1
|
García-Guerrero AE, Marvin RG, Blackwell AM, Sigala PA. Biogenesis of Cytochromes c and c1 in the Electron Transport Chain of Malaria Parasites. ACS Infect Dis 2024. [PMID: 39481007 DOI: 10.1021/acsinfecdis.4c00450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Plasmodium malaria parasites retain an essential mitochondrional electron transport chain (ETC) that is critical for growth within humans and mosquitoes and is a key antimalarial drug target. ETC function requires cytochromes c and c1, which are unusual among heme proteins due to their covalent binding to heme via conserved CXXCH sequence motifs. Heme attachment to these proteins in most eukaryotes requires the mitochondrial enzyme holocytochrome c synthase (HCCS) that binds heme and the apo cytochrome to facilitate the biogenesis of the mature cytochrome c or c1. Although humans encode a single bifunctional HCCS that attaches heme to both proteins, Plasmodium parasites are like yeast and encode two separate HCCS homologues thought to be specific for heme attachment to cyt c (HCCS) or cyt c1 (HCC1S). To test the function and specificity of Plasmodium falciparum HCCS and HCC1S, we used CRISPR/Cas9 to tag both genes for conditional expression. HCC1S knockdown selectively impaired cyt c1 biogenesis and caused lethal ETC dysfunction that was not reversed by the overexpression of HCCS. Knockdown of HCCS caused a more modest growth defect but strongly sensitized parasites to mitochondrial depolarization by proguanil, revealing key defects in ETC function. These results and prior heterologous studies in Escherichia coli of cyt c hemylation by P. falciparum HCCS and HCC1S strongly suggest that both homologues are essential for mitochondrial ETC function and have distinct specificities for the biogenesis of cyt c and c1, respectively, in parasites. This study lays a foundation to develop novel strategies to selectively block ETC function in malaria parasites.
Collapse
Affiliation(s)
- Aldo E García-Guerrero
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112, United States
| | - Rebecca G Marvin
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112, United States
| | - Amanda Mixon Blackwell
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112, United States
| | - Paul A Sigala
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112, United States
| |
Collapse
|
2
|
García-Guerrero AE, Marvin RG, Blackwell AM, Sigala PA. Biogenesis of cytochromes c and c 1 in the electron transport chain of malaria parasites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.575742. [PMID: 38352463 PMCID: PMC10862854 DOI: 10.1101/2024.02.01.575742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Plasmodium malaria parasites retain an essential mitochondrional electron transport chain (ETC) that is critical for growth within humans and mosquitoes and a key antimalarial drug target. ETC function requires cytochromes c and c 1 that are unusual among heme proteins due to their covalent binding to heme via conserved CXXCH sequence motifs. Heme attachment to these proteins in most eukaryotes requires the mitochondrial enzyme holocytochrome c synthase (HCCS) that binds heme and the apo cytochrome to facilitate biogenesis of the mature cytochrome c or c 1 . Although humans encode a single bifunctional HCCS that attaches heme to both proteins, Plasmodium parasites are like yeast and encode two separate HCCS homologs thought to be specific for heme attachment to cyt c (HCCS) or cyt c 1 (HCC 1 S). To test the function and specificity of P. falciparum HCCS and HCC 1 S, we used CRISPR/Cas9 to tag both genes for conditional expression. HCC 1 S knockdown selectively impaired cyt c 1 biogenesis and caused lethal ETC dysfunction that was not reversed by over-expression of HCCS. Knockdown of HCCS caused a more modest growth defect but strongly sensitized parasites to mitochondrial depolarization by proguanil, revealing key defects in ETC function. These results and prior heterologous studies in E. coli of cyt c hemylation by P. falciparum HCCS and HCC 1 S strongly suggest that both homologs are essential for mitochondrial ETC function and have distinct specificities for biogenesis of cyt c and c 1 , respectively, in parasites. This study lays a foundation to develop novel strategies to selectively block ETC function in malaria parasites.
Collapse
|
3
|
Ben Aoun S, Ibrahim SM. An engineered thermally tolerant apo-cytochrome scaffold for metal-less incorporation of heme derivative. PLoS One 2023; 18:e0293972. [PMID: 37943746 PMCID: PMC10635480 DOI: 10.1371/journal.pone.0293972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023] Open
Abstract
Cytochrome c552 from Thermus thermophilus is one of the hot topics for creating smart biomaterials as it possesses remarkable stability, is tolerant to multiple mutations and has therefore been recently reported for a number of functionalizations upon substitution of the original prosthetic group with an artificial prosthetic group. However, all of the substitutions were driven by the coordination through the axial ligands followed by complete reconstitution with a metal-porphyrin complex. This limits the scope of the cytochrome c for incorporating a metal-less non-natural heme species that could improve the versatility of cytochrome c for a new generation of engineered cytochrome proteins for further enhancement in their functionalities such as biocatalysts. In this connection, a new variant of Cytochrome c (rC552 C14A) from Thermus thermophilus was reported, where an easy approach to remove the original prosthetic group was achieved, followed by the incorporation of a number of metal-PPIX derivatives that ultimately led to the formation of artificial c-type cytochromes through covalent bonding. The apo-cytochrome was found to be thermally tolerant and to possess a distinctive overall structure as that of the wild type, as was evident from the corresponding CD spectra, which ultimately encouraged reconstitution with a metal-less protoporphyrin derivative for better understanding the role of axial ligands in the reconstitution process. Successful reconstitution was achieved, resulting in a new type of Cytochrome b-type artificial protein without the metal in its active site, indicating the non-involvement of the axial ligand. In order to prove the non-involvement of the axial ligand, a subsequent double mutant (C14A/M69A) was constructed, replacing the methionine at 69 position with non-coordinating alanine residue. Accordingly, the apo-C14A/M69A was prepared and found to be extremely stable as the earlier mutants and the WT showed no signs of denaturation, even at the elevated temperature of 98°C. Subsequently, heme b was successfully incorporated into the apo-C14A/M69A, which demonstrated itself as a highly thermally tolerant protein scaffold for incorporating a metal-less artificial prosthetic group in the absence of the axial ligand. Further improvement in the reconstitution process is achieved by replacing the methionine at 69 position with phenyl alanine (C14A/M69F mutant), resulting in further stabilization of heme species, possibly through non-covalent π-interactions, as corroborated by molecular docking.
Collapse
Affiliation(s)
- Sami Ben Aoun
- Faculty of Science, Department of Chemistry, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Sheikh Muhammad Ibrahim
- Faculty of Science, Chemistry Department, Islamic University of Madinah, Al-Madinah Al-Munawarah, Saudi Arabia
| |
Collapse
|
4
|
Sil D, Khan FST, Rath SP. Effect of intermacrocyclic interactions: Modulation of metal spin-state in oxo/hydroxo/fluoro-bridged diiron(III)/dimanganese(III) porphyrin dimers. ADVANCES IN INORGANIC CHEMISTRY 2023. [DOI: 10.1016/bs.adioch.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
5
|
External Hemin as an Inhibitor of Mitochondrial Large-Conductance Calcium-Activated Potassium Channel Activity. Int J Mol Sci 2022; 23:ijms232113391. [DOI: 10.3390/ijms232113391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial large-conductance calcium-activated potassium channel (mitoBKCa) is located in the inner mitochondrial membrane and seems to play a crucial role in cytoprotection. The mitoBKCa channel is regulated by many modulators, including activators, such as calcium ions and inhibitors, such as heme and its oxidized form hemin. Heme/hemin binds to the heme-binding motif (CXXCH) located between two RCK domains present in the mitochondrial matrix. In the present study, we used the patch-clamp technique in the outside-out configuration to record the activity of mitoBKCa channels. This allowed for the application of channel modulators to the intermembrane-space side of the mitoBKCa. We found that hemin applied in this configuration inhibits the activity of mitoBKCa. In addition, we proved that the observed hemin effect is specific and it is not due to its interaction with the inner mitochondrial membrane. Our data suggest the existence of a new potential heme/hemin binding site in the structure of the mitoBKCa channel located on the mitochondrial intermembrane space side, which could constitute a new way for the regulation of mitoBKCa channel activity.
Collapse
|
6
|
Radical Mediated Rapid In Vitro Formation of c-Type Cytochrome. Biomolecules 2022; 12:biom12101329. [PMID: 36291538 PMCID: PMC9599503 DOI: 10.3390/biom12101329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
A cytochrome c552 mutant from Thermus thermophilus HB8 (rC552 C14A) was reported, where the polypeptide with replaced Cys14 by alanine, overexpressed in the cytosol of E. coli. The apo-form of the C14A mutant (apo-C14A) without the original prosthetic group was obtained by simple chemical treatments that retained compact conformation amenable to reconstitution with heme b and zinc(II)-protoporphyrin(IX), gradually followed by spontaneous formation of a covalent bond between the polypeptide and porphyrin ring in the reconstituted apo-C14A. Further analysis suggested that the residual Cys11 and vinyl group of the porphyrin ring linked through the thiol-ene reaction promoted by light under ambient conditions. In this study, we describe the kinetic improvement of the covalent bond formation in accordance with the mechanism of the photoinduced thiol-ene reaction, which involves a thiyl radical as a reaction intermediate. Adding a radical generator to the reconstituted C14A mutant with either heme-b or zinc(II) porphyrin accelerated the bond-forming reaction, which supported the involvement of a radical species in the reaction. Partial observation of the reconstituted C14A in a dimer form and detection of sulfuryl radical by EPR spectroscopy indicated a thiyl radical on Cys11, a unique cysteinyl residue in rC552 C14A. The covalent bond forming mediated by the radical generator was also adaptable to the reconstituted apo-C14A with manganese(II)-protoporphyrin(IX), which also exhibits light-mediated covalent linkage formation. Therefore, the radical generator extends the versatility of producing c-type-like cytochrome starting from a metallo-protoporphyrin(IX) and the apo-C14A instantaneously.
Collapse
|
7
|
Koebke KJ, Pinter TBJ, Pitts WC, Pecoraro VL. Catalysis and Electron Transfer in De Novo Designed Metalloproteins. Chem Rev 2022; 122:12046-12109. [PMID: 35763791 PMCID: PMC10735231 DOI: 10.1021/acs.chemrev.1c01025] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One of the hallmark advances in our understanding of metalloprotein function is showcased in our ability to design new, non-native, catalytically active protein scaffolds. This review highlights progress and milestone achievements in the field of de novo metalloprotein design focused on reports from the past decade with special emphasis on de novo designs couched within common subfields of bioinorganic study: heme binding proteins, monometal- and dimetal-containing catalytic sites, and metal-containing electron transfer sites. Within each subfield, we highlight several of what we have identified as significant and important contributions to either our understanding of that subfield or de novo metalloprotein design as a discipline. These reports are placed in context both historically and scientifically. General suggestions for future directions that we feel will be important to advance our understanding or accelerate discovery are discussed.
Collapse
Affiliation(s)
- Karl J. Koebke
- Department of Chemistry, University of Michigan Ann Arbor, MI 48109 USA
| | | | - Winston C. Pitts
- Department of Chemistry, University of Michigan Ann Arbor, MI 48109 USA
| | | |
Collapse
|
8
|
Abstract
In addition to heme's role as the prosthetic group buried inside many different proteins that are ubiquitous in biology, there is new evidence that heme has substantive roles in cellular signaling and regulation. This means that heme must be available in locations distant from its place of synthesis (mitochondria) in response to transient cellular demands. A longstanding question has been to establish the mechanisms that control the supply and demand for cellular heme. By fusing a monomeric heme-binding peroxidase (ascorbate peroxidase, mAPX) to a monomeric form of green-fluorescent protein (mEGFP), we have developed a heme sensor (mAPXmEGFP) that can respond to heme availability. By means of fluorescence lifetime imaging, this heme sensor can be used to quantify heme concentrations; values of the mean fluorescence lifetime (τMean) for mAPX-mEGFP are shown to be responsive to changes in free (unbound) heme concentration in cells. The results demonstrate that concentrations are typically limited to one molecule or less within cellular compartments. These miniscule amounts of free heme are consistent with a system that sequesters the heme and is able to buffer changes in heme availability while retaining the capability to mobilize heme when and where it is needed. We propose that this exchangeable supply of heme can operate using mechanisms for heme transfer that are analogous to classical ligand-exchange mechanisms. This exquisite control, in which heme is made available for transfer one molecule at a time, protects the cell against the toxic effect of excess heme and offers a simple mechanism for heme-dependent regulation in single-molecule steps.
Collapse
|
9
|
Wu J, Pan X, Xu S, Duan Y, Luo J, Zhou Z, Wang J, Zhou M. The critical role of cytochrome c maturation (CCM) system in the tolerance of Xanthomonas campestris pv. campestris to phenazines. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 156:63-71. [PMID: 31027582 DOI: 10.1016/j.pestbp.2019.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/29/2019] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
Phenazine-1-carboxylic acid (PCA), a secondary metabolite produced by Pseudomonas spp., exhibits a high inhibitory effect in Xanthomonas oryzae pv. oryzae (Xoo), but less inhibitory effect in Xanthomonas oryzae pv. oryzicola (Xoc), and almost no inhibitory effect in Xanthomonas campestris pv. campestris (Xcc). In our previous study, reactive oxygen species (ROS) scavenging system was reported to be involved in PCA tolerance in Xanthomonas spp. However, the PCA tolerance mechanism of Xanthomonas spp. is unclear. In the current study, we constructed a Tn5-based transposon mutant library in Xcc and four highly PCA-sensitive insertion mutants were obtained. TAIL-PCR further confirmed that the Tn5 transposon was inserted in the cytochrome c maturation (CCM) system (XC_1893, XC_1897) of these mutants. Disruption of the CCM system significantly decreased the growth, motility and tolerance of Xcc to PCA and other phenazines, such as phenazine and 1-OH-phenazine. The CCM system is responsible for the covalent attachment of the apocytochrome and heme. Disruption of the transmembrane thioredox protein (Dsb) pathway (XC_0531), an essential process for the formation of mature apocytochrome, also exhibited a decreased tolerance to PCA, suggesting that the defect of cytochrome c caused decreased tolerance of Xcc to PCA. Meanwhile, disruption of the CCM system or Dsb pathway interfered with the functions of cytochrome c proteins, causing an increased sensitivity to H2O2. Collectively, we concluded that the CCM system and Dsb pathway, regulate the tolerance of Xcc to phenazines by influencing the functions of cytochrome c. Therefore, these results provide important references for revealing the action mechanism of PCA in Xanthomonas spp.
Collapse
Affiliation(s)
- Jian Wu
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiayan Pan
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Shu Xu
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Yabing Duan
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianying Luo
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Zehua Zhou
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianxin Wang
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingguo Zhou
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
10
|
Khan FST, Kumar A, Lai D, Rath SP. Ethene-bridged diiron porphyrin dimer as models of diheme cytochrome c: Structure-function correlation and modulation of heme redox potential. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.09.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Khan FST, Banerjee S, Kumar D, Rath SP. Diheme Cytochrome c: Structure–Function Correlation and Effect of Heme−Heme Interactions. Inorg Chem 2018; 57:11498-11510. [DOI: 10.1021/acs.inorgchem.8b01368] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Sayantani Banerjee
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
| | - Devesh Kumar
- Department of Physics, School for Physical and Decision Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow-226025, India
| | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
| |
Collapse
|
12
|
Wen J, He D, Yu Z, Zhou S. In situ detection of microbial c-type cytochrome based on intrinsic peroxidase-like activity using screen-printed carbon electrode. Biosens Bioelectron 2018; 113:52-57. [DOI: 10.1016/j.bios.2018.04.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 01/03/2023]
|
13
|
Modulation of iron spin in ethane-bridged diiron(III) porphyrin dimer: anion dependent spin state switching. J CHEM SCI 2018. [DOI: 10.1007/s12039-018-1488-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Microbial nanowires - Electron transport and the role of synthetic analogues. Acta Biomater 2018; 69:1-30. [PMID: 29357319 DOI: 10.1016/j.actbio.2018.01.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 01/07/2018] [Accepted: 01/09/2018] [Indexed: 02/07/2023]
Abstract
Electron transfer is central to cellular life, from photosynthesis to respiration. In the case of anaerobic respiration, some microbes have extracellular appendages that can be utilised to transport electrons over great distances. Two model organisms heavily studied in this arena are Shewanella oneidensis and Geobacter sulfurreducens. There is some debate over how, in particular, the Geobacter sulfurreducens nanowires (formed from pilin nanofilaments) are capable of achieving the impressive feats of natural conductivity that they display. In this article, we outline the mechanisms of electron transfer through delocalised electron transport, quantum tunnelling, and hopping as they pertain to biomaterials. These are described along with existing examples of the different types of conductivity observed in natural systems such as DNA and proteins in order to provide context for understanding the complexities involved in studying the electron transport properties of these unique nanowires. We then introduce some synthetic analogues, made using peptides, which may assist in resolving this debate. Microbial nanowires and the synthetic analogues thereof are of particular interest, not just for biogeochemistry, but also for the exciting potential bioelectronic and clinical applications as covered in the final section of the review. STATEMENT OF SIGNIFICANCE Some microbes have extracellular appendages that transport electrons over vast distances in order to respire, such as the dissimilatory metal-reducing bacteria Geobacter sulfurreducens. There is significant debate over how G. sulfurreducens nanowires are capable of achieving the impressive feats of natural conductivity that they display: This mechanism is a fundamental scientific challenge, with important environmental and technological implications. Through outlining the techniques and outcomes of investigations into the mechanisms of such protein-based nanofibrils, we provide a platform for the general study of the electronic properties of biomaterials. The implications are broad-reaching, with fundamental investigations into electron transfer processes in natural and biomimetic materials underway. From these studies, applications in the medical, energy, and IT industries can be developed utilising bioelectronics.
Collapse
|
15
|
Ponomarenko N, Niklas J, Pokkuluri PR, Poluektov O, Tiede DM. Electron Paramagnetic Resonance Characterization of the Triheme Cytochrome from Geobacter sulfurreducens. Biochemistry 2018; 57:1722-1732. [DOI: 10.1021/acs.biochem.7b00917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Lai D, Khan FST, Rath SP. Multiheme proteins: effect of heme–heme interactions. Dalton Trans 2018; 47:14388-14401. [DOI: 10.1039/c8dt00518d] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This Frontier illustrates a brief personal account on the effect of heme–heme interactions in dihemes which thereby discloses some of the evolutionary design principles involved in multiheme proteins for their diverse structures and functions.
Collapse
Affiliation(s)
- Dipti Lai
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur-208016
- India
| | | | - Sankar Prasad Rath
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur-208016
- India
| |
Collapse
|
17
|
Amenabar MJ, Shock EL, Roden EE, Peters JW, Boyd ES. Microbial substrate preference dictated by energy demand, not supply. NATURE GEOSCIENCE 2017; 10:577-581. [PMID: 30944580 PMCID: PMC6443248 DOI: 10.1038/ngeo2978] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 06/02/2017] [Indexed: 06/08/2023]
Abstract
Growth substrates that maximize energy yield are widely thought to be utilized preferentially by microorganisms. However, observed distributions of microorganisms and their activities often deviate from predictions based solely on thermodynamic considerations of substrate energy supply. Here we present observations of the bioenergetics and growth yields of a metabolically flexible, thermophilic strain of the archaeon Acidianus when grown autotrophically on minimal medium with hydrogen (H2) or elemental sulfur (S°) as an electron donor, and S° or ferric iron (Fe3+) as an electron acceptor. Thermodynamic calculations indicate that S°/Fe3+ and H2/Fe3+ yield three- and four-fold more energy per mol electron transferred, respectively, than the H2/S° couple. However, biomass yields in Acidianus cultures provided with H2/S° were eight-fold greater than when provided S°/Fe3+ or H2/Fe3+, indicating the H2/S° redox couple is preferred. Indeed, cells provided with all three growth substrates (H2, Fe3+, and S°) grew preferentially by reduction of S° with H2. We conclude that substrate preference is dictated by differences in the energy demand of electron transfer reactions in Acidianus when grown with different substrates, rather than substrate energy supply.
Collapse
Affiliation(s)
| | - Everett L. Shock
- School of Earth & Space Exploration and School of Molecular Sciences, Arizona State University, Tempe, Arizona
- NASA Astrobiology Institute, Mountain View, California
| | - Eric E. Roden
- Department of Geosciences, University of Wisconsin, Madison, Wisconsin
- NASA Astrobiology Institute, Mountain View, California
| | - John W. Peters
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana
| | - Eric S. Boyd
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
- NASA Astrobiology Institute, Mountain View, California
| |
Collapse
|
18
|
Oxo- and hydroxo-bridged diiron(III) porphyrin dimers: Inorganic and bio-inorganic perspectives and effects of intermacrocyclic interactions. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.02.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
19
|
Rodrigues EP, Soares CDP, Galvão PG, Imada EL, Simões-Araújo JL, Rouws LFM, de Oliveira ALM, Vidal MS, Baldani JI. Identification of Genes Involved in Indole-3-Acetic Acid Biosynthesis by Gluconacetobacter diazotrophicus PAL5 Strain Using Transposon Mutagenesis. Front Microbiol 2016; 7:1572. [PMID: 27774087 PMCID: PMC5053998 DOI: 10.3389/fmicb.2016.01572] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/20/2016] [Indexed: 02/03/2023] Open
Abstract
Gluconacetobacter diazotrophicus is a beneficial nitrogen-fixing endophyte found in association with sugarcane plants and other important crops. Beneficial effects of G. diazotrophicus on sugarcane growth and productivity have been attributed to biological nitrogen fixation process and production of phytohormones especially indole-3-acetic acid (IAA); however, information about the biosynthesis and function of IAA in G. diazotrophicus is still scarce. Therefore, the aim of this work was to identify genes and pathways involved in IAA biosynthesis in this bacterium. In our study, the screening of two independent Tn5 mutant libraries of PAL5T strain using the Salkowski colorimetric assay revealed two mutants (Gdiaa34 and Gdiaa01), which exhibited 95% less indolic compounds than the parental strain when grown in LGIP medium supplemented with L-tryptophan. HPLC chromatograms of the wild-type strain revealed the presence of IAA and of the biosynthetic intermediates indole-3-pyruvic acid (IPyA) and indole-3-lactate (ILA). In contrast, the HPLC profiles of both mutants showed no IAA but only a large peak of non-metabolized tryptophan and low levels of IPyA and ILA were detected. Molecular characterization revealed that Gdiaa01 and Gdiaa34 mutants had unique Tn5 insertions at different sites within the GDI2456 open read frame, which is predicted to encode a L-amino acid oxidase (LAAO). GDI2456 (lao gene) forms a cluster with GDI2455 and GDI2454 ORFs, which are predicted to encode a cytochrome C and an RidA protein, respectively. RT-qPCR showed that transcript levels of lao. cccA, and ridA genes were reduced in the Gdiaa01 as compared to PAL5T. In addition, rice plants inoculated with Gdiaa01 showed significantly smaller root development (length, surface area, number of forks and tips) than those plants inoculated with PAL5T. In conclusion, our study demonstrated that G. diazotrophicus PAL5T produces IAA via the IPyA pathway in cultures supplemented with tryptophan and provides evidence for the involvement of an L-amino acid oxidase gene cluster in the biosynthesis of IAA. Furthermore, we showed that the mutant strains with reduction in IAA biosynthesis ability, in consequence of the lower transcription levels of genes of the lao cluster, had remarkable effects on development of rice roots.
Collapse
Affiliation(s)
- Elisete P Rodrigues
- Laboratório de Genética de Microrganismos, Departamento de Biologia, Universidade Estadual de Londrina Londrina, Brazil
| | | | | | - Eddie L Imada
- Laboratório de Genética de Microrganismos, Departamento de Biologia, Universidade Estadual de Londrina Londrina, Brazil
| | | | | | - André L M de Oliveira
- Laboratório de Bioquímica Molecular, Departamento de Bioquímica e Biotecnologia, Universidade Estadual de Londrina Londrina, Brazil
| | | | | |
Collapse
|
20
|
Bren KL. Going with the Electron Flow: Heme Electronic Structure and Electron Transfer in Cytochrome
c. Isr J Chem 2016. [DOI: 10.1002/ijch.201600021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kara L. Bren
- Department of Chemistry University of Rochester Rochester NY 14627-0216 USA
| |
Collapse
|
21
|
A heme-binding domain controls regulation of ATP-dependent potassium channels. Proc Natl Acad Sci U S A 2016; 113:3785-90. [PMID: 27006498 DOI: 10.1073/pnas.1600211113] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Heme iron has many and varied roles in biology. Most commonly it binds as a prosthetic group to proteins, and it has been widely supposed and amply demonstrated that subtle variations in the protein structure around the heme, including the heme ligands, are used to control the reactivity of the metal ion. However, the role of heme in biology now appears to also include a regulatory responsibility in the cell; this includes regulation of ion channel function. In this work, we show that cardiac KATP channels are regulated by heme. We identify a cytoplasmic heme-binding CXXHX16H motif on the sulphonylurea receptor subunit of the channel, and mutagenesis together with quantitative and spectroscopic analyses of heme-binding and single channel experiments identified Cys628 and His648 as important for heme binding. We discuss the wider implications of these findings and we use the information to present hypotheses for mechanisms of heme-dependent regulation across other ion channels.
Collapse
|
22
|
Lin YW. The broad diversity of heme-protein cross-links: An overview. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:844-59. [DOI: 10.1016/j.bbapap.2015.04.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/26/2015] [Accepted: 04/17/2015] [Indexed: 12/30/2022]
|
23
|
Kleingardner JG, Bren KL. Biological significance and applications of heme c proteins and peptides. Acc Chem Res 2015; 48:1845-52. [PMID: 26083801 DOI: 10.1021/acs.accounts.5b00106] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Hemes are ubiquitous in biology and carry out a wide range of functions. The heme group is largely invariant across proteins with different functions, although there are a few variations seen in nature. The most common variant is heme c, which is formed by a post-translational modification in which heme is covalently linked to two Cys residues on the polypeptide via thioether bonds. In this Account, the influence of this covalent attachment on heme c properties and function is discussed, and examples of how covalent attachment has been used in selected applications are presented. Proteins that bind heme c are among the most well-characterized proteins in biochemistry. Most of these proteins are cytochromes c (cyts c) that serve as electron carriers in photosynthesis and respiration. Despite the intense study of cyts c, the functional significance of heme covalent attachment has remained elusive. One observation is that heme c reaches a lower reduction potential in nature than its noncovalently linked counterpart, heme b, when comparing proteins with the same axial ligands. Furthermore, covalent attachment is known to enhance protein stability and allow the heme to be relatively solvent exposed. However, an inorganic chemistry perspective on the effects of covalent attachment has been lacking. Spectroscopic measurements and computations on cyts c and model systems reveal a number of effects of covalent attachment on heme electronic structure and reactivity. One is that the predominant nonplanar ruffling distortion seen in heme c lowers heme reduction potential. Another is that covalent attachment influences the interaction of the heme iron with the proximal His ligand. Heme ruffling also has been shown to influence electronic coupling to redox partners and, therefore, electron transfer rates by altering the distribution of the orbital hole on the porphyrin in oxidized cyt c. Another consequence of heme covalent attachment is the strong vibrational coupling seen between the iron and the protein surface as revealed by nuclear resonance vibrational spectroscopy studies. Finally, heme covalent attachment is proposed to be an important feature supporting multiple roles of cyt c in programmed cell death (apoptosis). Heme covalent attachment is not only vital for the biological functions of cyt c but also provides a useful handle in a number of applications. For one, the engineering of heme c onto an exposed portion of a protein of interest has been shown to provide a visible affinity purification tag. In addition, peptides with covalently attached heme, known as microperoxidases, have been studied as model compounds and oxidation catalysts and, more recently, in applications for energy conversion and storage. The wealth of insight gained about heme c through fundamental studies of cyts c forms a basis for future efforts toward engineering natural and artificial cytochromes for a variety of applications.
Collapse
Affiliation(s)
- Jesse G. Kleingardner
- Department
of Chemistry, Ithaca College, Ithaca, New York 14850, United States
- Department
of Chemistry, University of Rochester, Rochester, New York 14618, United States
| | - Kara L. Bren
- Department
of Chemistry, University of Rochester, Rochester, New York 14618, United States
| |
Collapse
|
24
|
Affiliation(s)
- Paul R Ortiz de Montellano
- From the Department of Pharmaceutical Chemistry, University of California, San Francisco, California 91158-2517
| |
Collapse
|
25
|
Tozawa K, Ferguson SJ, Redfield C, Smith LJ. Comparison of the backbone dynamics of wild-type Hydrogenobacter thermophilus cytochrome c(552) and its b-type variant. JOURNAL OF BIOMOLECULAR NMR 2015; 62:221-231. [PMID: 25953310 PMCID: PMC4451467 DOI: 10.1007/s10858-015-9938-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/27/2015] [Indexed: 06/04/2023]
Abstract
Cytochrome c552 from the thermophilic bacterium Hydrogenobacter thermophilus is a typical c-type cytochrome which binds heme covalently via two thioether bonds between the two heme vinyl groups and two cysteine thiol groups in a CXXCH sequence motif. This protein was converted to a b-type cytochrome by substitution of the two cysteine residues by alanines (Tomlinson and Ferguson in Proc Natl Acad Sci USA 97:5156-5160, 2000a). To probe the significance of the covalent attachment of the heme in the c-type protein, (15)N relaxation and hydrogen exchange studies have been performed for the wild-type and b-type proteins. The two variants share very similar backbone dynamic properties, both proteins showing high (15)N order parameters in the four main helices, with reduced values in an exposed loop region (residues 18-21), and at the C-terminal residue Lys80. Some subtle changes in chemical shift and hydrogen exchange protection are seen between the wild-type and b-type variant proteins, not only for residues at and neighbouring the mutation sites, but also for some residues in the heme binding pocket. Overall, the results suggest that the main role of the covalent linkages between the heme group and the protein chain must be to increase the stability of the protein.
Collapse
Affiliation(s)
- Kaeko Tozawa
- />Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Stuart J. Ferguson
- />Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Christina Redfield
- />Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Lorna J. Smith
- />Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR UK
| |
Collapse
|
26
|
Estevez-Canales M, Kuzume A, Borjas Z, Füeg M, Lovley D, Wandlowski T, Esteve-Núñez A. A severe reduction in the cytochrome C content of Geobacter sulfurreducens eliminates its capacity for extracellular electron transfer. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:219-226. [PMID: 25348891 DOI: 10.1111/1758-2229.12230] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 09/23/2014] [Indexed: 06/04/2023]
Abstract
The ability of Geobacter species to transfer electrons outside the cell enables them to play an important role in a number of biogeochemical and bioenergy processes. Gene deletion studies have implicated periplasmic and outer-surface c-type cytochromes in this extracellular electron transfer. However, even when as many as five c-type cytochrome genes have been deleted, some capacity for extracellular electron transfer remains. In order to evaluate the role of c-type cytochromes in extracellular electron transfer, Geobacter sulfurreducens was grown in a low-iron medium that included the iron chelator (2,2'-bipyridine) to further sequester iron. Haem-staining revealed that the cytochrome content of cells grown in this manner was 15-fold lower than in cells exposed to a standard iron-containing medium. The low cytochrome abundance was confirmed by in situ nanoparticle-enhanced Raman spectroscopy (NERS). The cytochrome-depleted cells reduced fumarate to succinate as well as the cytochrome-replete cells do, but were unable to reduce Fe(III) citrate or to exchange electrons with a graphite electrode. These results demonstrate that c-type cytochromes are essential for extracellular electron transfer by G. sulfurreducens. The strategy for growing cytochrome-depleted G. sulfurreducens will also greatly aid future physiological studies of Geobacter species and other microorganisms capable of extracellular electron transfer.
Collapse
Affiliation(s)
- Marta Estevez-Canales
- Department of Chemical Engineering, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
27
|
Sil D, Rath SP. An ethane-bridged porphyrin dimer as a model of di-heme proteins: inorganic and bioinorganic perspectives and consequences of heme–heme interactions. Dalton Trans 2015; 44:16195-211. [DOI: 10.1039/c5dt00947b] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A brief account of our recent efforts on how inter-heme interactions can possibly change the structure and functional properties of the individual heme centers in a highly flexible ethane-bridged porphyrin dimer has been presented.
Collapse
Affiliation(s)
- Debangsu Sil
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Sankar Prasad Rath
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| |
Collapse
|
28
|
Shi L, Fredrickson JK, Zachara JM. Genomic analyses of bacterial porin-cytochrome gene clusters. Front Microbiol 2014; 5:657. [PMID: 25505896 PMCID: PMC4245776 DOI: 10.3389/fmicb.2014.00657] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 11/13/2014] [Indexed: 11/13/2022] Open
Abstract
The porin-cytochrome (Pcc) protein complex is responsible for trans-outer membrane electron transfer during extracellular reduction of Fe(III) by the dissimilatory metal-reducing bacterium Geobacter sulfurreducens PCA. The identified and characterized Pcc complex of G. sulfurreducens PCA consists of a porin-like outer-membrane protein, a periplasmic 8-heme c-type cytochrome (c-Cyt) and an outer-membrane 12-heme c-Cyt, and the genes encoding the Pcc proteins are clustered in the same regions of genome (i.e., the pcc gene clusters) of G. sulfurreducens PCA. A survey of additionally microbial genomes has identified the pcc gene clusters in all sequenced Geobacter spp. and other bacteria from six different phyla, including Anaeromyxobacter dehalogenans 2CP-1, A. dehalogenans 2CP-C, Anaeromyxobacter sp. K, Candidatus Kuenenia stuttgartiensis, Denitrovibrio acetiphilus DSM 12809, Desulfurispirillum indicum S5, Desulfurivibrio alkaliphilus AHT2, Desulfurobacterium thermolithotrophum DSM 11699, Desulfuromonas acetoxidans DSM 684, Ignavibacterium album JCM 16511, and Thermovibrio ammonificans HB-1. The numbers of genes in the pcc gene clusters vary, ranging from two to nine. Similar to the metal-reducing (Mtr) gene clusters of other Fe(III)-reducing bacteria, such as Shewanella spp., additional genes that encode putative c-Cyts with predicted cellular localizations at the cytoplasmic membrane, periplasm and outer membrane often associate with the pcc gene clusters. This suggests that the Pcc-associated c-Cyts may be part of the pathways for extracellular electron transfer reactions. The presence of pcc gene clusters in the microorganisms that do not reduce solid-phase Fe(III) and Mn(IV) oxides, such as D. alkaliphilus AHT2 and I. album JCM 16511, also suggests that some of the pcc gene clusters may be involved in extracellular electron transfer reactions with the substrates other than Fe(III) and Mn(IV) oxides.
Collapse
Affiliation(s)
- Liang Shi
- Pacific Northwest National Laboratory Richland, WA, USA
| | | | | |
Collapse
|
29
|
Yan DJ, Li W, Xiang Y, Wen GB, Lin YW, Tan X. A Novel Tyrosine-Heme CO Covalent Linkage in F43Y Myoglobin: A New Post-translational Modification of Heme Proteins. Chembiochem 2014; 16:47-50. [DOI: 10.1002/cbic.201402504] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Indexed: 12/18/2022]
|
30
|
Sil D, Khan FST, Rath SP. Axial Thiophenolate Coordination on Diiron(III)bisporphyrin: Influence of Heme–Heme Interactions on Structure, Function and Electrochemical Properties of the Individual Heme Center. Inorg Chem 2014; 53:11925-36. [DOI: 10.1021/ic5011677] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Debangsu Sil
- Department of Chemistry, Indian Institute of Technology Kanpur
, Kanpur-208016, India
| | | | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur
, Kanpur-208016, India
| |
Collapse
|
31
|
|
32
|
Samarukha IA. [Mechanisms of electron transfer to insoluble terminal acceptors in chemoorganotrophic bacteria]. UKRAINIAN BIOCHEMICAL JOURNAL 2014; 86:16-25. [PMID: 24868908 DOI: 10.15407/ubj86.02.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The mechanisms of electron transfer of association of chemoorganotrophic bacteria to the anode in microbial fuel cells are summarized in the survey. These mechanisms are not mutually exclusive and are divided into the mechanisms of mediator electron transfer, mechanisms of electron transfer with intermediate products of bacterial metabolism and mechanism of direct transfer of electrons from the cell surface. Thus, electron transfer mediators are artificial or synthesized by bacteria riboflavins and phenazine derivatives, which also determine the ability of bacteria to antagonism. The microorganisms with hydrolytic and exoelectrogenic activity are involved in electron transfer mechanisms that are mediated by intermediate metabolic products, which are low molecular carboxylic acids, alcohols, hydrogen etc. The direct transfer of electrons to insoluble anode is possible due to membrane structures (cytochromes, pili, etc.). Association of microorganisms, and thus the biochemical mechanisms of electron transfer depend on the origin of the inoculum, substrate composition, mass transfer, conditions of aeration, potentials and location of electrodes and others, that are defined by technological and design parameters.
Collapse
|
33
|
Wong AKC, Lee ESA. Aligning and Clustering Patterns to Reveal the Protein Functionality of Sequences. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2014; 11:548-560. [PMID: 26356022 DOI: 10.1109/tcbb.2014.2306840] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Discovering sequence patterns with variations unveils significant functions of a protein family. Existing combinatorial methods of discovering patterns with variations are computationally expensive, and probabilistic methods require more elaborate probabilistic representation of the amino acid associations. To overcome these shortcomings, this paper presents a new computationally efficient method for representing patterns with variations in a compact representation called Aligned Pattern Cluster (AP Cluster). To tackle the runtime, our method discovers a shortened list of non-redundant statistically significant sequence associations based on our previous work. To address the representation of protein functional regions, our pattern alignment and clustering step, presented in this paper captures the conservations and variations of the aligned patterns. We further refine our solution to allow more coverage of sequences via extending the AP Clusters containing only statistically significant patterns to Weak and Conserved AP Clusters. When applied to the cytochrome c, the ubiquitin, and the triosephosphate isomerase protein families, our algorithm identifies the binding segments as well as the binding residues. When compared to other methods, ours discovers all binding sites in the AP Clusters with superior entropy and coverage. The identification of patterns with variations help biologists to avoid time-consuming simulations and experimentations. (Software available upon request).
Collapse
|
34
|
Watkins DW, Armstrong CT, Anderson JLR. De novo protein components for oxidoreductase assembly and biological integration. Curr Opin Chem Biol 2014; 19:90-8. [DOI: 10.1016/j.cbpa.2014.01.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/23/2014] [Accepted: 01/29/2014] [Indexed: 01/03/2023]
|
35
|
Dey S, Rath SP. Syn–anti conformational switching in an ethane-bridged Co(ii)bisporphyrin induced by external stimuli: effects of inter-macrocyclic interactions, axial ligation and chemical and electrochemical oxidations. Dalton Trans 2014; 43:2301-14. [DOI: 10.1039/c3dt52784k] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Abstract
Background Discovering sequence patterns with variation can unveil functions of a protein family that are important for drug discovery. Exploring protein families using existing methods such as multiple sequence alignment is computationally expensive, thus pattern search, called motif finding in Bioinformatics, is used. However, at present, combinatorial algorithms result in large sets of solutions, and probabilistic models require a richer representation of the amino acid associations. To overcome these shortcomings, we present a method for ranking and compacting these solutions in a new representation referred to as Aligned Pattern Clusters (APCs). To tackle the problem of a large solution set, our method reveals a reduced set of candidate solutions without losing any information. To address the problem of representation, our method captures the amino acid associations and conservations of the aligned patterns. Our algorithm renders a set of APCs in which a set of patterns is discovered, pruned, aligned, and synthesized from the input sequences of a protein family. Results Our algorithm identifies the binding or other functional segments and their embedded residues which are important drug targets from the cytochrome c and the ubiquitin protein families taken from Unitprot. The results are independently confirmed by pFam's multiple sequence alignment. For cytochrome c protein the number of resulting patterns with variations are reduced by 76.62% from the number of original patterns without variations. Furthermore, all of the top four candidate APCs correspond to the binding segments with one of each of their conserved amino acid as the binding residue. The discovered proximal APCs agree with pFam and PROSITE results. Surprisingly, the distal binding site discovered by our algorithm is not discovered by pFam nor PROSITE, but confirmed by the three-dimensional cytochrome c structure. When applied to the ubiquitin protein family, our results agree with pFam and reveals six of the seven Lysine binding residues as conserved aligned columns with entropy redundancy measure of 1.0. Conclusion The discovery, ranking, reduction, and representation of a set of patterns is important to avert time-consuming and expensive simulations and experimentations during proteomic study and drug discovery.
Collapse
|
37
|
Anderson JLR, Armstrong CT, Kodali G, Lichtenstein BR, Watkins DW, Mancini JA, Boyle AL, Farid TA, Crump MP, Moser CC, Dutton PL. Constructing a man-made c-type cytochrome maquette in vivo: electron transfer, oxygen transport and conversion to a photoactive light harvesting maquette. Chem Sci 2013; 5:507-514. [PMID: 24634717 DOI: 10.1039/c3sc52019f] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The successful use of man-made proteins to advance synthetic biology requires both the fabrication of functional artificial proteins in a living environment, and the ability of these proteins to interact productively with other proteins and substrates in that environment. Proteins made by the maquette method integrate sophisticated oxidoreductase function into evolutionarily naive, non-computationally designed protein constructs with sequences that are entirely unrelated to any natural protein. Nevertheless, we show here that we can efficiently interface with the natural cellular machinery that covalently incorporates heme into natural cytochromes c to produce in vivo an artificial c-type cytochrome maquette. Furthermore, this c-type cytochrome maquette is designed with a displaceable histidine heme ligand that opens to allow functional oxygen binding, the primary event in more sophisticated functions ranging from oxygen storage and transport to catalytic hydroxylation. To exploit the range of functions that comes from the freedom to bind a variety of redox cofactors within a single maquette framework, this c-type cytochrome maquette is designed with a second, non-heme C, tetrapyrrole binding site, enabling the construction of an elementary electron transport chain, and when the heme C iron is replaced with zinc to create a Zn porphyrin, a light-activatable artificial redox protein. The work we describe here represents a major advance in de novo protein design, offering a robust platform for new c-type heme based oxidoreductase designs and an equally important proof-of-principle that cofactor-equipped man-made proteins can be expressed in living cells, paving the way for constructing functionally useful man-made proteins in vivo.
Collapse
Affiliation(s)
- J L Ross Anderson
- School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK.,The Johnson Research Foundation, Dept. of Biochemistry and Biophysics, University of Pennsylvania, PA19104-6059, USA
| | - Craig T Armstrong
- School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Goutham Kodali
- The Johnson Research Foundation, Dept. of Biochemistry and Biophysics, University of Pennsylvania, PA19104-6059, USA
| | - Bruce R Lichtenstein
- The Johnson Research Foundation, Dept. of Biochemistry and Biophysics, University of Pennsylvania, PA19104-6059, USA
| | - Daniel W Watkins
- School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Joshua A Mancini
- The Johnson Research Foundation, Dept. of Biochemistry and Biophysics, University of Pennsylvania, PA19104-6059, USA
| | - Aimee L Boyle
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Tammer A Farid
- The Johnson Research Foundation, Dept. of Biochemistry and Biophysics, University of Pennsylvania, PA19104-6059, USA
| | - Matthew P Crump
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Christopher C Moser
- The Johnson Research Foundation, Dept. of Biochemistry and Biophysics, University of Pennsylvania, PA19104-6059, USA
| | - P Leslie Dutton
- The Johnson Research Foundation, Dept. of Biochemistry and Biophysics, University of Pennsylvania, PA19104-6059, USA
| |
Collapse
|
38
|
Bhowmik S, Dey S, Sahoo D, Rath SP. Unusual Stabilization of an Intermediate Spin State of Iron upon the Axial Phenoxide Coordination of a Diiron(III)-Bisporphyrin: Effect of Heme-Heme Interactions. Chemistry 2013; 19:13732-44. [DOI: 10.1002/chem.201301242] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Indexed: 11/06/2022]
|
39
|
Piatkevich KD, Subach FV, Verkhusha VV. Engineering of bacterial phytochromes for near-infrared imaging, sensing, and light-control in mammals. Chem Soc Rev 2013; 42:3441-52. [PMID: 23361376 PMCID: PMC3618476 DOI: 10.1039/c3cs35458j] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Near-infrared light is favourable for imaging in mammalian tissues due to low absorbance of hemoglobin, melanin, and water. Therefore, fluorescent proteins, biosensors and optogenetic constructs for optimal imaging, optical readout and light manipulation in mammals should have fluorescence and action spectra within the near-infrared window. Interestingly, natural Bacterial Phytochrome Photoreceptors (BphPs) utilize the low molecular weight biliverdin, found in most mammalian tissues, as a photoreactive chromophore. Due to their near-infrared absorbance BphPs are preferred templates for designing optical molecular tools for applications in mammals. Moreover, BphPs spectrally complement existing genetically-encoded probes. Several BphPs were already developed into the near-infrared fluorescent variants. Based on the analysis of the photochemistry and structure of BphPs we suggest a variety of possible BphP-based fluorescent proteins, biosensors, and optogenetic tools. Putative design strategies and experimental considerations for such probes are discussed.
Collapse
Affiliation(s)
- Kiryl D. Piatkevich
- Gruss-Lipper Biophotonics Center and Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA. Fax: +1 (718) 430-8996; Tel: +1 (718) 430-8591
| | - Fedor V. Subach
- Gruss-Lipper Biophotonics Center and Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA. Fax: +1 (718) 430-8996; Tel: +1 (718) 430-8591
| | - Vladislav V. Verkhusha
- Gruss-Lipper Biophotonics Center and Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA. Fax: +1 (718) 430-8996; Tel: +1 (718) 430-8591
| |
Collapse
|
40
|
Probing why trypanosomes assemble atypical cytochrome c with an AxxCH haem-binding motif instead of CxxCH. Biochem J 2013; 448:253-60. [PMID: 22928879 DOI: 10.1042/bj20120757] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mitochondrial cytochromes c and c1 are core components of the respiratory chain of all oxygen-respiring eukaryotes. These proteins contain haem, covalently bound to the polypeptide in a catalysed post-translational modification. In all eukaryotes, except members of the protist phylum Euglenozoa, haem attachment is to the cysteine residues of a CxxCH haem-binding motif. In the Euglenozoa, which include medically relevant trypanosomatid parasites, haem attachment is to a single cysteine residue in an AxxCH haem-binding motif. Moreover, genes encoding known c-type cytochrome biogenesis machineries are all absent from trypanosomatid genomes, indicating the presence of a novel biosynthetic apparatus. In the present study, we investigate expression and maturation of cytochrome c with a typical CxxCH haem-binding motif in the trypanosomatids Crithidia fasciculata and Trypanosoma brucei. Haem became attached to both cysteine residues of the haem-binding motif, indicating that, in contrast with previous hypotheses, nothing prevents formation of a CxxCH cytochrome c in euglenozoan mitochondria. The cytochrome variant was also able to replace the function of wild-type cytochrome c in T. brucei. However, the haem attachment to protein was not via the stereospecifically conserved linkage universally observed in natural c-type cytochromes, suggesting that the trypanosome cytochrome c biogenesis machinery recognized and processed only the wild-type single-cysteine haem-binding motif. Moreover, the presence of the CxxCH cytochrome c resulted in a fitness cost in respiration. The level of cytochrome c biogenesis in trypanosomatids was also found to be limited, with the cells operating at close to maximum capacity.
Collapse
|
41
|
Tyagi N, Srinivasan N. Recognition of nontrivial remote homology relationships involving proteins of Helicobacter pylori: implications for function recognition. Methods Mol Biol 2013; 993:155-175. [PMID: 23568470 DOI: 10.1007/978-1-62703-342-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This chapter explains techniques for recognition of nontrivial remote homology relationships involving proteins of Helicobacter pylori and their implications for function recognition. Using the remote homology detection method, employing multiple-profile representations for every protein domain family, remotely related domain family information has been assigned for the 122, 77, and 95 protein sequences of 26695, and J99, and HPAG1 strains of H. pylori, respectively. Relationships for some of the H. pylori protein sequences with Pfam domain families are reported for the first time. In publicly available domain databases such as Pfam, for some of the H. pylori protein sequences functional domain information is associated only with part(s) of the proteins. In the current study other parts of such proteins have been shown to be remotely related to known domain families, raising the possibility of identifying functions for parts of the proteins that do not yet have domains assigned. Further, homologues of enzymes that potentially catalyze step(s) in various metabolic processes in H. pylori have been identified for the first time.
Collapse
Affiliation(s)
- Nidhi Tyagi
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
42
|
Chen J, Strous M. Denitrification and aerobic respiration, hybrid electron transport chains and co-evolution. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:136-44. [PMID: 23044391 DOI: 10.1016/j.bbabio.2012.10.002] [Citation(s) in RCA: 250] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 09/26/2012] [Accepted: 10/01/2012] [Indexed: 11/18/2022]
Abstract
This paper explores the bioenergetics and potential co-evolution of denitrification and aerobic respiration. The advantages and disadvantages of combining these two pathways in a single, hybrid respiratory chain are discussed and the experimental evidence for the co-respiration of nitrate and oxygen is critically reviewed. A scenario for the co-evolution of the two pathways is presented. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems.
Collapse
Affiliation(s)
- Jianwei Chen
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany
| | | |
Collapse
|
43
|
Can M, Zoppellaro G, Andersson KK, Bren KL. Modulation of ligand-field parameters by heme ruffling in cytochromes c revealed by EPR spectroscopy. Inorg Chem 2011; 50:12018-24. [PMID: 22044358 DOI: 10.1021/ic201479q] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electron paramagnetic resonance (EPR) spectra of variants of Hydrogenobacter thermophilus cytochrome c(552) (Ht c-552) and Pseudomonas aeruginosa cytochrome c(551) (Pa c-551) are analyzed to determine the effect of heme ruffling on ligand-field parameters. Mutations introduced at positions 13 and 22 in Ht c-552 were previously demonstrated to influence hydrogen bonding in the proximal heme pocket and to tune reduction potential (E(m)) over a range of 80 mV [Michel, L. V.; Ye, T.; Bowman, S. E. J.; Levin, B. D.; Hahn, M. A.; Russell, B. S.; Elliott, S. J.; Bren, K. L. Biochemistry 2007, 46, 11753-11760]. These mutations are shown here to also increase heme ruffling as E(m) decreases. The primary effect on electronic structure of increasing heme ruffling is found to be a decrease in the axial ligand-field term Δ/λ, which is proposed to arise from an increase in the energy of the d(xy) orbital. Mutations at position 7, previously demonstrated to influence heme ruffling in Pa c-551 and Ht c-552, are utilized to test this correlation between molecular and electronic structure. In conclusion, the structure of the proximal heme pocket of cytochromes c is shown to play a role in determining heme conformation and electronic structure.
Collapse
Affiliation(s)
- Mehmet Can
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, USA
| | | | | | | |
Collapse
|
44
|
Abstract
Cytochromes c are widespread respiratory proteins characterized by the covalent attachment of heme. The formation of c-type cytochromes requires, in all but a few exceptional cases, the formation of two thioether bonds between the two cysteine sulfurs in a –CXXCH– motif in the protein and the vinyl groups of heme. The vinyl groups of the heme are not particularly activated and therefore the addition reaction does not physiologically occur spontaneously in cells. There are several diverse post-translational modification systems for forming these bonds. Here, we describe the complex multiprotein cytochrome c maturation (Ccm) system (in Escherichia coli comprising the proteins CcmABCDEFGH), also called System I, that performs the heme attachment. System I is found in plant mitochondria, archaea and many Gram-negative bacteria; the systems found in other organisms and organelles are described elsewhere in this minireview series.
Collapse
Affiliation(s)
- Julie M Stevens
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
Organisms employ one of several different enzyme systems to mature cytochromes c. The biosynthetic process involves the periplasmic reduction of cysteine residues in the heme c attachment motif of the apocytochrome, transmembrane transport of heme b and stereospecific covalent heme attachment via thioether bonds. The biogenesis System II (or Ccs system) is employed by β-, δ- and ε-proteobacteria, Gram-positive bacteria, Aquificales and cyanobacteria, as well as by algal and plant chloroplasts. System II comprises four (sometimes only three) membrane-bound proteins: CcsA (or ResC) and CcsB (ResB) are the components of the cytochrome c synthase, whereas CcdA and CcsX (ResA) function in the generation of a reduced heme c attachment motif. Some ε-proteobacteria contain CcsBA fusion proteins constituting single polypeptide cytochrome c synthases especially amenable for functional studies. This minireview highlights the recent findings on the structure, function and specificity of individual System II components and outlines the future challenges that remain to our understanding of the fascinating post-translational protein maturation process in more detail.
Collapse
Affiliation(s)
- Jörg Simon
- Institute of Microbiology and Genetics, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany.
| | | |
Collapse
|
46
|
Ibrahim SM, Nakajima H, Ohta T, Ramanathan K, Takatani N, Naruta Y, Watanabe Y. Cytochrome c(552) from Thermus thermophilus engineered for facile substitution of prosthetic group. Biochemistry 2011; 50:9826-35. [PMID: 21985581 DOI: 10.1021/bi201048e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The facile replacement of heme c in cytochromes c with non-natural prosthetic groups has been difficult to achieve due to two thioether linkages between cysteine residues and the heme. Fee et al. demonstrated that cytochrome c(552) from Thermus thermophilus, overproduced in the cytosol of E. coli, has a covalent linkage cleavable by heat between the heme and Cys11, as well as possessing the thioether linkage with Cys14 [Fee, J. A. (2004) Biochemistry 43, 12162-12176]. Prompted by this result, we prepared a C14A mutant, anticipating that the heme species in the mutant was bound to the polypeptide solely through the thermally cleavable linkage; therefore, the removal of the heme would be feasible after heating the protein. Contrary to this expectation, C14A immediately after purification (as-purified C14A) possessed no covalent linkage. An attempt to extract the heme using a conventional acid-butanone method was unsuccessful due to rapid linkage formation between the heme and polypeptide. Spectroscopic analyses suggested that the as-purified C14A possessed a heme b derivative where one of two peripheral vinyl groups had been replaced with a group containing a reactive carbonyl. A reaction of the as-purified C14A with [BH(3)CN](-) blocked the linkage formation on the carbonyl group, allowing a quantitative yield of heme-free apo-C14A. Reconstitution of apo-C14A was achieved with ferric and ferrous heme b and zinc protoporphyrin. All reconstituted C14As showed spontaneous covalent linkage formation. We propose that C14A is a potential source for the facile production of an artificial cytochrome c, containing a non-natural prosthetic group.
Collapse
Affiliation(s)
- Sk Md Ibrahim
- Department of Chemsitry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Garner DK, Liang L, Barrios DA, Zhang JL, Lu Y. Covalent Anchor Positions Play an Important Role in Tuning Catalytic Properties of a Rationally Designed MnSalen-containing Metalloenzyme. ACS Catal 2011; 1:1083-1089. [PMID: 22013554 PMCID: PMC3194002 DOI: 10.1021/cs200258e] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Two questions important to the success in metalloenzyme design are how to attach or anchor metal cofactors inside protein scaffolds, and in what way such positioning affects enzymatic properties. We have previously reported a dual anchoring method to position a nonnative cofactor, MnSalen (1), inside the heme cavity of apo sperm whale myoglobin (Mb) and showed that the dual anchoring can increase both the activity and enantioselectivity over the single anchoring methods, making this artificial enzyme an ideal system to address the above questions. Here we report systematic investigations of the effect of different covalent attachment or anchoring positions on reactivity and selectivity of sulfoxidation by the MnSalen-containing Mb enzymes. We have found that changing the left anchor from Y103C to T39C has an almost identical effect of increasing rate by 1.8-fold and increasing selectivity by +14% for S, whether the right anchor is L72C or S108C. At the same time, regardless of the identity of the left anchor, changing the right anchor from S108C to L72C increases rate by 4-fold and selectivity by +66%. The right anchor site was observed to have a greater influence than the left anchor site on the reactivity and selectivity in sulfoxidation of a wide scope of other ortho-, meta- and para- substituted substrates. The 1•Mb(T39C/L72C) showed the highest reactivity (TON up to 2.31 min(-1)) and selectivity (ee% up to 83%) among the different anchoring positions examined. Molecular dynamic simulations indicate that these changes in reactivity and selectivity may be due to the steric effects of the linker arms inside the protein cavity. These results indicate that small differences in the anchor positions can result in significant changes in reactivity and enantioselectivity, probably through steric interactions with substrates when they enter the substrate-binding pocket, and that the effects of right and left anchor positions are independent and additive in nature. The finding that the anchoring arms can influence both the positioning of the cofactor and steric control of substrate entrance will help design better functional metalloenzymes with predicted catalytic activity and selectivity.
Collapse
Affiliation(s)
- Dewain K. Garner
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Lei Liang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - David A. Barrios
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Yi Lu
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
48
|
Molecular modeling of cytochrome b 5 with a single cytochrome c-like thioether linkage. J Mol Model 2011; 18:1553-60. [DOI: 10.1007/s00894-011-1189-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 07/14/2011] [Indexed: 10/17/2022]
|
49
|
Tripodi KEJ, Menendez Bravo SM, Cricco JA. Role of heme and heme-proteins in trypanosomatid essential metabolic pathways. Enzyme Res 2011; 2011:873230. [PMID: 21603276 PMCID: PMC3092630 DOI: 10.4061/2011/873230] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 02/07/2011] [Indexed: 11/29/2022] Open
Abstract
Around the world, trypanosomatids are known for being etiological agents of several highly disabling and often fatal diseases like Chagas disease (Trypanosoma cruzi), leishmaniasis (Leishmania spp.), and African trypanosomiasis (Trypanosoma brucei). Throughout their life cycle, they must cope with diverse environmental conditions, and the mechanisms involved in these processes are crucial for their survival. In this review, we describe the role of heme in several essential metabolic pathways of these protozoans. Notwithstanding trypanosomatids lack of the complete heme biosynthetic pathway, we focus our discussion in the metabolic role played for important heme-proteins, like cytochromes. Although several genes for different types of cytochromes, involved in mitochondrial respiration, polyunsaturated fatty acid metabolism, and sterol biosynthesis, are annotated at the Tritryp Genome Project, the encoded proteins have not yet been deeply studied. We pointed our attention into relevant aspects of these protein functions that are amenable to be considered for rational design of trypanocidal agents.
Collapse
Affiliation(s)
- Karina E J Tripodi
- Departamento de Química Biológica and Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | | | | |
Collapse
|
50
|
Jones R, Allen JW. Heme conjugated magnetic beads to isolate heme-binding proteins from complex mixtures. Protein Expr Purif 2011; 76:79-82. [DOI: 10.1016/j.pep.2010.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 09/28/2010] [Accepted: 10/01/2010] [Indexed: 10/19/2022]
|