1
|
Zhou Y, Limbu I, Garson MJ, Krenske EH. Conformational Sampling in Computational Studies of Natural Products: Why Is It Important? JOURNAL OF NATURAL PRODUCTS 2024; 87:2543-2549. [PMID: 39315508 DOI: 10.1021/acs.jnatprod.4c00852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Conformational sampling is a vital component of a reliable computational chemistry investigation. With the aim of illustrating the importance of conformational sampling, and building awareness among new practitioners, we present a series of case studies that show how the quality and reliability of computational studies depend on undertaking a thorough conformer search. The examples are drawn from the most common types of research questions in natural products chemistry, but the fundamental principles apply more generally to computational studies of molecular structure and behavior in any field of chemistry.
Collapse
Affiliation(s)
- Yuchen Zhou
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Queensland, Australia
| | - Ingso Limbu
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Queensland, Australia
| | - Mary J Garson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Queensland, Australia
| | - Elizabeth H Krenske
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Queensland, Australia
| |
Collapse
|
2
|
Giovannini T. Kohn-Sham fragment energy decomposition analysis. J Chem Phys 2024; 161:104110. [PMID: 39268825 DOI: 10.1063/5.0216596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024] Open
Abstract
We introduce the concept of Kohn-Sham fragment localized molecular orbitals (KS-FLMOs), which are Kohn-Sham molecular orbitals (MOs) localized in specific fragments constituting a generic molecular system. In detail, we minimize the local electronic energies of various fragments, while maximizing the repulsion between them, resulting in the effective localization of the MOs. We use the developed KS-FLMOs to propose a novel energy decomposition analysis, which we name Kohn-Sham fragment energy decomposition analysis, which allows for rationalizing the main non-covalent interactions occurring in interacting systems both in vacuo and in solution, providing physical insights into non-covalent interactions. The method is validated against state-of-the-art energy decomposition analysis techniques and with high-level calculations.
Collapse
Affiliation(s)
- Tommaso Giovannini
- Department of Physics, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy and Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
3
|
Hoch M, Sparascio S, Cerveri A, Bigi F, Maggi R, Viscardi R, Maestri G. The effect of tethered bi-naphthyls on visible-light promoted alkene-alkene [2 + 2] cycloadditions. Photochem Photobiol Sci 2024; 23:1543-1563. [PMID: 39073548 DOI: 10.1007/s43630-024-00615-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024]
Abstract
Dispersion interactions are ubiquitous weak interactions that can play a role in many chemical events. Tailor-made catalysts and additives can lead to more selective reactions by properly exploiting dispersion interactions. Although radical-π dispersion interactions are known to have an important stabilizing role, this concept has been so far overlooked in synthetic photochemistry. We recently proved that similar dispersion interactions can play a profound impact on several reactions involving an energy transfer step. We present herein a study on the co-catalytic effect of tethered bi-naphthyl derivatives on the visible-light-promoted alkene-alkene [2 + 2] cycloaddition. A library of tethered bi-naphthyl derivatives was prepared in order to evaluate the impact of the tether on the efficiency of the prototypical [2 + 2] cycloaddition. The best performing additives showed a dramatic effect on the efficiency of the cyclization, and a rationalization of their relative efficiency was carried out through DFT modeling. The best co-catalyst allowed one to isolate desired products in good to excellent yields even employing several challenging substrates. These results offer new tools to devise optimized [2 + 2] photocycloaddition methods and provide valuable information for the design of organic co-catalyst that can boost photochemical reactions by exploiting dispersion interactions.
Collapse
Affiliation(s)
- Matteo Hoch
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Sara Sparascio
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Alessandro Cerveri
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Franca Bigi
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
- IMEM-CNR, Parco Area delle Scienze 37/A, 43124, Parma, Italy
| | - Raimondo Maggi
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Rosanna Viscardi
- ENEA, Casaccia Research Center, 00123, Santa Maria di Galeria, Rome, Italy
| | - Giovanni Maestri
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy.
| |
Collapse
|
4
|
Mardyukov A, Hernández FJ, Song L, Crespo-Otero R, Schreiner PR. Experimentally Delineating the Catalytic Effect of a Single Water Molecule in the Photochemical Rearrangement of the Phenylperoxy Radical to the Oxepin-2(5 H)-one-5-yl Radical. J Am Chem Soc 2024; 146:19070-19076. [PMID: 38968610 DOI: 10.1021/jacs.4c03461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Catalysis plays a pivotal role in both chemistry and biology, primarily attributed to its ability to stabilize transition states and lower activation free energies, thereby accelerating reaction rates. While computational studies have contributed valuable mechanistic insights, there remains a scarcity of experimental investigations into transition states. In this work, we embark on an experimental exploration of the catalytic energy lowering associated with transition states in the photorearrangement of the phenylperoxy radical-water complex to the oxepin-2(5H)-one-5-yl radical. Employing matrix isolation spectroscopy, density functional theory, and post-HF computations, we scrutinize the (photo)catalytic impact of a single water molecule on the rearrangement. Our computations indicate that the barrier heights for the water-assisted unimolecular isomerization steps are approximately 2-3 kcal mol-1 lower compared to the uncatalyzed steps. This decrease directly coincides with the energy difference in the required wavelength during the transformation (Δλ = λ546 nm - λ579 nm ≡ 52.4-49.4 = 3.0 kcal mol-1), allowing us to elucidate the differential transition state energy in the photochemical rearrangement of the phenylperoxy radical catalyzed by a single water molecule. Our work highlights the important role of water catalysis and has, among others, implications for understanding the mechanism of organic reactions under atmospheric conditions.
Collapse
Affiliation(s)
- Artur Mardyukov
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | | | - Lijuan Song
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
| | - Rachel Crespo-Otero
- UCL Department of Chemistry, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| |
Collapse
|
5
|
Wang R, Yuan JL, Liang KL, Hu JY, Fu Q, Liang FS. Ambient-Light-Promoted Stereospecific Synthesis of ( Z)-Vinyl Thioesters under Solvent- and Catalyst-Free Conditions. J Org Chem 2024; 89:9597-9608. [PMID: 38885461 DOI: 10.1021/acs.joc.4c01087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
An ambient-light-promoted stereospecific olefinic C(sp2)-S bond construction of thioacids and 1,1-diarylethenes has been demonstrated, affording various (Z)-vinyl thioesters in 51-85% yields under solvent- and catalyst-free conditions. Mechanistic studies indicated that the formation of thioacid-olefin complexes is responsible for generating a carbonyl thiyl radical and dioxygen in the air participates in the reaction and functions as a traceless reagent. Moreover, synthetic applications have been demonstrated by the gram scale synthesis and aggregation-induced emission property of representative compound 3i.
Collapse
Affiliation(s)
- Rui Wang
- School of Petrochemical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
- College of Chemical Engineering, Tianjin University, Tianjin 300072, China
- YASUA Chemical Co., Ltd., Zhejiang 314200, China
| | - Jia-Long Yuan
- School of Petrochemical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Kun-Long Liang
- School of Petrochemical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Ji-Yun Hu
- School of Petrochemical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Qiang Fu
- School of Petrochemical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Fu-Shun Liang
- College of Chemistry, Liaoning University, Shenyang 110036, China
| |
Collapse
|
6
|
Chennamsetti H, Rathore KS, Chatterjee S, Mandal PK, Katukojvala S. Triple Nucleophilic Head-to-Tail Cascade Polycyclization of Diazodienals via Combination Catalysis: Direct Access to Cyclopentane Fused Aza-Polycycles with Six-Contiguous Stereocenters. JACS AU 2024; 4:2099-2107. [PMID: 38938806 PMCID: PMC11200238 DOI: 10.1021/jacsau.4c00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 06/29/2024]
Abstract
Reported herein are the bench stable (2E,4E)-diazohexa-2,4-dienals (diazodienals) and their unprecedented polycyclization with aldimine and arylamines enabled by Rh(II)/Brønsted acid relay catalysis. This scalable and atom-economical reaction provides direct access to the biologically important azatricyclo[6.2.1.04,11]undecane fused polycycles having six-contiguous stereocenters. Mechanistic studies revealed that polycyclization proceeds through an unusual triple-nucleophilic cascade initiated by aldimine attack on remote Rh-carbenoid, 6π-electrocyclization of aza-trienyl azomethine ylide, stereoselective aza-Michael addition via iminium activation, and inverse electron-demand intramolecular aza Diels-Alder reaction. The π-π secondary interactions play a crucial role in the preorganization of reactive intermediates for the pericyclic reactions and, hence, the overall efficiency of the polycyclization.
Collapse
Affiliation(s)
| | | | | | | | - Sreenivas Katukojvala
- Department of Chemistry, Indian
Institute of Science Education & Research
Bhopal, Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
7
|
Liu W, Li W, Xu W, Wang M, Kong W. Nickel-catalyzed switchable arylative/endo-cyclization of 1,6-enynes. Nat Commun 2024; 15:2914. [PMID: 38575585 PMCID: PMC10995176 DOI: 10.1038/s41467-024-47200-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/16/2024] [Indexed: 04/06/2024] Open
Abstract
Carbo- and heterocycles are frequently used as crucial scaffolds in natural products, fine chemicals, and biologically and pharmaceutically active compounds. Transition-metal-catalyzed cyclization of 1,6-enynes has emerged as a powerful strategy for constructing functionalized carbo- and heterocycles. Despite significant progress, the regioselectivity of alkyne functionalization is entirely substrate-dependent. And only exo-cyclization/cross-coupling products can be obtained, while endo-selective cyclization/cross-coupling remains elusive and still poses a formidable challenge. In this study, we disclose a nickel-catalyzed switchable arylation/cyclization of 1,6-enynes in which the nature of the ligand dictates the regioselectivity of alkyne arylation, while the electrophilic trapping reagents determine the selectivity of the cyclization mode. Specifically, using a commercially available 1,10-phenanthroline as a ligand facilitates trans-arylation/cyclization to obtain seven-membered ring products, while a 2-naphthyl-substituted bisbox ligand promotes cis-arylation/cyclization to access six-membered ring products. Diastereoselective cyclizations have also been developed for the synthesis of enantioenriched piperidines and azepanes, which are core structural elements of pharmaceuticals and natural products possessing important biological activities. Furthermore, experimental and density functional theory studies reveal that the regioselectivity of the alkyne arylation process is entirely controlled by the steric hindrance of the ligand; the reaction mechanism involves exo-cyclization followed by Dowd-Beckwith-type ring expansion to form endo-cyclization products.
Collapse
Affiliation(s)
- Wenfeng Liu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Wei Li
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Weipeng Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Wangqing Kong
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
8
|
Zhu D, Mu T, Li ZL, Luo HY, Cao RF, Xue XS, Chen ZM. Enantioselective Synthesis of Planar-Chiral Sulfur-Containing Cyclophanes by Chiral Sulfide Catalyzed Electrophilic Sulfenylation of Arenes. Angew Chem Int Ed Engl 2024; 63:e202318625. [PMID: 38231132 DOI: 10.1002/anie.202318625] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/05/2024] [Accepted: 01/17/2024] [Indexed: 01/18/2024]
Abstract
An efficient catalytic asymmetric electrophilic sulfenylation reaction for the synthesis of planar-chiral sulfur-containing cyclophanes has been developed for the first time. This was achieved by using a new Lewis base catalyst and a new ortho-trifluoromethyl-substituted sulfenylating reagent. Using the substrates with low rotational energy barrier, the transformation proceeded through a dynamic kinetic resolution, and the high rotational energy barrier of the substrates allowed the reaction to undergo a kinetic resolution process. Meanwhile, this transformation was compatible with a desymmetrization process when the symmetric substrates were used. Various planar-chiral sulfur-containing cyclophanes were readily obtained in moderate to excellent yields with moderate to excellent enantioselectivities (up to 97 % yield and 95 % ee). This approach was used to synthesize pharmaceutically relevant planar-chiral sulfur-containing molecules. Density functional theory calculations showed that π-π interactions between the sulfenyl group and the aromatic ring in the substrate play a crucial role in enantioinduction in this sulfenylation reaction.
Collapse
Affiliation(s)
- Deng Zhu
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Tong Mu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200232, P. R. China
| | - Ze-Long Li
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Hui-Yun Luo
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ren-Fei Cao
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiao-Song Xue
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200232, P. R. China
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, P. R. China
| | - Zhi-Min Chen
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
9
|
Lv X, Liu C, Chen Y, Wang D, Yu P, Jin MY, Xu C. Highly Enantioselective Dihydroxylation of 1,1-Disubstituted Aliphatic Alkenes Enabled by Orchestrated Noncovalent π-Interactions. Org Lett 2024; 26:1399-1404. [PMID: 38345406 DOI: 10.1021/acs.orglett.3c04188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The elusive nature of noncovalent π-interactions leads to their infrequent use as a design element in challenging chemical reactions. Stereocontrolling models based on coordinated noncovalent π-interactions were used for the asymmetric dihydroxylation of 1,1-disubstituted aliphatic alkenes. By introduction of a substituted phthalazine ring into the alkene substrates, the enantioselectivity reached 99% under the catalysis of bis-cinchona alkaloid ligands. Density functional theory calculations indicated a well-orchestrated, π-π interaction-directed "sandwich-like" transition state.
Collapse
Affiliation(s)
- Xinrou Lv
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chao Liu
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yu Chen
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Donghao Wang
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Peiyuan Yu
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ming Yu Jin
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chen Xu
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
10
|
De Tovar J, Philouze C, Thibon-Pourret A, Belle C. Insights into non-covalent interactions in dicopper(II,II) complexes bearing a naphthyridine scaffold: anion-dictated electrochemistry. Chem Commun (Camb) 2024; 60:2228-2231. [PMID: 38314799 DOI: 10.1039/d3cc06264c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
A family of bis(μ-hydroxido)dicopper(II,II) complexes bearing a naphthyridine-based scaffold has been synthesized and characterized. Cyclic voltammetry reveals that the nature of the anions present in the complexes plays a pivotal role in their electrochemical properties. X-ray diffraction, spectroscopic and electrochemical analysis data support the formation of intimate ion pairs by non-covalent interactions driving to a ca. 270 mV difference for the potential required to monooxidize the CuIICuII species.
Collapse
Affiliation(s)
- Jonathan De Tovar
- Université Grenoble Alpes, CNRS, DCM, UMR 5250, 38000 Grenoble, France.
| | | | | | - Catherine Belle
- Université Grenoble Alpes, CNRS, DCM, UMR 5250, 38000 Grenoble, France.
| |
Collapse
|
11
|
Li Z, Xu W, Song S, Wang M, Zhao Y, Shi Z. Enantioselective Rhodium-Catalyzed C-H Arylation Enables Direct Synthesis of Atropisomeric Phosphines. Angew Chem Int Ed Engl 2024; 63:e202316035. [PMID: 38182545 DOI: 10.1002/anie.202316035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/07/2024]
Abstract
Atropisomeric phosphines hold considerable significance in asymmetric catalysis, yet their synthesis presents a formidable challenge owing to intricate multistep procedures. In this context, a groundbreaking methodology has been presented for their preparation. This innovative approach entails an atroposelective rhodium-catalyzed C-H activation employing aryl and heteroaryl halides, chelated by a P(III) center. The essence of this strategy lies in its ability to directly construct chiral phosphine ligands in a single step, thereby exhibiting exceptional efficiency in terms of atom and redox economy. Illustrative examples serve to demonstrate the immense potential of in situ-formed ligands in asymmetric catalysis. Mechanistic experiments have further provided invaluable insights into this transformation.
Collapse
Affiliation(s)
- Zexian Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Weipeng Xu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Shuaishuai Song
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
12
|
Banerjee S, Vanka K. The Role of Aromatic Alcohol Additives on Asymmetric Organocatalysis Reactions: Insights from Theory. Chem Asian J 2024; 19:e202300997. [PMID: 38270228 DOI: 10.1002/asia.202300997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 01/26/2024]
Abstract
The presence of an aromatic additive has been seen to enhance, often significantly, the enantioselectivity and yield in asymmetric organocatalysis. Considering their success across a dizzying range of organocatalysts and organic transformations, it would seem unlikely that a common principle exists for their functioning. However, the current investigations with DFT suggest a general principle: the phenolic additive sandwiches itself, through hydrogen bonding and π⋅⋅⋅π stacking, between the organocatalyst coordinated electrophile and nucleophile. This is seen for a wide range of experimentally reported systems. That such complex formation leads to enhanced stereoselectivity is then demonstrated for two cases: the cinchona alkaloid complex (BzCPD), catalysing thiocyanation (2-naphthol additive employed), as well as for L-pipecolicacid catalysing the asymmetric nitroaldol reaction with a range of nitro-substituted phenol additives. These findings, indicating that dual catalysis takes place when phenolic additives are employed, are likely to have a significant impact on the field of asymmetric organocatalysis.
Collapse
Affiliation(s)
- Subhrashis Banerjee
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr.Homi Bhabha Road, Pune, 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kumar Vanka
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr.Homi Bhabha Road, Pune, 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
13
|
Cerveri A, Scarica G, Sparascio S, Hoch M, Chiminelli M, Tegoni M, Protti S, Maestri G. Boosting Energy-Transfer Processes via Dispersion Interactions. Chemistry 2024:e202304010. [PMID: 38224554 DOI: 10.1002/chem.202304010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
The generation of open-shell intermediates under mild conditions has opened broad synthetic opportunities during this century. However, these reactive species often require a case specific and tailored tuning of experimental parameters in order to efficiently convert substrates into products. We report a general approach that can overcome these ubiquitous limitations for several visible-light promoted energy-transfer processes. The use of either naphthalene (5-20 equiv.) or simple binaphthyl derivatives (10-30 mol %) greatly increases their efficiency, giving rise to a new strategy for catalysis. The trend is consistent among different media, photocatalysts, light sources and substrates, allowing one to improve existing methods, to more easily optimize conditions for new ones, and, moreover, to disclose otherwise inaccessible reaction pathways.
Collapse
Affiliation(s)
- Alessandro Cerveri
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Gabriele Scarica
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Sara Sparascio
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Matteo Hoch
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Maurizio Chiminelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Matteo Tegoni
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, Università di Pavia, Via Taramelli 10, 27100, Pavia, Italy
| | - Giovanni Maestri
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| |
Collapse
|
14
|
Reid JP, Betinol IO, Kuang Y. Mechanism to model: a physical organic chemistry approach to reaction prediction. Chem Commun (Camb) 2023; 59:10711-10721. [PMID: 37552047 DOI: 10.1039/d3cc03229a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
The application of mechanistic generalizations is at the core of chemical reaction development and application. These strategies are rooted in physical organic chemistry where mechanistic understandings can be derived from one reaction and applied to explain another. Over time these techniques have evolved from rationalizing observed outcomes to leading experimental design through reaction prediction. In parallel, significant progression in asymmetric organocatalysis has expanded the reach of chiral transfer to new reactions with increased efficiency. However, the complex and diverse catalyst structures applied in this arena have rendered the generalization of asymmetric catalytic processes to be exceptionally challenging. Recognizing this, a portion of our research has been focused on understanding the transferability of chemical observations between similar reactions and exploiting this phenomenon as a platform for prediction. Through these experiences, we have relied on a working knowledge of reaction mechanism to guide the development and application of our models which have been advanced from simple qualitative rules to large statistical models for quantitative predictions. In this feature article, we describe the models acquired to generalize organocatalytic reaction mechanisms and demonstrate their use as a powerful approach for accelerating enantioselective synthesis.
Collapse
Affiliation(s)
- Jolene P Reid
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada.
| | - Isaiah O Betinol
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada.
| | - Yutao Kuang
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada.
| |
Collapse
|
15
|
Li C, Chen F, Mu Q, Xu C. Asymmetric Dihydroxylation-Based Kinetic Resolution of Allylic Amides Enabled by Noncovalent π-Interactions. Org Lett 2022; 24:8774-8779. [PMID: 36441523 DOI: 10.1021/acs.orglett.2c03486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While Sharpless asymmetric dihydroxylation is widely utilized to convert various alkenes into diols with excellent enantioselectivies, kinetic resolution by means of this fundamental catalysis has generally proven to be ineffective. Here we report that, by relying on noncovalent π-interactions that purposely include the substrate's stereocenter in the corresponding catalyst-substrate interaction framework, AD-based kinetic resolution of allylic amides is realized. This method enables such versatile chiral building blocks to be easily accessed with excellent enantiomeric excesses (ee's).
Collapse
Affiliation(s)
- Chengcheng Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.,Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Fumin Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.,Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qianqian Mu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chen Xu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
16
|
de Lima Lopes Rocha P, dos Santos FM, Pinheiro S, Fiorot RG. Noncovalent interactions as a solution for the metal-free one-pot asymmetric synthesis of (S)-2-aryl-2,3-dihydro-4(1H)-quinolones. J Mol Model 2022; 28:369. [DOI: 10.1007/s00894-022-05361-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/20/2022] [Indexed: 11/29/2022]
|
17
|
Guo R, Adak S, Bellotti P, Gao X, Smith WW, Le SN, Ma J, Houk KN, Glorius F, Chen S, Brown MK. Photochemical Dearomative Cycloadditions of Quinolines and Alkenes: Scope and Mechanism Studies. J Am Chem Soc 2022; 144:17680-17691. [PMID: 36106902 PMCID: PMC9840784 DOI: 10.1021/jacs.2c07726] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Photochemical dearomative cycloaddition has emerged as a useful strategy to rapidly generate molecular complexity. Within this context, stereo- and regiocontrolled intermolecular para-cycloadditions are rare. Herein, a method to achieve photochemical cycloaddition of quinolines and alkenes is shown. Emphasis is placed on generating sterically congested products and reaction of highly substituted alkenes and allenes. In addition, the mechanistic details of the process are studied, which revealed a reversible radical addition and a selectivity-determining radical recombination. The regio- and stereochemical outcome of the reaction is also rationalized.
Collapse
Affiliation(s)
- Renyu Guo
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana47405, United States
| | - Souvik Adak
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana47405, United States
| | - Peter Bellotti
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 36, 48149Münster, Germany
| | - Xinfeng Gao
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana47405, United States
| | - W Walker Smith
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana47405, United States
| | - Sam Ngan Le
- Department of Chemistry and Biochemistry, Oberlin College, 119 Woodland Street, Oberlin, Ohio44074, United States
| | - Jiajia Ma
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 36, 48149Münster, Germany
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California90095, United States
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 36, 48149Münster, Germany
| | - Shuming Chen
- Department of Chemistry and Biochemistry, Oberlin College, 119 Woodland Street, Oberlin, Ohio44074, United States
| | - M Kevin Brown
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana47405, United States
| |
Collapse
|
18
|
Lai J, Reid JP. Interrogating the thionium hydrogen bond as a noncovalent stereocontrolling interaction in chiral phosphate catalysis. Chem Sci 2022; 13:11065-11073. [PMID: 36320465 PMCID: PMC9516887 DOI: 10.1039/d2sc02171d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/15/2022] [Indexed: 12/04/2022] Open
Abstract
CH⋯O bonds are a privileged noncovalent interaction determining the energies and geometries of a large number of structures. In catalytic settings, these are invoked as a decisive feature controlling many asymmetric transformations involving aldehydes. However, little is known about their stereochemical role when the interaction involves other substrate types. We report the results of computations that show for the first time thionium hydrogen bonds to be an important noncovalent interaction in asymmetric catalysis. As a validating case study, we explored an asymmetric Pummerer rearrangement involving thionium intermediates to yield enantioenriched N,S-acetals under BINOL-derived chiral phosphate catalysis. DFT and QM/MM hybrid calculations showed that the lowest energy pathway corresponded to a transition state involving two hydrogen bonding interactions from the thionium intermediate to the catalyst. However, the enantiomer resulting from this process differed from the originally published absolute configuration. Experimental determination of the absolute configuration resolved this conflict in favor of our calculations. The reaction features required for enantioselectivity were further interrogated by statistical modeling analysis that utilized bespoke featurization techniques to enable the translation of enantioselectivity trends from intermolecular reactions to those proceeding intramolecularly. Through this suite of computational modeling techniques, a new model is revealed that provides a different explanation for the product outcome and enabled reassignment of the absolute product configuration.
Collapse
Affiliation(s)
- Junshan Lai
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada
| | - Jolene P Reid
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada
| |
Collapse
|
19
|
Maliekal PJ, Gulvi N, Badani PM. Role of non-covalent interactions in deciding the fate of product formation in bifunctional thiourea-assisted chiral organic reactions. Theor Chem Acc 2022. [DOI: 10.1007/s00214-022-02902-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
20
|
Abstract
We introduce the concept of fragment localized molecular orbitals (FLMOs), which are Hartree-Fock molecular orbitals localized in specific fragments constituting a molecular system. In physical terms, we minimize the local electronic energies of the different fragments, at the cost of maximizing the repulsion between them. To showcase the approach, we rationalize the main interactions occurring in large biological systems in terms of interactions between the fragments of the system. In particular, we study an anticancer drug intercalated within DNA and retinal in anabaena sensory rhodopsin as prototypes of molecular systems embedded in biological matrixes. Finally, the FLMOs are exploited to rationalize the formation of two oligomers, prototypes of amyloid diseases, such as Parkinson and Alzheimer.
Collapse
Affiliation(s)
| | - Henrik Koch
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy.,Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
21
|
Jin MY, Zhen Q, Xiao D, Tao G, Xing X, Yu P, Xu C. Engineered non-covalent π interactions as key elements for chiral recognition. Nat Commun 2022; 13:3276. [PMID: 35672365 PMCID: PMC9174283 DOI: 10.1038/s41467-022-31026-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/25/2022] [Indexed: 12/31/2022] Open
Abstract
Molecular recognition and self-assembly are often mediated by intermolecular forces involving aromatic π-systems. Despite the ubiquity of such interactions in biological systems and in the design of functional materials, the elusive nature of aromatic π interaction results in that they have been seldom used as a design element for promoting challenging chemical reactions. Described here is a well-engineered catalytic system into which non-covalent π interactions are directly incorporated. Enabled by a lone pair-π interaction and a π-π stacking interaction operating collectively, efficient chiral recognition is successfully achieved in the long-pursued dihydroxylation-based kinetic resolution. Density functional theory calculations shed light on the crucial role played by the lone pair-π interaction between the carbonyl oxygen of the cinchona alkaloid ligand and the electron-deficient phthalazine π moiety of the substrate in the stereoselectivity-determining transition states. This discovery serves as a proof-of-principle example showing how the weak non-covalent π interactions, if ingeniously designed, could be a powerful guide in attaining highly enantioselective catalysis.
Collapse
Affiliation(s)
- Ming Yu Jin
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Qianqian Zhen
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Dengmengfei Xiao
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Guanyu Tao
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Xiangyou Xing
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Peiyuan Yu
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 518055, Shenzhen, China.
| | - Chen Xu
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 518055, Shenzhen, China.
| |
Collapse
|
22
|
De S, Tomiczek BM, Yang Y, Ko K, Ghiviriga I, Roitberg A, Grenning AJ. Diastereoselective Indole-Dearomative Cope Rearrangements by Compounding Minor Driving Forces. Org Lett 2022; 24:3726-3730. [PMID: 35576941 PMCID: PMC10112279 DOI: 10.1021/acs.orglett.2c01381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reported herein is the discovery of a diastereoselective indole-dearomative Cope rearrangement. A suite of minor driving forces promote dearomatization: (i) steric congestion in the starting material, (ii) alkylidene malononitrile and stilbene conjugation events in the product, and (iii) an unexpected intramolecular π-π* stack on the product side of the equilibrium. The key substrates are rapidly assembled from simple starting materials, resulting in many successful examples. The products are structurally complex and bear vicinal stereocenters generated by the dearomative Cope rearrangement. They also contain a variety of functional groups for interconversion to complex architectures.
Collapse
Affiliation(s)
- Subhadip De
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32603, United States
| | - Breanna M Tomiczek
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32603, United States
| | - Yinuo Yang
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32603, United States
| | - Kenneth Ko
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32603, United States
| | - Ion Ghiviriga
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32603, United States
| | - Adrian Roitberg
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32603, United States
| | - Alexander J Grenning
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32603, United States
| |
Collapse
|
23
|
Ye CX, Shen X, Chen S, Meggers E. Stereocontrolled 1,3-nitrogen migration to access chiral α-amino acids. Nat Chem 2022; 14:566-573. [PMID: 35379900 PMCID: PMC7612692 DOI: 10.1038/s41557-022-00895-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 01/19/2022] [Indexed: 11/09/2022]
Abstract
α-Amino acids are essential for life as building blocks of proteins and components of diverse natural molecules. In both industry and academia, the incorporation of unnatural amino acids is often desirable for modulating chemical, physical and pharmaceutical properties. Here we report a protocol for the economical and practical synthesis of optically active α-amino acids based on an unprecedented stereocontrolled 1,3-nitrogen shift. Our method employs abundant and easily accessible carboxylic acids as starting materials, which are first connected to a nitrogenation reagent, followed by a highly regio- and enantioselective ruthenium- or iron-catalysed C(sp3)-H amination. This straightforward method displays a very broad scope, providing rapid access to optically active α-amino acids with aryl, allyl, propargyl and alkyl side chains, and also permits stereocontrolled late-stage amination of carboxylic-acid-containing drugs and natural products.
Collapse
Affiliation(s)
- Chen-Xi Ye
- Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Xiang Shen
- Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Shuming Chen
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, OH, USA.
| | - Eric Meggers
- Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany.
| |
Collapse
|
24
|
Liu W, Choi I, Zerull EE, Schomaker JM. Tunable Silver-Catalyzed Nitrene Transfer: From Chemoselectivity to Enantioselective C–H Amination. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Wentan Liu
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Isaac Choi
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Emily E. Zerull
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jennifer M. Schomaker
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
25
|
Gole B, Kauffmann B, Tron A, Maurizot V, McClenaghan N, Huc I, Ferrand Y. Selective and Cooperative Photocycloadditions within Multistranded Aromatic Sheets. J Am Chem Soc 2022; 144:6894-6906. [PMID: 35380826 DOI: 10.1021/jacs.2c01269] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A series of aromatic helix-sheet-helix oligoamide foldamers composed of several different photosensitive diazaanthracene units have been designed and synthesized. Molecular objects up to 7 kDa were straightforwardly produced on a 100 mg scale. Nuclear magnetic resonance and crystallographic investigations revealed that helix-sheet-helix architectures can adopt one or two distinct conformations. Sequences composed of an even number of turn units were found to fold in a canonical symmetrical conformation with two helices of identical handedness stacked above and below the sheet segment. Sequences composed of an odd number of turns revealed a coexistence between a canonical fold with helices of opposite handedness and an alternate fold with a twist within the sheet and two helices of identical handedness. The proportions between these species could be manipulated, in some cases quantitatively, being dependent on solvent, temperature, and absolute control of helix handedness. Diazaanthracene units were shown to display distinct reactivity toward [4 + 4] photocycloadditions according to the substituent in position 9. Their organization within the sequences was programmed to allow photoreactions to take place in a specific order. Reaction pathways and kinetics were deciphered and product characterized, demonstrating the possibility to orchestrate successive photoreactions so as to avoid orphan units or to deliberately produce orphan units at precise locations. Strong cooperative effects were observed in which the photoreaction rate was influenced by the presence (or absence) of photoadducts in the structure. Multiple photoreactions within the aromatic sheet eventually lead to structure lengthening and stiffening, locking conformational equilibria. Photoproducts could be thermally reverted.
Collapse
Affiliation(s)
- Bappaditya Gole
- Univ. Bordeaux, CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), 2 rue Escarpit, 33600 Pessac, France
| | - Brice Kauffmann
- Univ. Bordeaux, CNRS, INSERM, Institut Européen de Chimie Biologie (UMS3033/US001), 2 rue Escarpit, 33600 Pessac, France
| | - Arnaud Tron
- Univ. Bordeaux, CNRS, Institut des Sciences Moléculaires (UMR5255), 351 cours de la Libération, 33405 Talence cedex, France
| | - Victor Maurizot
- Univ. Bordeaux, CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), 2 rue Escarpit, 33600 Pessac, France
| | - Nathan McClenaghan
- Univ. Bordeaux, CNRS, Institut des Sciences Moléculaires (UMR5255), 351 cours de la Libération, 33405 Talence cedex, France
| | - Ivan Huc
- Department of Pharmacy, Ludwig-Maximilians-University, Butenandtstr. 5-13, 81377 Munich, Germany.,Cluster of Excellence e-Conversion, 85748 Garching, Germany
| | - Yann Ferrand
- Univ. Bordeaux, CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), 2 rue Escarpit, 33600 Pessac, France
| |
Collapse
|
26
|
Maley SM, Steagall R, Lief GR, Buck RM, Yang Q, Sydora OL, Bischof SM, Ess DH. Computational Evaluation and Design of Polyethylene Zirconocene Catalysts with Noncovalent Dispersion Interactions. Organometallics 2022. [DOI: 10.1021/acs.organomet.1c00670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Steven M. Maley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Robert Steagall
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Graham R. Lief
- Research and Technology, Chevron Phillips Chemical Company LP, Highways 60 & 123, Bartlesville, Oklahoma 74003, United States
| | - Richard M. Buck
- Research and Technology, Chevron Phillips Chemical Company LP, Highways 60 & 123, Bartlesville, Oklahoma 74003, United States
| | - Qing Yang
- Research and Technology, Chevron Phillips Chemical Company LP, Highways 60 & 123, Bartlesville, Oklahoma 74003, United States
| | - Orson L. Sydora
- Research and Technology, Chevron Phillips Chemical Company LP, 1862, Kingwood Drive, Kingwood, Texas 77339, United States
| | - Steven M. Bischof
- Research and Technology, Chevron Phillips Chemical Company LP, 1862, Kingwood Drive, Kingwood, Texas 77339, United States
| | - Daniel H. Ess
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
27
|
Grossmann O, Maji R, Aukland MH, Lee S, List B. Catalytic Asymmetric Additions of Enol Silanes to In Situ Generated Cyclic, Aliphatic N-Acyliminium Ions. Angew Chem Int Ed Engl 2022; 61:e202115036. [PMID: 34897932 PMCID: PMC9303265 DOI: 10.1002/anie.202115036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Indexed: 12/02/2022]
Abstract
Strong and confined imidodiphosphorimidate (IDPi) catalysts enable highly enantioselective substitutions of cyclic, aliphatic hemiaminal ethers with enol silanes. 2-Substituted pyrrolidines, piperidines, and azepanes are obtained with high enantioselectivities, and the method displays a broad tolerance of various enol silane nucleophiles. Several natural products can be accessed using this methodology. Mechanistic studies support the intermediacy of non-stabilized, cyclic N-(exo-acyl)iminium ions, paired with the confined chiral counteranion. Computational studies suggest transition states that explain the observed enantioselectivity.
Collapse
Affiliation(s)
- Oleg Grossmann
- Homogeneous CatalysisMax-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an derRuhrGermany
| | - Rajat Maji
- Homogeneous CatalysisMax-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an derRuhrGermany
| | - Miles H. Aukland
- Homogeneous CatalysisMax-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an derRuhrGermany
| | - Sunggi Lee
- Department of Emerging Materials ScienceDaegu Gyeongbuk Institute of Science and Technology (DGIST)333, Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gunDaegu (Republik ofKorea
| | - Benjamin List
- Homogeneous CatalysisMax-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der Ruhr (Germany)
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD)Hokkaido UniversitySapporo001-0021Japan
| |
Collapse
|
28
|
Hamza A, Moock D, Schlepphorst C, Schneidewind J, Baumann W, Glorius F. Unveiling a key catalytic pocket for the ruthenium NHC-catalysed asymmetric heteroarene hydrogenation. Chem Sci 2022; 13:985-995. [PMID: 35211263 PMCID: PMC8790799 DOI: 10.1039/d1sc06409f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/20/2021] [Indexed: 11/21/2022] Open
Abstract
The chiral ruthenium(ii)bis-SINpEt complex is a versatile and powerful catalyst for the hydrogenation of a broad range of heteroarenes. This study aims to provide understanding of the active form of this privileged catalyst as well as the reaction mechanism, and to identify the factors which control enantioselectivity. To this end we used computational methods and in situ NMR spectroscopy to study the hydrogenation of 2-methylbenzofuran promoted by this system. The high flexibility and conformational freedom of the carbene ligands in this complex lead to the formation of a chiral pocket interacting with the substrate in a "lock-and-key" fashion. The non-covalent stabilization of the substrate in this particular pocket is an exclusive feature of the major enantiomeric pathway and is preserved throughout the mechanism. Substrate coordination leading to the minor enantiomer inside this pocket is inhibited by steric repulsion. Rather, the catalyst exhibits a "flat" interaction surface with the substrate in the minor enantiomer pathway. We probe this concept by computing transition states of the rate determining step of this reaction for a series of different substrates. Our findings open up a new approach for the rational design of chiral catalysts.
Collapse
Affiliation(s)
- Andrea Hamza
- Institute of Organic Chemistry, Research Centre for Natural Sciences Magyar Tudósok Körútja 2 H-1117 Budapest Hungary
| | - Daniel Moock
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Christoph Schlepphorst
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Jacob Schneidewind
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University Worringerweg 2 52074 Aachen Germany
| | - Wolfgang Baumann
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| |
Collapse
|
29
|
Jin MY, Zhou Y, Xiao D, You Y, Zhen Q, Tao G, Yu P, Xing X. Simultaneous Kinetic Resolution and Asymmetric Induction within a Borrowing Hydrogen Cascade Mediated by a Single Catalyst. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ming Yu Jin
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Yali Zhou
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Dengmengfei Xiao
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Yipeng You
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Qianqian Zhen
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Guanyu Tao
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Peiyuan Yu
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Xiangyou Xing
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
30
|
Grossmann O, Maji R, Aukland MH, Lee S, List B. Katalytische asymmetrische Additionen von Enolsilanen an in situ erzeugte zyklische, aliphatische
N
‐Acyliminiumionen. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Oleg Grossmann
- Homogene Katalyse Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| | - Rajat Maji
- Homogene Katalyse Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| | - Miles H. Aukland
- Homogene Katalyse Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| | - Sunggi Lee
- Department of Emerging Materials Science Daegu Gyeongbuk Institute of Science and Technology (DGIST) 333, Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gun Daegu (Republik Korea
| | - Benjamin List
- Homogene Katalyse Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr (Germany)
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Sapporo 001-0021 Japan
| |
Collapse
|
31
|
Zaib S, Ibrar A, Ramay M, Zahra S, Hökelek T, Simpson J, McAdam CJ, Awwad NS, Ibrahium HA, Frontera A, Khan I. Centroid⋯centroid and hydrogen bond interactions as robust supramolecular units for crystal engineering: X-ray crystallographic, computational and urease inhibitory investigations of 1,2,4-triazolo[3,4-a]phthalazines. CrystEngComm 2022. [DOI: 10.1039/d2ce00351a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The antiparallel π-stacked dimer of compound 6 (left) presenting a large dimerization energy (ΔE5 = −11.2 kcal mol−1) and confirming its relevance in the solid state of compound 6. 3D binding mode of 6 (right) docked in the catalytic domain of urease.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore 54590, Pakistan
| | - Aliya Ibrar
- Department of Chemistry, Faculty of Life Science, The University of Haripur, KPK 22620, Pakistan
| | - Marriyam Ramay
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore 54590, Pakistan
| | - Shabab Zahra
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore 54590, Pakistan
| | - Tuncer Hökelek
- Department of Physics, Hacettepe University, Beytepe-Ankara, 06800, Turkey
| | - Jim Simpson
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | | | - Nasser S. Awwad
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Hala A. Ibrahium
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Department of Semi Pilot Plant, Nuclear Materials Authority, P.O. Box 530, El Maadi, Egypt
| | - Antonio Frontera
- Department de Química, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122 Palma de Mallorca Baleares, Spain
| | - Imtiaz Khan
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| |
Collapse
|
32
|
Wang N, Fan LW, Zhang J, Gu QS, Lin JS, Chen GQ, Liu XY, Yu P. Chiral N-Triflylphosphoramide-Catalyzed Asymmetric Hydroamination of Unactivated Alkenes: A Hetero-Ene Reaction Mechanism. Org Chem Front 2022. [DOI: 10.1039/d1qo01874d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly enantioselective intramolecular hydroamination reaction catalyzed by chiral N-triflylphosphoramide (NTPA) that covers an exceptionally broad substrate scope of isolated unactivated alkenes was recently reported by some of us. Herein...
Collapse
|
33
|
|
34
|
Champagne PA. Identifying the true origins of selectivity in chiral phosphoric acid catalyzed N-acyl-azetidine desymmetrizations. Chem Sci 2021; 12:15662-15672. [PMID: 35003597 PMCID: PMC8654023 DOI: 10.1039/d1sc04969k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/10/2021] [Indexed: 01/01/2023] Open
Abstract
The first catalytic intermolecular desymmetrization of azetidines was reported by Sun and coworkers in 2015 using a BINOL-derived phosphoric acid catalyst (J. Am. Chem. Soc. 2015, 137, 5895-5898). To uncover the mechanism of the reaction and the origins of the high enantioselectivity, Density Functional Theory (DFT) calculations were performed at the B97D3/6-311+G(2d,2p)/SMD(toluene)//B97D3/6-31G(d,p)/CPCM(toluene) level of theory. Comparison of four possible activation modes confirms that this reaction proceeds through the bifunctional activation of the azetidine nitrogen and the thione tautomer of the 2-mercaptobenzothiazole nucleophile. Upon thorough conformational sampling of the enantiodetermining transition structures (TSs), a free energy difference of 2.0 kcal mol-1 is obtained, accurately reproducing the experimentally measured 88% e.e. at 80 °C. This energy difference is due to both decreased distortion and increased non-covalent interactions in the pro-(S) TS. To uncover the true origins of selectivity, the TSs optimized with the full catalyst were compared to those optimized with a model catalyst through steric maps. It is found that the arrangements displayed by the substrates are controlled by strict primary orbital interaction requirements at the transition complex, and their ability to fit into the catalyst pocket drives the selectivity. A general model of selectivity for phosphoric acid-catalyzed azetidine desymmetrizations is proposed, which is based on the preference of the nucleophile and benzoyl group to occupy empty quadrants of the chiral catalyst pocket.
Collapse
Affiliation(s)
- Pier Alexandre Champagne
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology Newark NJ USA
| |
Collapse
|
35
|
Žabka M, Naviri L, Gschwind RM. Noncovalent CH–π and π–π Interactions in Phosphoramidite Palladium(II) Complexes with Strong Conformational Preference. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Matej Žabka
- Institute of Organic Chemistry Universität Regensburg Universitätstrasse 31 93053 Regensburg Germany
| | - Lavakumar Naviri
- Institute of Organic Chemistry Universität Regensburg Universitätstrasse 31 93053 Regensburg Germany
| | - Ruth M. Gschwind
- Institute of Organic Chemistry Universität Regensburg Universitätstrasse 31 93053 Regensburg Germany
| |
Collapse
|
36
|
Žabka M, Naviri L, Gschwind RM. Noncovalent CH-π and π-π Interactions in Phosphoramidite Palladium(II) Complexes with Strong Conformational Preference. Angew Chem Int Ed Engl 2021; 60:25832-25838. [PMID: 34585835 PMCID: PMC9298319 DOI: 10.1002/anie.202106881] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Indexed: 11/12/2022]
Abstract
The weak noncovalent interactions and flexibility of ligands play a key role in enantioselective metal-catalyzed reactions. In transition metal complexes and their catalytic applications, the experimental assessment and the design of key interactions is as difficult as the prediction of the enantioselectivities, especially for flexible, privileged ligands such as chiral phosphoramidites. Therefore, the interligand interactions in cis-PdII L2 Cl2 phosphoramidite complexes were investigated by NMR spectroscopy and computations. We were able to induce a strong conformational preference by breaking the symmetry of the C2 -symmetric side chain of one of the ligands, and shift the equilibrium between hetero- and homocomplexes towards heterocomplexes because of interligand interactions in the cis-complexes. The modulation of aryl substituents was exploited, along with the solvent effect. The combined CH-π and π-π interactions reveal design patterns for binding and folding of chiral ligands and catalysts.
Collapse
Affiliation(s)
- Matej Žabka
- Institute of Organic ChemistryUniversität RegensburgUniversitätstrasse 3193053RegensburgGermany
| | - Lavakumar Naviri
- Institute of Organic ChemistryUniversität RegensburgUniversitätstrasse 3193053RegensburgGermany
| | - Ruth M. Gschwind
- Institute of Organic ChemistryUniversität RegensburgUniversitätstrasse 3193053RegensburgGermany
| |
Collapse
|
37
|
Jin MY, Zhou Y, Xiao D, You Y, Zhen Q, Tao G, Yu P, Xing X. Simultaneous Kinetic Resolution and Asymmetric Induction within a Borrowing Hydrogen Cascade Mediated by a Single Catalyst. Angew Chem Int Ed Engl 2021; 61:e202112993. [PMID: 34626073 DOI: 10.1002/anie.202112993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Indexed: 01/20/2023]
Abstract
The mechanistic uniqueness and versatility of borrowing hydrogen catalysis provides an opportunity to investigate the controllability of a cascade reaction, and more importantly, to realize either one or both of chiral recognition and chiral induction simultaneously. Here we report that, in a borrowing hydrogen cascade starting from racemic allylic alcohols, one of the enantiomers could be kinetically resolved, while the other enantiomer could be purposely converted to various targeted products, including α,β-unsaturated ketones, β-functionalized ketones and γ-functionalized alcohols. By employing a robust Ru-catalyst, both kinetic resolution and asymmetric induction were achieved with remarkable levels of efficiency and enantioselectivity. Density functional theory (DFT) calculations suggest that corresponding catalyst-substrate π-π interactions are pivotal to realize the observed stereochemical diversity.
Collapse
Affiliation(s)
- Ming Yu Jin
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yali Zhou
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Dengmengfei Xiao
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yipeng You
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qianqian Zhen
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guanyu Tao
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Peiyuan Yu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiangyou Xing
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
38
|
Arribas A, Calvelo M, Fernández DF, Rodrigues CAB, Mascareñas JL, López F. Highly Enantioselective Iridium(I)‐Catalyzed Hydrocarbonation of Alkenes: A Versatile Approach to Heterocyclic Systems Bearing Quaternary Stereocenters. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Andrés Arribas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Martín Calvelo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - David F. Fernández
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Catarina A. B. Rodrigues
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - José L. Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Fernando López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
- Misión Biológica de Galicia Consejo Superior de Investigaciones Científicas (CSIC) 36080 Pontevedra Spain
| |
Collapse
|
39
|
Arribas A, Calvelo M, Fernández DF, Rodrigues CAB, Mascareñas JL, López F. Highly Enantioselective Iridium(I)-Catalyzed Hydrocarbonation of Alkenes: A Versatile Approach to Heterocyclic Systems Bearing Quaternary Stereocenters. Angew Chem Int Ed Engl 2021; 60:19297-19305. [PMID: 34137152 PMCID: PMC8456945 DOI: 10.1002/anie.202105776] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/10/2021] [Indexed: 12/29/2022]
Abstract
We report a versatile, highly enantioselective intramolecular hydrocarbonation reaction that provides a direct access to heteropolycyclic systems bearing chiral quaternary carbon stereocenters. The method, which relies on an iridium(I)/bisphosphine chiral catalyst, is particularly efficient for the synthesis of five-, six- and seven-membered fused indole and pyrrole products, bearing one and two stereocenters, with enantiomeric excesses of up to >99 %. DFT computational studies allowed to obtain a detailed mechanistic profile and identify a cluster of weak non-covalent interactions as key factors to control the enantioselectivity.
Collapse
Affiliation(s)
- Andrés Arribas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Martín Calvelo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - David F. Fernández
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Catarina A. B. Rodrigues
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - José L. Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Fernando López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
- Misión Biológica de GaliciaConsejo Superior de Investigaciones Científicas (CSIC)36080PontevedraSpain
| |
Collapse
|
40
|
Podewitz M, Sen S, Buchmeiser MR. On the Origin of E-Selectivity in the Ring-Opening Metathesis Polymerization with Molybdenum Imido Alkylidene N-Heterocyclic Carbene Complexes. Organometallics 2021; 40:2478-2488. [PMID: 34393318 PMCID: PMC8356225 DOI: 10.1021/acs.organomet.1c00229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Indexed: 11/28/2022]
Abstract
The understanding and control of stereoselectivity is a central aspect in ring-opening metathesis polymerization (ROMP). Herein, we report detailed quantum chemical studies on the reaction mechanism of E-selective ROMP of norborn-2-ene (NBE) with Mo(N-2,6-Me2-C6H3)(CHCMe3)(IMes)(OTf)2 (1, IMes = 1,3-dimesitylimidazol-2-ylidene) as a first step to stereoselective polymerization. Four different reaction pathways based on an ene syn or ene anti approach of NBE to either the syn- or anti-isomer of the neutral precatalyst have been studied. In contrast to the recently established associative mechanism with a terminal alkene, where a neutral olefin adduct is formed, NBE reacts directly with the catalyst via [2 + 2] cycloaddition to form molybdacyclobutane with a reaction barrier about 30 kJ mol-1 lower in free energy than via the formation of a catalyst-monomer adduct. However, the direct cycloaddition of NBE was only found for one out of four stereoisomers. Our findings strongly suggest that this stereoselective approach is responsible for E-selectivity and point toward a substrate-specific reaction mechanism in olefin metathesis with neutral Mo imido alkylidene N-heterocyclic carbene bistriflate complexes.
Collapse
Affiliation(s)
- Maren Podewitz
- Institute
of General, Inorganic and Theoretical Chemistry, and Center of Molecular
Biosciences, University of Innsbruck, Innrain 80/82, AT-6020 Innsbruck, Austria
| | - Suman Sen
- Institute
of Polymer Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Michael R. Buchmeiser
- Institute
of Polymer Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| |
Collapse
|
41
|
Ikawa T, Yamamoto Y, Heguri A, Fukumoto Y, Murakami T, Takagi A, Masuda Y, Yahata K, Aoyama H, Shigeta Y, Tokiwa H, Akai S. Could London Dispersion Force Control Regioselective (2 + 2) Cyclodimerizations of Benzynes? YES: Application to the Synthesis of Helical Biphenylenes. J Am Chem Soc 2021; 143:10853-10859. [PMID: 34197100 DOI: 10.1021/jacs.1c05434] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In recent years, London dispersion interactions, which are the attractive component of the van der Waals potential, have been found to play an important role in controlling the regio- and/or stereoselectivity of various reactions. Particularly, the dispersion interactions between substrates and catalysts (or ligands) are dominant in various selective catalyzes. In contrast, repulsive steric interactions, rather than the attractive dispersion interactions, between bulky substituents are predominant in most of the noncatalytic reactions. Herein, we demonstrate the first example of London dispersion-controlled noncatalytic (2 + 2) cyclodimerization of substituted benzynes to selectively afford proximal biphenylenes in high yields and regioselectivities, depending on the extent of dispersion interactions in the substituents. This method can be applied for the synthesis of novel helical biphenylenes, which would be fascinating for chemists as these compounds are potential skeletons for ligands, catalysts, and medicines.
Collapse
Affiliation(s)
- Takashi Ikawa
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, Daigaku-Nishi, Gifu 501-1196, Japan
| | - Yuta Yamamoto
- Department of Chemistry, Rikkyo University, Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan
| | - Akito Heguri
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yutaka Fukumoto
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tomonari Murakami
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akira Takagi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuto Masuda
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kenzo Yahata
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroshi Aoyama
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Hiroaki Tokiwa
- Department of Chemistry, Rikkyo University, Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan
| | - Shuji Akai
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
42
|
Xu H, Li B, Liu Z, Dang Y. Mechanistic Origins of Stereodivergence in Asymmetric Cascade Allylation and Cyclization Reactions Enabled by Synergistic Cu/Ir Catalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02270] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hui Xu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, China
| | - Bo Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, China
| | - Zheyuan Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, China
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, China
| |
Collapse
|
43
|
Yen-Pon E, Buttard F, Frédéric L, Thuéry P, Taran F, Pieters G, Champagne PA, Audisio D. Heterohelicenes through 1,3-Dipolar Cycloaddition of Sydnones with Arynes: Synthesis, Origins of Selectivity, and Application to pH-Triggered Chiroptical Switch with CPL Sign Reversal. JACS AU 2021; 1:807-818. [PMID: 34467334 PMCID: PMC8395615 DOI: 10.1021/jacsau.1c00084] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 05/25/2023]
Abstract
Regioselective access to heterohelicenes through the 1,3-dipolar cycloaddition of sydnones with arynes is described. Novel access to sydnones and poly(hetero)aromatic aryne precursors allowed the introduction of chemical diversity over multiple positions of the helical scaffolds. The origins of the unconventional regioselectivity during the cycloaddition steps was systematically investigated using density functional theory (DFT) calculations, unveiling the key features that control this reactivity, namely, face-to-face (π···π) or edge-to-face (C-H···π) interactions, primary orbital interactions and distortion from coplanarity in the transition structures (TSs) of the transformation. From the library of 24 derivatives synthesized, a pyridyl containing derivative displayed reversible, red-shifted, pH-triggered chiroptical switching properties, with CPL-sign reversal. It is found that protonation of the helicene causes a change of the angle between the electric and magnetic dipole moments related to the S1 → S0 transition, resulting in this rare case of reversible CPL sign inversion upon application of an external stimulus.
Collapse
Affiliation(s)
- Expédite Yen-Pon
- Université
Paris-Saclay, CEA, Service de Chimie Bio-organique et de Marquage,
DMTS, Gif-sur-Yvette 91191, France
| | - Floris Buttard
- Department
of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Lucas Frédéric
- Université
Paris-Saclay, CEA, Service de Chimie Bio-organique et de Marquage,
DMTS, Gif-sur-Yvette 91191, France
| | - Pierre Thuéry
- Université
Paris-Saclay, CEA, CNRS, NIMBE, Gif-sur-Yvette 91191, France
| | - Frédéric Taran
- Université
Paris-Saclay, CEA, Service de Chimie Bio-organique et de Marquage,
DMTS, Gif-sur-Yvette 91191, France
| | - Grégory Pieters
- Université
Paris-Saclay, CEA, Service de Chimie Bio-organique et de Marquage,
DMTS, Gif-sur-Yvette 91191, France
| | - Pier Alexandre Champagne
- Department
of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Davide Audisio
- Université
Paris-Saclay, CEA, Service de Chimie Bio-organique et de Marquage,
DMTS, Gif-sur-Yvette 91191, France
| |
Collapse
|
44
|
Palladium-catalyzed hydrosilylation of ynones to access silicon-stereogenic silylenones by stereospecific aromatic interaction-assisted Si-H activation. Sci China Chem 2021. [DOI: 10.1007/s11426-020-9939-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
45
|
Kroeger AA, Karton A. π-π Catalysis in Carbon Flatland-Flipping [8]Annulene on Graphene. Chemistry 2021; 27:3420-3426. [PMID: 33295080 DOI: 10.1002/chem.202004045] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Indexed: 11/10/2022]
Abstract
Noncovalent interactions are an integral part of the modern catalysis toolbox. Although stronger noncovalent interactions such as hydrogen bonding are commonly the main driving force of catalysis, π-π interactions typically provide smaller additional stabilizations, for example, to afford selectivity enhancements. Here, it is shown computationally that pristine graphene flakes may efficiently catalyze the skeletal inversions of various benzannulated cyclooctatetraene derivatives, providing an example of a catalytic process driven solely by π-π stacking interactions. Hereby, the catalytic effect results from disproportionate shape complementarity between catalyst and transition structure compared with catalyst and reactant. An energy decomposition analysis reveals electrostatic and, especially with increasing system size, to a larger extent, dispersion interactions as the origin of stabilization.
Collapse
Affiliation(s)
- Asja A Kroeger
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Amir Karton
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| |
Collapse
|
46
|
Pölloth B, Sibi MP, Zipse H. The Size-Accelerated Kinetic Resolution of Secondary Alcohols. Angew Chem Int Ed Engl 2021; 60:774-778. [PMID: 33090615 PMCID: PMC7821155 DOI: 10.1002/anie.202011687] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Indexed: 12/17/2022]
Abstract
The factors responsible for the kinetic resolution of alcohols by chiral pyridine derivatives have been elucidated by measurements of relative rates for a set of substrates with systematically growing aromatic side chains using accurate competitive linear regression analysis. Increasing the side chain size from phenyl to pyrenyl results in a rate acceleration of more than 40 for the major enantiomer. Based on this observation a new catalyst with increased steric bulk has been designed that gives enantioselectivity values of up to s=250. Extensive conformational analysis of the relevant transition states indicates that alcohol attack to the more crowded side of the acyl-catalyst intermediate is favoured due to stabilizing CH-π-stacking interactions. Experimental and theoretical results imply that enantioselectivity enhancements result from accelerating the transformation of the major enantiomer through attractive non-covalent interactions (NCIs) rather than retarding the transformation of the minor isomer through repulsive steric forces.
Collapse
Affiliation(s)
- Benjamin Pölloth
- Department of ChemistryLMU MünchenButenandtstr. 5–1381377MunichGermany
| | - Mukund P. Sibi
- Department of Chemistry and BiochemistryNorth Dakota State UniversityFargoND58108USA
| | - Hendrik Zipse
- Department of ChemistryLMU MünchenButenandtstr. 5–1381377MunichGermany
| |
Collapse
|
47
|
Díaz-Salazar H, Jiménez EI, Vallejo Narváez WE, Rocha-Rinza T, Hernández-Rodríguez M. Bifunctional squaramides with benzyl-like fragments: analysis of CH⋯π interactions by a multivariate linear regression model and quantum chemical topology. Org Chem Front 2021. [DOI: 10.1039/d0qo01610a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A multivariate linear regression model and quantum chemical topology are used for the quantitative description of non-covalent interactions in the transition state of the Michael addition catalyzed by bifunctional squaramides.
Collapse
Affiliation(s)
- Howard Díaz-Salazar
- Instituto de Química
- Universidad Nacional Autónoma de México
- Circuito Exterior
- Ciudad Universitaria
- Mexico
| | - Eddy I. Jiménez
- Instituto de Química
- Universidad Nacional Autónoma de México
- Circuito Exterior
- Ciudad Universitaria
- Mexico
| | - Wilmer E. Vallejo Narváez
- Instituto de Química
- Universidad Nacional Autónoma de México
- Circuito Exterior
- Ciudad Universitaria
- Mexico
| | - Tomás Rocha-Rinza
- Instituto de Química
- Universidad Nacional Autónoma de México
- Circuito Exterior
- Ciudad Universitaria
- Mexico
| | | |
Collapse
|
48
|
Kee CW, Wong MW. Bicyclic Guanidine-Catalyzed Asymmetric Cycloaddition Reaction of Anthrones-Bifunctional Binding Modes and Origin of Stereoselectivity. J Org Chem 2020; 85:15139-15153. [PMID: 33175532 DOI: 10.1021/acs.joc.0c02008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We report a computational analysis of the [5,5] bicyclic guanidine-catalyzed asymmetric cycloaddition reaction of anthrones. Based on extensive conformational search of key intermediates and transition states on the potential energy surface and density functional theory calculations, we studied five plausible binding modes between the guanidine catalyst and substrates for this reaction. Our results indicate that the most favorable pathway is a stepwise conjugate addition-Aldol sequence via the dual hydrogen-bond binding mode. The predicted level of enantioselectivity is in good agreement with experimental values. Trends in variation of substrates and catalysts have also been reproduced by our calculations. Decomposition analysis revealed the significance of aromatic interactions in stabilizing the key enantioselectivity-determining transition state structures.
Collapse
Affiliation(s)
- Choon Wee Kee
- Process & Catalysis Research, Institute of Chemical and Engineering Sciences, 1 Pesek Road, Singapore 627899.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Ming Wah Wong
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| |
Collapse
|
49
|
Pölloth B, Sibi MP, Zipse H. Die größenbeschleunigte kinetische Racematspaltung sekundärer Alkohole. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Benjamin Pölloth
- Department Chemie LMU München Butenandtstraße 5–13 81377 München Deutschland
| | - Mukund P. Sibi
- Department of Chemistry and Biochemistry North Dakota State University Fargo ND 58108 USA
| | - Hendrik Zipse
- Department Chemie LMU München Butenandtstraße 5–13 81377 München Deutschland
| |
Collapse
|
50
|
Gerosa GG, Marcarino MO, Spanevello RA, Suárez AG, Sarotti AM. Re-Engineering Organocatalysts for Asymmetric Friedel–Crafts Alkylation of Indoles through Computational Studies. J Org Chem 2020; 85:9969-9978. [DOI: 10.1021/acs.joc.0c01256] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Gabriela G. Gerosa
- Instituto de Quı́mica Rosario (CONICET-UNR), Facultad de Ciencias Bioquı́micas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| | - Maribel O. Marcarino
- Instituto de Quı́mica Rosario (CONICET-UNR), Facultad de Ciencias Bioquı́micas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| | - Rolando A. Spanevello
- Instituto de Quı́mica Rosario (CONICET-UNR), Facultad de Ciencias Bioquı́micas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| | - Alejandra G. Suárez
- Instituto de Quı́mica Rosario (CONICET-UNR), Facultad de Ciencias Bioquı́micas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| | - Ariel M. Sarotti
- Instituto de Quı́mica Rosario (CONICET-UNR), Facultad de Ciencias Bioquı́micas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| |
Collapse
|