1
|
Wagner WJ, Gross ML. Using mass spectrometry-based methods to understand amyloid formation and inhibition of alpha-synuclein and amyloid beta. MASS SPECTROMETRY REVIEWS 2024; 43:782-825. [PMID: 36224716 PMCID: PMC10090239 DOI: 10.1002/mas.21814] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Amyloid fibrils, insoluble β-sheets structures that arise from protein misfolding, are associated with several neurodegenerative disorders. Many small molecules have been investigated to prevent amyloid fibrils from forming; however, there are currently no therapeutics to combat these diseases. Mass spectrometry (MS) is proving to be effective for studying the high order structure (HOS) of aggregating proteins and for determining structural changes accompanying protein-inhibitor interactions. When combined with native MS (nMS), gas-phase ion mobility, protein footprinting, and chemical cross-linking, MS can afford regional and sometimes amino acid spatial resolution of the aggregating protein. The spatial resolution is greater than typical low-resolution spectroscopic, calorimetric, and the traditional ThT fluorescence methods used in amyloid research today. High-resolution approaches can struggle when investigating protein aggregation, as the proteins exist as complex oligomeric mixtures of many sizes and several conformations or polymorphs. Thus, MS is positioned to complement both high- and low-resolution approaches to studying amyloid fibril formation and protein-inhibitor interactions. This review covers basics in MS paired with ion mobility, continuous hydrogen-deuterium exchange (continuous HDX), pulsed hydrogen-deuterium exchange (pulsed HDX), fast photochemical oxidation of proteins (FPOP) and other irreversible labeling methods, and chemical cross-linking. We then review the applications of these approaches to studying amyloid-prone proteins with a focus on amyloid beta and alpha-synuclein. Another focus is the determination of protein-inhibitor interactions. The expectation is that MS will bring new insights to amyloid formation and thereby play an important role to prevent their formation.
Collapse
Affiliation(s)
- Wesley J Wagner
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Fan J, Liang L, Zhou X, Ouyang Z. Accelerating protein aggregation and amyloid fibrillation for rapid inhibitor screening. Chem Sci 2024; 15:6853-6859. [PMID: 38725489 PMCID: PMC11077537 DOI: 10.1039/d4sc00437j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
The accumulation and deposition of amyloid fibrils, also known as amyloidosis, in tissues and organs of patients has been found to be linked to numerous devastating neurodegenerative diseases. The aggregation of proteins to form amyloid fibrils, however, is a slow pathogenic process, and is a major issue for the evaluation of the effectiveness of inhibitors in new drug discovery and screening. Here, we used microdroplet reaction technology to accelerate the amyloid fibrillation process, monitored the process to shed light on the fundamental mechanism of amyloid self-assembly, and demonstrated the value of the technology in the rapid screening of potential inhibitor drugs. Proteins in microdroplets accelerated to form fibrils in milliseconds, enabling an entire cycle of inhibitor screening for Aβ40 within 3 minutes. The technology would be of broad interest to drug discovery and therapeutic design to develop treatments for diseases associated with protein aggregation and fibrillation.
Collapse
Affiliation(s)
- Jingjin Fan
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University Beijing 100084 China
| | - Liwen Liang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University Beijing 100084 China
| | - Xiaoyu Zhou
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University Beijing 100084 China
| | - Zheng Ouyang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University Beijing 100084 China
| |
Collapse
|
3
|
Taha HB, Chawla E, Bitan G. IM-MS and ECD-MS/MS Provide Insight into Modulation of Amyloid Proteins Self-Assembly by Peptides and Small Molecules. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2066-2086. [PMID: 37607351 DOI: 10.1021/jasms.3c00065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Neurodegenerative proteinopathies are characterized by formation and deposition of misfolded, aggregated proteins in the nervous system leading to neuronal dysfunction and death. It is widely believed that metastable oligomers of the offending proteins, preceding the fibrillar aggregates found in the tissue, are the proximal neurotoxins. There are currently almost no disease-modifying therapies for these diseases despite an active pipeline of preclinical development and clinical trials for over two decades, largely because studying the metastable oligomers and their interaction with potential therapeutics is notoriously difficult. Mass spectrometry (MS) is a powerful analytical tool for structural investigation of proteins, including protein-protein and protein-ligand interactions. Specific MS tools have been useful in determining the composition and conformation of abnormal protein oligomers involved in proteinopathies and the way they interact with drug candidates. Here, we analyze critically the utilization of ion-mobility spectroscopy-MS (IM-MS) and electron-capture dissociation (ECD) MS/MS for analyzing the oligomerization and conformation of multiple amyloidogenic proteins. We also discuss IM-MS investigation of their interaction with two classes of compounds developed by our group over the last two decades: C-terminal fragments derived from the 42-residue form of amyloid β-protein (Aβ42) and molecular tweezers. Finally, we review the utilization of ECD-MS/MS for elucidating the binding sites of the ligands on multiple proteins. These approaches are readily applicable to future studies addressing similar questions and hold promise for facilitating the development of successful disease-modifying drugs against neurodegenerative proteinopathies.
Collapse
Affiliation(s)
- Hash Brown Taha
- Department of Neurology, University of California Los Angeles, California 90095, United States
- Department of Integrative Biology & Physiology, University of California Los Angeles, California 90095, United States
| | - Esha Chawla
- Department of Neurology, University of California Los Angeles, California 90095, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, California 90095, United States
| | - Gal Bitan
- Department of Neurology, University of California Los Angeles, California 90095, United States
- Brain Research Institute, University of California Los Angeles, California 90095, United States
- Molecular Biology Institute, University of California Los Angeles, California 90095, United States
| |
Collapse
|
4
|
Kemeh MM, Lazo ND. Modulation of the Activity of the Insulin-Degrading Enzyme by Aβ Peptides. ACS Chem Neurosci 2023; 14:2935-2943. [PMID: 37498802 DOI: 10.1021/acschemneuro.3c00384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
The insulin-degrading enzyme (IDE) is an evolutionarily conserved protease implicated in the degradation of insulin and amyloidogenic peptides. Most of the biochemical and biophysical characterization of IDE's catalytic activity has been conducted using solutions containing a single substrate, i.e., insulin or Aβ(1-40). IDE's activity toward a particular substrate, however, is likely to be influenced by the presence of other substrates. Here, we show by a kinetic assay based on insulin's helical circular dichroic signal and MALDI TOF mass spectrometry that Aβ peptides modulate IDE's activity toward insulin in opposing ways. Aβ(1-40) enhances IDE-dependent degradation of insulin, whereas Aβ(pyroE3-42), the most pathogenic pyroglutamate-modified Aβ peptide in AD, inhibits IDE's activity. Intriguingly, Aβ(pyroE3-42) also inhibits IDE's ability to degrade Aβ(1-40). Together, our results implicate Aβ peptides in the abnormal catabolism of IDE's key substrates.
Collapse
Affiliation(s)
- Merc M Kemeh
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, Worcester, Massachusetts 01610, United States
| | - Noel D Lazo
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, Worcester, Massachusetts 01610, United States
| |
Collapse
|
5
|
Chuang Y, Chang Y, Tu L. Investigating the inhibitory property of DM hCT on hCT fibrillization via its relevant peptide fragments. Protein Sci 2023; 32:e4711. [PMID: 37354016 PMCID: PMC10360389 DOI: 10.1002/pro.4711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/17/2023] [Accepted: 06/21/2023] [Indexed: 06/25/2023]
Abstract
The irreversible aggregation of proteins or peptides greatly limits their bioavailability; therefore, effective inhibition using small molecules or biocompatible materials is very difficult. Human calcitonin (hCT), a hormone polypeptide with 32 residues, is secreted by the C-cells of the thyroid gland. The biological function of this hormone is to regulate calcium and phosphate concentrations in the blood via several different pathways. One of these is to inhibit the activity of osteoclasts; thus, calcitonin could be used to treat osteoporosis and Paget's disease of the bone. However, hCT is prone to aggregation in aqueous solution and forms amyloid fibrils. Salmon and eel calcitonin are currently used as clinical substitutes for hCT. In a previous study, we found that the replacement of two residues at positions 12 and 17 of hCT with amino acids that appear in the salmon sequence can greatly suppress peptide aggregation. The double mutations of hCT (DM hCT) also act as good inhibitors by disrupting wild-type hCT fibrillization, although the inhibition mechanism is not clear. More importantly, we demonstrated that DM hCT is biologically active in interacting with the calcitonin receptor. To further understand the inhibitory effect of DM hCT on hCT fibrillization, we created four relevant peptide fragments based on the DM hCT sequence. Our examination revealed that the formation of a helix of DM hCT was possibly a key component contributing to its inhibitory effect. This finding could help in the development of peptide-based inhibitors and in understanding the aggregation mechanism of hCT.
Collapse
Affiliation(s)
- Ya‐Ping Chuang
- Department of ChemistryNational Taiwan Normal UniversityTaipeiTaiwan
| | - Yu‐Pei Chang
- Department of ChemistryNational Taiwan Normal UniversityTaipeiTaiwan
| | - Ling‐Hsien Tu
- Department of ChemistryNational Taiwan Normal UniversityTaipeiTaiwan
| |
Collapse
|
6
|
Self-Assembly of Amyloid Fibrils into 3D Gel Clusters versus 2D Sheets. Biomolecules 2023; 13:biom13020230. [PMID: 36830599 PMCID: PMC9953743 DOI: 10.3390/biom13020230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
The deposition of dense fibril plaques represents the pathological hallmark for a multitude of human disorders, including many neurodegenerative diseases. Fibril plaques are predominately composed of amyloid fibrils, characterized by their underlying cross beta-sheet architecture. Research into the mechanisms of amyloid formation has mostly focused on characterizing and modeling the growth of individual fibrils and associated oligomers from their monomeric precursors. Much less is known about the mechanisms causing individual fibrils to assemble into ordered fibrillar suprastructures. Elucidating the mechanisms regulating this "secondary" self-assembly into distinct suprastructures is important for understanding how individual protein fibrils form the prominent macroscopic plaques observed in disease. Whether and how amyloid fibrils assemble into either 2D or 3D supramolecular structures also relates to ongoing efforts on using amyloid fibrils as substrates or scaffolds for self-assembling functional biomaterials. Here, we investigated the conditions under which preformed amyloid fibrils of a lysozyme assemble into larger superstructures as a function of charge screening or pH. Fibrils either assembled into three-dimensional gel clusters or two-dimensional fibril sheets. The latter displayed optical birefringence, diagnostic of amyloid plaques. We presume that pH and salt modulate fibril charge repulsion, which allows anisotropic fibril-fibril attraction to emerge and drive the transition from 3D to 2D fibril self-assembly.
Collapse
|
7
|
REMD Simulations of Full-Length Alpha-Synuclein Together with Ligands Reveal Binding Region and Effect on Amyloid Conversion. Int J Mol Sci 2022; 23:ijms231911545. [PMID: 36232847 PMCID: PMC9569888 DOI: 10.3390/ijms231911545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Alpha-synuclein is a key protein involved in the development and progression of Parkinson’s disease and other synucleinopathies. The intrinsically disordered nature of alpha-synuclein hinders the computational screening of new drug candidates for the treatment of these neurodegenerative diseases. In the present work, replica exchange molecular dynamics simulations of the full-length alpha-synuclein together with low-molecular ligands were utilized to predict the binding site and effect on the amyloid-like conversion of the protein. This approach enabled an accurate prediction of the binding sites for three tested compounds (fasudil, phthalocyanine tetrasulfonate, and spermine), giving good agreement with data from experiments by other groups. Lots of information about the binding and protein conformational ensemble enabled the suggestion of a putative effect of the ligands on the amyloid-like conversion of alpha-synuclein and the mechanism of anti- and pro-amyloid activity of the tested compounds. Therefore, this approach looks promising for testing new drug candidates for binding with alpha-synuclein or other intrinsically disordered proteins and at the same time the estimation of the effect on protein behavior, including amyloid-like aggregation.
Collapse
|
8
|
Wu Y, Huang S, Wu M, Tu L, Lee M, Chan JCC. Aβ
42
oligomers can seed the fibrillization of Aβ
40
peptides. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yi‐Shan Wu
- Department of Chemistry National Taiwan University Taipei Taiwan
| | | | - Meng‐Hsin Wu
- Department of Chemistry National Taiwan Normal University Taipei Taiwan
| | - Ling‐Hsien Tu
- Department of Chemistry National Taiwan Normal University Taipei Taiwan
| | - Ming‐Che Lee
- Department of Chemistry National Taiwan University Taipei Taiwan
| | | |
Collapse
|
9
|
Shahpasand‐Kroner H, Portillo J, Lantz C, Seidler PM, Sarafian N, Loo JA, Bitan G. Three-repeat and four-repeat tau isoforms form different oligomers. Protein Sci 2022; 31:613-627. [PMID: 34902187 PMCID: PMC8862439 DOI: 10.1002/pro.4257] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 11/11/2022]
Abstract
Different tauopathies are characterized by the isoform-specific composition of the aggregates found in the brain and by structurally distinct tau strains. Although tau oligomers have been implicated as important neurotoxic species, little is known about how the primary structures of the six human tau isoforms affect tau oligomerization because the oligomers are metastable and difficult to analyze. To address this knowledge gap, here, we analyzed the initial oligomers formed by the six tau isoforms in the absence of posttranslational modifications or other manipulations using dot blots probed by an oligomer-specific antibody, native-PAGE/western blots, photo-induced cross-linking of unmodified proteins, mass-spectrometry, and ion-mobility spectroscopy. We found that under these conditions, three-repeat (3R) isoforms are more prone than four-repeat (4R) isoforms to form oligomers. We also tested whether known inhibitors of tau aggregation affect its oligomerization using three small molecules representing different classes of tau aggregation inhibitors, Methylene Blue (MB), the molecular tweezer CLR01, and the all-D peptide TLKIVW, for their ability to inhibit or modulate the oligomerization of the six tau isoforms. Unlike their reported inhibitory effect on tau fibrillation, the inhibitors had little or no effect on the initial oligomerization. Our study provides novel insight into the primary-quaternary structure relationship of human tau and suggests that 3R-tau oligomers may be an important target for future development of compounds targeting pathological tau assemblies.
Collapse
Affiliation(s)
- Hedieh Shahpasand‐Kroner
- Department of NeurologyDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA
| | - Jennifer Portillo
- Department of NeurologyDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA
| | - Carter Lantz
- Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Paul M. Seidler
- Department of Pharmacology and Pharmaceutical SciencesUniversity of Southern California School of PharmacyLos AngelesCaliforniaUSA
| | - Natalie Sarafian
- Department of NeurologyDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA
| | - Joseph A. Loo
- Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesCaliforniaUSA,Molecular Biology InstituteUniversity of CaliforniaLos AngelesCaliforniaUSA,Department of Biological ChemistryUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Gal Bitan
- Department of NeurologyDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA,Molecular Biology InstituteUniversity of CaliforniaLos AngelesCaliforniaUSA,Brain Research InstituteUniversity of CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
10
|
Chang HW, Ma HI, Wu YS, Lee MC, Chung-Yueh Yuan E, Huang SJ, Cheng YS, Wu MH, Tu LH, Chan JCC. Site specific NMR characterization of abeta-40 oligomers cross seeded by abeta-42 oligomers. Chem Sci 2022; 13:8526-8535. [PMID: 35974768 PMCID: PMC9337746 DOI: 10.1039/d2sc01555b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/12/2022] [Indexed: 12/18/2022] Open
Abstract
Extracellular accumulation of β amyloid peptides of 40 (Aβ40) and 42 residues (Aβ42) has been considered as one of the hallmarks in the pathology of Alzheimer's disease. In this work, we are able to prepare oligomeric aggregates of Aβ with uniform size and monomorphic structure. Our experimental design is to incubate Aβ peptides in reverse micelles (RMs) so that the peptides could aggregate only through a single nucleation process and the size of the oligomers is confined by the physical dimension of the reverse micelles. The hence obtained Aβ oligomers (AβOs) are 23 nm in diameter and they belong to the category of high molecular-weight (MW) oligomers. The solid-state NMR data revealed that Aβ40Os adopt the structural motif of β-loop-β but the chemical shifts manifested that they may be structurally different from low-MW AβOs and mature fibrils. From the thioflavin-T results, we found that high-MW Aβ42Os can accelerate the fibrillization of Aβ40 monomers. Our protocol allows performing cross-seeding experiments among oligomeric species. By comparing the chemical shifts of Aβ40Os cross seeded by Aβ42Os and those of Aβ40Os prepared in the absence of Aβ42Os, we observed that the chemical states of E11, K16, and E22 were altered, whereas the backbone conformation of the β-sheet region near the C-terminus was structurally invariant. The use of reverse micelles allows hitherto the most detailed characterization of the structural variability of Aβ40Os. Extracellular accumulation of β amyloid peptides of 40 (Aβ40) and 42 residues (Aβ42) has been considered as one of the hallmarks in the pathology of Alzheimer's disease.![]()
Collapse
Affiliation(s)
- Han-Wen Chang
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Ho-I. Ma
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Yi-Shan Wu
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Ming-Che Lee
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Eric Chung-Yueh Yuan
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Shing-Jong Huang
- Instrumentation Center, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Yu-Sheng Cheng
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Meng-Hsin Wu
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Ting-Chow Road, Taipei, 11677, Taiwan
| | - Ling-Hsien Tu
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Ting-Chow Road, Taipei, 11677, Taiwan
| | - Jerry Chun Chung Chan
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| |
Collapse
|
11
|
de Oliveira OV, Gonçalves ADS, Almeida NECD. Insights into β-amyloid transition prevention by cucurbit[7]uril from molecular modeling. J Biomol Struct Dyn 2022; 40:9602-9612. [PMID: 34042019 DOI: 10.1080/07391102.2021.1932600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this study, comparable molecular dynamic (MD) simulations of 1.2 microseconds were performed to clarify the prevention of the β-amyloid peptide (Aβ1-42) aggregation by cucurbit[7]uril (CB[7]). The accumulation of this peptide in the brain is one of the most harmful in Alzheimer's disease. The inhibition mechanism of Aβ1-42 aggregation by different molecules is attributed to preventing of Aβ1-42 conformational transition from α-helix to the β-sheet structure. However, our structural analysis shows that the pure water and aqueous solution of the CB[7] denature the native Aβ1-42 α-helix structure forming different compactness and unfolded conformations, not in β-sheet form. On the other hand, in the three CB[7]@Aβ1-42 complexes, it was observed the encapsulation of N-terminal (Asp1), Lys16, and Val36 by CB[7] along the MD trajectory, and not with aromatic residues as suggested by the literature. Only in one CB[7]@Aβ1-42 complex was observed stable Asp23-Lys28 salt bridge with an average distance of 0.36 nm. All CB[7]@Aβ1-42 complexes are very stable with binding free energy lowest than ∼-50 kcal/mol between the CB[7] and Aβ1-42 monomer from MM/PBSA calculation. Therefore, herein we show that the mechanism of the prevention of elongation protofibril by CB[7] is due to the disruption of the Asp23-Lys28 salt bridge and steric effects of CB[7]@Aβ1-42 complex with the fibril lattice, and not due to the transition from α-helix to β-sheet following the dock-lock mechanism.Communicated by Ramaswamy H. Sarma.
Collapse
|
12
|
Zhou X, Zheng Y, Lv Q, Kong D, Ji B, Han X, Zhou D, Sun Z, Zhu L, Liu P, Jiang H, Jiang Y. Staphylococcus aureus N-terminus formylated δ-toxin tends to form amyloid fibrils, while the deformylated δ-toxin tends to form functional oligomer complexes. Virulence 2021; 12:1418-1437. [PMID: 34028320 PMCID: PMC8158037 DOI: 10.1080/21505594.2021.1928395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 11/29/2022] Open
Abstract
The community-associated Methicillin-resistant Staphylococcus aureus strain (CA-MRSA) is highly virulent and has become a major focus of public health professionals. Phenol-soluble modulins (PSM) are key factors in its increased virulence. δ-Toxin belongs to PSM family and has copious secretion in many S. aureus strains. In addition, δ-toxin exists in the S. aureus culture supernatant as both N-terminus formylated δ-toxin (fδ-toxin) and deformylated δ-toxin (dfδ-toxin) groups. Although δ-toxin has been studied for more than 70 years, its functions remain unclear. We isolated and purified PSMs from the supernatant of S. aureus MW2, and found fibrils and oligomers aggregates by Size Exclusion Chromatography. After analyzing PSM aggregates and using peptide simulations, we found that the difference in the monomer structure of fδ-toxin and dfδ-toxin might ultimately lead to differences in the aggregation ability: fδ-toxin and dfδ-toxin tend to form fibrils and oligomers respectively. Of note, we found that fδ-toxin fibrils enhanced the stability of biofilms, while dfδ-toxin oligomers promoted their dispersal. Additionally, oligomeric dfδ-toxin combined with PSMα to form a complex with enhanced functionality. Due to the different aggregation capabilities and functions of fδ-toxin and dfδ-toxin, we speculate that they may be involved in the regulation of physiological activities of S. aureus. Moreover, the dfδ-toxin oligomer not only provides a new form of complex in the study of PSMα, but also has significance as a reference in oligomer research pertaining to some human amyloid diseases.
Collapse
Affiliation(s)
- Xinyu Zhou
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Yuling Zheng
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Qingyu Lv
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Decong Kong
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Bin Ji
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xuelian Han
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Zeyu Sun
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Li Zhu
- Beijing Institute of Biotechnology, Beijing, China
| | - Peng Liu
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Hua Jiang
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Yongqiang Jiang
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
13
|
Natesh SR, Hummels AR, Sachleben JR, Sosnick TR, Freed KF, Douglas JF, Meredith SC, Haddadian EJ. Molecular dynamics study of water channels in natural and synthetic amyloid-β fibrils. J Chem Phys 2021; 154:235102. [PMID: 34241272 PMCID: PMC8214467 DOI: 10.1063/5.0049250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/12/2021] [Indexed: 11/14/2022] Open
Abstract
We compared all-atom explicit solvent molecular dynamics simulations of three types of Aβ(1-40) fibrils: brain-seeded fibrils (2M4J, with a threefold axial symmetry) and the other two, all-synthetic fibril polymorphs (2LMN and 2LMP, made under different fibrillization conditions). Fibril models were constructed using either a finite or an infinite number of layers made using periodic images. These studies yielded four conclusions. First, finite fibrils tend to unravel in a manner reminiscent of fibril dissolution, while infinite fibrils were more stable during simulations. Second, salt bridges in these fibrils remained stable in those fibrils that contained them initially, and those without salt bridges did not develop them over the time course of the simulations. Third, all fibrils tended to develop a "stagger" or register shift of β-strands along the fibril axis. Fourth and most importantly, the brain-seeded, 2M4J, infinite fibrils allowed bidirectional transport of water in and out of the central longitudinal core of the fibril by rapidly developing gaps at the fibril vertices. 2LMP fibrils also showed this behavior, although to a lesser extent. The diffusion of water molecules in the fibril core region involved two dynamical states: a localized state and directed diffusion in the presence of obstacles. These observations provided support for the hypothesis that Aβ fibrils could act as nanotubes. At least some Aβ oligomers resembled fibrils structurally in having parallel, in-register β-sheets and a sheet-turn-sheet motif. Thus, our findings could have implications for Aβ cytotoxicity, which may occur through the ability of oligomers to form abnormal water and ion channels in cell membranes.
Collapse
Affiliation(s)
- S. R. Natesh
- Biological Sciences Collegiate Division, The University of Chicago, Chicago, Illinois 60637, USA
| | - A. R. Hummels
- Biological Sciences Collegiate Division, The University of Chicago, Chicago, Illinois 60637, USA
| | - J. R. Sachleben
- Division of Biological Sciences, The University of Chicago, Chicago, Illinois 60637, USA
| | - T. R. Sosnick
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | - K. F. Freed
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - J. F. Douglas
- Material Measurement Laboratory, Material Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - S. C. Meredith
- Departments of Pathology, Biochemistry, and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | - E. J. Haddadian
- Biological Sciences Collegiate Division, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
14
|
Uddin MS, Al Mamun A, Rahman MA, Behl T, Perveen A, Hafeez A, Bin-Jumah MN, Abdel-Daim MM, Ashraf GM. Emerging Proof of Protein Misfolding and Interactions in Multifactorial Alzheimer's Disease. Curr Top Med Chem 2021; 20:2380-2390. [PMID: 32479244 DOI: 10.2174/1568026620666200601161703] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Alzheimer's disease (AD) is a devastating neurodegenerative disorder, characterized by the extracellular accumulations of amyloid beta (Aβ) as senile plaques and intracellular aggregations of tau in the form of neurofibrillary tangles (NFTs) in specific brain regions. In this review, we focus on the interaction of Aβ and tau with cytosolic proteins and several cell organelles as well as associated neurotoxicity in AD. SUMMARY Misfolded proteins present in cells accompanied by correctly folded, intermediately folded, as well as unfolded species. Misfolded proteins can be degraded or refolded properly with the aid of chaperone proteins, which are playing a pivotal role in protein folding, trafficking as well as intermediate stabilization in healthy cells. The continuous aggregation of misfolded proteins in the absence of their proper clearance could result in amyloid disease including AD. The neuropathological changes of AD brain include the atypical cellular accumulation of misfolded proteins as well as the loss of neurons and synapses in the cerebral cortex and certain subcortical regions. The mechanism of neurodegeneration in AD that leads to severe neuronal cell death and memory dysfunctions is not completely understood until now. CONCLUSION Examining the impact, as well as the consequences of protein misfolding, could help to uncover the molecular etiologies behind the complicated AD pathogenesis.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Abdullah Al Mamun
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Md Ataur Rahman
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Saharanpur, India
| | - May N Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia,Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
15
|
Lakey-Beitia J, Burillo AM, Penna GL, Hegde ML, Rao K. Polyphenols as Potential Metal Chelation Compounds Against Alzheimer's Disease. J Alzheimers Dis 2021; 82:S335-S357. [PMID: 32568200 PMCID: PMC7809605 DOI: 10.3233/jad-200185] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease affecting more than 50 million people worldwide. The pathology of this multifactorial disease is primarily characterized by the formation of amyloid-β (Aβ) aggregates; however, other etiological factors including metal dyshomeostasis, specifically copper (Cu), zinc (Zn), and iron (Fe), play critical role in disease progression. Because these transition metal ions are important for cellular function, their imbalance can cause oxidative stress that leads to cellular death and eventual cognitive decay. Importantly, these transition metal ions can interact with the amyloid-β protein precursor (AβPP) and Aβ42 peptide, affecting Aβ aggregation and increasing its neurotoxicity. Considering how metal dyshomeostasis may substantially contribute to AD, this review discusses polyphenols and the underlying chemical principles that may enable them to act as natural chelators. Furthermore, polyphenols have various therapeutic effects, including antioxidant activity, metal chelation, mitochondrial function, and anti-amyloidogenic activity. These combined therapeutic effects of polyphenols make them strong candidates for a moderate chelation-based therapy for AD.
Collapse
Affiliation(s)
- Johant Lakey-Beitia
- Centre for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, City of Knowledge, Panama
| | - Andrea M. Burillo
- Centre for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, City of Knowledge, Panama
| | - Giovanni La Penna
- National Research Council, Institute of Chemistry of Organometallic Compounds, Sesto Fiorentino (FI), Italy
| | - Muralidhar L. Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
- Weill Medical College of Cornell University, New York, NY, USA
| | - K.S. Rao
- Centre for Neuroscience, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, City of Knowledge, Panama
- Zhongke Jianlan Medical Institute, Hangzhou, Republic of China
| |
Collapse
|
16
|
Amirkulova DB, Chakraborty M, White AD. Experimentally Consistent Simulation of Aβ 21-30 Peptides with a Minimal NMR Bias. J Phys Chem B 2020; 124:8266-8277. [PMID: 32845146 DOI: 10.1021/acs.jpcb.0c07129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Misfolded amyloid peptides are neurotoxic molecules associated with Alzheimer's disease. The Aβ21-30 peptide fragment is a decapeptide fragment of the complete Aβ42 peptide which is a hypothesized cause of Alzheimer's disease via amyloid fibrillogenesis. Aβ21-30 is investigated here with a combination of NMR (nuclear magnetic resonance) spectroscopy experiments and molecular dynamics simulations with experiment directed simulation (EDS). EDS is a maximum entropy biasing method that augments a molecular dynamics simulation with experimental data (NMR chemical shifts) to improve agreement with experiments and thus accuracy. EDS molecular dynamics shows that the Aβ21-30 monomer has a β turn stabilized by the following interactions: S26-K28, D23-S26, and D23-K28. NMR, total correlation spectroscopy, and rotating frame Overhauser effect spectroscopy experiments provide independent agreement. Subsequent two- and four-monomer EDS simulations show aggregation. Diffusion coefficients calculated from molecular simulation also agreed with experimentally measured values only after using EDS, providing independent assessment of accuracy. This work demonstrates how accuracy can be improved by directly using experimental data in molecular dynamics of complex processes like self-assembly.
Collapse
Affiliation(s)
- Dilnoza B Amirkulova
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Maghesree Chakraborty
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Andrew D White
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
17
|
The Effect of (-)-Epigallocatechin-3-Gallate on the Amyloid-β Secondary Structure. Biophys J 2020; 119:349-359. [PMID: 32579965 DOI: 10.1016/j.bpj.2020.05.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/20/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023] Open
Abstract
Amyloid-β (Aβ) is a macromolecular structure of great interest because its misfolding and aggregation, along with changes in the secondary structure, have been correlated with its toxicity in various neurodegenerative diseases. Small drug-like molecules can modulate the amyloid secondary structure and therefore have raised significant interest in applications to active and passive therapies targeting amyloids. In this study, we investigate the interactions of epigallocatechin-3-gallate (EGCG), found in green tea, with Aβ polypeptides, using a combination of in vitro immuno-infrared sensor measurements, docking, molecular dynamics simulations, and ab initio calculations. We find that the interactions of EGCG are dominated by only a few residues in the fibrils, including hydrophobic π-π interactions with aromatic rings of side chains and hydrophilic interactions with the backbone of Aβ, as confirmed by extended (1-μs-long) molecular dynamics simulations. Immuno-infrared sensor data are consistent with degradation of Aβ fibril induced by EGCG and inhibition of Aβ fibril and oligomer formation, as manifested by the recovery of the amide-I band of monomeric Aβ, which is red-shifted by 26 cm-1 when compared to the amide-I band of the fibrillar form. The shift is rationalized by computations of the infrared spectra of Aβ42 model structures, suggesting that the conformational change involves interchain hydrogen bonds in the amyloid fibrils that are broken upon binding of EGCG.
Collapse
|
18
|
Tonali N, Dodero VI, Kaffy J, Hericks L, Ongeri S, Sewald N. Real-Time BODIPY-Binding Assay To Screen Inhibitors of the Early Oligomerization Process of Aβ1-42 Peptide. Chembiochem 2020; 21:1129-1135. [PMID: 31702868 PMCID: PMC7217026 DOI: 10.1002/cbic.201900652] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Indexed: 01/03/2023]
Abstract
Misfolding and aggregation of amyloid β1–42 peptide (Aβ1–42) play a central role in the pathogenesis of Alzheimer's disease (AD). Targeting the highly cytotoxic oligomeric species formed during the early stages of the aggregation process represents a promising therapeutic strategy to reduce the toxicity associated with Aβ1–42. Currently, the thioflavin T (ThT) assay is the only established spectrofluorometric method to screen aggregation inhibitors. The success of the ThT assay is that it can detect Aβ1–42 aggregates with high β‐sheet content, such as protofibrils or fibrils, which appear in the late aggregation steps. Unfortunately, by using the ThT assay, the detection of inhibitors of early soluble oligomers that present a low β‐sheet character is challenging. Herein, a new, facile, and robust boron‐dipyrromethene (BODIPY) real‐time assay suitable for 96‐well plate format, which allows screening of compounds as selective inhibitors of the formation of Aβ1–42 oligomers, is reported. These inhibitors decrease the cellular toxicity of Aβ1–42, although they fail in the ThT assay. The findings have been confirmed and validated by structural analysis and cell viability assays under comparable experimental conditions. It is demonstrated that the BODIPY assay is a convenient method to screen and discover new candidate compounds that slow down or stop the pathological early oligomerization process and are active in the cellular assay. Therefore, it is a suitable complementary screening method of the current ThT assay.
Collapse
Affiliation(s)
- Nicolo Tonali
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, P. O. Box 100131, 33501, Bielefeld, Germany.,BioCIS, CNRS/Université Paris Sud, Université Paris Saclay, 5 rue Jean-Baptiste Clément, 92296, Châtenay-Malabry Cedex, France
| | - Veronica I Dodero
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, P. O. Box 100131, 33501, Bielefeld, Germany
| | - Julia Kaffy
- BioCIS, CNRS/Université Paris Sud, Université Paris Saclay, 5 rue Jean-Baptiste Clément, 92296, Châtenay-Malabry Cedex, France
| | - Loreen Hericks
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, P. O. Box 100131, 33501, Bielefeld, Germany
| | - Sandrine Ongeri
- BioCIS, CNRS/Université Paris Sud, Université Paris Saclay, 5 rue Jean-Baptiste Clément, 92296, Châtenay-Malabry Cedex, France
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, P. O. Box 100131, 33501, Bielefeld, Germany
| |
Collapse
|
19
|
Kuhn AJ, Raskatov J. Is the p3 Peptide (Aβ17-40, Aβ17-42) Relevant to the Pathology of Alzheimer's Disease?1. J Alzheimers Dis 2020; 74:43-53. [PMID: 32176648 PMCID: PMC7443050 DOI: 10.3233/jad-191201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Despite the vast heterogeneity of amyloid plaques isolated from the brains of those with Alzheimer's Disease (AD), the basis of the Amyloid Cascade Hypothesis targets a single peptide, the amyloid-β (Aβ) peptide. The countless therapeutic efforts targeting the production and aggregation of this specific peptide have been met with disappointment, leaving many to question the role of Aβ in AD. An alternative cleavage product of the Amyloid-β protein precursor, called the p3 peptide, which has also been isolated from the brains of AD patients, has been largely absent from most Aβ-related studies. Typically referred to as non-amyloidogenic and even suggested as neuroprotective, the p3 peptide has garnered little attention aside from some conflicting findings on cytotoxicity and potential self-assembly to form higher order aggregates. Herein, we report an extensive analysis of the findings surrounding p3 and offer some evidence as to why it may not be as innocuous as previously suggested.
Collapse
Affiliation(s)
- Ariel J Kuhn
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Physical Sciences Building, Santa Cruz, CA, USA
| | - Jevgenij Raskatov
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Physical Sciences Building, Santa Cruz, CA, USA
| |
Collapse
|
20
|
Irie Y, Hanaki M, Murakami K, Imamoto T, Furuta T, Kawabata T, Kawase T, Hirose K, Monobe Y, Akagi KI, Yanagita RC, Irie K. Synthesis and biochemical characterization of quasi-stable trimer models of full-length amyloid β40 with a toxic conformation. Chem Commun (Camb) 2019; 55:182-185. [DOI: 10.1039/c8cc08618d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The only trimer model to exhibit weak but significant neurotoxicity against SH-SY5Y cells was the one which was linked at position 38.
Collapse
Affiliation(s)
- Yumi Irie
- Division of Food Science and Biotechnology
- Graduate School of Agriculture
- Kyoto University
- Kyoto 606-8502
- Japan
| | - Mizuho Hanaki
- Division of Food Science and Biotechnology
- Graduate School of Agriculture
- Kyoto University
- Kyoto 606-8502
- Japan
| | - Kazuma Murakami
- Division of Food Science and Biotechnology
- Graduate School of Agriculture
- Kyoto University
- Kyoto 606-8502
- Japan
| | | | - Takumi Furuta
- Institute for Chemical Research
- Kyoto University
- Kyoto 611-0011
- Japan
| | - Takeo Kawabata
- Institute for Chemical Research
- Kyoto University
- Kyoto 611-0011
- Japan
| | | | | | - Yoko Monobe
- National Institute of Biomedical Innovation
- Health and Nutrition
- Osaka 567-0085
- Japan
| | - Ken-ichi Akagi
- National Institute of Biomedical Innovation
- Health and Nutrition
- Osaka 567-0085
- Japan
| | - Ryo C. Yanagita
- Department of Applied Biological Science
- Faculty of Agriculture
- Kagawa University
- Kagawa 761-0795
- Japan
| | - Kazuhiro Irie
- Division of Food Science and Biotechnology
- Graduate School of Agriculture
- Kyoto University
- Kyoto 606-8502
- Japan
| |
Collapse
|
21
|
Houghtaling J, List J, Mayer M. Nanopore-Based, Rapid Characterization of Individual Amyloid Particles in Solution: Concepts, Challenges, and Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802412. [PMID: 30225962 DOI: 10.1002/smll.201802412] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/15/2018] [Indexed: 06/08/2023]
Abstract
Aggregates of misfolded proteins are associated with several devastating neurodegenerative diseases. These so-called amyloids are therefore explored as biomarkers for the diagnosis of dementia and other disorders, as well as for monitoring disease progression and assessment of the efficacy of therapeutic interventions. Quantification and characterization of amyloids as biomarkers is particularly demanding because the same amyloid-forming protein can exist in different states of assembly, ranging from nanometer-sized monomers to micrometer-long fibrils that interchange dynamically both in vivo and in samples from body fluids ex vivo. Soluble oligomeric amyloid aggregates, in particular, are associated with neurotoxic effects, and their molecular organization, size, and shape appear to determine their toxicity. This concept article proposes that the emerging field of nanopore-based analytics on a single molecule and single aggregate level holds the potential to account for the heterogeneity of amyloid samples and to characterize these particles-rapidly, label-free, and in aqueous solution-with regard to their size, shape, and abundance. The article describes the concept of nanopore-based resistive pulse sensing, reviews previous work in amyloid analysis, and discusses limitations and challenges that will need to be overcome to realize the full potential of amyloid characterization on a single-particle level.
Collapse
Affiliation(s)
- Jared Houghtaling
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| | - Jonathan List
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| | - Michael Mayer
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| |
Collapse
|
22
|
Tamagno E, Guglielmotto M, Monteleone D, Manassero G, Vasciaveo V, Tabaton M. The Unexpected Role of Aβ1-42 Monomers in the Pathogenesis of Alzheimer's Disease. J Alzheimers Dis 2018; 62:1241-1245. [PMID: 29103036 PMCID: PMC5870015 DOI: 10.3233/jad-170581] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Amyloid-β (Aβ) has been proposed as a biomarker and a drug target for the therapy of Alzheimer's disease (AD). The neurotoxic entity and relevance of each conformational form of Aβ to AD pathology is still under debate; Aβ oligomers are considered the major killer form of the peptide whereas monomers have been proposed to be involved in physiological process. Here we reviewed some different effects mediated by monomers and oligomers on mechanisms involved in AD pathogenesis such as autophagy and tau aggregation. Data reported in this review demonstrate that Aβ monomers could have a major role in sustaining the pathogenesis of AD and that AD therapy should be focused not only in the removal of oligomers but also of monomers.
Collapse
Affiliation(s)
- Elena Tamagno
- Department of Neuroscience, University of Torino, Torino, Italy,Neuroscience Institute of Cavalieri Ottolenghi Foundation (NICO), University of Torino, Torino, Italy
| | - Michela Guglielmotto
- Department of Neuroscience, University of Torino, Torino, Italy,Neuroscience Institute of Cavalieri Ottolenghi Foundation (NICO), University of Torino, Torino, Italy
| | - Debora Monteleone
- Department of Neuroscience, University of Torino, Torino, Italy,Neuroscience Institute of Cavalieri Ottolenghi Foundation (NICO), University of Torino, Torino, Italy
| | - Giusi Manassero
- Department of Neuroscience, University of Torino, Torino, Italy,Neuroscience Institute of Cavalieri Ottolenghi Foundation (NICO), University of Torino, Torino, Italy
| | - Valeria Vasciaveo
- Department of Neuroscience, University of Torino, Torino, Italy,Neuroscience Institute of Cavalieri Ottolenghi Foundation (NICO), University of Torino, Torino, Italy
| | - Massimo Tabaton
- Department of Internal Medicine and Medical Specialties (DIMI), Unit of Geriatric Medicine, University of Genova, Genova, Italy,Correspondence to: Dr. Massimo Tabaton, Department of Internal Medicine and Medical Specialities (DIMI) Viale Benedetto XV, 6,16132, Genova, Italy. Tel./Fax: +390103537064; E-mail:
| |
Collapse
|
23
|
Ligand field molecular dynamics simulation of Pt(II)-phenanthroline binding to N-terminal fragment of amyloid-β peptide. PLoS One 2018; 13:e0193668. [PMID: 29509784 PMCID: PMC5839559 DOI: 10.1371/journal.pone.0193668] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/15/2018] [Indexed: 12/15/2022] Open
Abstract
We report microsecond timescale molecular dynamics simulation of the complex formed between Pt(II)-phenanthroline and the 16 N-terminal residues of the Aβ peptide that is implicated in the onset of Alzheimer’s disease, along with equivalent simulations of the metal-free peptide. Simulations from a variety of starting points reach equilibrium within 100 ns, as judged by root mean square deviation and radius of gyration. Platinum-bound peptides deviate rather more from starting points, and adopt structures with larger radius of gyration, than their metal-free counterparts. Residues bound directly to Pt show smaller fluctuation, but others actually move more in the Pt-bound peptide. Hydrogen bonding within the peptide is disrupted by binding of Pt, whereas the presence of salt-bridges are enhanced.
Collapse
|
24
|
Huh H, Lee J, Kim HJ, Hohng S, Kim SK. Morphological analysis of oligomeric vs. fibrillar forms of α-synuclein aggregates with super-resolution BALM imaging. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.10.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Using chirality to probe the conformational dynamics and assembly of intrinsically disordered amyloid proteins. Sci Rep 2017; 7:12433. [PMID: 28970487 PMCID: PMC5624888 DOI: 10.1038/s41598-017-10525-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/09/2017] [Indexed: 12/22/2022] Open
Abstract
Intrinsically disordered protein (IDP) conformers occupy large regions of conformational space and display relatively flat energy surfaces. Amyloid-forming IDPs, unlike natively folded proteins, have folding trajectories that frequently involve movements up shallow energy gradients prior to the “downhill” folding leading to fibril formation. We suggest that structural perturbations caused by chiral inversions of amino acid side-chains may be especially valuable in elucidating these pathways of IDP folding. Chiral inversions are subtle in that they do not change side-chain size, flexibility, hydropathy, charge, or polarizability. They allow focus to be placed solely on the question of how changes in amino acid side-chain orientation, and the resultant alterations in peptide backbone structure, affect a peptide’s conformational landscape (Ramachandran space). If specific inversions affect folding and assembly, then the sites involved likely are important in mediating these processes. We suggest here a “focused chiral mutant library” approach for the unbiased study of amyloid-forming IDPs.
Collapse
|
26
|
de Almeida NEC, Do TD, LaPointe NE, Tro M, Feinstein SC, Shea JE, Bowers MT. 1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose Binds to the N-terminal Metal Binding Region to Inhibit Amyloid β-protein Oligomer and Fibril Formation. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2017; 420:24-34. [PMID: 29056865 PMCID: PMC5644501 DOI: 10.1016/j.ijms.2016.09.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The early oligomerization of amyloid β-protein (Aβ) is a crucial step in the etiology of Alzheimer's disease (AD), in which soluble and highly neurotoxic oligomers are produced and accumulated inside neurons. In search of therapeutic solutions for AD treatment and prevention, potent inhibitors that remodel Aβ assembly and prevent neurotoxic oligomer formation offer a promising approach. In particular, several polyphenolic compounds have shown anti-aggregation properties and good efficacy on inhibiting oligomeric amyloid formation. 1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose is a large polyphenol that has been shown to be effective at inhibiting aggregation of full-length Aβ1-40 and Aβ1-42, but has the opposite effect on the C-terminal fragment Aβ25-35. Here, we use a combination of ion mobility coupled to mass spectrometry (IMS-MS), transmission electron microscopy (TEM) and molecular dynamics (MD) simulations to elucidate the inhibitory effect of PGG on aggregation of full-length Aβ1-40 and Aβ1-42. We show that PGG interacts strongly with these two peptides, especially in their N-terminal metal binding regions, and suppresses the formation of Aβ1-40 tetramer and Aβ1-42 dodecamer. By exploring multiple facets of polyphenol-amyloid interactions, we provide a molecular basis for the opposing effects of PGG on full-length Aβ and its C-terminal fragments.
Collapse
Affiliation(s)
- Natália E. C. de Almeida
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Thanh D. Do
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Nichole E. LaPointe
- Neuroscience Research Institute and Department of Molecular Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, United States
| | - Michael Tro
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Stuart C. Feinstein
- Neuroscience Research Institute and Department of Molecular Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, United States
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Michael T. Bowers
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
27
|
Brown AM, Bevan DR. Molecular Dynamics Simulations of Amyloid β-Peptide (1-42): Tetramer Formation and Membrane Interactions. Biophys J 2017; 111:937-49. [PMID: 27602722 DOI: 10.1016/j.bpj.2016.08.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/29/2016] [Accepted: 08/02/2016] [Indexed: 01/10/2023] Open
Abstract
The aggregation cascade and peptide-membrane interactions of the amyloid β-peptide (Aβ) have been implicated as toxic events in the development and progression of Alzheimer's disease. Aβ42 forms oligomers and ultimately plaques, and it has been hypothesized that these oligomeric species are the main toxic species contributing to neuronal cell death. To better understand oligomerization events and subsequent oligomer-membrane interactions of Aβ42, we performed atomistic molecular-dynamics (MD) simulations to characterize both interpeptide interactions and perturbation of model membranes by the peptides. MD simulations were utilized to first show the formation of a tetramer unit by four separate Aβ42 peptides. Aβ42 tetramers adopted an oblate ellipsoid shape and showed a significant increase in β-strand formation in the final tetramer unit relative to the monomers, indicative of on-pathway events for fibril formation. The Aβ42 tetramer unit that formed in the initial simulations was used in subsequent MD simulations in the presence of a pure POPC or cholesterol-rich raft model membrane. Tetramer-membrane simulations resulted in elongation of the tetramer in the presence of both model membranes, with tetramer-raft interactions giving rise to the rearrangement of key hydrophobic regions in the tetramer and the formation of a more rod-like structure indicative of a fibril-seeding aggregate. Membrane perturbation by the tetramer was manifested in the form of more ordered, rigid membranes, with the pure POPC being affected to a greater extent than the raft membrane. These results provide critical atomistic insight into the aggregation pathway of Aβ42 and a putative toxic mechanism in the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Anne M Brown
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia
| | - David R Bevan
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia.
| |
Collapse
|
28
|
Copani A. The underexplored question of β-amyloid monomers. Eur J Pharmacol 2017; 817:71-75. [PMID: 28577967 DOI: 10.1016/j.ejphar.2017.05.057] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/12/2017] [Accepted: 05/30/2017] [Indexed: 01/03/2023]
Abstract
Conceived more than 25 years ago, the amyloid cascade hypothesis of Alzheimer's disease has evolved to accommodate new findings, namely different forms of β-amyloid aggregates and downstream dysfunctions. Yet, the cascade does not mention its very beginning, the β-amyloid monomer. Here, I will discuss the monomer from a functional evolutionary perspective, highlighting the potential advantages of a native unfolded state that, however, involves an amyloidogenic risk. Finally, I will make a summary of what is known about its functional role in the brain and discuss the implications of its conceivable shortage in the development of Alzheimer's disease.
Collapse
Affiliation(s)
- Agata Copani
- Department of Drug Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| |
Collapse
|
29
|
Linh NH, Thu TTM, Tu L, Hu CK, Li MS. Impact of Mutations at C-Terminus on Structures and Dynamics of Aβ40 and Aβ42: A Molecular Simulation Study. J Phys Chem B 2017; 121:4341-4354. [DOI: 10.1021/acs.jpcb.6b12888] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Nguyen Hoang Linh
- Institute for Computational Science and Technology
, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
- Biomedical
Engineering Department, University of Technology - VNU HCM
, 268 Ly Thuong
Kiet Street, District 10, Ho Chi Minh City, Vietnam
| | - Tran Thi Minh Thu
- Institute for Computational Science and Technology
, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
- Biomedical
Engineering Department, University of Technology - VNU HCM
, 268 Ly Thuong
Kiet Street, District 10, Ho Chi Minh City, Vietnam
| | - LyAnh Tu
- Institute for Computational Science and Technology
, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
- Biomedical
Engineering Department, University of Technology - VNU HCM
, 268 Ly Thuong
Kiet Street, District 10, Ho Chi Minh City, Vietnam
| | - Chin-Kun Hu
- Institute
of Physics, Academia Sinica
, 128 Academia Road Section 2, Taipei
11529, Taiwan
- National
Center for Theoretical Sciences, National Tsing Hua University
, 101 Kuang-Fu Road Section 2, Hsinch
30013, Taiwan
- Business
School, University of Shanghai for Science and Technology
, 334 Jun
Gong Road, Shanghai
200093, China
| | - Mai Suan Li
- Institute for Computational Science and Technology
, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
- Institute of Physics Polish Academy of Sciences
, Al. Lotnikow 32/46, 02-668
Warsaw, Poland
| |
Collapse
|
30
|
Han X, Park J, Wu W, Malagon A, Wang L, Vargas E, Wikramanayake A, Houk KN, Leblanc RM. A resorcinarene for inhibition of Aβ fibrillation. Chem Sci 2017; 8:2003-2009. [PMID: 28451317 PMCID: PMC5398272 DOI: 10.1039/c6sc04854d] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/17/2016] [Indexed: 12/24/2022] Open
Abstract
Amyloid-β peptides (Aβ) fibrillation is the hallmark of Alzheimer's disease (AD). However, it has been challenging to discover potent agents in order to inhibit Aβ fibrillation. Herein, we demonstrated the effect of resorcinarene on inhibiting Aβ fibrillation in vitro via experimental and computational methods. Aβ were incubated with different concentrations of resorcinarene so as to monitor the kinetics by using thioflavin T binding assay. The results, which were further confirmed by far-UV CD spectroscopy and atomic force microscopy, strongly indicated that the higher concentration of resorcinarene, the more effective the inhibition of Aβ fibrillation. A cytotoxicity study showed that when sea urchin embryos were exposed to the resorcinarene, the majority survived due to the resorcinarene low toxicity. In addition, when the resorcinarene was added, the formation of toxic Aβ 42 species was delayed. Computational studies of Aβ fibrillation, including docking simulations and MD simulations, illustrated that the interaction between inhibitor resorcinarene and Aβ is driven by the non-polar interactions. These studies display a novel strategy for the exploration of promising antiamyloiddogenic agents for AD treatments.
Collapse
Affiliation(s)
- Xu Han
- Department of Chemistry , Cox Science Center , University of Miami , Coral Gables , Florida 33146 , USA .
| | - Jiyong Park
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California 90095 , USA .
| | - Wei Wu
- Department of Biology , Cox Science Center , University of Miami , Coral Gables , Florida 33146 , USA
| | - Andres Malagon
- Departamento de Quimica , Universidad de los Andes , Cr. 1 No. 18A 10 , Bogota 111711 , Colombia
| | - Lingyu Wang
- Department of Biology , Cox Science Center , University of Miami , Coral Gables , Florida 33146 , USA
| | - Edgar Vargas
- Departamento de Quimica , Universidad de los Andes , Cr. 1 No. 18A 10 , Bogota 111711 , Colombia
| | - Athula Wikramanayake
- Department of Biology , Cox Science Center , University of Miami , Coral Gables , Florida 33146 , USA
| | - K N Houk
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California 90095 , USA .
| | - Roger M Leblanc
- Department of Chemistry , Cox Science Center , University of Miami , Coral Gables , Florida 33146 , USA .
| |
Collapse
|
31
|
Schwing K, Gerhards M. Investigations on isolated peptides by combined IR/UV spectroscopy in a molecular beam – structure, aggregation, solvation and molecular recognition. INT REV PHYS CHEM 2016. [DOI: 10.1080/0144235x.2016.1229331] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
Huy PDQ, Vuong QV, La Penna G, Faller P, Li MS. Impact of Cu(II) Binding on Structures and Dynamics of Aβ 42 Monomer and Dimer: Molecular Dynamics Study. ACS Chem Neurosci 2016; 7:1348-1363. [PMID: 27454036 DOI: 10.1021/acschemneuro.6b00109] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The classical force field, which is compatible with the Amber force field 99SB, has been obtained for the interaction of Cu(II) with monomer and dimers of amyloid-β peptides using the coordination where Cu(II) is bound to His6, His13 (or His14), and Asp1 with distorted planar geometry. The newly developed force field and molecular dynamics simulation were employed to study the impact of Cu(II) binding on structures and dynamics of Aβ42 monomer and dimers. It was shown that in the presence of Cu(II) the β content of monomer is reduced substantially compared with the wild-type Aβ42 suggesting that, in accord with experiments, metal ions facilitate formation of amorphous aggregates rather than amyloid fibrils with cross-β structures. In addition, one possible mechanism for amorphous assembly is that the Asp23-Lys28 salt bridge, which plays a crucial role in β sheet formation, becomes more flexible upon copper ion binding to the Aβ N-terminus. The simulation of dimers was conducted with the Cu(II)/Aβ stoichiometric ratios of 1:1 and 1:2. For the 1:1 ratio Cu(II) delays the Aβ dimerization process as observed in a number of experiments. The mechanism underlying this phenomenon is associated with slow formation of interchain salt bridges in dimer as well as with decreased hydrophobicity of monomer upon Cu-binding.
Collapse
Affiliation(s)
- Pham Dinh Quoc Huy
- Institute
of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
- Institute
for Computational Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi
Minh City, Vietnam
| | - Quan Van Vuong
- Institute
for Computational Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi
Minh City, Vietnam
- Department
of Chemistry, Nagoya University, Nagoya 464-8602, Japan
| | - Giovanni La Penna
- National Research Council of Italy CNR, Institute
for Chemistry of Organometallic Compounds ICCOM, 50019 Florence, Italy
- Italian Institute for Nuclear Physics INFN, Section
of Roma-Tor Vergata, 50019 Florence, Italy
| | - Peter Faller
- Biometals
and Biological Chemistry, Institute of Chemistry, University of Strasbourg, 4 rue B. Pascal, 67081 Strasbourg, France
| | - Mai Suan Li
- Institute
of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
33
|
Nguyen HL, Thi Minh Thu T, Truong PM, Lan PD, Man VH, Nguyen PH, Tu LA, Chen YC, Li MS. Aβ41 Aggregates More Like Aβ40 than Like Aβ42: In Silico and in Vitro Study. J Phys Chem B 2016; 120:7371-9. [DOI: 10.1021/acs.jpcb.6b06368] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hoang Linh Nguyen
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh
Hiep Ward, District 12, Ho Chi Minh City, Vietnam
- Department
of Applied Physics, Faculty of Applied Science, Ho Chi Minh City University of Technology - VNU HCM, 268 Ly Thuong Kiet Street, District
10, Ho Chi Minh City, Vietnam
| | - Tran Thi Minh Thu
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh
Hiep Ward, District 12, Ho Chi Minh City, Vietnam
- Department
of Applied Physics, Faculty of Applied Science, Ho Chi Minh City University of Technology - VNU HCM, 268 Ly Thuong Kiet Street, District
10, Ho Chi Minh City, Vietnam
| | - Phan Minh Truong
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh
Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| | - Pham Dang Lan
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh
Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| | - Viet Hoang Man
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Phuong H. Nguyen
- Laboratoire
de
Biochimie Theorique, UPR 9080 CNRS, IBPC, Universite Paris 7, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Ly Anh Tu
- Department
of Applied Physics, Faculty of Applied Science, Ho Chi Minh City University of Technology - VNU HCM, 268 Ly Thuong Kiet Street, District
10, Ho Chi Minh City, Vietnam
| | - Yi-Cheng Chen
- Department
of Medicine, MacKay Medical College, New Taipei City 252, Taiwan
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
34
|
de Almeida NEC, Do TD, Tro M, LaPointe NE, Feinstein SC, Shea JE, Bowers MT. Opposing Effects of Cucurbit[7]uril and 1,2,3,4,6-Penta-O-galloyl-β-d-glucopyranose on Amyloid β25-35 Assembly. ACS Chem Neurosci 2016; 7:218-26. [PMID: 26629788 PMCID: PMC4758880 DOI: 10.1021/acschemneuro.5b00280] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by extracellular deposits of amyloid β protein (Aβ) in the brain. The conversion of soluble monomers to amyloid Aβ fibrils is a complicated process and involves several transient oligomeric species, which are widely believed to be highly toxic and play a crucial role in the etiology of AD. The development of inhibitors to prevent formation of small and midsized oligomers is a promising strategy for AD treatment. In this work, we employ ion mobility spectrometry (IMS), transmission electron microscopy (TEM), and molecular dynamics (MD) simulations to elucidate the structural modulation promoted by two potential inhibitors of Aβ oligomerization, cucurbit[7]uril (CB[7]) and 1,2,3,4,6-penta-O-galloyl-β-d-glucopyranose (PGG), on early oligomer and fibril formation of the Aβ25-35 fragment. One and two CB[7] molecules bind to Aβ25-35 monomers and dimers, respectively, and suppress aggregation by remodeling early oligomer structures and inhibiting the formation of higher-order oligomers. On the other hand, nonselective binding was observed between PGG and Aβ25-35. The interactions between PGG and Aβ25-35, surprisingly, enhanced the formation of Aβ aggregates by promoting extended Aβ25-35 conformations in both homo- and hetero-oligomers. When both ligands were present, the inhibitory effect of CB[7] overrode the stimulatory effect of PGG on Aβ25-35 aggregation, suppressing the formation of large amyloid oligomers and eliminating the structural conversion from isotropic to β-rich topologies induced by PGG. Our results provide mechanistic insights into CB[7] and PGG action on Aβ oligomerization. They also demonstrate the power of the IMS technique to investigate mechanisms of multiple small-molecule agents on the amyloid formation process.
Collapse
Affiliation(s)
- Natália E. C. de Almeida
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Thanh D. Do
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Michael Tro
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Nichole E. LaPointe
- Neuroscience Research Institute and Department of Molecular Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, United States
| | - Stuart C. Feinstein
- Neuroscience Research Institute and Department of Molecular Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, United States
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Michael T. Bowers
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
- Corresponding author: Michael T. Bowers. Tel: +1-805-893-2673;
| |
Collapse
|
35
|
Chen L, Bai Y, Zhao M, Jiang Y. TLR4 inhibitor attenuates amyloid-β-induced angiogenic and inflammatory factors in ARPE-19 cells: Implications for age-related macular degeneration. Mol Med Rep 2016; 13:3249-56. [PMID: 26936827 DOI: 10.3892/mmr.2016.4890] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 11/10/2015] [Indexed: 11/06/2022] Open
Abstract
Subretinally-deposited amyloid-β (Aβ) is an important factor in age‑related macular degradation (AMD) often leading to irreversible blindness in the elderly population. The molecular mechanism underlying Aβ deposition during AMD remains unclear. The expression of inflammatory and angiogenic factors was examined by treatment of retinal pigment epithelial (RPE) cells with the oligomeric form of Aβ (OAβ1-42). Changes in the mRNA expression levels of various cytokines was detected by the QuantiGenePlex 6.0 Reagent system, and the protein expression level was determined by western blotting. Culture supernatants were detected using a multiplex cytokine assay and enzyme-linked immunosorbent assays. The in vitro tube formation was evaluated by a Matrigel assay. The present study highlights that OAβ1‑42 activates the toll-like receptor 4 (TLR4), myeloid differentiation factor 88 and phosphorylation nuclear factor-κB signaling pathway in RPE cells. Additionally, it increased the mRNA and protein expression of interleukin (IL)-6, IL-8, IL-33, vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and angiopoietin 2. Furthermore, the TLR4 inhibitor (COBRA) attenuated the expression of inflammatory and angiogenesis factors, particularly IL-6, IL-8, IL-33, bFGF and VEGF. When human umbilical vein endothelial cells (HUVECs) were co-cultured with the COBRA-treated RPE cell culture supernatant the length of the endothelial cell network (measured by calculating tip cell lengths of endothelial cells) was impaired when compared with the HUVECs that were co‑cultured with the cell supernatant exposed to OAβ1‑42. These results suggest that the TLR4-associated pathway may be a potential target for the treatment of AMD.
Collapse
Affiliation(s)
- Li Chen
- Department of Ophthalmology, People's Hospital, Peking University and Key Laboratory of Vision Loss and Restoration, Ministry of Education and Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing 100044, P.R. China
| | - Yujing Bai
- Department of Ophthalmology, People's Hospital, Peking University and Key Laboratory of Vision Loss and Restoration, Ministry of Education and Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing 100044, P.R. China
| | - Min Zhao
- Department of Ophthalmology, People's Hospital, Peking University and Key Laboratory of Vision Loss and Restoration, Ministry of Education and Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing 100044, P.R. China
| | - Yanrong Jiang
- Department of Ophthalmology, People's Hospital, Peking University and Key Laboratory of Vision Loss and Restoration, Ministry of Education and Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing 100044, P.R. China
| |
Collapse
|
36
|
Roche J, Shen Y, Lee JH, Ying J, Bax A. Monomeric Aβ(1-40) and Aβ(1-42) Peptides in Solution Adopt Very Similar Ramachandran Map Distributions That Closely Resemble Random Coil. Biochemistry 2016; 55:762-75. [PMID: 26780756 PMCID: PMC4750080 DOI: 10.1021/acs.biochem.5b01259] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
The
pathogenesis of Alzheimer’s disease is characterized
by the aggregation and fibrillation of amyloid peptides Aβ1–40 and Aβ1–42 into amyloid
plaques. Despite strong potential therapeutic interest, the structural
pathways associated with the conversion of monomeric Aβ peptides
into oligomeric species remain largely unknown. In particular, the
higher aggregation propensity and associated toxicity of Aβ1–42 compared to that of Aβ1–40 are poorly understood. To explore in detail the structural propensity
of the monomeric Aβ1–40 and Aβ1–42 peptides in solution, we recorded a large set of nuclear magnetic
resonance (NMR) parameters, including chemical shifts, nuclear Overhauser
effects (NOEs), and J couplings. Systematic comparisons
show that at neutral pH the Aβ1–40 and Aβ1–42 peptides populate almost indistinguishable coil-like
conformations. Nuclear Overhauser effect spectra collected at very
high resolution remove assignment ambiguities and show no long-range
NOE contacts. Six sets of backbone J couplings (3JHNHα, 3JC′C′, 3JC′Hα, 1JHαCα, 2JNCα, and 1JNCα) recorded
for Aβ1–40 were used as input for the recently
developed MERA Ramachandran map analysis, yielding residue-specific
backbone ϕ/ψ torsion angle distributions that closely
resemble random coil distributions, the absence of a significantly
elevated propensity for β-conformations in the C-terminal region
of the peptide, and a small but distinct propensity for αL at K28. Our results suggest that the self-association of
Aβ peptides into toxic oligomers is not driven by elevated propensities
of the monomeric species to adopt β-strand-like conformations.
Instead, the accelerated disappearance of Aβ NMR signals in
D2O over H2O, particularly pronounced for Aβ1–42, suggests that intermolecular interactions between
the hydrophobic regions of the peptide dominate the aggregation process.
Collapse
Affiliation(s)
- Julien Roche
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0510, United States
| | - Yang Shen
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0510, United States
| | - Jung Ho Lee
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0510, United States
| | - Jinfa Ying
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0510, United States
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0510, United States
| |
Collapse
|
37
|
Nedumpully-Govindan P, Kakinen A, Pilkington EH, Davis TP, Chun Ke P, Ding F. Stabilizing Off-pathway Oligomers by Polyphenol Nanoassemblies for IAPP Aggregation Inhibition. Sci Rep 2016; 6:19463. [PMID: 26763863 PMCID: PMC4725907 DOI: 10.1038/srep19463] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/14/2015] [Indexed: 01/09/2023] Open
Abstract
Experimental studies have shown that many naturally occurring polyphenols have inhibitory effect on the aggregation of several proteins. Here, we use discrete molecular dynamics (DMD) simulations and high-throughput dynamic light scattering (DLS) experiments to study the anti-aggregation effects of two polyphenols, curcumin and resveratrol, on the aggregation of islet amyloid polypeptide (IAPP or amylin). Our DMD simulations suggest that the aggregation inhibition is caused by stabilization of small molecular weight IAPP off-pathway oligomers by the polyphenols. Our analysis indicates that IAPP-polyphenol hydrogen bonds and π-π stacking combined with hydrophobic interactions are responsible for the stabilization of oligomers. The presence of small oligomers is confirmed with DLS measurements in which nanometer-sized oligomers are found to be stable for up to 7.5 hours, the time frame within which IAPP aggregates in the absence of polyphenols. Our study offers a general anti-aggregation mechanism for polyphenols, and further provides a computational framework for the future design of anti-amyloid aggregation therapeutics.
Collapse
Affiliation(s)
| | - Aleksandr Kakinen
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Emily H Pilkington
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.,Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, United Kingdom
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
38
|
Oliveri V, Bellia F, Grasso GI, Pietropaolo A, Vecchio G. Trehalose-8-hydroxyquinoline conjugates as antioxidant modulators of Aβ aggregation. RSC Adv 2016. [DOI: 10.1039/c6ra04204j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The conjugation of trehalose with 8-hydroxyquinoline induces synergistic effects that lead to good antiaggregant ability. The difunctionalization of trehalose produces a better-performing antiaggregant compound.
Collapse
Affiliation(s)
- Valentina Oliveri
- Dipartimento di Scienze Chimiche
- Università di Catania
- Catania
- Italy
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici C.I.R.C.M.S.B
| | | | | | - Adriana Pietropaolo
- Dipartimento di Scienze della Salute
- Università di Catanzaro
- 88100 Catanzaro
- Italy
| | | |
Collapse
|
39
|
Roychaudhuri R, Zheng X, Lomakin A, Maiti P, Condron MM, Benedek GB, Bitan G, Bowers MT, Teplow DB. Role of Species-Specific Primary Structure Differences in Aβ42 Assembly and Neurotoxicity. ACS Chem Neurosci 2015; 6:1941-55. [PMID: 26421877 PMCID: PMC4844016 DOI: 10.1021/acschemneuro.5b00180] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A variety of species express the amyloid β-protein (Aβ (the term "Aβ" refers both to Aβ40 and Aβ42, whereas "Aβ40" and "Aβ42" refer to each isoform specifically). Those species expressing Aβ with primary structure identical to that expressed in humans have been found to develop amyloid deposits and Alzheimer's disease-like neuropathology. In contrast, the Aβ sequence in mice and rats contains three amino acid substitutions, Arg5Gly, His13Arg, and Tyr10Phe, which apparently prevent the development of AD-like neuropathology. Interestingly, the brush-tailed rat, Octodon degus, expresses Aβ containing only one of these substitutions, His13Arg, and does develop AD-like pathology. We investigate here the biophysical and biological properties of Aβ peptides from humans, mice (Mus musculus), and rats (Octodon degus). We find that each peptide displays statistical coil → β-sheet secondary structure transitions, transitory formation of hydrophobic surfaces, oligomerization, formation of annuli, protofibrils, and fibrils, and an inverse correlation between rate of aggregation and aggregate size (faster aggregation produced smaller aggregates). The rank order of assembly rate was mouse > rat > Aβ42. The rank order of neurotoxicity of assemblies formed by each peptide immediately after preparation was Aβ42 > mouse ≈ rat. These data do not support long-standing hypotheses that the primary factor controlling development of AD-like neuropathology in rodents is Aβ sequence. Instead, the data support a hypothesis that assembly quaternary structure and organismal responses to toxic peptide assemblies mediate neuropathogenetic effects. The implication of this hypothesis is that a valid understanding of disease causation within a given system (organism, tissue, etc.) requires the coevaluation of both biophysical and cell biological properties of that system.
Collapse
Affiliation(s)
- Robin Roychaudhuri
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Xueyun Zheng
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106
| | - Aleksey Lomakin
- Department of Physics and Center for Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Panchanan Maiti
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Margaret M. Condron
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - George B. Benedek
- Department of Physics and Center for Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Molecular Biology Institute and Brain Research Institute, University of California, Los Angeles, California 90095
| | - Michael T. Bowers
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106
| | - David B. Teplow
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Molecular Biology Institute and Brain Research Institute, University of California, Los Angeles, California 90095
| |
Collapse
|
40
|
Smith MD, Rao JS, Segelken E, Cruz L. Force-Field Induced Bias in the Structure of Aβ21-30: A Comparison of OPLS, AMBER, CHARMM, and GROMOS Force Fields. J Chem Inf Model 2015; 55:2587-95. [PMID: 26629886 DOI: 10.1021/acs.jcim.5b00308] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In this work we examine the dynamics of an intrinsically disordered protein fragment of the amyloid β, the Aβ21-30, under seven commonly used molecular dynamics force fields (OPLS-AA, CHARMM27-CMAP, AMBER99, AMBER99SB, AMBER99SB-ILDN, AMBER03, and GROMOS53A6), and three water models (TIP3P, TIP4P, and SPC/E). We find that the tested force fields and water models have little effect on the measures of radii of gyration and solvent accessible surface area (SASA); however, secondary structure measures and intrapeptide hydrogen-bonding are significantly modified, with AMBER (99, 99SB, 99SB-ILDN, and 03) and CHARMM22/27 force-fields readily increasing helical content and the variety of intrapeptide hydrogen bonds. On the basis of a comparison between the population of helical and β structures found in experiments, our data suggest that force fields that suppress the formation of helical structure might be a better choice to model the Aβ21-30 peptide.
Collapse
Affiliation(s)
- Micholas Dean Smith
- Department of Physics, Drexel University , 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - J Srinivasa Rao
- Department of Physics, Drexel University , 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States.,Department of Physics, New Jersey Institute of Technology , University Heights, Newark, New Jersey 07102-1982, United States
| | - Elizabeth Segelken
- Department of Physics, Drexel University , 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Luis Cruz
- Department of Physics, Drexel University , 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
41
|
Williams TL, Serpell LC, Urbanc B. Stabilization of native amyloid β-protein oligomers by Copper and Hydrogen peroxide Induced Cross-linking of Unmodified Proteins (CHICUP). BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1864:249-259. [PMID: 26699836 DOI: 10.1016/j.bbapap.2015.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 11/09/2015] [Accepted: 12/01/2015] [Indexed: 12/17/2022]
Abstract
Oligomeric assemblies are postulated to be proximate neurotoxic species in human diseases associated with aberrant protein aggregation. Their heterogeneous and transient nature makes their structural characterization difficult. Size distributions of oligomers of several amyloidogenic proteins, including amyloid β-protein (Aβ) relevant to Alzheimer's disease (AD), have been previously characterized in vitro by photo-induced cross-linking of unmodified proteins (PICUP) followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Due to non-physiological conditions associated with the PICUP chemistry, Aβ oligomers cross-linked by PICUP may not be representative of in vivo conditions. Here, we examine an alternative Copper and Hydrogen peroxide Induced Cross-linking of Unmodified Proteins (CHICUP), which utilizes naturally occurring divalent copper ions and hydrogen peroxide and does not require photo activation. Our results demonstrate that CHICUP and PICUP applied to the two predominant Aβ alloforms, Aβ40 and Aβ42, result in similar oligomer size distributions. Thioflavin T fluorescence data and atomic force microscopy images demonstrate that both CHICUP and PICUP stabilize Aβ oligomers and attenuate fibril formation. Relative to noncross-linked peptides, CHICUP-treated Aβ40 and Aβ42 cause prolonged disruption to biomimetic lipid vesicles. CHICUP-stabilized Aβ oligomers link the amyloid cascade, metal, and oxidative stress hypotheses of AD into a more comprehensive understanding of the molecular basis of AD pathology. Because copper and hydrogen peroxide are elevated in the AD brain, CHICUP-stabilized Aβ oligomers are biologically relevant and should be further explored as a new therapeutic target.
Collapse
Affiliation(s)
- Thomas L Williams
- Department of Physics, Drexel University, Philadelphia, PA 19104, USA
| | - Louise C Serpell
- School of Life Sciences, University of Sussex, Falmer, East Sussex, UK
| | - Brigita Urbanc
- Department of Physics, Drexel University, Philadelphia, PA 19104, USA; Faculty of Mathematics and Physics, University of Ljubljana, Slovenia.
| |
Collapse
|
42
|
The inverted free energy landscape of an intrinsically disordered peptide by simulations and experiments. Sci Rep 2015; 5:15449. [PMID: 26498066 PMCID: PMC4620491 DOI: 10.1038/srep15449] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/22/2015] [Indexed: 11/24/2022] Open
Abstract
The free energy landscape theory has been very successful in rationalizing the folding behaviour of globular proteins, as this representation provides intuitive information on the number of states involved in the folding process, their populations and pathways of interconversion. We extend here this formalism to the case of the Aβ40 peptide, a 40-residue intrinsically disordered protein fragment associated with Alzheimer’s disease. By using an advanced sampling technique that enables free energy calculations to reach convergence also in the case of highly disordered states of proteins, we provide a precise structural characterization of the free energy landscape of this peptide. We find that such landscape has inverted features with respect to those typical of folded proteins. While the global free energy minimum consists of highly disordered structures, higher free energy regions correspond to a large variety of transiently structured conformations with secondary structure elements arranged in several different manners, and are not separated from each other by sizeable free energy barriers. From this peculiar structure of the free energy landscape we predict that this peptide should become more structured and not only more compact, with increasing temperatures, and we show that this is the case through a series of biophysical measurements.
Collapse
|
43
|
Zheng X, Wu C, Liu D, Li H, Bitan G, Shea JE, Bowers MT. Mechanism of C-Terminal Fragments of Amyloid β-Protein as Aβ Inhibitors: Do C-Terminal Interactions Play a Key Role in Their Inhibitory Activity? J Phys Chem B 2015; 120:1615-23. [PMID: 26439281 DOI: 10.1021/acs.jpcb.5b08177] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Targeting the early oligomerization of amyloid β protein (Aβ) is a promising therapeutic strategy for Alzheimer's disease (AD). Recently, certain C-terminal fragments (CTFs) derived from Aβ42 were shown to be potent inhibitors of Aβ-induced toxicity. The shortest peptide studied, Aβ(39-42), has been shown to modulate Aβ oligomerization and inhibit Aβ toxicity. Understanding the mechanism of these CTFs, especially Aβ(39-42), is of significance for future therapeutic development of AD and peptidomimetic-based drug development. Here we used ion mobility spectrometry-mass spectrometry to investigate the interactions between two modified Aβ(39-42) derivatives, VVIA-NH2 and Ac-VVIA, and full-length Aβ42. VVIA-NH2 was previously shown to inhibit Aβ toxicity, whereas Ac-VVIA did not. Our mass spectrometry analysis revealed that VVIA-NH2 binds directly to Aβ42 monomer and small oligomers while Ac-VVIA binds only to Aβ42 monomer. Ion mobility studies showed that VVIA-NH2 modulates Aβ42 oligomerization by not only inhibiting the dodecamer formation but also disaggregating preformed Aβ42 dodecamer. Ac-VVIA also inhibits and removes preformed Aβ42 dodecamer. However, the Aβ42 sample with the addition of Ac-VVIA clogged the nanospray tip easily, indicating that larger aggregates are formed in the solution in the presence of Ac-VVIA. Molecular dynamics simulations suggested that VVIA-NH2 binds specifically to the C-terminal region of Aβ42 while Ac-VVIA binds dispersedly to multiple regions of Aβ42. This work implies that C-terminal interactions and binding to Aβ oligomers are important for C-terminal fragment inhibitors.
Collapse
Affiliation(s)
- Xueyun Zheng
- Department of Chemistry and Biochemistry and ∥Department of Physics, University of California , Santa Barbara, California 93106, United States.,Department of Neurology, David Geffen School of Medicine, §Brain Research Institute, and Molecular Biology Institute, University of California at Los Angeles , Los Angeles, California 90095, United States
| | - Chun Wu
- Department of Chemistry and Biochemistry and ∥Department of Physics, University of California , Santa Barbara, California 93106, United States.,Department of Neurology, David Geffen School of Medicine, §Brain Research Institute, and Molecular Biology Institute, University of California at Los Angeles , Los Angeles, California 90095, United States
| | - Deyu Liu
- Department of Chemistry and Biochemistry and ∥Department of Physics, University of California , Santa Barbara, California 93106, United States.,Department of Neurology, David Geffen School of Medicine, §Brain Research Institute, and Molecular Biology Institute, University of California at Los Angeles , Los Angeles, California 90095, United States
| | - Huiyuan Li
- Department of Chemistry and Biochemistry and ∥Department of Physics, University of California , Santa Barbara, California 93106, United States.,Department of Neurology, David Geffen School of Medicine, §Brain Research Institute, and Molecular Biology Institute, University of California at Los Angeles , Los Angeles, California 90095, United States
| | - Gal Bitan
- Department of Chemistry and Biochemistry and ∥Department of Physics, University of California , Santa Barbara, California 93106, United States.,Department of Neurology, David Geffen School of Medicine, §Brain Research Institute, and Molecular Biology Institute, University of California at Los Angeles , Los Angeles, California 90095, United States
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry and ∥Department of Physics, University of California , Santa Barbara, California 93106, United States.,Department of Neurology, David Geffen School of Medicine, §Brain Research Institute, and Molecular Biology Institute, University of California at Los Angeles , Los Angeles, California 90095, United States
| | - Michael T Bowers
- Department of Chemistry and Biochemistry and ∥Department of Physics, University of California , Santa Barbara, California 93106, United States.,Department of Neurology, David Geffen School of Medicine, §Brain Research Institute, and Molecular Biology Institute, University of California at Los Angeles , Los Angeles, California 90095, United States
| |
Collapse
|
44
|
Hayden EY, Yamin G, Beroukhim S, Chen B, Kibalchenko M, Jiang L, Ho L, Wang J, Pasinetti GM, Teplow DB. Inhibiting amyloid β-protein assembly: Size-activity relationships among grape seed-derived polyphenols. J Neurochem 2015; 135:416-30. [PMID: 26228682 DOI: 10.1111/jnc.13270] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 07/22/2015] [Indexed: 12/25/2022]
Abstract
Epidemiological evidence that red wine consumption negatively correlates with risk of Alzheimer's disease has led to experimental studies demonstrating that grape seed extracts inhibit the aggregation and oligomerization of Aβ in vitro and ameliorate neuropathology and behavioral deficits in a mouse model of Alzheimer's disease. The active agent in the extracts is a mixed population of polyphenolic compounds. To evaluate the relative potency of each of these compounds, HPLC was used to fractionate the mixture into monomers, dimers, and oligomers. Each fraction was analyzed for its effect on Aβ conformational dynamics (circular dichroism), oligomerization (zero-length photochemical cross-linking), aggregation kinetics (Thioflavin T fluorescence), and morphology (electron microscopy). The relative activities of each fraction were determined on the basis of molar concentration (mol/L) or mass concentration (g/L). When molar concentration, the number concentration of each polyphenolic compound, was considered, the oligomer fraction was the most potent inhibitor of Aβ oligomerization and aggregation. However, when mass concentration, the number concentration of phenolic groups, was considered, monomers were the most potent inhibitors. To understand these ostensibly contradictory results, a model of polyphenol:Aβ complexation was developed. This model, which was found to be consistent with published X-ray crystallographic studies, offers an explanation for the effects of functional group polyvalency on inhibitor activity. Our data emphasize the importance of an in-depth understanding of the mechanism(s) underlying 'concentration dependence' in inhibitor systems involving polyfunctional agents.
Collapse
Affiliation(s)
- Eric Y Hayden
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Ghiam Yamin
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,Medical Scientist Training Program, Neuroscience Interdepartmental Ph.D. Program, University of California, Los Angeles, California, USA
| | - Shiela Beroukhim
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Benson Chen
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Mikhail Kibalchenko
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Lin Jiang
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Lap Ho
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York, USA
| | - Jun Wang
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York, USA.,Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York, USA.,Geriatric Research, Education and Clinical Center (GRECC), James J. Peters Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, New York, USA
| | - Giulio M Pasinetti
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York, USA.,Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York, USA.,Geriatric Research, Education and Clinical Center (GRECC), James J. Peters Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, New York, USA
| | - David B Teplow
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,Molecular Biology Institute (MBI), and Brain Research Institute (BRI), David Geffen School of Medicine, University of California, Los Angeles, California, USA
| |
Collapse
|
45
|
Oliveri V, Bellia F, Pietropaolo A, Vecchio G. Unusual Cyclodextrin Derivatives as a New Avenue to Modulate Self- and Metal-Induced Aβ Aggregation. Chemistry 2015; 21:14047-59. [PMID: 26298549 DOI: 10.1002/chem.201502155] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Indexed: 12/19/2022]
Abstract
Mounting evidence suggests an important role of cyclodextrins in providing protection in neurodegenerative disorders. Metal dyshomeostasis is reported to be a pathogenic factor in neurodegeneration because it could be responsible for damage involving oxidative stress and protein aggregation. As such, metal ions represent an effective target. To improve the metal-binding ability of cyclodextrin, we synthesized three new 8-hydroxyquinoline-cyclodextrin conjugates with difunctionalized cyclodextrins. In particular, the 3-difunctionalized regioisomer represents the first example of cyclodextrin with two pendants at the secondary rim, resulting in a promising compound. The derivatives have significant antioxidant capacity and the powerful activity in inhibiting self-induced amyloid-β aggregation seems to be led by synergistic effects of both cyclodextrin and hydroxyquinoline. Moreover, the derivatives are also able to complex metal ions and to inhibit metal-induced protein aggregation. Therefore, these compounds could have potential as therapeutic agents in diseases related to protein aggregation and metal dyshomeostasis.
Collapse
Affiliation(s)
- Valentina Oliveri
- Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, 95125, Catania (Italy).,Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici, C.I.R.C.M.S.B, Unità di Ricerca di Catania, 95125 Catania (Italy)
| | - Francesco Bellia
- Istituto di Biostrutture e Bioimmagini, CNR, Via P. Gaifami 18, 95126 Catania, Italy
| | - Adriana Pietropaolo
- Dipartimento di Scienze della Salute, Università di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Graziella Vecchio
- Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, 95125, Catania (Italy).
| |
Collapse
|
46
|
Martinez AV, Małolepsza E, Rivera E, Lu Q, Straub JE. Exploring the role of hydration and confinement in the aggregation of amyloidogenic peptides Aβ(16-22) and Sup35(7-13) in AOT reverse micelles. J Chem Phys 2015; 141:22D530. [PMID: 25494801 DOI: 10.1063/1.4902550] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Knowledge of how intermolecular interactions of amyloid-forming proteins cause protein aggregation and how those interactions are affected by sequence and solution conditions is essential to our understanding of the onset of many degenerative diseases. Of particular interest is the aggregation of the amyloid-β (Aβ) peptide, linked to Alzheimer's disease, and the aggregation of the Sup35 yeast prion peptide, which resembles the mammalian prion protein linked to spongiform encephalopathies. To facilitate the study of these important peptides, experimentalists have identified small peptide congeners of the full-length proteins that exhibit amyloidogenic behavior, including the KLVFFAE sub-sequence, Aβ16-22, and the GNNQQNY subsequence, Sup357-13. In this study, molecular dynamics simulations were used to examine these peptide fragments encapsulated in reverse micelles (RMs) in order to identify the fundamental principles that govern how sequence and solution environment influence peptide aggregation. Aβ16-22 and Sup357-13 are observed to organize into anti-parallel and parallel β-sheet arrangements. Confinement in the sodium bis(2-ethylhexyl) sulfosuccinate (AOT) reverse micelles is shown to stabilize extended peptide conformations and enhance peptide aggregation. Substantial fluctuations in the reverse micelle shape are observed, in agreement with earlier studies. Shape fluctuations are found to facilitate peptide solvation through interactions between the peptide and AOT surfactant, including direct interaction between non-polar peptide residues and the aliphatic surfactant tails. Computed amide I IR spectra are compared with experimental spectra and found to reflect changes in the peptide structures induced by confinement in the RM environment. Furthermore, examination of the rotational anisotropy decay of water in the RM demonstrates that the water dynamics are sensitive to the presence of peptide as well as the peptide sequence. Overall, our results demonstrate that the RM is a complex confining environment where substantial direct interaction between the surfactant and peptides plays an important role in determining the resulting ensemble of peptide conformations. By extension the results suggest that similarly complex sequence-dependent interactions may determine conformational ensembles of amyloid-forming peptides in a cellular environment.
Collapse
Affiliation(s)
| | - Edyta Małolepsza
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| | - Eva Rivera
- Department of Chemistry and Biochemistry, Queens College, City University of New York (CUNY), Flushing, New York 11791, USA
| | - Qing Lu
- Division of Materials Science and Engineering, Boston University, Brookline, Massachusetts 02446, USA
| | - John E Straub
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
47
|
Sinz A, Arlt C, Chorev D, Sharon M. Chemical cross-linking and native mass spectrometry: A fruitful combination for structural biology. Protein Sci 2015; 24:1193-209. [PMID: 25970732 PMCID: PMC4534171 DOI: 10.1002/pro.2696] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/14/2015] [Accepted: 04/29/2015] [Indexed: 12/31/2022]
Abstract
Mass spectrometry (MS) is becoming increasingly popular in the field of structural biology for analyzing protein three-dimensional-structures and for mapping protein-protein interactions. In this review, the specific contributions of chemical crosslinking and native MS are outlined to reveal the structural features of proteins and protein assemblies. Both strategies are illustrated based on the examples of the tetrameric tumor suppressor protein p53 and multisubunit vinculin-Arp2/3 hybrid complexes. We describe the distinct advantages and limitations of each technique and highlight synergistic effects when both techniques are combined. Integrating both methods is especially useful for characterizing large protein assemblies and for capturing transient interactions. We also point out the future directions we foresee for a combination of in vivo crosslinking and native MS for structural investigation of intact protein assemblies.
Collapse
Affiliation(s)
- Andrea Sinz
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-WittenbergD-06120, Halle, Germany
| | - Christian Arlt
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-WittenbergD-06120, Halle, Germany
| | - Dror Chorev
- Department of Biological Chemistry, Weizmann Institute of ScienceRehovot, 76100, Israel
| | - Michal Sharon
- Department of Biological Chemistry, Weizmann Institute of ScienceRehovot, 76100, Israel
| |
Collapse
|
48
|
Daly S, Kulesza A, Poussigue F, Simon AL, Choi CM, Knight G, Chirot F, MacAleese L, Antoine R, Dugourd P. Conformational changes in amyloid-beta (12-28) alloforms studied using action-FRET, IMS and molecular dynamics simulations. Chem Sci 2015; 6:5040-5047. [PMID: 30155007 PMCID: PMC6088554 DOI: 10.1039/c5sc01463h] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/17/2015] [Indexed: 01/21/2023] Open
Abstract
Small oligomers of the amyloid beta protein (Aβ) have been implicated as the neurotoxic agent leading to Alzheimer's disease, and in particular mutations in the hydrophobic core region comprising amino acids L17 to A21 have a large influence on the propensity for aggregate formation. It has been shown that the F19P alloform of Aβ forms small aggregates, but does not proceed to form large fibrils and plaques. In order to understand the origin of this behavior, the gas phase conformations for the different charge states of the wild-type 12-28 fragment of the amyloid beta and its F19P alloform were studied by a combination of action-FRET, ion-mobility spectrometry (IMS) and molecular dynamics simulations. Comparison of the experimental and theoretical action-FRET efficiencies and collision cross sections allowed the determination of the lowest energy conformational family for each alloform and charge state. For both alloforms, it was found that there is a change from globular to helical structure between the 3+ and 4+ charge states. Additional protonation to give 5+ and 6+ charge states caused unfolding of this helical motif, with the wild alloform showing β-turn like motifs and the F19P alloform random coil motifs. The presence of the helical to β-turn structural transition in the wild, but not the F19P, alloform may help to elucidate the origin of the large difference in aggregation behavior of the two alloforms.
Collapse
Affiliation(s)
- Steven Daly
- Université de Lyon , F-69622 , Lyon , France
- CNRS et Université Lyon 1 , UMR5306 , Institut Lumière Matière , France .
| | - Alexander Kulesza
- Université de Lyon , F-69622 , Lyon , France
- CNRS et Université Lyon 1 , UMR5306 , Institut Lumière Matière , France .
| | - Frederic Poussigue
- Université de Lyon , F-69622 , Lyon , France
- CNRS et Université Lyon 1 , UMR 5280 , Institut des Sciences Analytiques , France
| | - Anne-Laure Simon
- Université de Lyon , F-69622 , Lyon , France
- CNRS et Université Lyon 1 , UMR5306 , Institut Lumière Matière , France .
| | - Chang Min Choi
- Université de Lyon , F-69622 , Lyon , France
- CNRS et Université Lyon 1 , UMR5306 , Institut Lumière Matière , France .
| | - Geoffrey Knight
- Université de Lyon , F-69622 , Lyon , France
- CNRS et Université Lyon 1 , UMR5306 , Institut Lumière Matière , France .
| | - Fabien Chirot
- Université de Lyon , F-69622 , Lyon , France
- CNRS et Université Lyon 1 , UMR 5280 , Institut des Sciences Analytiques , France
| | - Luke MacAleese
- Université de Lyon , F-69622 , Lyon , France
- CNRS et Université Lyon 1 , UMR5306 , Institut Lumière Matière , France .
| | - Rodolphe Antoine
- Université de Lyon , F-69622 , Lyon , France
- CNRS et Université Lyon 1 , UMR5306 , Institut Lumière Matière , France .
| | - Philippe Dugourd
- Université de Lyon , F-69622 , Lyon , France
- CNRS et Université Lyon 1 , UMR5306 , Institut Lumière Matière , France .
| |
Collapse
|
49
|
Pacholarz KJ, Barran PE. Distinguishing Loss of Structure from Subunit Dissociation for Protein Complexes with Variable Temperature Ion Mobility Mass Spectrometry. Anal Chem 2015; 87:6271-9. [DOI: 10.1021/acs.analchem.5b01063] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Kamila J. Pacholarz
- University of Edinburgh, School of Chemistry, West Mains Road, Edinburgh EH9 3JJ, United Kingdom
- University of Manchester, School of Chemistry, Manchester
Institute of Biotechnology, Michael Barber Centre for Collaborative
Mass Spectrometry, 131
Princess Street, Manchester M1 7DN, United Kingdom
| | - Perdita E. Barran
- University of Manchester, School of Chemistry, Manchester
Institute of Biotechnology, Michael Barber Centre for Collaborative
Mass Spectrometry, 131
Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
50
|
Nasedkin A, Marcellini M, Religa TL, Freund SM, Menzel A, Fersht AR, Jemth P, van der Spoel D, Davidsson J. Deconvoluting Protein (Un)folding Structural Ensembles Using X-Ray Scattering, Nuclear Magnetic Resonance Spectroscopy and Molecular Dynamics Simulation. PLoS One 2015; 10:e0125662. [PMID: 25946337 PMCID: PMC4422743 DOI: 10.1371/journal.pone.0125662] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/11/2015] [Indexed: 12/30/2022] Open
Abstract
The folding and unfolding of protein domains is an apparently cooperative process, but transient intermediates have been detected in some cases. Such (un)folding intermediates are challenging to investigate structurally as they are typically not long-lived and their role in the (un)folding reaction has often been questioned. One of the most well studied (un)folding pathways is that of Drosophila melanogaster Engrailed homeodomain (EnHD): this 61-residue protein forms a three helix bundle in the native state and folds via a helical intermediate. Here we used molecular dynamics simulations to derive sample conformations of EnHD in the native, intermediate, and unfolded states and selected the relevant structural clusters by comparing to small/wide angle X-ray scattering data at four different temperatures. The results are corroborated using residual dipolar couplings determined by NMR spectroscopy. Our results agree well with the previously proposed (un)folding pathway. However, they also suggest that the fully unfolded state is present at a low fraction throughout the investigated temperature interval, and that the (un)folding intermediate is highly populated at the thermal midpoint in line with the view that this intermediate can be regarded to be the denatured state under physiological conditions. Further, the combination of ensemble structural techniques with MD allows for determination of structures and populations of multiple interconverting structures in solution.
Collapse
Affiliation(s)
- Alexandr Nasedkin
- Department of Chemistry-Ångström laboratory, Uppsala University, Box 523, SE-75110 Uppsala, Sweden
| | - Moreno Marcellini
- Uppsala Center for Computational Chemistry, Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Box 596, SE-75124 Uppsala, Sweden
| | - Tomasz L. Religa
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Stefan M. Freund
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | | | - Alan R. Fersht
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| | - David van der Spoel
- Uppsala Center for Computational Chemistry, Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Box 596, SE-75124 Uppsala, Sweden
| | - Jan Davidsson
- Department of Chemistry-Ångström laboratory, Uppsala University, Box 523, SE-75110 Uppsala, Sweden
| |
Collapse
|