximum figure of merit (FOM) can reach about 8.26 RIU-1; to verify the slow light property of the device, the slow light performance of the proposed structure is investigated, and a maximum time delay (TD) of 22.26 ps is obtained. The proposed CNT-based metamaterial can be used in electromagnetically induced transparency applications, such as sensors, optical memory devices, and flexible terahertz functional devices.
Collapse
Affiliation(s)
- Yizhao Pan
- Institute of Quantum Optics and Information Photonics, School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, People's Republic of China.
| | - Fang Chen
- Institute of Quantum Optics and Information Photonics, School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, People's Republic of China.
| | - Yuchang Li
- Institute of Quantum Optics and Information Photonics, School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, People's Republic of China.
| | - Wenxing Yang
- Institute of Quantum Optics and Information Photonics, School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, People's Republic of China.
| | - Lihui Sun
- Institute of Quantum Optics and Information Photonics, School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, People's Republic of China.
| | - Zao Yi
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
5
|
Konno Y, Yamada M, Suzuki M, Maeda Y. Stepwise Functionalization of Single-Walled Carbon Nanotubes with Subsequent Molecular Conversion to Control Photoluminescence Properties. Chemistry 2023; 29:e202301707. [PMID: 37460442 DOI: 10.1002/chem.202301707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Indexed: 08/06/2023]
Abstract
Functionalization of single-walled carbon nanotubes (SWCNTs) has attracted interest because it alters the near-infrared (NIR) photoluminescence (PL) wavelength and emission efficiency. These modifications depend on the binding configuration and degree of functionalization. Excessive functionalization reduces the emission efficiency as the integrity of the conjugated π system decreases; thus, controlling the degree of functionalization is essential. Because the binding configurations and degree of functionalization are affected by the reagent structure, a stepwise approach combining SWCNTs functionalization and subsequent reactions to introduce functional groups into the addenda could effectively control their PL properties and functionalities. We studied this approach by implementing the reductive alkylation of SWCNTs by using bromoalkanes with t-butyl carbamate (Boc)-protected amino groups and subsequent deprotection and amidation reactions. The reaction products were analyzed based on absorption, PL, and Raman spectroscopy and the Kaiser test. Depending on the structure of the reagent, deprotection and amidation reactions competed with the elimination reaction of addenda, altering the PL properties of the SWCNTs. Furthermore, the elimination reaction was inhibited in the adducts functionalized using dibromoalkane with Boc-protected amino groups, demonstrating that the use of appropriate reagents enables the molecular conversion of the functional groups of SWCNT adducts without affecting their PL properties.
Collapse
Affiliation(s)
- Yui Konno
- Division of Mathematics and Natural Science Education, The United Graduate School of Education, Tokyo Gakugei University, 184-8501, Tokyo, Japan
| | - Michio Yamada
- Division of Mathematics and Natural Science Education, The United Graduate School of Education, Tokyo Gakugei University, 184-8501, Tokyo, Japan
- Department of Chemistry, Tokyo Gakugei University, 184-8501, Tokyo, Japan
| | - Mitsuaki Suzuki
- Department of Chemistry, Josai University, 350-0295, Sakado, Japan
| | - Yutaka Maeda
- Division of Mathematics and Natural Science Education, The United Graduate School of Education, Tokyo Gakugei University, 184-8501, Tokyo, Japan
- Department of Chemistry, Tokyo Gakugei University, 184-8501, Tokyo, Japan
| |
Collapse
|
6
|
de Oliveira NR, Santos FDS, Dos Santos VAC, Maia MAC, Oliveira TL, Dellagostin OA. Challenges and Strategies for Developing Recombinant Vaccines against Leptospirosis: Role of Expression Platforms and Adjuvants in Achieving Protective Efficacy. Pathogens 2023; 12:787. [PMID: 37375478 DOI: 10.3390/pathogens12060787] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
The first leptospiral recombinant vaccine was developed in the late 1990s. Since then, progress in the fields of reverse vaccinology (RV) and structural vaccinology (SV) has significantly improved the identification of novel surface-exposed and conserved vaccine targets. However, developing recombinant vaccines for leptospirosis faces various challenges, including selecting the ideal expression platform or delivery system, assessing immunogenicity, selecting adjuvants, establishing vaccine formulation, demonstrating protective efficacy against lethal disease in homologous challenge, achieving full renal clearance using experimental models, and reproducibility of protective efficacy against heterologous challenge. In this review, we highlight the role of the expression/delivery system employed in studies based on the well-known LipL32 and leptospiral immunoglobulin-like (Lig) proteins, as well as the choice of adjuvants, as key factors to achieving the best vaccine performance in terms of protective efficacy against lethal infection and induction of sterile immunity.
Collapse
Affiliation(s)
- Natasha Rodrigues de Oliveira
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-610, RS, Brazil
| | - Francisco Denis Souza Santos
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-610, RS, Brazil
| | | | - Mara Andrade Colares Maia
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-610, RS, Brazil
| | - Thaís Larré Oliveira
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-610, RS, Brazil
| | - Odir Antônio Dellagostin
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-610, RS, Brazil
| |
Collapse
|
7
|
Yumura T, Sugimori N, Fukuura S. Theoretical understanding of stability of mechanically interlocked carbon nanotubes and their precursors. Phys Chem Chem Phys 2023; 25:7527-7539. [PMID: 36853805 DOI: 10.1039/d2cp04738a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Dispersion-corrected DFT calculations were performed on (a,a) nanotubes (a = 5-10) attached by a U-shaped functional group consisting of p-xylene-linked double 9,10-di(1,3-dithiol-2-ylidene)-9,10-dihydro anthracene terminated by CnH2n chains (n = 6, 8, and 9), and their ring-closing macrocycles containing tubes. The reactant precursors and macrocycles are denoted by UP-n-(a,a) and (a,a)@Cycle-n, respectively. We found that UP-n-(a,a) are energetically preferable relative to the dissociation limit toward a U-shaped functional group (UP-n) and a tube (initial state) due to the attractive CH-π and π-π interactions. The attractive interactions are enhanced by increasing the tube diameters and CnH2n chain lengths because UP-n structures can be easily adjusted to interact with the tubes. The stability of (a,a)@Cycle-n and related (a,b)@Cycle-n is sensitive to tube diameters due to the restriction of ring structures. When diameter differences between a Cycle-n and a tube (D-d) are larger than 5 Å, (a,a)@Cycle-n plus C2H4 are energetically preferable relative to the initial state. However, the (a,a)@Cycle-n plus C2H4 byproduct is always energetically unstable relative to UP-n-(a,a). The DFT calculations found that the energy differences were low at D-d values ranging from 7 to 8 Å, explaining the tube-diameter-selective formation of the mechanically-interlocked tubes, observed experimentally.
Collapse
Affiliation(s)
- Takashi Yumura
- Faculty of Materials Science and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| | - Nobuyuki Sugimori
- Faculty of Materials Science and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| | - Shuta Fukuura
- Faculty of Materials Science and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| |
Collapse
|
8
|
Shang S, Du C, Liu Y, Liu M, Wang X, Gao W, Zou Y, Dong J, Liu Y, Chen J. A one-dimensional conductive metal-organic framework with extended π-d conjugated nanoribbon layers. Nat Commun 2022; 13:7599. [PMID: 36494377 PMCID: PMC9734122 DOI: 10.1038/s41467-022-35315-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
Conductive metal-organic frameworks (MOFs) have performed well in the fields of energy and catalysis, among which two-dimensional (2D) and three-dimensional (3D) MOFs are well-known. Here, we have synthesized a one-dimensional (1D) conductive metal-organic framework (MOF) in which hexacoordinated 1,5-Diamino-4,8-dihydroxy-9,10-anthraceneedione (DDA) ligands are connected by double Cu ions, resulting in nanoribbon layers with 1D π-d conjugated nanoribbon plane and out-of-plane π-π stacking, which facilitates charge transport along two dimensions. The DDA-Cu as a highly conductive n-type MOF has high crystalline quality with a conductivity of ~ 9.4 S·m-1, which is at least two orders of magnitude higher than that of conventional 1D MOFs. Its electrical band gap (Eg) and exciton binding energy (Eb) are approximately 0.49 eV and 0.3 eV, respectively. When utilized as electrode material in a supercapacitor, the DDA-Cu exhibits good charge storage capacity and cycle stability. Meanwhile, as thse active semiconductor layer, it successfully simulates the artificial visual perception system with excellent bending resistance and air stability as a MOF-based flexible optoelectronic synaptic case. The controllable preparation of high-quality 1D DDA-Cu MOF may enable new architectural designs and various applications in the future.
Collapse
Affiliation(s)
- Shengcong Shang
- grid.9227.e0000000119573309Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, P. R. China
| | - Changsheng Du
- grid.9227.e0000000119573309Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, P. R. China
| | - Youxing Liu
- grid.9227.e0000000119573309Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, P. R. China
| | - Minghui Liu
- grid.9227.e0000000119573309Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, P. R. China
| | - Xinyu Wang
- grid.9227.e0000000119573309Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, P. R. China
| | - Wenqiang Gao
- grid.9227.e0000000119573309Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, P. R. China
| | - Ye Zou
- grid.9227.e0000000119573309Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, P. R. China
| | - Jichen Dong
- grid.9227.e0000000119573309Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, P. R. China
| | - Yunqi Liu
- grid.9227.e0000000119573309Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, P. R. China
| | - Jianyi Chen
- grid.9227.e0000000119573309Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, P. R. China
| |
Collapse
|
9
|
An advanced 3D gel cathode with continuous ion and electron transport pathway for solid-state lithium batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
Zhang C, Fortner J, Wang P, Fagan JA, Wang S, Liu M, Maruyama S, Wang Y. van der Waals SWCNT@BN Heterostructures Synthesized from Solution-Processed Chirality-Pure Single-Wall Carbon Nanotubes. ACS NANO 2022; 16:18630-18636. [PMID: 36346984 DOI: 10.1021/acsnano.2c07128] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Single-wall carbon nanotubes in boron nitride (SWCNT@BN) are one-dimensional van der Waals heterostructures that exhibit intriguing physical and chemical properties. As with their carbon nanotube counterparts, these heterostructures can form from different combinations of chiralities, providing rich structures but also posing a significant synthetic challenge to controlling their structure. Enabled by advances in nanotube chirality sorting, clean removal of the surfactant used for solution processing, and a simple method to fabricate free-standing submonolayer films of chirality pure SWCNTs as templates for the BN growth, we show it is possible to directly grow BN on chirality enriched SWCNTs from solution processing to form van der Waals heterostructures. We further report factors affecting the heterostructure formation, including an accelerated growth rate in the presence of H2, and significantly improved crystallization of the grown BN, with the BN thickness controlled down to one single BN layer, through the presence of a Cu foil in the reactor. Transmission electron microscopy and electron energy-loss spectroscopic mapping confirm the synthesis of SWCNT@BN from the solution purified nanotubes. The photoluminescence peaks of both (7,5)- and (8,4)-SWCNT@BN heterostructures are found to redshift (by ∼10 nm) relative to the bare SWCNTs. Raman scattering suggests that the grown BN shells pose a confinement effect on the SWCNT core.
Collapse
Affiliation(s)
- Chiyu Zhang
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, Maryland 20742, United States
| | - Jacob Fortner
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, Maryland 20742, United States
| | - Peng Wang
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, Maryland 20742, United States
| | - Jeffrey A Fagan
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Shuhui Wang
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Ming Liu
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Shigeo Maruyama
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, Maryland 20742, United States
- Maryland NanoCenter, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
11
|
Rivas-Sanchez A, Cruz-Cruz A, Gallareta-Olivares G, González-González RB, Parra-Saldívar R, Iqbal HMN. Carbon-based nanocomposite materials with multifunctional attributes for environmental remediation of emerging pollutants. CHEMOSPHERE 2022; 303:135054. [PMID: 35613636 DOI: 10.1016/j.chemosphere.2022.135054] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 05/27/2023]
Abstract
Carbon-based materials are among the most biosynthesized nanocomposites with excellent tunability and multifunctionality features, that other materials fail to demonstrate. Naturally occurring materials, such as alginate (Alg), can be combined and modified by linking the active moieties of various carbon-based materials of interest, such as graphene oxide (GO), carbon nanotubes (CNTs), and mesoporous silica nanocomposite (MSN), among others. Thus, several types of robust nanocomposites have been fabricated and deployed for environmental remediation of emerging pollutants, such as pharmaceutical compounds, toxic dyes, and other environmentally hazardous contaminants of emerging concern. Considering the above critiques and added features of carbon-based nanocomposites, herein, an effort has been made to spotlight the synergies of GO, CNTs, and MSN with Alg and their role in mitigating emerging pollutants. From the information presented in this work, it can be concluded that Alg is a material that has excellent potential. However, its use still requires further tests in different areas and other materials to carry out a holistic investigation that exploits its versatility for environmental remediation purposes.
Collapse
Affiliation(s)
- Andrea Rivas-Sanchez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Angelica Cruz-Cruz
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | | | | | | | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
12
|
Prakash V, Christian Y, Redkar AS, Roy A, Anandalakshmi R, Ramakrishnan V. Antibacterial hydrogels of aromatic tripeptides. SOFT MATTER 2022; 18:6360-6371. [PMID: 35971808 DOI: 10.1039/d2sm00606e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Self-assembled peptide hydrogels have emerged as alternatives to the conventional approaches employed in controlled drug release, wound-healing, and drug delivery, and as anti-infective agents. However, peptide hydrogels possessing antibacterial properties are less explored. In this work, we have designed three ultrashort antibacterial peptide hydrogels: Fmoc-FFH-CONH2, Fmoc-FHF-CONH2, and Fmoc-HFF-CONH2. The rheological study showed the higher storage modulus of Fmoc-FFH-CONH2 (30.43 kPa) compared to Fmoc-FHF-CONH2 and Fmoc-HFF-CONH2, which may be attributed to the enhanced aromatic interaction in Fmoc-FFH-CONH2 compared to the other two variants, resulting in more mechanical rigidity. Further, the prepared hydrogels were evaluated for their inherent antibacterial potency against Gram-positive (Staphylococcus aureus, strain MTCC 96) and Gram-negative (Pseudomonas aeruginosa, strain PA01) bacteria. Antibacterial experiments demonstrated the potency of the hydrogels in the order of Fmoc-FFH-CONH2 > Fmoc-FHF-CONH2 > Fmoc-HFF-CONH2. The antibacterial effect of the hydrogels was predominantly due to the osmotic stress and membrane disruption, which was verified by reactive oxygen species (ROS) generation and outer membrane permeabilization assays. Our findings point to the scope of using the synthesized peptide hydrogels as agents for topical applications.
Collapse
Affiliation(s)
- Vivek Prakash
- Molecular Informatics and Design Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Yvonne Christian
- Molecular Informatics and Design Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Amay Sanjay Redkar
- Molecular Informatics and Design Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Abhishek Roy
- Advanced Energy & Materials Systems Laboratory, Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - R Anandalakshmi
- Advanced Energy & Materials Systems Laboratory, Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Vibin Ramakrishnan
- Molecular Informatics and Design Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| |
Collapse
|
13
|
Bergner J, Walla C, Rominger F, Dreuw A, Kivala M. Inducing Curvature to Pyracylene upon π‐Expansion. Chemistry 2022; 28:e202201554. [PMID: 35652474 PMCID: PMC9543126 DOI: 10.1002/chem.202201554] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 12/13/2022]
Abstract
We disclose a successive π‐expansion of pyracylene towards boat‐shaped polycyclic scaffolds. The unique structural features of the resulting compounds were revealed by X‐ray crystallographic analysis. Depending on the extent of π‐expansion the compounds display intense bathochromically shifted absorption bands in their UV/Vis spectra and are prone to several redox events as documented by cyclic voltammetry. The experimental observations are in line with the computational studies based on density functional theory, suggesting progressive narrowing of the HOMO–LUMO gap and distinct evolution of the electronic structure and aromaticity.
Collapse
Affiliation(s)
- John Bergner
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Centre for Advanced Materials Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 225 69120 Heidelberg Germany
| | - Christian Walla
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Interdisziplinäres Zentrum für Wissenschaftliches Rechnen Universität Heidelberg Im Neuenheimer Feld 205 A 69120 Heidelberg Germany
| | - Frank Rominger
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Andreas Dreuw
- Interdisziplinäres Zentrum für Wissenschaftliches Rechnen Universität Heidelberg Im Neuenheimer Feld 205 A 69120 Heidelberg Germany
| | - Milan Kivala
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Centre for Advanced Materials Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 225 69120 Heidelberg Germany
| |
Collapse
|
14
|
Nanotube Functionalization: Investigation, Methods and Demonstrated Applications. MATERIALS 2022; 15:ma15155386. [PMID: 35955321 PMCID: PMC9369776 DOI: 10.3390/ma15155386] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 02/04/2023]
Abstract
This review presents an update on nanotube functionalization, including an investigation of their methods and applications. The review starts with the discussion of microscopy and spectroscopy investigations of functionalized carbon nanotubes (CNTs). The results of transmission electron microscopy and scanning tunnelling microscopy, X-ray photoelectron spectroscopy, infrared spectroscopy, Raman spectroscopy and resistivity measurements are summarized. The update on the methods of the functionalization of CNTs, such as covalent and non-covalent modification or the substitution of carbon atoms, is presented. The demonstrated applications of functionalized CNTs in nanoelectronics, composites, electrochemical energy storage, electrode materials, sensors and biomedicine are discussed.
Collapse
|
15
|
M13 Bacteriophage-Based Bio-nano Systems for Bioapplication. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00069-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
16
|
Meng XL, Liu SY, Xue JS, Gou JM, Wang D, Liu HS, Chen CL, Xu CB. Protective effects of Liensinine, Isoliensinine, and Neferine on PC12 cells injured by amyloid-β. J Food Biochem 2022; 46:e14303. [PMID: 35762411 DOI: 10.1111/jfbc.14303] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/24/2022] [Accepted: 06/02/2022] [Indexed: 12/14/2022]
Abstract
Excessive accumulation of amyloid-β (Aβ) is the leading cause of Alzheimer's disease (AD). Liensinine, Isoliensinine, and Neferine are main alkaloids in lotus seed embryos. In this paper, the protective effects of Liensinine, Isoliensinine, and Neferine on Aβ25-35 -injured PC12 cells were studied. It was found that Liensinine, Isoliensinine, and Neferine could improve the viability and reduce the apoptosis of PC12 cell induced by Aβ25-35 . These three alkaloids could also reduce the level of intracellular free Ca2+ and CaM expression in Aβ25-35 -treated cells, thereby inhibiting the phosphorylation of CaMKII and tau. In addition, these three compounds can inhibit the production of ROS in PC12 cells injured by Aβ25-35 . Our results suggest for the first time that Liensinine, Isoliensinine, and Neferine can inhibit hyperphosphorylation of tau protein by inhibiting the Ca2+ -CaM/CaMKII pathway, thereby reducing the apoptosis and death of PC12 cells damaged by Aβ25-35 . PRACTICAL APPLICATIONS: This study highlighted the protective effects and mechanisms of three main active ingredients (Liensinine, Isoliensinine, and Neferine) in the lotus embryo on a typical cell model of Alzheimer's disease (AD). The results revealed that three alkaloids in this healthy food might exert therapeutic potential for AD.
Collapse
Affiliation(s)
- Xue-Lian Meng
- School of Pharmaceutical Science, Liaoning University, Shenyang, China.,Key Laboratory of New Drug Research and Development of Liaoning Province, Shenyang, China
| | - Song-Yao Liu
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
| | - Jing-Su Xue
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
| | - Jiang-Min Gou
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
| | - Dan Wang
- School of Pharmaceutical Science, Liaoning University, Shenyang, China.,Key Laboratory of New Drug Research and Development of Liaoning Province, Shenyang, China
| | - Hong-Sheng Liu
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
| | - Chang-Lan Chen
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
| | - Cheng-Bin Xu
- School of Environmental Science, Liaoning University, Shenyang, China
| |
Collapse
|
17
|
Mostafavi E, Iravani S, Varma RS, Khatami M, Rahbarizadeh F. Eco-friendly synthesis of carbon nanotubes and their cancer theranostic applications. MATERIALS ADVANCES 2022; 3:4765-4782. [PMID: 35812837 PMCID: PMC9207599 DOI: 10.1039/d2ma00341d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Carbon nanotubes (CNTs) with attractive physicochemical characteristics such as high surface area, mechanical strength, functionality, and electrical/thermal conductivity have been widely studied in different fields of science. However, the preparation of these nanostructures on a large scale is either expensive or sometimes ecologically unfriendly. In this context, plenty of studies have been conducted to discover innovative methods to fabricate CNTs in an eco-friendly and inexpensive manner. CNTs have been synthesized using various natural hydrocarbon precursors, including plant extracts (e.g., tea-tree extract), essential oils (e.g., eucalyptus and sunflower oil), biodiesel, milk, honey, and eggs, among others. Additionally, agricultural bio-wastes have been widely studied for synthesizing CNTs. Researchers should embrace the usage of natural and renewable precursors as well as greener methods to produce various types of CNTs in large quantities with the advantages of cost-effectiveness and environmentally benign features. In addition, multifunctionalized CNTs with improved biocompatibility and targeting features are promising candidates for cancer theranostic applications owing to their attractive optical, chemical, thermal, and electrical properties. This perspective discusses the recent developments in eco-friendly synthesis of CNTs using green chemistry-based techniques, natural renewable resources, and sustainable catalysts, with emphasis on important challenges and future perspectives and highlighting techniques for the functionalization or modification of CNTs. Significant and promising cancer theranostic applications as well as their biocompatibility and cytotoxicity issues are also discussed.
Collapse
Affiliation(s)
- Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine CA 94305 USA
- Department of Medicine, Stanford University School of Medicine Stanford CA 94305 USA
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences 81746-73461 Isfahan Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University in Olomouc Slechtitelu 27 783 71 Olomouc Czech Republic
| | - Mehrdad Khatami
- Non-communicable Diseases Research Center, Bam University of Medical Sciences Bam Iran
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University Tehran Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University Tehran Iran
| |
Collapse
|
18
|
Bekyarova E, Conley MP. The coordination chemistry of oxide and nanocarbon materials. Dalton Trans 2022; 51:8557-8570. [PMID: 35586978 DOI: 10.1039/d2dt00459c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Understanding how a ligand affects the steric and electronic properties of a metal is the cornerstone of the inorganic chemistry enterprise. What happens when the ligand is an extended surface? This question is central to the design and implementation of state-of-the-art functional materials containing transition metals. This perspective will describe how these two very different sets of extended surfaces can form well-defined coordination complexes with metals. In the Green formalism, functionalities on oxide surfaces react with inorganics to form species that contain X-type or LX-type interactions between the metal and the oxide. Carbon surfaces are neutral L-type ligands; this perspective focuses on carbons that donate six electrons to a metal. The nature of this interaction depends on the curvature, and thereby orbital overlap, between the metal and the extended π-system from the nanocarbon.
Collapse
Affiliation(s)
- Elena Bekyarova
- Department of Chemistry, University of California, Riverside, California 92521, USA.
| | - Matthew P Conley
- Department of Chemistry, University of California, Riverside, California 92521, USA.
| |
Collapse
|
19
|
Comparative physicochemical characterization of ULTEM/SWCNT nanocomposites: Surface, thermal and electrical conductivity analyses. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03111-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Kozawa D, Wu X, Ishii A, Fortner J, Otsuka K, Xiang R, Inoue T, Maruyama S, Wang Y, Kato YK. Formation of organic color centers in air-suspended carbon nanotubes using vapor-phase reaction. Nat Commun 2022; 13:2814. [PMID: 35595760 PMCID: PMC9123200 DOI: 10.1038/s41467-022-30508-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/28/2022] [Indexed: 11/28/2022] Open
Abstract
Organic color centers in single-walled carbon nanotubes have demonstrated exceptional ability to generate single photons at room temperature in the telecom range. Combining the color centers with pristine air-suspended nanotubes would be desirable for improved performance, but all current synthetic methods occur in solution which makes them incompatible. Here we demonstrate the formation of color centers in air-suspended nanotubes using a vapor-phase reaction. Functionalization is directly verified by photoluminescence spectroscopy, with unambiguous statistics from more than a few thousand individual nanotubes. The color centers show strong diameter-dependent emission, which can be explained with a model for chemical reactivity considering strain along the tube curvature. We also estimate the defect density by comparing the experiments with simulations based on a one-dimensional exciton diffusion equation. Our results highlight the influence of the nanotube structure on vapor-phase reactivity and emission properties, providing guidelines for the development of high-performance near-infrared quantum light sources. Organic color centers in single-walled carbon nanotubes can act as single-photon sources in the telecom range. Here the authors report the functionalization of air-suspended nanotubes through a vapor-phase photochemical reaction, demonstrating a further tailoring of quantum emitter materials.
Collapse
Affiliation(s)
- Daichi Kozawa
- Quantum Optoelectronics Research Team, RIKEN Center for Advanced Photonics, Saitama, 351-0198, Japan.
| | - Xiaojian Wu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Akihiro Ishii
- Quantum Optoelectronics Research Team, RIKEN Center for Advanced Photonics, Saitama, 351-0198, Japan.,Nanoscale Quantum Photonics Laboratory, RIKEN Cluster for Pioneering Research, Saitama, 351-0198, Japan
| | - Jacob Fortner
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Keigo Otsuka
- Nanoscale Quantum Photonics Laboratory, RIKEN Cluster for Pioneering Research, Saitama, 351-0198, Japan
| | - Rong Xiang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China.,Department of Mechanical Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Taiki Inoue
- Department of Mechanical Engineering, The University of Tokyo, Tokyo, 113-8656, Japan.,Department of Applied Physics, Osaka University, Osaka, 565-0871, Japan
| | - Shigeo Maruyama
- Department of Mechanical Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA.,Maryland NanoCenter, University of Maryland, College Park, MD, 20742, USA
| | - Yuichiro K Kato
- Quantum Optoelectronics Research Team, RIKEN Center for Advanced Photonics, Saitama, 351-0198, Japan. .,Nanoscale Quantum Photonics Laboratory, RIKEN Cluster for Pioneering Research, Saitama, 351-0198, Japan.
| |
Collapse
|
21
|
Hasani Baferani A, Katbab AA, Ohadi AR. Study the effects of functionality of carbon nanotubes upon acoustic wave absorption coefficient, microstructure, and viscoelastic behavior of polyurethane/CNT nanocomposite foam. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03086-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Bazán CM, Béraud A, Nguyen M, Bencherif A, Martel R, Bouilly D. Dynamic Gate Control of Aryldiazonium Chemistry on Graphene Field-Effect Transistors. NANO LETTERS 2022; 22:2635-2642. [PMID: 35352961 DOI: 10.1021/acs.nanolett.1c04397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As graphene field-effect transistors (GFETs) are becoming increasingly valued for sensor applications, efficiency and control of their surface functionalization become critical. Here, we introduce an innovative method using a gate electrode to precisely modulate aryldiazonium functionalization directly on graphene devices. Although this covalent chemistry is well-known, we show that its spontaneous reaction on GFETs is highly heterogeneous with a low overall yield. By dynamically tuning the gate voltage in the presence of the reactant, we can quickly enable or suppress the reaction, resulting in a high degree of homogeneity between devices. We are also able to monitor and control functionalization kinetics in real time. The mechanism for our approach is based on electron transfer availability, analogous to chemical, substrate-based, or electrochemical doping, but has the practical advantage of being fully implementable on devices or chips. This work illustrates how powerful the FET platforms are to study surface reactions on nanomaterials in real time.
Collapse
Affiliation(s)
- Claudia M Bazán
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Anouk Béraud
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec H3T 1J4, Canada
- Department of Physics, Faculty of Arts and Sciences, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Minh Nguyen
- Department of Chemistry, Faculty of Arts and Sciences, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Amira Bencherif
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec H3T 1J4, Canada
- Institute for Biomedical Engineering, Faculty of Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Richard Martel
- Department of Chemistry, Faculty of Arts and Sciences, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Delphine Bouilly
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec H3T 1J4, Canada
- Department of Physics, Faculty of Arts and Sciences, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
23
|
Qu H, Wu X, Fortner J, Kim M, Wang P, Wang Y. Reconfiguring Organic Color Centers on the sp 2 Carbon Lattice of Single-Walled Carbon Nanotubes. ACS NANO 2022; 16:2077-2087. [PMID: 35040631 DOI: 10.1021/acsnano.1c07669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Organic color centers (OCCs) are atomic defects that can be synthetically created in single-walled carbon nanotube hosts to enable the emission of shortwave infrared single photons at room temperature. However, all known chemistries developed thus far to generate these quantum defects produce a variety of bonding configurations, posing a formidable challenge to the synthesis of identical, uniformly emitting color centers. Herein, we show that laser irradiation of the nanotube host can locally reconfigure the chemical bonding of aryl OCCs on (6,5) nanotubes to significantly reduce their spectral inhomogeneity. After irradiation the defect emission narrows in distribution by ∼26% to yield a single photoluminescence peak. We use hyperspectral photoluminescence imaging to follow this structural transformation on the single nanotube level. Density functional theory calculations corroborate our experimental observations, suggesting that the OCCs convert from kinetic structures to the more thermodynamically stable configuration. This approach may enable localized tuning and creation of identical OCCs for emerging applications in bioimaging, molecular sensing, and quantum information sciences.
Collapse
Affiliation(s)
- Haoran Qu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Xiaojian Wu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Jacob Fortner
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Mijin Kim
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Peng Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
24
|
Jordan JW, Cameron JM, Lowe GA, Rance GA, Fung KLY, Johnson LR, Walsh DA, Khlobystov AN, Newton GN. Stabilization of Polyoxometalate Charge Carriers via Redox-Driven Nanoconfinement in Single-Walled Carbon Nanotubes. Angew Chem Int Ed Engl 2022; 61:e202115619. [PMID: 34919306 PMCID: PMC9304274 DOI: 10.1002/anie.202115619] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Indexed: 11/07/2022]
Abstract
We describe the preparation of hybrid redox materials based on polyoxomolybdates encapsulated within single-walled carbon nanotubes (SWNTs). Polyoxomolybdates readily oxidize SWNTs under ambient conditions in solution, and here we study their charge-transfer interactions with SWNTs to provide detailed mechanistic insights into the redox-driven encapsulation of these and similar nanoclusters. We are able to correlate the relative redox potentials of the encapsulated clusters with the level of SWNT oxidation in the resultant hybrid materials and use this to show that precise redox tuning is a necessary requirement for successful encapsulation. The host-guest redox materials described here exhibit exceptional electrochemical stability, retaining up to 86 % of their charge capacity over 1000 oxidation/reduction cycles, despite the typical lability and solution-phase electrochemical instability of the polyoxomolybdates we have explored. Our findings illustrate the broad applicability of the redox-driven encapsulation approach to the design and fabrication of tunable, highly conductive, ultra-stable nanoconfined energy materials.
Collapse
Affiliation(s)
- Jack W. Jordan
- Nottingham Applied Materials and Interfaces (NAMI) GroupGSK Carbon Neutral Laboratories for Sustainable ChemistryUniversity of NottinghamNottinghamNG7 2TUUK
| | - Jamie M. Cameron
- Nottingham Applied Materials and Interfaces (NAMI) GroupGSK Carbon Neutral Laboratories for Sustainable ChemistryUniversity of NottinghamNottinghamNG7 2TUUK
| | - Grace A. Lowe
- Nottingham Applied Materials and Interfaces (NAMI) GroupGSK Carbon Neutral Laboratories for Sustainable ChemistryUniversity of NottinghamNottinghamNG7 2TUUK
| | - Graham A. Rance
- Nanoscale and Microscale Research CentreUniversity of NottinghamNottinghamNG7 2RDUK
| | | | - Lee R. Johnson
- Nottingham Applied Materials and Interfaces (NAMI) GroupGSK Carbon Neutral Laboratories for Sustainable ChemistryUniversity of NottinghamNottinghamNG7 2TUUK
| | - Darren A. Walsh
- Nottingham Applied Materials and Interfaces (NAMI) GroupGSK Carbon Neutral Laboratories for Sustainable ChemistryUniversity of NottinghamNottinghamNG7 2TUUK
| | | | - Graham N. Newton
- Nottingham Applied Materials and Interfaces (NAMI) GroupGSK Carbon Neutral Laboratories for Sustainable ChemistryUniversity of NottinghamNottinghamNG7 2TUUK
| |
Collapse
|
25
|
Gao C, Zhang Q, Yang Y, Li Y, Lin W. Recent trends in therapeutic application of engineered blood purification materials for kidney disease. Biomater Res 2022; 26:5. [PMID: 35120554 PMCID: PMC8815201 DOI: 10.1186/s40824-022-00250-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
Blood purification is a commonly used method to remove excess metabolic waste in the blood in renal replacement therapy. The sufficient removal of these toxins from blood can reduce complications and improve survival lifetime in dialysis patients. However, the current biological blood purification materials in clinical practice are not ideal, where there is an unmet need for producing novel materials that have better biocompatibility, reduced toxicity, and, in particular, more efficient toxin clearance rates and a lower cost of production. Given this, this review has carefully summarized newly developed engineered different structural biomedical materials for blood purification in terms of types and structure characteristics of blood purification materials, the production process, as well as interfacial chemical adsorption properties or mechanisms. This study may provide a valuable reference for fabricating a user-friendly purification device that is more suitable for clinical blood purification applications in dialysis patients.
Collapse
Affiliation(s)
- Cui Gao
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
| | - Qian Zhang
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
| | - Yi Yang
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China.
- Department of Nephology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China.
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China.
| | - Yangyang Li
- Key Laboratory of Women's Reproductive Health Research of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Weiqiang Lin
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China.
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China.
| |
Collapse
|
26
|
Rao L, You X, Chen B, Shen L, Xu Y, Zhang M, Hong H, Li R, Lin H. A novel composite membrane for simultaneous separation and catalytic degradation of oil/water emulsion with high performance. CHEMOSPHERE 2022; 288:132490. [PMID: 34624347 DOI: 10.1016/j.chemosphere.2021.132490] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
It is of great significance to develop novel membranes with dual-function of simultaneously separating oil/water emulsion and degrading the contained water-miscible toxic organic components. To meet this requirement, a dual-functional Ni nanoparticles (NPs)@Ag/C-carbon nanotubes (CNTs) composite membrane was fabricated via electroless nickel plating strategy in this study. The as-prepared composite membrane possessed superhydrophilicity with water contact angle of 0° and splendid underwater oleophobic property with oil contact angle of 142°. When the membrane was applied for separation of surfactant stabilized oil-in-water emulsion, high permeate flux (about 97 L m-2·h-1 under gravity), oil rejection (about 98.8%) and antifouling property were achieved. Benefitting from the NiNPs@Ag/C-CNTs layer on membrane surface, the composite membrane exhibited high catalytic degradation activity for water-miscible toxic organic pollutant (4-nitrophenol) with addition of NaBH4 in a flow-through mode. Meanwhile, the NiNPs@Ag/C-CNTs composite membrane possessed excellent durability, which was verified by the good structural integrity even under ultrasonic treatment. The cost-efficiency, high separation and degradation performance of the prepared membrane suggested its great potential for treatment of oily wastewater.
Collapse
Affiliation(s)
- Linhua Rao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Xiujia You
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Binghong Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Yanchao Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Meijia Zhang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Huachang Hong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Renjie Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
27
|
Electrocatalysts Based on Novel Carbon Forms for the Oxidation of Sulphite. Catalysts 2022. [DOI: 10.3390/catal12010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Described herewith is an electrochemical method to decontaminate sulphur compounds. Studies were carried out of sulphites (SO32−) oxidation on a range of anode catalysts. The electrocatalysts were characterized by scanning electron microscopy, XRD, XPS and BET. Polarization curves were recorded of electrodes incorporating lyophilized higher fullerenes and manganese oxides. The experiments showed that lyophilized higher fullerenes and C60/C70 fullerene catalysts in conjunction with manganese oxides electrochemically convert sulphites (SO32−) to sulphates (SO42−). The oxidation products do not poison the electrodes. The XPS analysis shows that the catalysts incorporating DWCNTs, MWCNTs and higher fullerenes have a higher concentration of sp3C carbon bonding leading to higher catalytic activity. It is ascertained that higher fullerenes play a major role in the synthesis of more effective catalysts. The electrodes built by incorporating lyophilized catalysts containing higher fullerenes and manganese oxides are shown as most promising in the effective electrochemical decontamination of industrial and natural wastewaters.
Collapse
|
28
|
Jordan JW, Cameron JM, Lowe GA, Rance GA, Fung KLY, Johnson LR, Walsh DA, Khlobystov AN, Newton GN. Stabilization of Polyoxometalate Charge Carriers via Redox‐Driven Nanoconfinement in Single‐Walled Carbon Nanotubes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jack W. Jordan
- Nottingham Applied Materials and Interfaces (NAMI) Group GSK Carbon Neutral Laboratories for Sustainable Chemistry University of Nottingham Nottingham NG7 2TU UK
| | - Jamie M. Cameron
- Nottingham Applied Materials and Interfaces (NAMI) Group GSK Carbon Neutral Laboratories for Sustainable Chemistry University of Nottingham Nottingham NG7 2TU UK
| | - Grace A. Lowe
- Nottingham Applied Materials and Interfaces (NAMI) Group GSK Carbon Neutral Laboratories for Sustainable Chemistry University of Nottingham Nottingham NG7 2TU UK
| | - Graham A. Rance
- Nanoscale and Microscale Research Centre University of Nottingham Nottingham NG7 2RD UK
| | | | - Lee R. Johnson
- Nottingham Applied Materials and Interfaces (NAMI) Group GSK Carbon Neutral Laboratories for Sustainable Chemistry University of Nottingham Nottingham NG7 2TU UK
| | - Darren A. Walsh
- Nottingham Applied Materials and Interfaces (NAMI) Group GSK Carbon Neutral Laboratories for Sustainable Chemistry University of Nottingham Nottingham NG7 2TU UK
| | | | - Graham N. Newton
- Nottingham Applied Materials and Interfaces (NAMI) Group GSK Carbon Neutral Laboratories for Sustainable Chemistry University of Nottingham Nottingham NG7 2TU UK
| |
Collapse
|
29
|
Substrate strain tunes operando geometric distortion and oxygen reduction activity of CuN 2C 2 single-atom sites. Nat Commun 2021; 12:6335. [PMID: 34732747 PMCID: PMC8566586 DOI: 10.1038/s41467-021-26747-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 10/15/2021] [Indexed: 11/24/2022] Open
Abstract
Single-atom catalysts are becoming increasingly significant to numerous energy conversion reactions. However, their rational design and construction remain quite challenging due to the poorly understood structure–function relationship. Here we demonstrate the dynamic behavior of CuN2C2 site during operando oxygen reduction reaction, revealing a substrate-strain tuned geometry distortion of active sites and its correlation with the activity. Our best CuN2C2 site, on carbon nanotube with 8 nm diameter, delivers a sixfold activity promotion relative to graphene. Density functional theory and X-ray absorption spectroscopy reveal that reasonable substrate strain allows the optimized distortion, where Cu bonds strongly with the oxygen species while maintaining intimate coordination with C/N atoms. The optimized distortion facilitates the electron transfer from Cu to the adsorbed O, greatly boosting the oxygen reduction activity. This work uncovers the structure–function relationship of single-atom catalysts in terms of carbon substrate, and provides guidance to their future design and activity promotion. The rational design of single-atom catalysts is challenging. This work reveals a substrate-strain tuned geometry distortion of CuN2C2 single-atom site, which greatly boosts oxygen reduction activity by facilitating electron transfer to adsorbed O.
Collapse
|
30
|
Dubey R, Dutta D, Sarkar A, Chattopadhyay P. Functionalized carbon nanotubes: synthesis, properties and applications in water purification, drug delivery, and material and biomedical sciences. NANOSCALE ADVANCES 2021; 3:5722-5744. [PMID: 36132675 PMCID: PMC9419119 DOI: 10.1039/d1na00293g] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/08/2021] [Indexed: 05/03/2023]
Abstract
Carbon nanotubes (CNTs) are considered as one of the ideal materials due to their high surface area, high aspect ratio, and impressive material properties, such as mechanical strength, and thermal and electrical conductivity, for the manufacture of next generation composite materials. In spite of the mentioned attractive features, they tend to agglomerate due to their inherent chemical structure which limits their application. Surface modification is required to overcome the agglomeration and increase their dispersability leading to enhanced interactions of the functionalized CNTs with matrix materials/polymer matrices. Recent developments concerning reliable methods for the functionalization of carbon nanotubes offer an additional thrust towards extending their application areas. By chemical functionalization, organic functional groups are generated/attached to the surfaces as well as the tip of CNTs which opens up the possibilities for tailoring the properties of nanotubes and extending their application areas. Different research efforts have been devoted towards both covalent and non-covalent functionalization for different applications. Functionalized CNTs have been used successfully for the development of high quality nanocomposites, finding wide application as chemical and biological sensors, in optoelectronics and catalysis. Non covalently functionalized carbon nanotubes have been used as a substrate for the immobilization of a large variety of biomolecules to impart specific recognition properties for the development of miniaturized biosensors as well as designing of novel bioactive nanomaterials. Functionalized CNTs have also been demonstrated as one of the promising nanomaterials for the decontamination of water due to their high adsorption capacity and specificity for various contaminants. Specifically modified CNTs have been utilized for bone tissue engineering and as a novel and versatile drug delivery vehicle. This review article discusses in short the synthesis, properties and applications of CNTs. This includes the need for functionalization of CNTs, methods and types of functionalization, and properties of functionalized CNTs and their applications especially with respect to material and biomedical sciences, water purification, and drug delivery systems.
Collapse
Affiliation(s)
- Rama Dubey
- Defence Research Laboratory Post Bag No. 2 Tezpur 784001 Assam India +91-3712-258508, +91-3712-258836 +91-3712-258534
| | - Dhiraj Dutta
- Defence Research Laboratory Post Bag No. 2 Tezpur 784001 Assam India +91-3712-258508, +91-3712-258836 +91-3712-258534
| | - Arpan Sarkar
- Defence Research Laboratory Post Bag No. 2 Tezpur 784001 Assam India +91-3712-258508, +91-3712-258836 +91-3712-258534
| | - Pronobesh Chattopadhyay
- Defence Research Laboratory Post Bag No. 2 Tezpur 784001 Assam India +91-3712-258508, +91-3712-258836 +91-3712-258534
| |
Collapse
|
31
|
Shiryaev AA, Trigub AL, Voronina EN, Kvashnina KO, Bukhovets VL. Behavior of implanted Xe, Kr and Ar in nanodiamonds and thin graphene stacks: experiment and modeling. Phys Chem Chem Phys 2021; 23:21729-21737. [PMID: 34550143 DOI: 10.1039/d1cp02600c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Implantation and subsequent behaviour of heavy noble gases (Ar, Kr, and Xe) in few-layer graphene sheets and in nanodiamonds are studied both using computational methods and experimentally using X-ray absorption spectroscopy. X-ray absorption spectroscopy provides substantial support for Xe-vacancy (Xe-V) defects as main sites for Xe in nanodiamonds. It is shown that noble gases in thin graphene stacks distort the layers, forming bulges. The energy of an ion placed in between flat graphene sheets is notably lower than that in domains with high curvature. However, if the ion is trapped in the curved domain, considerable additional energy is required to displace it. This phenomenon is likely responsible for strong binding of noble gases implanted into disordered carbonaceous phase in meteorites (the Q-component).
Collapse
Affiliation(s)
- Andrey A Shiryaev
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Leninsky pr. 31 korp. 4, 119071, Moscow, Russia.
| | - Alexander L Trigub
- National Research Center «Kurchatov Institute», Moscow, Russia.,Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | | | - Kristina O Kvashnina
- The Rossendorf Beamline at ESRF - The European Synchrotron, CS40220, 38043 Grenoble Cedex 9, France.,Helmholtz Zentrum Dresden-Rossendorf (HZDR), Institute of Resource Ecology, PO Box 510119, 01314 Dresden, Germany.,Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Valentin L Bukhovets
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Leninsky pr. 31 korp. 4, 119071, Moscow, Russia.
| |
Collapse
|
32
|
Inhibition of Methamphetamine-Induced Cytotoxicity in the U87-Cell Line by Atorvastatin-Conjugated Carbon Nanotubes. Appl Biochem Biotechnol 2021; 194:479-503. [PMID: 34611858 DOI: 10.1007/s12010-021-03667-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/03/2021] [Indexed: 10/20/2022]
Abstract
In biological systems, carbon nanotubes can enhance the biological effects of drugs and reduce their side effects. Methamphetamine (METH) is a stimulant drug that induces cell death in various cell types, primarily neural cells. On the other hand, specific doses of atorvastatin (ATO) can stimulate cell growth and inhibit cell death in different cell lines. This study aimed to investigate the improvement effect of ATO@single-walled carbon nanotube (SWCNT) on METH-induced cell cytotoxicity in the U87 glioblastoma cell line. In this study, cells were cultured in 10 mM of METH during the cell treatment with 0-10 nM of ATO and ATO@SWCNT. The conjugated drugs to SWCNT as Van der Waals were detected using field emission scanning electron microscopy, Fourier transform-infrared spectroscopy, and other analyses. Then, the in vitro proliferating of ATO@SWCNT was explored against glioblastoma cells compared to pure ATO. This examine was performed using methyl thiazole tetrazolium approach, terminal deoxynucleotidyl transferase deoxy uridine-triphosphate nick end labeling assay, caspase-3 method, lactate dehydrogenase assay, and RH-123 assay with 10 mM METH. The results obtained from transmission electron microscopy analysis showed the average size of 50 nm for ATO@SWCNT. This study indicated that U87 cells, which were exposed to METH and suffered cell death, were severely reduced in the presence of ATO, especially ATO@SWCNT (for its anti-apoptotic effect), but they survived. This study suggests that ATO, which was primarily used to reduce blood lipids, can significantly reduce brain cell death. The findings of this study indicate that by using SWCNT, more drugs can reach the target cells. This method reduces the total amount of required medication and shows a more beneficial therapeutic effect.
Collapse
|
33
|
Politowski I, Regnery P, Hennig MP, Siebers N, Ottermanns R, Schäffer A. Fate of weathered multi-walled carbon nanotubes in an aquatic sediment system. CHEMOSPHERE 2021; 277:130319. [PMID: 34384182 DOI: 10.1016/j.chemosphere.2021.130319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/08/2021] [Accepted: 03/13/2021] [Indexed: 06/13/2023]
Abstract
The widespread application of carbon nanotubes (CNT) in various consumer products leads to their inevitable release into aquatic systems. But only little is known about their distribution among aquatic compartments. In this study, we investigated the partitioning of radiolabeled, weathered multi-walled CNT (14C-wMWCNT) in an aquatic sediment system over a period of 180 days (d). The applied nanomaterial concentration in water phase was 100 μg L-1. Over time, the wMWCNT disappeared exponentially from the water phase and simultaneously accumulated in the sediment phase. After 2 h incubation just 77%, after seven days 30% and after 180 d only 0.03% of applied radioactivity (AR) remained in the water phase. The respective values for the disappearance times DT50 and DT90 were 3.2 d and 10.7 d. Further, minor mineralization of 14C-wMWCNT to 14CO2 was observed with values below 0.06% of AR. In addition, a study was carried out to estimate the deposition of wMWCNT in the water phase with and without sediment in the test system for 28 d. We found no influence of a sediment phase on the sedimentation behavior of wMWCNT in the water phase: After 6.5 d and 7.3 d 50% of the applied wMWCNT subsided in the presence and absence of sediment, respectively. The slow removal of wMWCNT from the water body by deposition into sediment implies that in addition to sediment-dwelling organisms, pelagic organisms are also at risk of exposure to nanomaterials and prone for their take-up.
Collapse
Affiliation(s)
- Irina Politowski
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Philipp Regnery
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Michael Patrick Hennig
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Nina Siebers
- Forschungszentrum Jülich GmbH, Agrosphere (IBG-3) Institute of Bio- and Geosciences, Wilhelm- Johnen-Straße, 52425, Jülich, Germany; Forschungszentrum Jülich GmbH, Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C), Wilhelm-Johnen-Straße, 52425, Jülich, Germany
| | - Richard Ottermanns
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Andreas Schäffer
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|
34
|
Liang W, Wang P, Meziani MJ, Ge L, Yang L, Patel AK, Morgan SO, Sun YP. On the myth of "red/near-IR carbon quantum dots" from thermal processing of specific colorless organic precursors. NANOSCALE ADVANCES 2021; 3:4186-4195. [PMID: 36132851 PMCID: PMC9419825 DOI: 10.1039/d1na00286d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/10/2021] [Indexed: 06/08/2023]
Abstract
Carbon dots were originally found and reported as surface-passivated small carbon nanoparticles, where the effective surface passivation was the chemical functionalization of the carbon nanoparticles with organic molecules. Understandably, the very broad optical absorptions of carbon dots are largely the same as those intrinsic to the carbon nanoparticles, characterized by progressively decreasing absorptivities from shorter to longer wavelengths. Thus, carbon dots are generally weak absorbers in the red/near-IR and correspondingly weak emitters with low quantum yields. Much effort has been made on enhancing the optical performance of carbon dots in the red/near-IR, but without meaningful success due to the fact that optical absorptivities defined by Mother Nature are in general rather inert to any induced alterations. Nevertheless, there were shockingly casual claims in the literature on the major success in dramatically altering the optical absorption profiles of "carbon dots" by simply manipulating the dot synthesis to produce samples of some prominent optical absorption bands in the red/near-IR. Such claims have found warm receptions in the research field with a desperate need for carbon dots of the same optical performance in the red/near-IR as that in the green and blue. However, by looking closely at the initially reported synthesis and all its copies in subsequent investigations on the "red/near-IR carbon dots", one would find that the "success" of the synthesis by thermal or hydrothermal carbonization processing requires specific precursor mixtures of citric acid with formamide or urea. In the study reported here, the systematic investigation included precursor mixtures of citric acid with not only formamide or urea but also their partially methylated or permethylated derivatives for the carbonization processing under conditions similar to and beyond those commonly used and reported in the literature. Collectively all of the results are consistent only with the conclusion that the origins of the observed red/near-IR optical absorptions in samples from some of the precursor mixtures must be molecular chromophores from thermally induced chemical reactions, nothing to do with any nanoscale carbon entities produced by carbonization.
Collapse
Affiliation(s)
- Weixiong Liang
- Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University Clemson South Carolina 29634 USA
| | - Ping Wang
- Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University Clemson South Carolina 29634 USA
| | - Mohammed J Meziani
- Department of Natural Sciences, Northwest Missouri State University Maryville Missouri 64468 USA
| | - Lin Ge
- Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University Clemson South Carolina 29634 USA
| | - Liju Yang
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University Durham NC 27707 USA
| | - Amankumar K Patel
- Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University Clemson South Carolina 29634 USA
- Department of Natural Sciences, Northwest Missouri State University Maryville Missouri 64468 USA
| | - Sabina O Morgan
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University Durham NC 27707 USA
| | - Ya-Ping Sun
- Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University Clemson South Carolina 29634 USA
| |
Collapse
|
35
|
Thompho S, Fritzsche S, Chokbunpiam T, Remsungnen T, Janke W, Hannongbua S. Adsorption and the Chemical Reaction N 2O 4 ↔ 2NO 2 in the Presence of N 2 in a Gas Phase Connected with a Carbon Nanotube. ACS OMEGA 2021; 6:17342-17352. [PMID: 34278120 PMCID: PMC8280629 DOI: 10.1021/acsomega.1c01459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/16/2021] [Indexed: 05/17/2023]
Abstract
The paper shows, by molecular simulations, that a CNT (9,9) carbon nanotube allows very efficient separation of nitrogen oxides (NO x ) from N2, that has in good approximation properties of the complete air mixture. Gibbs ensemble Monte Carlo simulations are used to describe the adsorption. The permanent chemical reaction between N2O4 and NO2, which occurs simultaneously to adsorption, is treated by the reactive Monte Carlo simulation. A very high selectivity has been found. For a low pressure and at T = 298 K, an adsorption/reaction selectivity between NO x and N2 can reach values up to 3 × 103.
Collapse
Affiliation(s)
- Somphob Thompho
- Pharmaceutical
Research Instrument Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathum Wan, Bangkok 10330, Thailand
| | - Siegfried Fritzsche
- Institute
of Theoretical Physics, Leipzig University, 04081 Leipzig, Germany
| | - Tatiya Chokbunpiam
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry
Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| | - Tawun Remsungnen
- Faculty
of Interdisciplinary Studies, Khon Kaen
University, Nong Khai 43000, Thailand
| | - Wolfhard Janke
- Institute
of Theoretical Physics, Faculty of Physics and Geosciences, Leipzig University, 04081 Leipzig, Germany
| | - Supot Hannongbua
- Computational
Chemistry Unit Cell (CCUC), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
36
|
Tonga M, Wei L. A facile strategy for the development of n‒type carbon nanotube composites with tunable thermoelectric properties via thiol‒ene chemistry. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
37
|
Potential Use of Nitrogen-Doped Carbon Nanotube Sponges as Payload Carriers Against Malignant Glioma. NANOMATERIALS 2021; 11:nano11051244. [PMID: 34066818 PMCID: PMC8150914 DOI: 10.3390/nano11051244] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 04/28/2021] [Accepted: 05/06/2021] [Indexed: 11/17/2022]
Abstract
Glioblastoma is the most aggressive brain tumor with a low median survival of 14 months. The only Food and Drug Administration (FDA)-approved treatment for topical delivery of the cancer drug carmustine is Gliadel. However, its use has been associated with several side-effects, mainly provoked by a mass effect. Nitrogen-doped carbon nanotube sponges (N-CNSs) are a new type of nanomaterial exhibiting high biocompatibility, and they are able to load large amounts of hydrophobic drugs, reducing the amount of carriers. This study evaluated the use of N-CNSs as potential carmustine carriers using malignant glioma cell lines. N-CNSs were characterized by nanoparticle tracking analysis and transmission electron microscopy. The biocompatibility of N-CNSs was determined in glioma cell lines and in primary astrocytes. Afterward, N-CNSs were loaded with carmustine (1:10 w/w), and the drug and liberation efficiency, as well as cytotoxicity induction, were determined. N-CNSs presented a homogeneous size distribution formed by round nanotubes, without induced cytotoxicity, at concentrations below 40 µg/mL. The N-CNSs loaded with carmustine exhibited a continuous kinetic release of carmustine with a maximum release after 72 h. The cytotoxic effect of N-CNSs loaded with carmustine was similar to that of carmustine alone. The results demonstrated that N-CNSs are a biocompatible nanostructure that could be used as carriers for the tumoral load of large amounts of chemotherapeutic agents.
Collapse
|
38
|
Chaudhary S, Singh A, Kumar P, Kaushik M. Strategic targeting of non-small-cell lung cancer utilizing genetic material-based delivery platforms of nanotechnology. J Biochem Mol Toxicol 2021; 35:e22784. [PMID: 33826765 DOI: 10.1002/jbt.22784] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 02/04/2021] [Accepted: 03/24/2021] [Indexed: 02/06/2023]
Abstract
Several limitations of conventional cancer treatment such as non-specific targeting, solubility problems, and ineffective entry of chemotherapeutics into cancer cells can be overcome by using nanotechnology targeted drug delivery systems. Some combinations of biomolecules and nanoparticles have proven to be excellent therapeutics for Non-small cell lung cancer (NSCLC) in the last decades. Targeted gene delivery has shown in vivo as well as in vitro promising results with therapeutic efficacy. Gene therapy has shown enhanced transfection efficiency and better targeting potential on several NSCLC cell lines. Still, there are several challenges in nanoparticle-mediated gene therapy, which include stability of biomolecules and nanoparticles during delivery, managing their biodistribution, and reducing the possible cytotoxic effects of the nanoparticles, which need to be solved before clinical trials. Evaluation of therapeutic efficacy of biomolecules and nanoparticle combination in gene therapy must be established to expand the application of nano-gene therapy in cancer treatment.
Collapse
Affiliation(s)
- Swati Chaudhary
- Department of Applied Sciences, Maharaja Surajmal Institute of Technology, GGSIP University, New Delhi, India
| | - Amit Singh
- Department of Chemistry, University of Delhi, Delhi, India.,Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India
| | - Pankaj Kumar
- Department of Chemistry, University of Delhi, Delhi, India.,Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India
| | - Mahima Kaushik
- Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India
| |
Collapse
|
39
|
Yadav A, Tiwari MK, Kumar D, Kumar D. Scavenging of OH and OOH radicals by polyradicals of small polycyclic aromatic hydrocarbons. J Mol Model 2021; 27:112. [PMID: 33763739 DOI: 10.1007/s00894-021-04737-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/15/2021] [Indexed: 11/30/2022]
Abstract
The hydroxyl and peroxyl radicals, particularly the former, occur abundantly and damage almost all types of materials. Polycyclic aromatic hydrocarbons (PAHs) and their polyradicals (all hydrogens removed) have been considered as models for graphene in some recent studies. Geometries of different adducts of polyradicals of two small PAHs having four and nine benzene rings with an OH or OOH radical each were optimized employing unrestricted density functional theory and two different density functionals. The ground states of all the adducts involving the PAHs had doublet spin multiplicity while those involving the polyradicals had doublet, quartet, sextet, or octet spin multiplicity that was decided on the basis of calculated minimum total energies for optimized geometries. Binding energies of the adducts of an OH or OOH radical at the different sites of the polyradicals of PAHs showed that the OH radical would bind with these systems much more strongly than the OOH radical while both the radicals would bind much more strongly with the polyradicals than with the PAHs. Furthermore, both the OH and OOH radicals are found to bind at the edges of the polyradicals much more strongly than at their interior sites. It is shown that polyradicals can serve as efficient scavengers of OH and OOH radicals and therefore, these materials can be used to protect both biological and non-biological systems from damage due to reactions with these radicals.
Collapse
Affiliation(s)
- Amarjeet Yadav
- Department of Physics, Babasaheb Bhimrao Ambedkar University, Lucknow, 226 025, India.
| | | | - Deep Kumar
- Department of Physics, Babasaheb Bhimrao Ambedkar University, Lucknow, 226 025, India
| | - Devesh Kumar
- Department of Physics, Babasaheb Bhimrao Ambedkar University, Lucknow, 226 025, India
| |
Collapse
|
40
|
Electrically Conducting Pullulan-Based Nanobiocomposites Using Carbon Nanotubes and TEMPO Cellulose Nanofibril. NANOMATERIALS 2021; 11:nano11030602. [PMID: 33670897 PMCID: PMC7997298 DOI: 10.3390/nano11030602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/29/2022]
Abstract
Hybrid nanobiocomposite films are prepared using a solution casting by incorporating TEMPO cellulose nanofibrils (TOCNs) and carbon nanotubes (CNTs) into an aqueous solution of pullulan (PULL). The presence of CNT is confirmed by XRD characterization, and the prepared film shows an increased degree of crystallinity after the addition of TOCNs and CNT. The maximum degree of crystallinity value is obtained for CNT 0.5 % (59.64%). According to the Fourier-transform infrared spectroscopy, the shifts of the characteristic -OH peak of PULL occurred after the addition of TOCNs and aqueous CNT (3306.39 to 3246.90 cm−1), confirming interaction between the TOCNs, CNTs, and PULL matrix. The prepared films show enhanced material properties including higher tensile strength (65.41 MPa at low CNT content (0.5%)), water barrier properties, and reduced moisture susceptibility (5 wt.% CNT shows the lowest value (11.28%)) compared with the neat PULL film. Additionally, the prepared films are almost biodegradable within 64 days and show excellent electrical conductivity (0.001 to 0.015 S/mm for 0.5–5% CNT), which suggests a new approach to transform natural polymers into novel advanced materials for use in the fields of biosensing and electronics.
Collapse
|
41
|
Sajjadi M, Nasrollahzadeh M, Jaleh B, Soufi GJ, Iravani S. Carbon-based nanomaterials for targeted cancer nanotherapy: recent trends and future prospects. J Drug Target 2021; 29:716-741. [PMID: 33566719 DOI: 10.1080/1061186x.2021.1886301] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Carbon-based nanomaterials are becoming attractive materials due to their unique structural dimensions and promising mechanical, electrical, thermal, optical and chemical characteristics. Carbon nanotubes, graphene, graphene oxide, carbon and graphene quantum dots have numerous applications in diverse areas, including biosensing, drug/gene delivery, tissue engineering, imaging, regenerative medicine, diagnosis, and cancer therapy. Cancer remains one of the major health problems all over the world, and several therapeutic approaches are focussed on designing targeted anticancer drug delivery nanosystems by applying benign and less hazardous resources with high biocompatibility, ease of functionalization, remarkable targeted therapy issues, and low adverse effects. This review highlights the recent development on these carbon based-nanomaterials in the field of targeted cancer therapy and discusses their possible and promising diagnostic and therapeutic applications for the treatment of cancers.
Collapse
Affiliation(s)
- Mohaddeseh Sajjadi
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran
| | | | - Babak Jaleh
- Department of Physics, Bu-Ali Sina University, Hamedan, Iran
| | | | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
42
|
Singh A, Hua Hsu M, Gupta N, Khanra P, Kumar P, Prakash Verma V, Kapoor M. Derivatized Carbon Nanotubes for Gene Therapy in Mammalian and Plant Cells. Chempluschem 2021; 85:466-475. [PMID: 32159284 DOI: 10.1002/cplu.201900678] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/17/2020] [Indexed: 01/06/2023]
Abstract
The concept of gene vectors for therapeutic applications has been known for several years, but it is far from revealing its actual potential. With the advent of hollow cylindrical carbon nanomaterials such as carbon nanotubes (CNTs), researchers have invented several new tools to deliver genes at the required site of action in mammalian and plant cells. The ease of diversified functionalization has allowed CNTs to be by far the most adaptable non-viral vector for gene therapy. This Minireview addresses the dexterity with which CNTs undergo surface modifications and their applications as a potent vector in gene therapy of humans and plants. Specifically, we will discuss the new tools that scientific communities have invented to achieve gene therapy using plasmid DNA, RNA silencing, suicide gene therapy, and plant genetic engineering. Additionally, we will shed some light on the mechanism of gene transportation using carbon nanotubes in cancer cells and plants.
Collapse
Affiliation(s)
- Adhish Singh
- Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, 140401, India
| | - Ming Hua Hsu
- National Changhua University of Education, Changhua, 500, R.O.C. Taiwan
| | - Neeraj Gupta
- Department of Chemistry, Shoolni University, Solon, H.P., 173229, India
| | - Partha Khanra
- Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, 140401, India
| | - Pankaj Kumar
- Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, 140401, India
| | - Ved Prakash Verma
- Department of Chemistry, Banasthali University, Newai-Jodhpuriya Road, Vanasthali, 304022, India
| | - Mohit Kapoor
- Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, 140401, India
| |
Collapse
|
43
|
An origami paper-based nanoformulated immunosensor detects picograms of VEGF-C per milliliter of blood. Commun Biol 2021; 4:121. [PMID: 33500522 PMCID: PMC7838172 DOI: 10.1038/s42003-020-01607-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 12/16/2020] [Indexed: 11/23/2022] Open
Abstract
Detecting vascular endothelial growth factor C (VEGF-C), a kind of tumor biomarker, is of significant clinical importance in evaluating the prognosis of patients with cancer. However, laboratory analyses are usually not suitable for point-of-care testing because they are expensive and time consuming. In response to these challenges, we fabricated an origami paper-based microfluidic electrochemical device. To improve the specificity of VEGF-C detection, nanocomposites, synthesized by new methylene blue (NMB), amino-functional single-walled carbon nanotubes (NH2-SWCNTs), and gold nanoparticles (AuNPs), were used to modify the surface of working electrodes. Results of electrochemical detection showed that the immunosensor had excellent linearity, ranging from 0.01 to 100 ng mL−1 (R2 = 0.988), and the limit of detection was 10 pg mL−1. To confirm the high specificity of the device under real-world conditions, we evaluated the device using clinical serum samples from our hospital. The results demonstrated that the device had an excellent performance and could provide a platform for real-time detection of cancers. Sun, Wang et al. report an origami paper-based immunosensor for the electrochemical detection of the VEGF-C biomarker in blood serum. The immunosensor is made by modifying the surface of working electrodes with new methylene blue, amino-functional single-walled carbon nanotubes, and gold nanoparticles and demonstrates excellent performance with a limit of detection in the range of picograms per milliliter.
Collapse
|
44
|
Pan D, Gong X, Wang X, Li M. Role of Active Components of Medicinal Food in the Regulation of Angiogenesis. Front Pharmacol 2021; 11:594050. [PMID: 33716724 PMCID: PMC7944143 DOI: 10.3389/fphar.2020.594050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/10/2020] [Indexed: 11/16/2022] Open
Abstract
Angiogenesis refers to the formation of new blood vessels from the endothelial cells of existing arteries, veins, and capillaries. Angiogenesis is involved in a variety of physiological and pathological processes, such as the formation of malignant and development of atherosclerosis and other diseases. In recent years, many studies have shown that the active components of food have a certain regulatory effect on angiogenesis and negligible clinical limitations. With the increasing attention being paid to medicine and food homology, exploring the effect of active food components on angiogenesis is of great significance. In this review, we discuss the source, composition, pharmacological activity, and mechanism of action of certain active components of medicinal foods in detail. These could help prevent angiogenesis-related complications or provide a basis for healthier dietary habits. This review can provide a theoretical basis for the research and development of highly efficient anti-angiogenic drugs with low toxicity.
Collapse
Affiliation(s)
- Dezhi Pan
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Xue Gong
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Xiaoqin Wang
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Minhui Li
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, China
- Department of Pharmacy, Baotou Medical College, Baotou, China
- Pharmaceutical Laboratory, Inner Mongolia Institute of Traditional Chinese Medicine, Hohhot, China
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, Baotou, China
| |
Collapse
|
45
|
Theorical investigation of adsorption mechanism of doxorubicin anticancer drug on the pristine and functionalized single-walled carbon nanotube surface as a drug delivery vehicle: A DFT study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114890] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
46
|
Moradi V, Ketabi S, Samadizadeh M, Konoz E, Masnabadi N. Potentiality of carbon nanotube to encapsulate some alkylating agent anticancer drugs: a molecular simulation study. Struct Chem 2020. [DOI: 10.1007/s11224-020-01658-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
The role of single- and multi-walled carbon nanotube in breast cancer treatment. Ther Deliv 2020; 11:653-672. [DOI: 10.4155/tde-2020-0019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Numerous studies have been conducted to design new strategies for breast cancer treatment. Past studies have shown a wide range of carbon-nanomaterials properties, such as single- and multi-walled carbon nanotubes (SWCNTs and MWCNTs) in breast cancer diagnosis and treatment. In this regard, the current study aims to review the role of both SWCNTs and MWCNTs in breast cancer treatment and diagnosis. For reaching this goal, we reviewed the literature by using various searching engines such as Scopus, PubMed, Google Scholar, Web of Science and MEDLINE. This comprehensive review showed that CNTs could dramatically improve breast cancer treatment and could be used as a novel modality to increase diagnostic accuracy; however, no clinical studies have been conducted based on CNTs. In addition, the literature review demonstrates a lack of enough studies to evaluate the side effects of using CNTs.
Collapse
|
48
|
Yang J, Wei J, Liao B, Bian B, Wang G, Zhang X, Wu X, Luo J, Chen L. Electronic transport induced by doping on the electrodes in molecular devices. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2020. [DOI: 10.1142/s0219633620500303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The electronic transport properties of molecular device based on photochromic diarylethene with carbon nanotube electrode are investigated by density functional theory and non-equilibrium Green’s function. The devices with open and closed configurations show a switching effect. It is found that doping of different amounts of nitrogen atoms on left electrodes results in different electronic transport properties. In addition, we discuss the observed oscillation of current in the devices induced by doping using transmission eigenstates and transmission spectra of the device. The local density of states of the device is calculated to analyze the observed rectifying behavior. The results suggest that doping of nitrogen atoms on the left electrode can be considered as a factor to modulate the electronic transport properties of molecular device.
Collapse
Affiliation(s)
- Jingjuan Yang
- College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, P. R. China
- School of Science, Jiangnan University, Wuxi 214122, P. R. China
| | - Jinlei Wei
- School of Science, Jiangnan University, Wuxi 214122, P. R. China
| | - Bin Liao
- College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, P. R. China
- Beijing Radiation Center, Beijing 100088, P. R. China
| | - Baoan Bian
- School of Science, Jiangnan University, Wuxi 214122, P. R. China
| | - Guoliang Wang
- Guangdong Guangxin Ion Beam Technology Co., Ltd, Guangzhou 510000, P. R. China
| | - Xu Zhang
- College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, P. R. China
- Beijing Radiation Center, Beijing 100088, P. R. China
| | - Xianying Wu
- College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, P. R. China
- Beijing Radiation Center, Beijing 100088, P. R. China
| | - Jun Luo
- Beijing Radiation Center, Beijing 100088, P. R. China
| | - Lin Chen
- School of Science, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
49
|
Karimzadeh S, Safaei B, Jen TC. Investigate the importance of mechanical properties of SWCNT on doxorubicin anti-cancer drug adsorption for medical application: A molecular dynamic study. J Mol Graph Model 2020; 101:107745. [PMID: 32977299 DOI: 10.1016/j.jmgm.2020.107745] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/07/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Sina Karimzadeh
- Department of Mechanical Engineering Science, University of Johannesburg, Gauteng, 2006, South Africa.
| | - Babak Safaei
- Department of Mechanical Engineering, Eastern Mediterranean University, Famagusta, North Cyprus via Mersin 10, Turkey.
| | - Tien-Chien Jen
- Department of Mechanical Engineering Science, University of Johannesburg, Gauteng, 2006, South Africa.
| |
Collapse
|
50
|
Mandal S, Roy D, Prasad NE, Joshi M. Interfacial interactions and properties of cellular structured polyurethane nanocomposite based on carbonaceous nano‐fillers. J Appl Polym Sci 2020. [DOI: 10.1002/app.49775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Subhash Mandal
- Department of Textile and Fibre Engineering Indian Institute of Technology Delhi New Delhi India
- Directorate of Nanomaterials and Technologies (DNMAT) Defence Materials and Stores Research and Development Establishment (DMSRDE), DRDO Kanpur India
| | - Debmalya Roy
- Directorate of Nanomaterials and Technologies (DNMAT) Defence Materials and Stores Research and Development Establishment (DMSRDE), DRDO Kanpur India
| | | | - Mangala Joshi
- Department of Textile and Fibre Engineering Indian Institute of Technology Delhi New Delhi India
| |
Collapse
|