1
|
Barreiro-Lage D, Ledentu V, D'Ascenzi J, Huix-Rotllant M, Ferré N. Investigating the Origin of Automatic Rhodopsin Modeling Outliers Using the Microbial Gloeobacter Rhodopsin as Testbed. J Phys Chem B 2024; 128:12368-12378. [PMID: 39655718 DOI: 10.1021/acs.jpcb.4c05962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The automatic rhodopsin modeling (ARM) approach is a computational workflow devised for the automatic buildup of hybrid quantum mechanics/molecular mechanics (QM/MM) models of wild-type rhodopsins and mutants, with the purpose of establishing trends in their photophysical and photochemical properties. Despite the success of ARM in accurately describing the visible light absorption maxima of many rhodopsins, for a few cases, called outliers, it might lead to large deviations with respect to experiments. Applying ARM toGloeobacter rhodopsin (GR), a microbial rhodopsin with important applications in optogenetics, we analyze the origin of such outliers in the absorption energies obtained for GR wild-type and mutants at neutral pH, with a total root-mean-square deviation (RMSD) of 0.42 eV with respect to the experimental GR excitation energies. Having discussed the importance and the uncertainty of one particular amino-acid pKa, namely histidine at position 87, we propose and test several modifications to the standard ARM protocol: (i) improved pKa predictions along with the consideration of several protonation microstates, (ii) attenuation of the opsin electrostatic potential at short-range, (iii) substitution of the state-average complete active space (CAS) electronic structure method by its state-specific approach, and (iv) complete replacement of CAS with mixed-reference spin-flip time-dependent density functional theory (MRSF-TDDFT). The best RMSD result we obtain is 0.2 eV combining the protonation of H87 and using MRSF/CAMH-B3LYP.
Collapse
Affiliation(s)
| | | | - Jacopo D'Ascenzi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, 53100 Siena, Italy
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli studi di Perugia, 06123 Perugia, Italy
| | | | - Nicolas Ferré
- Aix Marseille Univ, CNRS, ICR, 13013 Marseille, France
| |
Collapse
|
2
|
Wijesiri K, Gascón JA. Structural Models of the First Molecular Events in the Heliorhodopsin Photocycle. J Phys Chem B 2024; 128:5966-5972. [PMID: 38877606 DOI: 10.1021/acs.jpcb.4c00804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Retinylidene conformations and rearrangements of the hydrogen-bond network in the vicinity of the protonated Schiff base (PSB) play a key role in the proton transfer process in the Heliorhodopsin photocycle. Photoisomerization of the retinylidene chromophore and the formation of photoproducts corresponding to the early intermediates were modeled using a combination of molecular dynamics simulations and quantum mechanical/molecular mechanics calculations. The resulting structures were refined, and the respective excitation energies were calculated. Aided by metadynamics simulations, we constructed a photoisomerized intermediate where the 13-cis retinylidene chromophore is rotated about a parallel pair of double bonds at C13=C14 and C15=NZ double bonds. We demonstrate how the deprotonation of the Schiff base and the concomitant protonation of the Glu107 counterion are only favored because of these rearrangements.
Collapse
Affiliation(s)
- Kithmini Wijesiri
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - José A Gascón
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| |
Collapse
|
3
|
Fujimoto KJ, Minowa F, Nishina M, Nakamura S, Ohashi S, Katayama K, Kandori H, Yanai T. Molecular Mechanism of Spectral Tuning by Chloride Binding in Monkey Green Sensitive Visual Pigment. J Phys Chem Lett 2023; 14:1784-1793. [PMID: 36762971 DOI: 10.1021/acs.jpclett.2c03619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The visual pigments of the cones perceive red, green, and blue colors. The monkey green (MG) pigment possesses a unique Cl- binding site; however, its relationship to the spectral tuning in green pigments remains elusive. Recently, FTIR spectroscopy revealed the characteristic structural modifications of the retinal binding site by Cl- binding. Herein, we report the computational structural modeling of MG pigments and quantum-chemical simulation to investigate its spectral redshift and physicochemical relevance when Cl- is present. Our protein structures reflect the previously suggested structural changes. AlphaFold2 failed to predict these structural changes. Excited-state calculations successfully reproduced the experimental red-shifted absorption energies, corroborating our protein structures. Electrostatic energy decomposition revealed that the redshift results from the His197 protonation state and conformations of Glu129, Ser202, and Ala308; however, Cl- itself contributes to the blueshift. Site-directed mutagenesis supported our analysis. These modeled structures may provide a valuable foundation for studying cone pigments.
Collapse
Affiliation(s)
- Kazuhiro J Fujimoto
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
- Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya, 464-8601, Japan
| | - Fumika Minowa
- Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya, 464-8601, Japan
| | - Michiya Nishina
- Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya, 464-8601, Japan
| | - Shunta Nakamura
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa, Nagoya, 466-8555, Japan
| | - Sayaka Ohashi
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa, Nagoya, 466-8555, Japan
| | - Kota Katayama
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa, Nagoya, 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Gokiso-cho, Showa, Nagoya, 466-8555, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa, Nagoya, 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Gokiso-cho, Showa, Nagoya, 466-8555, Japan
| | - Takeshi Yanai
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
- Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya, 464-8601, Japan
| |
Collapse
|
4
|
Wijesiri K, Gascón JA. Microsolvation Effects in the Spectral Tuning of Heliorhodopsin. J Phys Chem B 2022; 126:5803-5809. [PMID: 35894868 DOI: 10.1021/acs.jpcb.2c03672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heliorhodopsins (HeR) are a new category of heptahelical transmembrane photoactive proteins with a covalently linked all-trans retinal. The protonated Schiff base (PSB) nitrogen in the retinal is stabilized by a negatively charged counterion. It is well-known that stronger or weaker electrostatic interactions with the counterion cause a significant spectral blue- or red-shift, respectively, in both microbial and animal rhodopsins. In HeR, however, while Glu107 acts as the counterion, mutations of this residue are not directly correlated with a spectral shift. A molecular dynamics analysis revealed that a water cluster pocket produces a microsolvation effect on the Schiff base, compensating to various extents the replacement of the native counterion. Using a combination of molecular dynamics and quantum mechanical/molecular mechanics (QM/MM), we study this microsolvation effect on the electronic absorption of the retinylidene Schiff base chromophore of HeR.
Collapse
Affiliation(s)
- Kithmini Wijesiri
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - José A Gascón
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| |
Collapse
|
5
|
Fujimoto KJ. Electronic Couplings and Electrostatic Interactions Behind the Light Absorption of Retinal Proteins. Front Mol Biosci 2021; 8:752700. [PMID: 34604313 PMCID: PMC8480471 DOI: 10.3389/fmolb.2021.752700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
The photo-functional chromophore retinal exhibits a wide variety of optical absorption properties depending on its intermolecular interactions with surrounding proteins and other chromophores. By utilizing these properties, microbial and animal rhodopsins express biological functions such as ion-transport and signal transduction. In this review, we present the molecular mechanisms underlying light absorption in rhodopsins, as revealed by quantum chemical calculations. Here, symmetry-adapted cluster-configuration interaction (SAC-CI), combined quantum mechanical and molecular mechanical (QM/MM), and transition-density-fragment interaction (TDFI) methods are used to describe the electronic structure of the retinal, the surrounding protein environment, and the electronic coupling between chromophores, respectively. These computational approaches provide successful reproductions of experimentally observed absorption and circular dichroism (CD) spectra, as well as insights into the mechanisms of unique optical properties in terms of chromophore-protein electrostatic interactions and chromophore-chromophore electronic couplings. On the basis of the molecular mechanisms revealed in these studies, we also discuss strategies for artificial design of the optical absorption properties of rhodopsins.
Collapse
Affiliation(s)
- Kazuhiro J Fujimoto
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan.,Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
6
|
Spectral Features of Canthaxanthin in HCP2. A QM/MM Approach. Molecules 2021; 26:molecules26092441. [PMID: 33922133 PMCID: PMC8122715 DOI: 10.3390/molecules26092441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 11/17/2022] Open
Abstract
The increased interest in sequencing cyanobacterial genomes has allowed the identification of new homologs to both the N-terminal domain (NTD) and C-terminal domain (CTD) of the Orange Carotenoid Protein (OCP). The N-terminal domain homologs are known as Helical Carotenoid Proteins (HCPs). Although some of these paralogs have been reported to act as singlet oxygen quenchers, their distinct functional roles remain unclear. One of these paralogs (HCP2) exclusively binds canthaxanthin (CAN) and its crystal structure has been recently characterized. Its absorption spectrum is significantly red-shifted, in comparison to the protein in solution, due to a dimerization where the two carotenoids are closely placed, favoring an electronic coupling interaction. Both the crystal and solution spectra are red-shifted by more than 50 nm when compared to canthaxanthin in solution. Using molecular dynamics (MD) and quantum mechanical/molecular mechanical (QM/MM) studies of HCP2, we aim to simulate these shifts as well as obtain insight into the environmental and coupling effects of carotenoid-protein interactions.
Collapse
|
7
|
Shigaev AS, Feldman TB, Nadtochenko VA, Ostrovsky MA, Lakhno VD. Quantum-classical model of the rhodopsin retinal chromophore cis–trans photoisomerization with modified inter-subsystem coupling. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.112831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Li W. Residue-Residue Mutual Work Analysis of Retinal-Opsin Interaction in Rhodopsin: Implications for Protein-Ligand Binding. J Chem Theory Comput 2020; 16:1834-1842. [PMID: 31972074 DOI: 10.1021/acs.jctc.9b01035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Energetic contributions at the single-residue level for retinal-opsin interactions in rhodopsin were studied by combining molecular dynamics simulations, transition path sampling, and a newly developed energy decomposition approach. The virtual work at an infinitesimal time interval was decomposed into the work components on one residue due to its interaction with another residue, which were then averaged over the transition path ensemble along a proposed reaction coordinate. Such residue-residue mutual work analysis on 62 residues within the active center of rhodopsin resulted in a very sparse interaction matrix, which is generally not symmetric but antisymmetric to some extent. Fourteen residues were identified to be major players in retinal relaxation along a plausible pathway from bathorhodopsin to the blue-shifted intermediate, which is in good agreement with an existing NMR study. Based on the matrix of mutual work, a comprehensive network was constructed to provide detailed insights into the chromophore-protein interaction from a viewpoint of energy flow.
Collapse
Affiliation(s)
- Wenjin Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| |
Collapse
|
9
|
Videla PE, Markmann A, Batista VS. Floquet Study of Quantum Control of the Cis-Trans Photoisomerization of Rhodopsin. J Chem Theory Comput 2018; 14:1198-1205. [PMID: 29425032 DOI: 10.1021/acs.jctc.7b01217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding how to control reaction dynamics of polyatomic systems by using ultrafast laser technology is a fundamental challenge of great technological interest. Here, we report a Floquet theoretical study of the effect of light-induced potentials on the ultrafast cis-trans photoisomerization dynamics of rhodopsin. The Floquet Hamiltonian involves an empirical 3-state 25-mode model with frequencies and excited-state gradients parametrized to reproduce the rhodopsin electronic vertical excitation energy, the resonance Raman spectrum, and the photoisomerization time and efficiency as probed by ultrafast spectroscopy. We simulate the excited state relaxation dynamics using the time-dependent self-consistent field method, as described by a 3-state 2-mode nuclear wavepacket coupled to a Gaussian ansatz of 23 vibronic modes. We analyze the reaction time and product yield obtained with pulses of various widths and intensity profiles, defining 'dressed states' where the perturbational effect of the pulses is naturally decoupled along the different reaction channels. We find pulses that delay the excited-state photoisomerization for hundreds of femtoseconds, and we gain insights on the underlying control mechanisms. The reported findings provide understanding of quantum control, particularly valuable for the development of ultrafast optical switches based on visual pigments.
Collapse
Affiliation(s)
- Pablo E Videla
- Department of Chemistry , Yale University , P.O. Box 208107, New Haven , Connecticut 06520-8107 , United States.,Energy Sciences Institute , Yale University , P.O. Box 27394, West Haven , Connecticut 06516-7394 , United States
| | - Andreas Markmann
- Department of Chemistry , Yale University , P.O. Box 208107, New Haven , Connecticut 06520-8107 , United States.,Energy Sciences Institute , Yale University , P.O. Box 27394, West Haven , Connecticut 06516-7394 , United States
| | - Victor S Batista
- Department of Chemistry , Yale University , P.O. Box 208107, New Haven , Connecticut 06520-8107 , United States.,Energy Sciences Institute , Yale University , P.O. Box 27394, West Haven , Connecticut 06516-7394 , United States
| |
Collapse
|
10
|
Varsano D, Caprasecca S, Coccia E. Theoretical description of protein field effects on electronic excitations of biological chromophores. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:013002. [PMID: 27830666 DOI: 10.1088/0953-8984/29/1/013002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Photoinitiated phenomena play a crucial role in many living organisms. Plants, algae, and bacteria absorb sunlight to perform photosynthesis, and convert water and carbon dioxide into molecular oxygen and carbohydrates, thus forming the basis for life on Earth. The vision of vertebrates is accomplished in the eye by a protein called rhodopsin, which upon photon absorption performs an ultrafast isomerisation of the retinal chromophore, triggering the signal cascade. Many other biological functions start with the photoexcitation of a protein-embedded pigment, followed by complex processes comprising, for example, electron or excitation energy transfer in photosynthetic complexes. The optical properties of chromophores in living systems are strongly dependent on the interaction with the surrounding environment (nearby protein residues, membrane, water), and the complexity of such interplay is, in most cases, at the origin of the functional diversity of the photoactive proteins. The specific interactions with the environment often lead to a significant shift of the chromophore excitation energies, compared with their absorption in solution or gas phase. The investigation of the optical response of chromophores is generally not straightforward, from both experimental and theoretical standpoints; this is due to the difficulty in understanding diverse behaviours and effects, occurring at different scales, with a single technique. In particular, the role played by ab initio calculations in assisting and guiding experiments, as well as in understanding the physics of photoactive proteins, is fundamental. At the same time, owing to the large size of the systems, more approximate strategies which take into account the environmental effects on the absorption spectra are also of paramount importance. Here we review the recent advances in the first-principle description of electronic and optical properties of biological chromophores embedded in a protein environment. We show their applications on paradigmatic systems, such as the light-harvesting complexes, rhodopsin and green fluorescent protein, emphasising the theoretical frameworks which are of common use in solid state physics, and emerging as promising tools for biomolecular systems.
Collapse
Affiliation(s)
- Daniele Varsano
- S3 Center, CNR Institute of Nanoscience, Via Campi 213/A, 41125 Modena, Italy
| | | | | |
Collapse
|
11
|
Askerka M, Ho J, Batista ER, Gascón JA, Batista VS. The MOD-QM/MM Method: Applications to Studies of Photosystem II and DNA G-Quadruplexes. Methods Enzymol 2016; 577:443-81. [PMID: 27498648 PMCID: PMC5304415 DOI: 10.1016/bs.mie.2016.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
Quantum mechanics/molecular mechanics (QM/MM) hybrid methods are currently the most powerful computational tools for studies of structure/function relations and catalytic sites embedded in macrobiomolecules (eg, proteins and nucleic acids). QM/MM methodologies are highly efficient since they implement quantum chemistry methods for modeling only the portion of the system involving bond-breaking/forming processes (QM layer), as influenced by the surrounding molecular environment described in terms of molecular mechanics force fields (MM layer). Some of the limitations of QM/MM methods when polarization effects are not explicitly considered include the approximate treatment of electrostatic interactions between QM and MM layers. Here, we review recent advances in the development of computational protocols that allow for rigorous modeling of electrostatic interactions in biomacromolecules and structural refinement, beyond the common limitations of QM/MM hybrid methods. We focus on photosystem II (PSII) with emphasis on the description of the oxygen-evolving complex (OEC) and its high-resolution extended X-ray absorption fine structure spectra (EXAFS) in conjunction with Monte Carlo structural refinement. Furthermore, we review QM/MM structural refinement studies of DNA G4 quadruplexes with embedded monovalent cations and direct comparisons to NMR data.
Collapse
Affiliation(s)
- M Askerka
- Yale University, New Haven, CT, United States
| | - J Ho
- Yale University, New Haven, CT, United States
| | - E R Batista
- Los Alamos National Laboratory, Los Alamos, NM, United States
| | - J A Gascón
- University of Connecticut, Storrs, CT, United States
| | - V S Batista
- Yale University, New Haven, CT, United States.
| |
Collapse
|
12
|
Suomivuori CM, Lang L, Sundholm D, Gamiz-Hernandez AP, Kaila VRI. Tuning the Protein-Induced Absorption Shifts of Retinal in Engineered Rhodopsin Mimics. Chemistry 2016; 22:8254-61. [DOI: 10.1002/chem.201505126] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/23/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Carl-Mikael Suomivuori
- Department of Chemistry; University of Helsinki; A.I. Virtanens plats 1, P.O. Box 55 FI-00014 Helsinki Finland
- Department Chemie; Technische Universität München (TUM); Lichtenbergstrasse 4 85747 Garching Germany
| | - Lucas Lang
- Department Chemie; Technische Universität München (TUM); Lichtenbergstrasse 4 85747 Garching Germany
| | - Dage Sundholm
- Department of Chemistry; University of Helsinki; A.I. Virtanens plats 1, P.O. Box 55 FI-00014 Helsinki Finland
| | - Ana P. Gamiz-Hernandez
- Department Chemie; Technische Universität München (TUM); Lichtenbergstrasse 4 85747 Garching Germany
| | - Ville R. I. Kaila
- Department Chemie; Technische Universität München (TUM); Lichtenbergstrasse 4 85747 Garching Germany
| |
Collapse
|
13
|
Sengupta D, Joshi M, Athale CA, Chattopadhyay A. What can simulations tell us about GPCRs. Methods Cell Biol 2016; 132:429-52. [DOI: 10.1016/bs.mcb.2015.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
14
|
Sproviero EM, Gascón JA, McEvoy JP, Brudvig GW, Batista VS. QM/MM Models of the O2-Evolving Complex of Photosystem II. J Chem Theory Comput 2015; 2:1119-34. [PMID: 26633071 DOI: 10.1021/ct060018l] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This paper introduces structural models of the oxygen-evolving complex of photosystem II (PSII) in the dark-stable S1 state, as well as in the reduced S0 and oxidized S2 states, with complete ligation of the metal-oxo cluster by amino acid residues, water, hydroxide, and chloride. The models are developed according to state-of-the-art quantum mechanics/molecular mechanics (QM/MM) hybrid methods, applied in conjunction with the X-ray crystal structure of PSII from the cyanobacterium Thermosynechococcus elongatus, recently reported at 3.5 Å resolution. Manganese and calcium ions are ligated consistently with standard coordination chemistry assumptions, supported by biochemical and spectroscopic data. Furthermore, the calcium-bound chloride ligand is found to be bound in a position consistent with pulsed electron paramagnetic resonance data obtained from acetate-substituted PSII. The ligation of protein ligands includes monodentate coordination of D1-D342, CP43-E354, and D1-D170 to Mn(1), Mn(3), and Mn(4), respectively; η(2) coordination of D1-E333 to both Mn(3) and Mn(2); and ligation of D1-E189 and D1-H332 to Mn(2). The resulting QM/MM structural models are consistent with available mechanistic data and also are compatible with X-ray diffraction models and extended X-ray absorption fine structure measurements of PSII. It is, therefore, conjectured that the proposed QM/MM models are particularly relevant to the development and validation of catalytic water-oxidation intermediates.
Collapse
Affiliation(s)
- Eduardo M Sproviero
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107
| | - José A Gascón
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107
| | - James P McEvoy
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107
| | - Gary W Brudvig
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107
| | - Victor S Batista
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107
| |
Collapse
|
15
|
Sproviero EM. Opsin Effect on the Electronic Structure of the Retinylidene Chromophore in Rhodopsin. J Chem Theory Comput 2015; 11:1206-19. [PMID: 26579769 DOI: 10.1021/ct500612n] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Direct examination of experimental NMR parameters combined with electronic structure analysis was used to provide a first-principle interpretation of NMR experiments and give a precise evaluation of how the electronic perturbation of the protein environment affects the electronic properties of the retinylidene chromophere in rhodopsin. To this end, we pursued a theoretical analysis using a combination of tools including quantum mechanics/molecular mechanics (QM/MM) at the Density Functional Theory (DFT) level, in conjunction with gauge independent atomic orbital (GIAO) calculations of (13)C NMR chemical shieldings and (1)J(CC) spin-spin coupling constants obtained with the Coupled Perturbed DFT (CPDFT) method. The opsin effect on the retinylidene chromophere is interpreted as an inductive effect of Glu-113 which readjusts the weighting factors of resonance substructures of the conjugated chain of the chromophere. These changes give a rationalization to the alternating effect of the (13)C chemical shifts magnitudes when comparing the retinylidene chromophere in the presence and absence of the protein environment. Conversely, perturbation of π orbitals has little to no effect over (1)J (13)C-(13)C spin-spin coupling constants, as they are mainly dominated by the Fermi contact term, and hence the counteraion effect is restricted to the vicinity of the perturbation. Thus, the apparent contradiction between experimental findings based on chemical shifts (deep penetration) and one-bond J-couplings (localized effects of the protonated Schiff base at the chain terminus) is in fact a consequence of different properties responding differently to the same external perturbation.
Collapse
Affiliation(s)
- Eduardo M Sproviero
- Department of Chemistry & Biochemistry, University of the Sciences in Philadelphia , 600 South 43rd Street, Philadelphia, Pennsylvania 19104-4495, United States
| |
Collapse
|
16
|
Kubli-Garfias C, Vázquez-Ramírez R, Cabrera-Vivas BM, Gómez-Reyes B, Ramírez JC. Atomic and molecular analysis highlights the biophysics of unprotonated and protonated retinal in UV and scotopic vision. Photochem Photobiol Sci 2015; 14:1660-72. [DOI: 10.1039/c5pp00091b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unprotonated (UR) and protonated (PR) retinal have marked atomic and molecular differences in cis and trans configurations. In conclusion, UR and PR uphold UV and light vision through their different biophysical properties.
Collapse
Affiliation(s)
- Carlos Kubli-Garfias
- Instituto de Investigaciones Biomédicas
- Universidad Nacional Autónoma de México
- México
- Mexico
| | | | | | | | - Juan Carlos Ramírez
- Facultad de Ciencias Químicas
- Benemérita Universidad Autónoma de Puebla
- Puebla 72530
- Mexico
| |
Collapse
|
17
|
Varsano D, Coccia E, Pulci O, Conte AM, Guidoni L. Ground state structures and electronic excitations of biological chromophores at Quantum Monte Carlo/Many Body Green’s Function Theory level. COMPUT THEOR CHEM 2014. [DOI: 10.1016/j.comptc.2014.03.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Álvarez R, Vaz B, Gronemeyer H, de Lera ÁR. Functions, therapeutic applications, and synthesis of retinoids and carotenoids. Chem Rev 2013; 114:1-125. [PMID: 24266866 DOI: 10.1021/cr400126u] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rosana Álvarez
- Departamento de Química Orgánica, Centro de Investigación Biomédica (CINBIO), and Instituto de Investigación Biomédica de Vigo (IBIV), Universidade de Vigo , 36310 Vigo, Spain
| | | | | | | |
Collapse
|
19
|
Pal R, Sekharan S, Batista VS. Spectral Tuning in Halorhodopsin: The Chloride Pump Photoreceptor. J Am Chem Soc 2013; 135:9624-7. [DOI: 10.1021/ja404600z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Rhitankar Pal
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut
06520-8107, United States
| | - Sivakumar Sekharan
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut
06520-8107, United States
| | - Victor S. Batista
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut
06520-8107, United States
| |
Collapse
|
20
|
Sekharan S, Wei JN, Batista VS. The Active Site of Melanopsin: The Biological Clock Photoreceptor. J Am Chem Soc 2012; 134:19536-9. [DOI: 10.1021/ja308763b] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Sivakumar Sekharan
- Department
of Chemistry, Yale University, New Haven,
Connecticut 06520-8107, United States
| | - Jennifer N. Wei
- Department
of Chemistry, Yale University, New Haven,
Connecticut 06520-8107, United States
| | - Victor S. Batista
- Department
of Chemistry, Yale University, New Haven,
Connecticut 06520-8107, United States
| |
Collapse
|
21
|
Comparative study of spectroscopic properties of the low-lying electronic states of 2,4-pentadien-1-iminium cation and its N-substituted analogues. J CHEM SCI 2012. [DOI: 10.1007/s12039-012-0311-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Coccia E, Guidoni L. Quantum monte carlo study of the retinal minimal model C5H6NH2+. J Comput Chem 2012; 33:2332-9. [DOI: 10.1002/jcc.23071] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 06/22/2012] [Accepted: 06/26/2012] [Indexed: 12/22/2022]
|
23
|
Concistrè M, Johannessen OG, McLean N, Bovee-Geurts PHM, Brown RCD, Degrip WJ, Levitt MH. A large geometric distortion in the first photointermediate of rhodopsin, determined by double-quantum solid-state NMR. JOURNAL OF BIOMOLECULAR NMR 2012; 53:247-256. [PMID: 22639195 DOI: 10.1007/s10858-012-9635-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 05/01/2012] [Indexed: 06/01/2023]
Abstract
Double-quantum magic-angle-spinning NMR experiments were performed on 11,12-(13)C(2)-retinylidene-rhodopsin under illumination at low temperature, in order to characterize torsional angle changes at the C11-C12 photoisomerization site. The sample was illuminated in the NMR rotor at low temperature (~120 K) in order to trap the primary photointermediate, bathorhodopsin. The NMR data are consistent with a strong torsional twist of the HCCH moiety at the isomerization site. Although the HCCH torsional twist was determined to be at least 40°, it was not possible to quantify it more closely. The presence of a strong twist is in agreement with previous Raman observations. The energetic implications of this geometric distortion are discussed.
Collapse
Affiliation(s)
- Maria Concistrè
- School of Chemistry, University of Southampton, SO17 1BJ, Southampton, UK.
| | | | | | | | | | | | | |
Collapse
|
24
|
Tang Y, Liu Z, Wu X, Liu G, Yang K, Li Y, Lu L, Cai Y. Modulating structural stability and acid sensitivity of photosensitive polymer micelles simply via one‐batch UV irradiation. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/pola.26065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yufang Tang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, and Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Zhilin Liu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, and Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Xuewen Wu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, and Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guhuan Liu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, and Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Ke Yang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, and Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Yaohua Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, and Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Lican Lu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, and Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Yuanli Cai
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, and Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, China
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
25
|
Kaila VRI, Send R, Sundholm D. The effect of protein environment on photoexcitation properties of retinal. J Phys Chem B 2012; 116:2249-58. [PMID: 22166007 DOI: 10.1021/jp205918m] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Retinal is the photon absorbing chromophore of rhodopsin and other visual pigments, enabling the vertebrate vision process. The effects of the protein environment on the primary photoexcitation process of retinal were studied by time-dependent density functional theory (TDDFT) and the algebraic diagrammatic construction through second order (ADC(2)) combined with our recently introduced reduction of virtual space (RVS) approximation method. The calculations were performed on large full quantum chemical cluster models of the bluecone (BC) and rhodopsin (Rh) pigments with 165-171 atoms. Absorption wavelengths of 441 and 491 nm were obtained at the B3LYP level of theory for the respective models, which agree well with the experimental values of 414 and 498 nm. Electrostatic rather than structural strain effects were shown to dominate the spectral tuning properties of the surrounding protein. The Schiff base retinal and a neighboring Glu-113 residue were found to have comparable proton affinities in the ground state of the BC model, whereas in the excited state, the proton affinity of the Schiff base is 5.9 kcal/mol (0.26 eV) higher. For the ground and excited states of the Rh model, the proton affinity of the Schiff base is 3.2 kcal/mol (0.14 eV) and 7.9 kcal/mol (0.34 eV) higher than for Glu-113, respectively. The protein environment was found to enhance the bond length alternation (BLA) of the retinyl chain and blueshift the first absorption maxima of the protonated Schiff base in the BC and Rh models relative to the chromophore in the gas phase. The protein environment was also found to decrease the intensity of the second excited state, thus improving the quantum yield of the photoexcitation process. Relaxation of the BC model on the excited state potential energy surface led to a vanishing BLA around the isomerization center of the conjugated retinyl chain, rendering the retinal accessible for cis-trans isomerization. The energy of the relaxed excited state was found to be 30 kcal/mol (1.3 eV) above the minimum ground state energy, and might be related to the transition state of the thermal activation process.
Collapse
Affiliation(s)
- Ville R I Kaila
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
26
|
Jee AY, Lee M. Elasticity-controlled molecular dynamics of 9,9′-bifluorenyldene as a function of temperature and force. NEW J CHEM 2012. [DOI: 10.1039/c2nj40092h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Hasegawa JY, Fujimoto KJ, Nakatsuji H. Color tuning in photofunctional proteins. Chemphyschem 2011; 12:3106-15. [PMID: 21990164 DOI: 10.1002/cphc.201100452] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 08/24/2011] [Indexed: 11/11/2022]
Abstract
Depending on protein environment, a single photofunctional chromophore shows a wide variation of photoabsorption/emission energies. This photobiological phenomenon, known as color tuning, is observed in human visual cone pigments, firefly luciferase, and red fluorescent protein. We investigate the origin of color tuning by quantum chemical calculations on the excited states: symmetry-adapted cluster-configuration interaction (SAC-CI) method for excited states and a combined quantum mechanical (QM)/molecular mechanical (MM) method for protein environments. This Minireview summarizes our theoretical studies on the above three systems and explains a common feature of their color-tuning mechanisms. It also discuss the possibility of artificial color tuning toward a rational design of photoabsorption/emission properties.
Collapse
Affiliation(s)
- Jun-ya Hasegawa
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan.
| | | | | |
Collapse
|
28
|
Sekharan S, Yokoyama S, Morokuma K. Quantum mechanical/molecular mechanical structure, enantioselectivity, and spectroscopy of hydroxyretinals and insights into the evolution of color vision in small white butterflies. J Phys Chem B 2011; 115:15380-8. [PMID: 22087641 DOI: 10.1021/jp208107r] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Since Vogt's discovery of A(3)-retinal or 3-hydroxyretinal in insects in 1983 and Matsui's discovery of A(4)-retinal or 4-hydroxyretinal in firefly squid in 1988, hydroxyretinal-protein interactions mediating vision have remained largely unexplored. In the present study, A(3)- and A(4)-retinals are theoretically incorporated into squid and bovine visual pigments by use of the hybrid quantum mechanics/molecular mechanics [SORCI+Q//B3LYP/6-31G(d):Amber96] method, and insights into structure, enantioselectivity, and spectroscopy are gathered and presented for the first time. Contrary to general perception, our findings rule out the formation of a hydrogen bond between the hydroxyl-bearing β-ionone ring portion of retinal and opsin. Compared to A(1)-pigments, A(3)- and A(4)-pigments exhibit slightly blue-shifted absorption maxima due to increase in bond-length alternation of the hydroxyretinal. We suggest that (i) the binding site of firefly squid (Watasenia scintillans) opsin is very similar to that of the Japanese common squid (Todarodes pacificus) opsin; (ii) the molecular mechanism of spectral tuning in small white butterflies involve sites S116 and T185 and breaking of a hydrogen bond between sites E180 and T185; and finally (iii) A(3)-retinal may have occurred during the conversion of A(1)- to A(2)-retinal and insects may have acquired them, in order to absorb light in the blue-green wavelength region and to speed up the G-protein signaling cascade.
Collapse
Affiliation(s)
- Sivakumar Sekharan
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
29
|
Liu Z, Tang Y, Li N, Lu L, Deng J, Cai Y. Modulating light-tunable acid sensitivity of a bioinspired polymer simply by adjusting the position of a single methoxy substituent. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/pola.25057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
30
|
Johnston JM, Filizola M. Showcasing modern molecular dynamics simulations of membrane proteins through G protein-coupled receptors. Curr Opin Struct Biol 2011; 21:552-8. [PMID: 21764295 DOI: 10.1016/j.sbi.2011.06.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 06/06/2011] [Accepted: 06/21/2011] [Indexed: 12/30/2022]
Abstract
Despite many years of dedicated efforts, high-resolution structural determination of membrane proteins lags far behind that of soluble proteins. Computational methods in general, and molecular dynamics (MD) simulations in particular, have represented important alternative resources over the years to advance understanding of membrane protein structure and function. However, it is only recently that much progress has been achieved owing to new high-resolution membrane protein structures, specialized parallel computer architectures, and efficient simulation algorithms. This has definitely been the case for G protein-coupled receptors (GPCRs), which have assumed a leading role in the area of structural biology with several new structures appearing in the literature during the past five years. We provide here a concise overview of recent developments in computational biophysics of membrane proteins, using GPCRs as an example to showcase important information that can be derived from modern MD simulations.
Collapse
Affiliation(s)
- Jennifer M Johnston
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, 1425 Madison Avenue, Box 1677, New York, NY 10029, USA
| | | |
Collapse
|
31
|
Jee AY, Park S, Lee M. Light-induced isomerization dynamics of a cyanine dye in the modulus-controlled regime. Phys Chem Chem Phys 2011; 13:15227-32. [PMID: 21769327 DOI: 10.1039/c1cp20835g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The trans-cis isomerization of an excited molecule converts light energy into mechanical motion, which interacts cooperatively with its surroundings. To understand such a photodynamic process in solids, we investigated the internal twisting motion of 1,1'-diethyl-2,2'-cyanine iodide (DCI) in a series of poly(alkyl methacrylate) (PAMA) polymers by measuring the Young's moduli of the polymers with atomic force microscopy nanoindentation and the fluorescence lifetimes of the dye with time-correlated single photon counting. We found that the isomerization rate constant obtained from the average lifetime correlated well with the mechanical property of the matrix. Our results show that the light-induced molecular motion lies in the modulus-controlled regime in which the polymer matrix not only provides a rigid environment for the dynamics of the molecules but also participates actively in the motion. The concept of elastic modulus may be applicable to molecular rotor dynamics in any synthetic polymer and, in principle, can be extended to biopolymers such as proteins or DNA.
Collapse
Affiliation(s)
- Ah-Young Jee
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 120-750, Republic of Korea
| | | | | |
Collapse
|
32
|
Chung LW, Hirao H, Li X, Morokuma K. The ONIOM method: its foundation and applications to metalloenzymes and photobiology. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2011. [DOI: 10.1002/wcms.85] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
33
|
Rajamani R, Lin YL, Gao J. The opsin shift and mechanism of spectral tuning in rhodopsin. J Comput Chem 2011; 32:854-65. [PMID: 20941732 PMCID: PMC3021771 DOI: 10.1002/jcc.21663] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 08/07/2010] [Indexed: 01/12/2023]
Abstract
Molecular dynamics simulations and combined quantum mechanical and molecular mechanical calculations have been performed to investigate the mechanism of the opsin shift and spectral tuning in rhodopsin. A red shift of -980 cm(-1) was estimated in the transfer of the chromophore from methanol solution environment to the protonated Schiff base (PSB)-binding site of the opsin. The conformational change from a 6-s-cis-all-trans configuration in solution to the 6-s-cis-11-cis conformer contributes additional -200 cm(-1), and the remaining effects were attributed to dispersion interactions with the aromatic residues in the binding site. An opsin shift of 2100 cm(-1) was obtained, in reasonable accord with experiment (2730 cm(-1)). Dynamics simulations revealed that the 6-s-cis bond can occupy two main conformations for the β-ionone ring, resulting in a weighted average dihedral angle of about -50°, which may be compared with the experimental estimate of -28° from solid-state NMR and Raman data. We investigated a series of four single mutations, including E113D, A292S, T118A, and A269T, which are located near the PSB, along the polyene chain of retinal and close to the ionone ring. The computational results on absorption energy shift provided insights into the mechanism of spectral tuning, which involves all means of electronic structural effects, including the stabilization or destabilization of either the ground or the electronically excited state of the retinal PSB.
Collapse
Affiliation(s)
| | - Yen-lin Lin
- Department of Chemistry, Digital Technology Center, and Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455
| | - Jiali Gao
- Department of Chemistry, Digital Technology Center, and Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
34
|
Sharma MK, Bharadwaj PK. A Dynamic Open Framework Exhibiting Guest- and/or Temperature-Induced Bicycle-Pedal Motion in Single-Crystal to Single-Crystal Transformation. Inorg Chem 2011; 50:1889-97. [DOI: 10.1021/ic102305v] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Manish K. Sharma
- Department of Chemistry, Indian Institute of Technology Kanpur, 208016, India
| | | |
Collapse
|
35
|
Kubli-Garfias C, Salazar-Salinas K, Perez-Angel EC, Seminario JM. Light activation of the isomerization and deprotonation of the protonated Schiff base retinal. J Mol Model 2011; 17:2539-47. [PMID: 21207087 DOI: 10.1007/s00894-010-0927-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 11/29/2010] [Indexed: 11/29/2022]
Abstract
We perform an ab initio analysis of the photoisomerization of the protonated Schiff base of retinal (PSB-retinal) from 11-cis to 11-trans rotating the C10-C11=C12-C13 dihedral angle from 0° (cis) to -180° (trans). We find that the retinal molecule shows the lowest rotational barrier (0.22 eV) when its charge state is zero as compared to the barrier for the protonated molecule which is ∼0.89 eV. We conclude that rotation most likely takes place in the excited state of the deprotonated retinal. The addition of a proton creates a much larger barrier implying a switching behavior of retinal that might be useful for several applications in molecular electronics. All conformations of the retinal compound absorb in the green region with small shifts following the dihedral angle rotation; however, the Schiff base of retinal (SB-retinal) at trans-conformation absorbs in the violet region. The rotation of the dihedral angle around the C11=C12 π-bond affects the absorption energy of the retinal and the binding energy of the SB-retinal with the proton at the N-Schiff; the binding energy is slightly lower at the trans-SB-retinal than at other conformations of the retinal.
Collapse
Affiliation(s)
- Carlos Kubli-Garfias
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | | | | | | |
Collapse
|
36
|
Sekharan S, Altun A, Morokuma K. QM/MM study of dehydro and dihydro β-ionone retinal analogues in squid and bovine rhodopsins: implications for vision in salamander rhodopsin. J Am Chem Soc 2010; 132:15856-9. [PMID: 20964383 DOI: 10.1021/ja105050p] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Visual pigment rhodopsin provides a decisive crossing point for interaction between organisms and environment. Naturally occurring visual pigments contain only PSB11 and 3,4-dehydro-PSB11 as chromophores. Therefore, the ability of visual opsin to discriminate between the retinal geometries is investigated by means of QM/MM incorporation of PSB11, 6-s-cis and 6-s-trans forms of 3,4-dehydro-PSB11, and 3,4-dehydro-5,6-dihydro-PSB11 and 5,6-dihydro-PSB11 analogues into squid and bovine rhodopsin environments. The analogue-protein interaction reveals the binding site of squid rhodopsin to be malleable and ductile, while that of bovine rhodopsin is rigid and stiff. On the basis of these studies, a tentative model of the salamander rhodopsin binding site is also proposed.
Collapse
Affiliation(s)
- Sivakumar Sekharan
- Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
37
|
Affiliation(s)
- Andrew G. Tennyson
- Department of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station, A5300, Austin, Texas 78712
| | - Brent Norris
- Department of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station, A5300, Austin, Texas 78712
| | - Christopher W. Bielawski
- Department of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station, A5300, Austin, Texas 78712
| |
Collapse
|
38
|
Kurland MD, Newcomer MB, Peterlin Z, Ryan K, Firestein S, Batista VS. Discrimination of saturated aldehydes by the rat I7 olfactory receptor. Biochemistry 2010; 49:6302-4. [PMID: 20608641 DOI: 10.1021/bi100976w] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The discrimination of n-alkyl-saturated aldehydes during the early stage of odorant recognition by the rat I7 olfactory receptor (OR-I7) is investigated. The concentrations of odorants necessary for 50% activation (or inhibition) of the OR-I7 are measured by calcium imaging recordings of dissociated rat olfactory sensory neurons, expressing the recombinant OR-I7 from an adenoviral vector. These are correlated with the corresponding binding free energies computed for a homology structural model of the OR-I7 built from the crystal structure of bovine visual rhodopsin at 2.2 A resolution.
Collapse
Affiliation(s)
- Michael D Kurland
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | | | | | | | | | | |
Collapse
|
39
|
Rostov IV, Amos RD, Kobayashi R, Scalmani G, Frisch MJ. Studies of the ground and excited-state surfaces of the retinal chromophore using CAM-B3LYP. J Phys Chem B 2010; 114:5547-55. [PMID: 20369810 DOI: 10.1021/jp911329g] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The isomerization of the 11-cis isomer (PSB11) of the retinal chromophore to its all-trans isomer (PSBT) is examined. Optimized structures on both the ground state and the excited state are calculated, and the dependence on torsional angles in the carbon chain is investigated. Time-dependent density functional theory is used to produce excitation energies and the excited-state surface. To avoid problems with the description of excited states that can arise with standard DFT methods, the CAM-B3LYP functional was used. Comparing CAM-B3LYP with B3LYP results indicates that the former is significantly more accurate, as a consequence of which detailed cross sections of the retinal excited-state surface are obtained.
Collapse
Affiliation(s)
- Ivan V Rostov
- Australian National University Supercomputer Facility, Mills Road, Canberra, ACT 0200, Australia
| | | | | | | | | |
Collapse
|
40
|
Sekharan S, Altun A, Morokuma K. Photochemistry of visual pigment in a G(q) protein-coupled receptor (GPCR)--insights from structural and spectral tuning studies on squid rhodopsin. Chemistry 2010; 16:1744-9. [PMID: 20066712 DOI: 10.1002/chem.200903194] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sivakumar Sekharan
- Department of Chemistry, Cherry L. Emerson Center for Scientific Computation, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
41
|
Khrenova MG, Bochenkova AV, Nemukhin AV. Modeling reaction routes from rhodopsin to bathorhodopsin. Proteins 2010; 78:614-22. [PMID: 19787771 DOI: 10.1002/prot.22590] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The quantum mechanical-molecular mechanical (QM/MM) theory was applied to calculate accurate structural parameters, vibrational and optical spectra of bathorhodopsin (BATHO), one of the primary photoproducts of the functional cycle of the visual pigment rhodopsin (RHO), and to characterize reaction routes from RHO to BATHO. The recently resolved crystal structure of BATHO (PDBID: 2G87) served as an initial source of coordinates of heavy atoms. Protein structures in the ground electronic state and vibrational frequencies were determined by using the density functional theory in the PBE0/cc-pVDZ approximation for the QM part and the AMBER force field parameters in the MM part. Calculated and assigned vibrational spectra of both model protein systems, BATHO and RHO, cover three main regions referring to the hydrogen-out-of-plan (HOOP) motion, the C==C ethylenic stretches, and the C--C single-bond stretches. The S(0)-S(1) electronic excitation energies of the QM part, including the chromophore group in the field of the protein matrix, were estimated by using the advanced quantum chemistry methods. The computed structural parameters as well as the spectral bands match perfectly the experimental findings. A structure of the transition state on the S(0) potential energy surface for the ground electronic state rearrangement from RHO to BATHO was located proving a possible route of the thermal protein activation to the primary photoproduct.
Collapse
Affiliation(s)
- M G Khrenova
- Department of Chemistry, MV Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | | | | |
Collapse
|
42
|
Gao Q, Yokojima S, Fedorov DG, Kitaura K, Sakurai M, Nakamura S. Fragment-Molecular-Orbital-Method-Based ab Initio NMR Chemical-Shift Calculations for Large Molecular Systems. J Chem Theory Comput 2010. [DOI: 10.1021/ct100006n] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qi Gao
- Mitsubishi Chemical Group Science and Technology Research Center, Inc., 1000 Kamochida-cho, Aoba-ku, Yokohama 227-8502, Japan, Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama 226-8501, Japan, The KAITEKI Institute, Inc. 14-1, Shiba 4-chome, Minato-ku, Tokyo 108-0014, Japan, RICS, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan, and Graduate School of
| | - Satoshi Yokojima
- Mitsubishi Chemical Group Science and Technology Research Center, Inc., 1000 Kamochida-cho, Aoba-ku, Yokohama 227-8502, Japan, Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama 226-8501, Japan, The KAITEKI Institute, Inc. 14-1, Shiba 4-chome, Minato-ku, Tokyo 108-0014, Japan, RICS, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan, and Graduate School of
| | - Dmitri G. Fedorov
- Mitsubishi Chemical Group Science and Technology Research Center, Inc., 1000 Kamochida-cho, Aoba-ku, Yokohama 227-8502, Japan, Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama 226-8501, Japan, The KAITEKI Institute, Inc. 14-1, Shiba 4-chome, Minato-ku, Tokyo 108-0014, Japan, RICS, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan, and Graduate School of
| | - Kazuo Kitaura
- Mitsubishi Chemical Group Science and Technology Research Center, Inc., 1000 Kamochida-cho, Aoba-ku, Yokohama 227-8502, Japan, Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama 226-8501, Japan, The KAITEKI Institute, Inc. 14-1, Shiba 4-chome, Minato-ku, Tokyo 108-0014, Japan, RICS, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan, and Graduate School of
| | - Minoru Sakurai
- Mitsubishi Chemical Group Science and Technology Research Center, Inc., 1000 Kamochida-cho, Aoba-ku, Yokohama 227-8502, Japan, Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama 226-8501, Japan, The KAITEKI Institute, Inc. 14-1, Shiba 4-chome, Minato-ku, Tokyo 108-0014, Japan, RICS, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan, and Graduate School of
| | - Shinichiro Nakamura
- Mitsubishi Chemical Group Science and Technology Research Center, Inc., 1000 Kamochida-cho, Aoba-ku, Yokohama 227-8502, Japan, Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama 226-8501, Japan, The KAITEKI Institute, Inc. 14-1, Shiba 4-chome, Minato-ku, Tokyo 108-0014, Japan, RICS, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan, and Graduate School of
| |
Collapse
|
43
|
Sekharan S, Morokuma K. Drawing the Retinal Out of Its Comfort Zone: An ONIOM(QM/MM) Study of Mutant Squid Rhodopsin. J Phys Chem Lett 2010; 1:668-672. [PMID: 20396622 PMCID: PMC2853953 DOI: 10.1021/jz100026k] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Engineering squid rhodopsin with modified retinal analogues is essential for understanding the conserved steric and electrostatic interaction networks that govern the architecture of the Schiff base binding site. Depriving the retinal of its steric and electrostatic contacts affects the positioning of the Schiff-base relative to the key residues Asn87, Tyr111, and Glu180. Displacement of the W1 and W2 positions and the impact on the structural rearrangements near the Schiff base binding region reiterates the need for the presence of internal water molecules and the accessibility of binding sites to them. Also, the dominant role of the Glu180 counterion in inducing the S(1)/S(2) state reversal for SBR is shown for the first time in squid rhodopsin.
Collapse
Affiliation(s)
- Sivakumar Sekharan
- Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322
| | - Keiji Morokuma
- Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322
- Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Kyoto 606-8103, Japan
| |
Collapse
|
44
|
Neugebauer J. Subsystem-Based Theoretical Spectroscopy of Biomolecules and Biomolecular Assemblies. Chemphyschem 2009; 10:3148-73. [DOI: 10.1002/cphc.200900538] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
45
|
Light activation of rhodopsin: insights from molecular dynamics simulations guided by solid-state NMR distance restraints. J Mol Biol 2009; 396:510-27. [PMID: 20004206 DOI: 10.1016/j.jmb.2009.12.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 10/09/2009] [Accepted: 12/02/2009] [Indexed: 11/20/2022]
Abstract
Structural restraints provided by solid-state NMR measurements of the metarhodopsin II intermediate are combined with molecular dynamics simulations to help visualize structural changes in the light activation of rhodopsin. Since the timescale for the formation of the metarhodopsin II intermediate (>1 ms) is beyond that readily accessible by molecular dynamics, we use NMR distance restraints derived from 13C dipolar recoupling measurements to guide the simulations. The simulations yield a working model for how photoisomerization of the 11-cis retinylidene chromophore bound within the interior of rhodopsin is coupled to transmembrane helix motion and receptor activation. The mechanism of activation that emerges is that multiple switches on the extracellular (or intradiscal) side of rhodopsin trigger structural changes that converge to disrupt the ionic lock between helices H3 and H6 on the intracellular side of the receptor.
Collapse
|
46
|
Bovee-Geurts PHM, Fernández Fernández I, Liu RSH, Mathies RA, Lugtenburg J, DeGrip WJ. Fluoro Derivatives of Retinal Illuminate the Decisive Role of the C12-H Element in Photoisomerization and Rhodopsin Activation. J Am Chem Soc 2009; 131:17933-42. [DOI: 10.1021/ja907577p] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Petra H. M. Bovee-Geurts
- Department of Biochemistry, UMCN 286, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands, Department of BioOrganic Photochemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Department of Chemistry, University of Hawaii at Manao, 2545 The Mall, Honolulu, Hawaii 96822, and Department of Chemistry, University of California, Berkeley, California 94720
| | - Isabelle Fernández Fernández
- Department of Biochemistry, UMCN 286, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands, Department of BioOrganic Photochemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Department of Chemistry, University of Hawaii at Manao, 2545 The Mall, Honolulu, Hawaii 96822, and Department of Chemistry, University of California, Berkeley, California 94720
| | - Robert S. H. Liu
- Department of Biochemistry, UMCN 286, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands, Department of BioOrganic Photochemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Department of Chemistry, University of Hawaii at Manao, 2545 The Mall, Honolulu, Hawaii 96822, and Department of Chemistry, University of California, Berkeley, California 94720
| | - Richard A. Mathies
- Department of Biochemistry, UMCN 286, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands, Department of BioOrganic Photochemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Department of Chemistry, University of Hawaii at Manao, 2545 The Mall, Honolulu, Hawaii 96822, and Department of Chemistry, University of California, Berkeley, California 94720
| | - Johan Lugtenburg
- Department of Biochemistry, UMCN 286, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands, Department of BioOrganic Photochemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Department of Chemistry, University of Hawaii at Manao, 2545 The Mall, Honolulu, Hawaii 96822, and Department of Chemistry, University of California, Berkeley, California 94720
| | - Willem J. DeGrip
- Department of Biochemistry, UMCN 286, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands, Department of BioOrganic Photochemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Department of Chemistry, University of Hawaii at Manao, 2545 The Mall, Honolulu, Hawaii 96822, and Department of Chemistry, University of California, Berkeley, California 94720
| |
Collapse
|
47
|
Sproviero EM, Newcomer MB, Gascón JA, Batista ER, Brudvig GW, Batista VS. The MoD-QM/MM methodology for structural refinement of photosystem II and other biological macromolecules. PHOTOSYNTHESIS RESEARCH 2009; 102:455-470. [PMID: 19633920 PMCID: PMC2954272 DOI: 10.1007/s11120-009-9467-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 06/25/2009] [Indexed: 05/28/2023]
Abstract
Quantum mechanics/molecular mechanics (QM/MM) hybrid methods are currently the most powerful computational tools for studies of structure/function relations and structural refinement of macrobiomolecules (e.g., proteins and nucleic acids). These methods are highly efficient, since they implement quantum chemistry techniques for modeling only the small part of the system (QM layer) that undergoes chemical modifications, charge transfer, etc., under the influence of the surrounding environment. The rest of the system (MM layer) is described in terms of molecular mechanics force fields, assuming that its influence on the QM layer can be roughly decomposed in terms of electrostatic interactions and steric hindrance. Common limitations of QM/MM methods include inaccuracies in the MM force fields, when polarization effects are not explicitly considered, and the approximate treatment of electrostatic interactions at the boundaries between QM and MM layers. This article reviews recent advances in the development of computational protocols that allow for rigorous modeling of electrostatic interactions in extended systems beyond the common limitations of QM/MM hybrid methods. We focus on the moving-domain QM/MM (MoD-QM/MM) methodology that partitions the system into many molecular domains and obtains the electrostatic and structural properties of the whole system from an iterative self-consistent treatment of the constituent molecular fragments. We illustrate the MoD-QM/MM method as applied to the description of photosystem II as well as in conjunction with the application of spectroscopically constrained QM/MM optimization methods, based on high-resolution spectroscopic data (extended X-ray absorption fine structure spectra, and exchange coupling constants).
Collapse
Affiliation(s)
- Eduardo M. Sproviero
- Yale University, Department of Chemistry, P. O. Box 208107, New Haven Connecticut 06520-8107 USA
| | - Michael B. Newcomer
- Yale University, Department of Chemistry, P. O. Box 208107, New Haven Connecticut 06520-8107 USA
| | | | - Enrique R. Batista
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| | - Gary W. Brudvig
- Yale University, Department of Chemistry, P. O. Box 208107, New Haven Connecticut 06520-8107 USA
| | - Victor S. Batista
- Yale University, Department of Chemistry, P. O. Box 208107, New Haven Connecticut 06520-8107 USA
| |
Collapse
|
48
|
Luo Q, Zheng H, Peng Y, Gao H, Lu L, Cai Y. Facile synthesis of well‐defined pH‐liable Schiff‐base‐type photosensitive polymers via visible‐light‐activated ambient temperature RAFT polymerization. ACTA ACUST UNITED AC 2009. [DOI: 10.1002/pola.23708] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Qing Luo
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education; Key Laboratory of Polymeric Materials & Application Technology of Hunan Province; Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province; College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Haimei Zheng
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education; Key Laboratory of Polymeric Materials & Application Technology of Hunan Province; Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province; College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Ye Peng
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education; Key Laboratory of Polymeric Materials & Application Technology of Hunan Province; Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province; College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Huan Gao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education; Key Laboratory of Polymeric Materials & Application Technology of Hunan Province; Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province; College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Lican Lu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education; Key Laboratory of Polymeric Materials & Application Technology of Hunan Province; Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province; College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Yuanli Cai
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education; Key Laboratory of Polymeric Materials & Application Technology of Hunan Province; Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province; College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| |
Collapse
|
49
|
Mandal TK, Pati SK, Datta A. Degenerate intermolecular and intramolecular proton-transfer reactions: electronic structure of the transition states. J Phys Chem A 2009; 113:8147-51. [PMID: 19606892 DOI: 10.1021/jp9044513] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Density functional theory (DFT) calculations are performed on a series of double and single proton-transfer reactions to study the variation in polarizations in complexes during the dynamics of proton transfer from one isoenergetic, hydrogen-bonded ground-state structure to the other. The isotropic average polarizability (alpha(av)) shows an interesting single-humped profile with a maxima coinciding with the transition state of the reaction. Similar profiles are also computed at Nd:YaG frequencies. The origin of the maximal polarizability at the transition state is traced to maximal charge separation and large D (donor)-A (acceptor) distances. Maximal polarizability for the transition state suggests an interesting, novel, and less memory extensive computational tool to locate the transition state for hydrogen-transfer reactions in hydrogen-bonded complexes.
Collapse
|
50
|
Abstract
Combined quantum-mechanics/molecular-mechanics (QM/MM) approaches have become the method of choice for modeling reactions in biomolecular systems. Quantum-mechanical (QM) methods are required for describing chemical reactions and other electronic processes, such as charge transfer or electronic excitation. However, QM methods are restricted to systems of up to a few hundred atoms. However, the size and conformational complexity of biopolymers calls for methods capable of treating up to several 100,000 atoms and allowing for simulations over time scales of tens of nanoseconds. This is achieved by highly efficient, force-field-based molecular mechanics (MM) methods. Thus to model large biomolecules the logical approach is to combine the two techniques and to use a QM method for the chemically active region (e.g., substrates and co-factors in an enzymatic reaction) and an MM treatment for the surroundings (e.g., protein and solvent). The resulting schemes are commonly referred to as combined or hybrid QM/MM methods. They enable the modeling of reactive biomolecular systems at a reasonable computational effort while providing the necessary accuracy.
Collapse
Affiliation(s)
- Hans Martin Senn
- Department of Chemistry, WestCHEM and University of Glasgow, Glasgow G12 8QQ, UK.
| | | |
Collapse
|