1
|
Romero MR, Bracamonte AG. Optical Active Meta-Surfaces, -Substrates, and Single Quantum Dots Based on Tuning Organic Composites with Graphene. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3242. [PMID: 38998324 PMCID: PMC11242519 DOI: 10.3390/ma17133242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024]
Abstract
In this communication, the design and fabrication of optical active metamaterials were developed by the incorporation of graphene and joining it to different substrates with variable spectroscopical properties. It focuses on how graphene and its derivatives could generate varied optical setups and materials considering modified and enhanced optics within substrates and surfaces. In this manner, it is discussed how light could be tuned and modified along its path from confined nano-patterned surfaces or through a modified micro-lens. In addition to these optical properties generated from the physical interaction of light, it should be added that the non-classical light pathways and quantum phenomena could participate. In this way, graphene and related carbon-based materials with particular properties, such as highly condensed electronics, pseudo-electromagnetic properties, and quantum and luminescent properties, could be incorporated. Therefore, the modified substrates could be switched by photo-stimulation with variable responses depending on the nature of the material constitution. Therefore, the optical properties of graphene and its derivatives are discussed in these types of metasurfaces with targeted optical active properties, such as within the UV, IR, and terahertz wavelength intervals, along with their further properties and respective potential applications.
Collapse
Affiliation(s)
- Marcelo R. Romero
- Departamento de Química Orgánica, Facultad de Ciencias Químicas (Universidad Nacional de Córdoba), IPQA−CONICET, Córdoba CP 5000, Argentina;
| | - A. Guillermo Bracamonte
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Instituto de Investigaciones en Físicoquímica de Córdoba (INFIQC), Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba CP 5000, Argentina
| |
Collapse
|
2
|
Rasheed PA, Ankitha M, Pillai VK, Alwarappan S. Graphene quantum dots for biosensing and bioimaging. RSC Adv 2024; 14:16001-16023. [PMID: 38765479 PMCID: PMC11099990 DOI: 10.1039/d4ra01431f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024] Open
Abstract
Graphene Quantum Dots (GQDs) are low dimensional carbon based materials with interesting physical, chemical and biological properties that enable their applications in numerous fields. GQDs possess unique electronic structures that impart special functional attributes such as tunable optical/electrical properties in addition to heteroatom-doping and more importantly a propensity for surface functionalization for applications in biosensing and bioimaging. Herein, we review the recent advancements in the top-down and bottom-up approaches for the synthesis of GQDs. Following this, we present a detailed review of the various surface properties of GQDs and their applications in bioimaging and biosensing. GQDs have been used for fluorescence imaging for visualizing tumours and monitoring the therapeutic responses in addition to magnetic resonance imaging applications. Similarly, the photoluminescence based biosensing applications of GQDs for the detection of hydrogen peroxide, micro RNA, DNA, horse radish peroxidase, heavy metal ions, negatively charged ions, cardiac troponin, etc. are discussed in this review. Finally, we conclude the review with a discussion on future prospects.
Collapse
Affiliation(s)
- P Abdul Rasheed
- Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad Palakkad Kerala 678 557 India
- Department of Chemistry, Indian Institute of Technology Palakkad Palakkad Kerala 678 557 India
| | - Menon Ankitha
- Department of Chemistry, Indian Institute of Technology Palakkad Palakkad Kerala 678 557 India
| | - Vijayamohanan K Pillai
- Department of Chemistry, Indian Institute of Science Education and Research Rami Reddy Nagar Mangalam Tirupati AP 517507 India
| | - Subbiah Alwarappan
- Electrodics & Electrocatalysis Division, CSIR-Central Electrochemical Research Institute Karaikudi 630003 Tamilnadu India
| |
Collapse
|
3
|
Ullal N, Mehta R, Sunil D. Separation and purification of fluorescent carbon dots - an unmet challenge. Analyst 2024; 149:1680-1700. [PMID: 38407365 DOI: 10.1039/d3an02134c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Literature reports demonstrate versatile optical applications of fluorescent carbon dots (CDs) in biological imaging, full-color solid-state lighting, optoelectronics, sensing, anticounterfeiting and so on. The fluorescence associated with CDs may originate significantly from byproducts generated during their synthesis, which need to be eliminated to achieve error-free results. The significance of purification, specifically for luminescence-based characterizations, is highly critical and imperative. Thus, there is a pressing demand to implement consistent and adequate purification strategies to reduce sample complexity and thereby realize reliable results that can provide a tactical steppingstone towards the advancement of CDs as next-generation optical materials. The article focuses on the mechanism of origin of fluorescence from CDs and further demonstrates the different purification approaches including dialysis, centrifugation, filtration, solvent extraction, chromatography, and electrophoresis that have been adopted by various researchers. Furthermore, the fundamental separation mechanism, as well as the advantages and limitations of each of these purification techniques are discussed. The article finally provides the critical challenges of these purification techniques that need to be overcome to obtain homogeneous CD fractions that demonstrate coherent and reliable optical features for suitable applications.
Collapse
Affiliation(s)
- Namratha Ullal
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India.
| | - Riya Mehta
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India.
| | - Dhanya Sunil
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India.
| |
Collapse
|
4
|
Ma XH, Gao X, Chen JY, Cao M, Dai Q, Jia ZK, Zhou YB, Zhao XJ, Chu C, Liu G, Tan YZ. Soluble Nanographene C 222: Synthesis and Applications for Synergistic Photodynamic/Photothermal Therapy. J Am Chem Soc 2024; 146:2411-2418. [PMID: 38234111 DOI: 10.1021/jacs.3c08822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Nanographene C222, which consists of a planar graphenic plane containing 222 carbon atoms, holds the record as the largest planar nanographene synthesized to date. However, its complete insolubility makes the processing of C222 difficult. Here we addressed this issue by introducing peripheral substituents perpendicular to the graphene plane, effectively disrupting the interlayer stacking and endowing C222 with good solubility. We also found that the electron-withdrawing substituents played a crucial role in the cyclodehydrogenation process, converting the dendritic polyphenylene precursor to C222. After disrupting the interlayer stacking, the introduction of only a few peripheral carboxylic groups allowed C222 to dissolve in phosphate buffer saline, reaching a concentration of up to 0.5 mg/mL. Taking advantage of the good photosensitizing and photothermal properties of the inner C222 core, the resulting water-soluble C222 emerged as a single-component agent for both photothermal and photodynamic tumor therapy, exhibiting an impressive tumor inhibition rate of 96%.
Collapse
Affiliation(s)
- Xiao-Hui Ma
- State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xing Gao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jia-Ying Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Maofeng Cao
- State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Qixuan Dai
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Zhe-Kun Jia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yuan-Biao Zhou
- State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xin-Jing Zhao
- State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Chengchao Chu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen, 361102, China
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yuan-Zhi Tan
- State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
5
|
Im MJ, Kim JI, Hyeong SK, Moon BJ, Bae S. From Pristine to Heteroatom-Doped Graphene Quantum Dots: An Essential Review and Prospects for Future Research. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304497. [PMID: 37496316 DOI: 10.1002/smll.202304497] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Indexed: 07/28/2023]
Abstract
Graphene quantum dots (GQDs) are carbon-based zero-dimensional materials that have received considerable scientific interest due to their exceptional optical, electrical, and optoelectrical properties. Their unique electronic band structures, influenced by quantum confinement and edge effects, differentiate the physical and optical characteristics of GQDs from other carbon nanostructures. Additionally, GQDs can be synthesized using various top-down and bottom-up approaches, distinguishing them from other carbon nanomaterials. This review discusses recent advancements in GQD research, focusing on their synthesis and functionalization for potential applications. Particularly, various methods for synthesizing functionalized GQDs using different doping routes are comprehensively reviewed. Based on previous reports, current challenges and future directions for GQDs research are discussed in detail herein.
Collapse
Affiliation(s)
- Min Ji Im
- Functional Composite Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju, Jeollabuk-do, 55324, Republic of Korea
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Jin Il Kim
- Functional Composite Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju, Jeollabuk-do, 55324, Republic of Korea
| | - Seok-Ki Hyeong
- Functional Composite Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju, Jeollabuk-do, 55324, Republic of Korea
- Department of Energy Systems Research and Department of Materials Science and Engineering, Ajou University, Suwon, Gyeonggi-do, 16499, Republic of Korea
| | - Byung Joon Moon
- Functional Composite Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju, Jeollabuk-do, 55324, Republic of Korea
- Department of JBNU-KIST Industry-Academia Convergence Research, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabuk-do, 54896, Republic ofKorea
| | - Sukang Bae
- Functional Composite Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju, Jeollabuk-do, 55324, Republic of Korea
- Department of JBNU-KIST Industry-Academia Convergence Research, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabuk-do, 54896, Republic ofKorea
| |
Collapse
|
6
|
K Chandy S, Bowers S, Raghavachari K, Li LS. Structure Dependence of CO 2 Reduction Electrocatalyzed by Metal-Nanographene Complexes: A Computational Study. J Phys Chem A 2023; 127:8566-8573. [PMID: 37796447 DOI: 10.1021/acs.jpca.3c04564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Improving the energy efficiency of electrocatalytic reduction of CO2 requires tuning of redox properties of electrocatalysts to match redox potentials of the substrate. Recently, we introduced nanographenes as ligands for metal complexes for such purposes by taking advantage of size-dependent properties of the conjugated systems. Here, we use computations to investigate the structure dependence of the electrocatalysis at Re(diimine)(CO)3Cl complexes with nanographene ligands that contain a polycyclic aromatic hydrocarbon moiety through a pyrazinyl linkage. We show that the reduction potentials of the complexes depend not only on conjugation size but also on shape and geometry of the ligands, revealing another parameter in tuning the redox properties of the electrocatalysts. In addition, our work reveals a compromise between reduction potentials and activation of this class of electrocatalysts.
Collapse
Affiliation(s)
- Sruthy K Chandy
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Scott Bowers
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Krishnan Raghavachari
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Liang-Shi Li
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
7
|
Zhao XJ, Ju YY, Su YM, Tang C, Zeng Q, Feng L, Wang C, Müllen K, Tan YZ. Hexa-Branched Nanographenes with Large Two-Photon Absorption. J Am Chem Soc 2023; 145:19333-19337. [PMID: 37638550 DOI: 10.1021/jacs.3c05662] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
The conventional approach toward molecules with large two-photon absorption (TPA) involves donor-acceptor conjugation. Herein we show a new strategy involving the use of hexa-branched nanographenes. We synthesized two hexa-branched nanographenes, one with six benzoaceanthrylene arms fused to the coronene core and the other with six pyrenyl arms fused to the coronene core. Neither of these hexa-branched nanographenes has a donor-acceptor structure, yet they exhibited high TPA values of 3.6 × 103 and 1.9 × 104 GM, respectively, which are the highest values recorded for heteroatom-free hydrocarbon molecules. Theoretical analysis suggests that the fused branched structures are responsible for the large TPA cross-section. These findings illustrate the importance of the topology of the fused conjugated skeleton in TPA and provide an alternative structural design toward large TPA.
Collapse
Affiliation(s)
- Xin-Jing Zhao
- State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yang-Yang Ju
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035,China
| | - Yu-Ming Su
- State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chun Tang
- State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qi Zeng
- State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - LiuBin Feng
- State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Cheng Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute of Physical Chemistry, Johannes Gutenberg-Universitat Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Yuan-Zhi Tan
- State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
8
|
Medina-Lopez D, Liu T, Osella S, Levy-Falk H, Rolland N, Elias C, Huber G, Ticku P, Rondin L, Jousselme B, Beljonne D, Lauret JS, Campidelli S. Interplay of structure and photophysics of individualized rod-shaped graphene quantum dots with up to 132 sp² carbon atoms. Nat Commun 2023; 14:4728. [PMID: 37550308 PMCID: PMC10406913 DOI: 10.1038/s41467-023-40376-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/24/2023] [Indexed: 08/09/2023] Open
Abstract
Nanographene materials are promising building blocks for the growing field of low-dimensional materials for optics, electronics and biophotonics applications. In particular, bottom-up synthesized 0D graphene quantum dots show great potential as single quantum emitters. To fully exploit their exciting properties, the graphene quantum dots must be of high purity; the key parameter for efficient purification being the solubility of the starting materials. Here, we report the synthesis of a family of highly soluble and easily processable rod-shaped graphene quantum dots with fluorescence quantum yields up to 94%. This is uncommon for a red emission. The high solubility is directly related to the design of the structure, allowing for an accurate description of the photophysical properties of the graphene quantum dots both in solution and at the single molecule level. These photophysical properties were fully predicted by quantum-chemical calculations.
Collapse
Affiliation(s)
- Daniel Medina-Lopez
- Université Paris-Saclay, CEA, CNRS, NIMBE, LICSEN, 91191, Gif-sur-Yvette, France
| | - Thomas Liu
- Université Paris-Saclay, CNRS, ENS Paris-Saclay, CentraleSupélec, LuMIn, 91400, Orsay, France
| | - Silvio Osella
- Chemical and Biological Systems Simulation Lab, Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097, Warsaw, Poland
| | - Hugo Levy-Falk
- Université Paris-Saclay, CNRS, ENS Paris-Saclay, CentraleSupélec, LuMIn, 91400, Orsay, France
| | - Nicolas Rolland
- Laboratory for Chemistry of Novel Materials, University of Mons, 7000, Mons, Belgium
| | - Christine Elias
- Université Paris-Saclay, CNRS, ENS Paris-Saclay, CentraleSupélec, LuMIn, 91400, Orsay, France
| | - Gaspard Huber
- Université Paris-Saclay, CEA, CNRS, NIMBE, LSDRM, 91191, Gif-sur-Yvette, France
| | - Pranav Ticku
- Université Paris-Saclay, CNRS, ENS Paris-Saclay, CentraleSupélec, LuMIn, 91400, Orsay, France
| | - Loïc Rondin
- Université Paris-Saclay, CNRS, ENS Paris-Saclay, CentraleSupélec, LuMIn, 91400, Orsay, France
| | - Bruno Jousselme
- Université Paris-Saclay, CEA, CNRS, NIMBE, LICSEN, 91191, Gif-sur-Yvette, France
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials, University of Mons, 7000, Mons, Belgium
| | - Jean-Sébastien Lauret
- Université Paris-Saclay, CNRS, ENS Paris-Saclay, CentraleSupélec, LuMIn, 91400, Orsay, France.
| | - Stephane Campidelli
- Université Paris-Saclay, CEA, CNRS, NIMBE, LICSEN, 91191, Gif-sur-Yvette, France.
| |
Collapse
|
9
|
Chang YH, Chiang WH, Ilhami FB, Tsai CY, Huang SY, Cheng CC. Water-soluble graphene quantum dot-based polymer nanoparticles with internal donor/acceptor heterojunctions for efficient and selective detection of cancer cells. J Colloid Interface Sci 2023; 637:389-398. [PMID: 36716663 DOI: 10.1016/j.jcis.2023.01.104] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/08/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
We present a new, insightful donor-acceptor (D-A) energy transfer-based strategy for the preparation and development of water-soluble multifunctional pH-responsive heterojunction nanoparticles. Hydrophilic tertiary amine-grafted polythiophene (WPT) as a donor and blue fluorescent graphene quantum dots (GQD) as an acceptor spontaneously form co-assembled nanoparticles that function as a highly pH-sensitive and efficient biosensor appropriate for the detection of cancer cells. These WPT/GQD nanoparticles exhibit a number of unique physical characteristics-such as broad-range, tunable GQD-loading contents and particle sizes, extremely low cytotoxicity in normal and cancer cells, and highly sensitive pH-responsiveness and rapid acid-triggered fluorescent behavior under aqueous acidic conditions. We show these features are conferred by self-aggregation of the GQD within the nanoparticles and subsequent aggregation-induced fluorescence of GQD after disassembly of the nanoparticles and dissociation of the D-A interactions under acidic conditions. Importantly, in vitro fluorescence imaging experiments clearly demonstrated the WPT/GQD nanoparticles were gradually taken up into normal and cancer cells in vitro. Selective formation of GQD aggregates subsequently occurred in the acidic microenvironment of the cancer cells and the interior of the cancer cells exhibited strong blue fluorescence; these phenomena did not occur in normal cells. In contrast, pristine WPT and GQD did not exhibit cellular microenvironment-triggered fluorescence transitions in cancer or normal cell lines. Therefore, this newly discovered water-soluble heterojunction system may represent a strongly fluorescent highly pH-sensitive bioprobe for rapid detection of cancer cells.
Collapse
Affiliation(s)
- Yi-Hsuan Chang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Fasih Bintang Ilhami
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; Department of Natural Science, Faculty of Mathematics and Natural Science, Universitas Negeri Surabaya, Surabaya 60231, Indonesia
| | - Cheng-Yu Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Sin-Yu Huang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| |
Collapse
|
10
|
Moallemi Bahmani M, Haji Shabani AM, Dadfarnia S, Afsharipour R. A Selective Fluorescent Nanoprobe Based on Graphene Quantum Dots and Hg 2+ for the Determination of Tetracycline in Biological Samples. J Fluoresc 2022; 33:1067-1075. [PMID: 36565410 DOI: 10.1007/s10895-022-03118-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/07/2022] [Indexed: 12/25/2022]
Abstract
A simple, sensitive, and selective fluorometric method based on graphene quantum dots and Hg2+ is presented for the determination of tetracycline. The fluorescence emission of graphene quantum dots at 463 nm decreased in the presence of Hg2+ ions due to its electrostatic interaction with the negatively charged surface of quantum dots at pH = 8.0. The addition of tetracycline to this system resulted in the retrieval of the fluorescence emission of the graphene quantum dots proportional to the tetracycline concentration. This is because of the interaction between tetracycline and Hg2+ that results in the release of the quantum dots' surface. Under the optimized conditions, the calibration curve indicated good linearity in the range of 2.0-44.0 nmol L-1 with a detection limit of 0.52 nmol L-1 for tetracycline. The designed nanoprobe was capable of the determination of tetracycline in serum and urine samples.
Collapse
Affiliation(s)
| | | | | | - Roya Afsharipour
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, Iran
| |
Collapse
|
11
|
Fluorescence and Nonlinear Optical Response of Graphene Quantum Dots Produced by Pulsed Laser Irradiation in Toluene. Molecules 2022; 27:molecules27227988. [PMID: 36432087 PMCID: PMC9694969 DOI: 10.3390/molecules27227988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Graphene quantum dots (GQDs), the zero dimensional (0D) single nanostructures, have many exciting technological applications in diversified fields such as sensors, light emitting devices, bio imaging probes, solar cells, etc. They are emerging as a functional tool to modulate light by means of molecular engineering due to its merits, including relatively low extend of loss, large outstretch of spatial confinement and control via doping, size and shape. In this article, we present a one pot, facile and ecofriendly synthesis approach for fabricating GQDs via pulsed laser irradiation of an organic solvent (toluene) without any catalyst. It is a promising synthesis choice to prepare GQDs due to its fast production, lack of byproducts and further purification, as well as the control over the product by accurate tuning of laser parameters. In this work, the second (532 nm) and third harmonic (355 nm) wavelengths of a pulsed nanosecond Nd:YAG laser have been employed for the synthesis. It has been found that the obtained GQDs display fluorescence and is expected to have potential applications in optoelectronics and light-harvesting devices. In addition, nonlinear optical absorption of the prepared GQDs was measured using the open aperture z-scan technique (in the nanosecond regime). These GQDs exhibit excellent optical limiting properties, especially those synthesized at 532 nm wavelength.
Collapse
|
12
|
Gaurav A, Jain A, Tripathi SK. Review on Fluorescent Carbon/Graphene Quantum Dots: Promising Material for Energy Storage and Next-Generation Light-Emitting Diodes. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7888. [PMID: 36431372 PMCID: PMC9695987 DOI: 10.3390/ma15227888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 05/10/2023]
Abstract
Carbon/graphene quantum dots are 0D fluorescent carbon materials with sizes ranging from 2 nm to around 50 nm, with some attractive properties and diverse applications. Different synthesis routes, bandgap variation, higher stability, low toxicity with tunable emission, and the variation of physical and chemical properties with change in size have drawn immense attention to its potential application in different optoelectronics-based materials, especially advanced light-emitting diodes and energy storage devices. WLEDs are a strong candidate for the future of solid-state lighting due to their higher luminance and luminous efficiency. High-performance batteries play an important part in terms of energy saving and storage. In this review article, the authors provide a comparative analysis of recent and ongoing advances in synthesis (top-down and bottom-up), properties, and wide applications in different kinds of next-generation light-emitting diodes such as WLEDs, and energy storage devices such as batteries (Li-B, Na-B) and supercapacitors. Furthermore, they discuss the potential applications and progress of carbon dots in battery applications such as electrode materials. The authors also summarise the developmental stages and challenges in the existing field, the state-of-the-art of carbon/graphene quantum dots, and the potential and possible solutions for the same.
Collapse
Affiliation(s)
- Ashish Gaurav
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Amrita Jain
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| | - Santosh Kumar Tripathi
- Department of Physics, School of Physical Sciences, Mahatma Gandhi Central University, Motihari 845401, Bihar, India
| |
Collapse
|
13
|
Ji G, Tian J, Xing F, Feng Y. Optical Biosensor Based on Graphene and Its Derivatives for Detecting Biomolecules. Int J Mol Sci 2022; 23:10838. [PMID: 36142748 PMCID: PMC9500660 DOI: 10.3390/ijms231810838] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 12/24/2022] Open
Abstract
Graphene and its derivatives show great potential for biosensing due to their extraordinary optical, electrical and physical properties. In particular, graphene and its derivatives have excellent optical properties such as broadband and tunable absorption, fluorescence bursts, and strong polarization-related effects. Optical biosensors based on graphene and its derivatives make nondestructive detection of biomolecules possible. The focus of this paper is to review the preparation of graphene and its derivatives, as well as recent advances in optical biosensors based on graphene and its derivatives. The working principle of face plasmon resonance (SPR), surface-enhanced Raman spectroscopy (SERS), fluorescence resonance energy transfer (FRET) and colorimetric sensors are summarized, and the advantages and disadvantages of graphene and its derivatives applicable to various types of sensors are analyzed, and the methods of surface functionalization of graphene and its derivatives are introduced; these optical biosensors can be used for the detection of a range of biomolecules such as single cells, cellular secretions, proteins, nucleic acids, and antigen-antibodies; these new high-performance optical sensors are capable of detecting changes in surface structure and biomolecular interactions with the advantages of ultra-fast detection, high sensitivity, label-free, specific recognition, and the ability to respond in real-time. Problems in the current stage of application are discussed, as well as future prospects for graphene and its biosensors. Achieving the applicability, reusability and low cost of novel optical biosensors for a variety of complex environments and achieving scale-up production, which still faces serious challenges.
Collapse
Affiliation(s)
- Guangmin Ji
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
| | - Jingkun Tian
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
| | - Fei Xing
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
| | - Yu Feng
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
| |
Collapse
|
14
|
Teng Y, Yuan S, Shi J, Pong PWT. A Multifunctional Nanoplatform Based on Graphene Quantum Dots‐Cobalt Ferrite for Monitoring of Drug Delivery and Fluorescence/Magnetic Resonance Bimodal Cellular Imaging. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Yun Teng
- Department of Electrical and Electronic Engineering The University of Hong Kong 999077 Hong Kong
| | - Shuai Yuan
- Department of Electrical and Electronic Engineering The University of Hong Kong 999077 Hong Kong
| | - Jue Shi
- Department of Physics Hong Kong Baptist University 999077 Hong Kong
| | - Philip W. T. Pong
- Department of Electrical and Computer Engineering New Jersey Institute of Technology Newark 07102 USA
| |
Collapse
|
15
|
Ju Y, Shi X, Xu S, Ma X, Wei R, Hou H, Chu C, Sun D, Liu G, Tan Y. Atomically Precise Water-Soluble Graphene Quantum Dot for Cancer Sonodynamic Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105034. [PMID: 35038238 PMCID: PMC9259723 DOI: 10.1002/advs.202105034] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/05/2021] [Indexed: 05/05/2023]
Abstract
Although water-soluble graphene quantum dots (GQDs) have shown various promising bio-applications due to their intriguing optical and chemical properties, the large heterogeneity in compositions, sizes, and shapes of these GQDs hampers the better understanding of their structure-properties correlation and further uses in terms of large-scale manufacturing practices and safety concerns. It is shown here that a water-soluble atomically-precise GQD (WAGQD-C96 ) is synthesized and exhibits a deep-red emission and excellent sonodynamic sensitization. By decorating sterically hindered water-soluble functional groups, WAGQD-C96 can be monodispersed in water without further aggregation. The deep-red emission of WAGQD-C96 facilitates the tracking of its bio-process, showing a good cell-uptake and long-time retention in tumor tissue. Compared to traditional molecular sonosensitizers, WAGQD-C96 generates superior reactive oxygen species and demonstrates excellent tumor inhibition potency as an anti-cancer sonosensitizer in in vivo studies. A good biosafety of WAGQD-C96 is validated in both in vitro and in vivo assays.
Collapse
Affiliation(s)
- Yang‐Yang Ju
- State Key Laboratory for Physical Chemistry of Solid SurfacesDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Xiao‐Xiao Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361005China
| | - Shu‐Yu Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361005China
| | - Xiao‐Hui Ma
- State Key Laboratory for Physical Chemistry of Solid SurfacesDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Rong‐Jing Wei
- State Key Laboratory for Physical Chemistry of Solid SurfacesDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Hao Hou
- State Key Laboratory for Physical Chemistry of Solid SurfacesDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Cheng‐Chao Chu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361005China
| | - Di Sun
- School of Chemistry and Chemical EngineeringState Key Laboratory of Crystal MaterialsShandong UniversityJi'nan250100China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361005China
| | - Yuan‐Zhi Tan
- State Key Laboratory for Physical Chemistry of Solid SurfacesDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| |
Collapse
|
16
|
Cai KB, Huang HY, Hsieh ML, Chen PW, Chiang SE, Chang SH, Shen JL, Liu WR, Yuan CT. Two-Dimensional Self-Assembly of Boric Acid-Functionalized Graphene Quantum Dots: Tunable and Superior Optical Properties for Efficient Eco-Friendly Luminescent Solar Concentrators. ACS NANO 2022; 16:3994-4003. [PMID: 35234037 DOI: 10.1021/acsnano.1c09582] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Carbon-based nanomaterials hold promise for eco-friendly alternatives to heavy-metal-containing quantum dots (QDs) in optoelectronic applications. Here, boric acid-functionalized graphene quantum dots (B-GQDs) were prepared using bottom-up molecular fusion based on nitrated pyrenes and boric acid. Such B-GQDs with crystalline graphitic structures and hydrogen-bonding functionalities would be suitable model systems for unraveling the photoluminescence (PL) mechanism, while serving as versatile building blocks for supramolecular self-assembly. Unlike conventional GQDs with multiple emissive states, the B-GQDs exhibited excitation-wavelength-independent, vibronic-coupled excitonic emission. Interestingly, their PL spectra can be tuned without largely sacrificing the quantum yield (QY) due to two-dimensional self-assembly. In addition, such B-GQDs in a polystyrene matrix possessed an ultrahigh QY (∼90%) and large exciton binding energy (∼300 meV). Benefiting from broadband absorption, ultrahigh QY, and long-wavelength emission, efficient laminated luminescent solar concentrators (100 × 100 × 6.3 mm3) were fabricated, yielding a high power conversion efficiency (1.4%).
Collapse
Affiliation(s)
- Kun-Bin Cai
- Department of Physics, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Hsiu-Ying Huang
- Department of Physics, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Meng-Lin Hsieh
- Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Po-Wen Chen
- Physics Division, Institute of Nuclear Energy Research, Taoyuan 325207, Taiwan
| | - Shou-En Chiang
- Department of Physics, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Sheng Hsiung Chang
- Department of Physics, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Ji-Lin Shen
- Department of Physics, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Wei-Ren Liu
- Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 320314, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Chi-Tsu Yuan
- Department of Physics, Chung Yuan Christian University, Taoyuan 320314, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| |
Collapse
|
17
|
Behi M, Gholami L, Naficy S, Palomba S, Dehghani F. Carbon dots: a novel platform for biomedical applications. NANOSCALE ADVANCES 2022; 4:353-376. [PMID: 36132691 PMCID: PMC9419304 DOI: 10.1039/d1na00559f] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/09/2021] [Indexed: 05/09/2023]
Abstract
Carbon dots (CDs) are a recently synthesised class of carbon-based nanostructures known as zero-dimensional (0D) nanomaterials, which have drawn a great deal of attention owing to their distinctive features, which encompass optical properties (e.g., photoluminescence), ease of passivation, low cost, simple synthetic route, accessibility of precursors and other properties. These newly synthesised nano-sized materials can replace traditional semiconductor quantum dots, which exhibit significant toxicity drawbacks and higher cost. It is demonstrated that their involvement in diverse areas of chemical and bio-sensing, bio-imaging, drug delivery, photocatalysis, electrocatalysis and light-emitting devices consider them as flawless and potential candidates for biomedical application. In this review, we provide a classification of CDs within their extended families, an overview of the different methods of CDs preparation, especially from natural sources, i.e., environmentally friendly and their unique photoluminescence properties, thoroughly describing the peculiar aspects of their applications in the biomedical field, where we think they will thrive as the next generation of quantum emitters. We believe that this review covers a niche that was not reviewed by other similar publications.
Collapse
Affiliation(s)
- Mohammadreza Behi
- School of Chemical and Biomolecular Engineering, The University of Sydney Sydney 2006 Australia
- Institute of Photonics and Optical Science, School of Physics, The University of Sydney Sydney NSW 2006 Australia
| | - Leila Gholami
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Science Mashhad Iran
| | - Sina Naficy
- School of Chemical and Biomolecular Engineering, The University of Sydney Sydney 2006 Australia
| | - Stefano Palomba
- Institute of Photonics and Optical Science, School of Physics, The University of Sydney Sydney NSW 2006 Australia
- The University of Sydney Nano Institute, The University of Sydney Sydney NSW 2006 Australia
| | - Fariba Dehghani
- School of Chemical and Biomolecular Engineering, The University of Sydney Sydney 2006 Australia
| |
Collapse
|
18
|
Stergiou A, Tagmatarchis N. Interfacing Carbon Dots for Charge-Transfer Processes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006005. [PMID: 33522118 DOI: 10.1002/smll.202006005] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Carbon dots (CDs) are a booming material and the most recent incomer in the big family of carbon nanostructures. Specifically, CDs are nanosized fluorescent core-shell nanoparticles with tunable absorption and emission spectra, with high solubility in aqueous media and common organic solvents. Herein, the origins and the development of these unique nanoscale structures are discussed, key synthetic routes are briefly described, and the utilization of CDs in light-induced charge-transfer schemes is mainly focused upon. Beyond the impact of the CD's surface on the photoluminescence properties, functionalization, by covalent or supramolecular means, permits controllable incorporation of new functionalities with novel photophysical properties. Furthermore, the dual nature of CDs as electron donating or electron accepting species, unveiled upon interfacing them with organic chromophores, highlights their potentiality in managing diverse charge-transfer processes. Novel mechanisms, such as symmetry-breaking photoinduced charge-transfer can be activated upon covalent functionalization of CDs with organic dyes. Without a doubt, participation of CDs in energy conversion schemes opens up a wide avenue that may lead to the development of novel prototype devices suitable for technological applications and related to photonics and optoelectronics.
Collapse
Affiliation(s)
- Anastasios Stergiou
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens, 11635, Greece
| | - Nikos Tagmatarchis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens, 11635, Greece
| |
Collapse
|
19
|
Mahmoud AM, Mahnashi MH, Alhazzani K, Az A, Algahtani MM, Alaseem A, Alyami BA, AlQarni AO, El-Wekil MM. Nitrogen doped graphene quantum dots based on host guest interaction for selective dual readout of dopamine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119516. [PMID: 33561682 DOI: 10.1016/j.saa.2021.119516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/10/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Herein, yellow emissive nitrogen doped graphene quantum dots (N@GQDs) were prepared by a novel advanced thermal driven oxidation. The N@GQDs was functionalized with β-cyclodextrin (β-CD) to improve its catalytic performance towards dopamine (DA) detection. The β-CD/N@GQDs exhibited strong fluorescence at λem. = 550 nm after excitation at 460 nm with a quantum yield of 38.6%. The β-CD/N@GQDs showed good peroxidase like activity via catalyzing the oxidation of tetramethylbenzidine (TMB) in presence of H2O2 to form blue colored product at λmax = 652 nm. In the colorimetric assay of DA, the detection based on the oxidation of TMB by H2O2 in presence of β-CD/N@GQDs as a catalyst. Then, the color of the blue oxidized TMB (oxTMB) product was reduced by addition of DA. While the fluorometric detection of DA based on the "inner filter effect" of the overlapped emission spectrum of β-CD/N@GQDs with the absorption spectrum of oxTMB, where, addition of DA reduces oxTMB to TMB and restores the fluorescence intensity of β-CD/N@GQDs. Under the optimized conditions, the colorimetric method achieved linearity range of 0.12-7.5 µM and LOD (S/N = 3) of 0.04 µM, while the fluorometric method achieved linearity range of 0.028-1.5 µM and LOD (S/N = 3) of 0.009 µM. The peroxidase like activity of β-CD/N@GQDs was used to detect DA in human plasma and serum samples with good % recoveries. The colorimetric and fluorometric methods exhibited good sensitivity and selectivity toward DA detection.
Collapse
Affiliation(s)
- Ashraf M Mahmoud
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia; Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Mater H Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Khalid Alhazzani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Alanazi Az
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad M Algahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali Alaseem
- Pharmacology Department, College of Medicine, Al Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Bandar A Alyami
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Ali O AlQarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt.
| |
Collapse
|
20
|
Green Sources Derived Carbon Dots for Multifaceted Applications. J Fluoresc 2021; 31:915-932. [PMID: 33786684 DOI: 10.1007/s10895-021-02721-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/17/2021] [Indexed: 10/21/2022]
Abstract
For the past decade, the Carbon dots (CDs) a tiny sized carbon nanomaterial are typically much attentive due to their outstanding properties. Nature is a fortune of exciting starting materials that provides many inexpensive and renewable resources which have received the topmost attention of researchers because of non-hazardous and eco-friendly nature that can be used to prepare green CDs by top-down and bottom-up synthesis including hydrothermal carbonization, microwave synthesis, and pyrolysis due to its simple synthetic process, speedy reactions and clear-cut end steps. Compared to chemically derived CDs, green CDs are varied by their properties such as less toxicity, high water dispersibility, superior biocompatibility, good photostability, bright fluorescence, and ease of modification. These nanomaterials are a promising material for sensor and biological fields, especially in electrochemical sensing of toxic and trace elements in ecosystems, metal sensing, diagnosis of diseases through bio-sensing, and detection of cancerous cells by in-vitro and in-vivo bio-imaging applications. In this review, the various synthetic routes, fluorescent mechanisms, and applications of CDs from discovery to the present are briefly discussed. Herein, the latest developments on the synthesis of CDs derived from green carbon materials and their promising applications in sensing, catalysis and bio-imaging were summarized. Moreover, some challenging problems, as well as upcoming perspectives of this powerful and tremendous material, are also discussed.
Collapse
|
21
|
Naik GG, Shah J, Balasubramaniam AK, Sahu AN. Applications of natural product-derived carbon dots in cancer biology. Nanomedicine (Lond) 2021; 16:587-608. [PMID: 33660530 DOI: 10.2217/nnm-2020-0424] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Natural products have contributed conspicuously to the development of innovative nanomedicines. Hence, the interface between nanomaterial science and plant natural products may bestow comprehensive diagnostic and therapeutic strategies for tackling diseases such as cancer and neurological disorders. Natural product-derived carbon dots (NPdCDs) have revealed noteworthy attributes in the fields of cancer theranostics, microbial imaging, drug sensing and drug delivery. As plants consist of a cocktail of bioactive phytomolecules, the NPdCDs can be anticipated to have medicinal properties, biocompatibility, photo-stability and easy functionalization. NPdCDs have wide-ranging applications. The primary objective of this review is to comment on recent developments in the use of NPdCDs, with special reference to their application in cancer biology. The future of the use of NPdCDs has also been considered.
Collapse
Affiliation(s)
- Gaurav Gopal Naik
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Jainam Shah
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | | | - Alakh N Sahu
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
22
|
Alqarni AO, Alkahtani SA, Mahmoud AM, El-Wekil MM. Design of "Turn On" fluorometric nanoprobe based on nitrogen doped graphene quantum dots modified with β-cyclodextrin and vitamin B 6 cofactor for selective sensing of dopamine in human serum. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 248:119180. [PMID: 33234475 DOI: 10.1016/j.saa.2020.119180] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/01/2020] [Accepted: 11/01/2020] [Indexed: 06/11/2023]
Abstract
Herein, a novel and rapid fluorometric nanoprobe was constructed for quantitation of dopamine (DA) in presence of biologically interfering compounds. The nanoprobe based on synthesis of yellow emissive nitrogen doped graphene quantum dots (N@GQDs) by advanced thermal driven oxidation. After that, the synthesized N@GQDs was capped with β-cyclodextrin (β-CD), followed by interaction with pyridoxal (PYL) vitamin B6 cofactor. This interaction resulted in diminishing the yellow fluorescence of β-CD/N@GQDs, and appearance of blue emission peak at 420 nm. Upon addition of DA, the blue emission of β-CD/N@GQDs was increased after excitation at λ = 330 nm. Under optimum conditions, the nanoprobe exhibited a linear range of 0.36-400 nM with limit of detection (LOD) of 0.117 nM. In addition, the fluorescent nanoprobe shows high selectivity and can be used for detection of DA in complicated biological matrices and human serum. This strategy might provide a potential tool for clinical diagnosis and biomedical research for DA related diseases.
Collapse
Affiliation(s)
- Ali O Alqarni
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Saad A Alkahtani
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Saudia Arabia
| | - Ashraf M Mahmoud
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Najran University, Najran, Saudi Arabia; Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt.
| |
Collapse
|
23
|
Recent Developments in Carbon Quantum Dots: Properties, Fabrication Techniques, and Bio-Applications. Processes (Basel) 2021. [DOI: 10.3390/pr9020388] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Carbon dots have gained tremendous interest attributable to their unique features. Two approaches are involved in the fabrication of quantum dots (Top-down and Bottom-up). Most of the synthesis methods are usually multistep, required harsh conditions, and costly carbon sources that may have a toxic effect, therefore green synthesis is more preferable. Herein, the current review presents the green synthesis of carbon quantum dots (CQDs) and graphene quantum dots (GQDs) that having a wide range of potential applications in bio-sensing, cellular imaging, and drug delivery. However, some drawbacks and limitations are still unclear. Other biomedical and biotechnological applications are also highlighted.
Collapse
|
24
|
Yao J, Wang L. Graphene quantum dots as nanosensor for rapid and label-free dual detection of Cu 2+ and tiopronin by means of fluorescence “on–off–on” switching: mechanism and molecular logic gate. NEW J CHEM 2021. [DOI: 10.1039/d1nj01908b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
(A) Schematic diagram of the interaction and dual detection of Cu2+ and MPG by means of fluorescence “on–off–on” switching. (B) Molecular logic gate and truth table constructed based on Cu2+ and MPG as inputs and emission signal as output.
Collapse
Affiliation(s)
- Jun Yao
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People's Republic of China
- State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, People's Republic of China
| | - Li Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People's Republic of China
| |
Collapse
|
25
|
Jadoon T, Mahmood T, Ayub K. Silver cluster (Ag 6) decorated coronene as non-enzymatic sensor for glucose and H 2O 2. J Mol Graph Model 2020; 103:107824. [PMID: 33360482 DOI: 10.1016/j.jmgm.2020.107824] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 01/09/2023]
Abstract
Silver-graphene quantum dots are promising electrochemical sensors due to their unique electronic properties. Herein, we report the comprehensive DFT study to explore the electronic properties of silver cluster (Ag6) decorated coronene as model for silver graphene quantum dots. The current study aims to investigate the sensing ability of silver-coronene complex for non-enzymatic electrochemical detection of glucose & H2O2. The stability of the complexes of analytes with silver decorated coronene is supported by their greater interaction energies (-36.7 to -44.9 kcal mol-1). NBO charge analysis and charge decomposition analysis (CDA) reveal donor-acceptor charge transfer interactions in the complexes. Frontier molecular orbital analysis illustrates that charge is transferred from analytes to silver decorated coronene during excitation from HOMO to LUMO. The Uv-visible results show that λmax is red shifted during interactions of analytes with silver decorated coronene. The NCI analysis illustrates the strong non-covalent (M … O) and unusual M … H-O interactions in the complexes. The precedent sensing performance of Ag6-coronene might be attributed to the synergistic effect of both silver clusters and coronene in the composite. The evaluated results validate the excellent sensing ability of silver-graphene quantum dots for the detection of glucose & H2O2. The outcome of the current study and its prospects will open the avenue for the rational development of smart sensors.
Collapse
Affiliation(s)
- Tabish Jadoon
- Department of Chemistry, COMSATS University Abbottabad Campus, 22060, Pakistan
| | - Tariq Mahmood
- Department of Chemistry, COMSATS University Abbottabad Campus, 22060, Pakistan
| | - Khurshid Ayub
- Department of Chemistry, COMSATS University Abbottabad Campus, 22060, Pakistan.
| |
Collapse
|
26
|
Pierrat P, Gaumet JJ. Graphene quantum dots: Emerging organic materials with remarkable and tunable luminescence features. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152554] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Xu X, Chen Q, Narita A. Synthesis and Characterization of Dibenzo[<i>hi,st</i>]ovalene as a Highly Fluorescent Polycyclic Aromatic Hydrocarbon and Its π-Extension to Circumpyrene. J SYN ORG CHEM JPN 2020. [DOI: 10.5059/yukigoseikyokaishi.78.1094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiushang Xu
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University
| | - Qiang Chen
- Max Planck Institute for Polymer Research
| | - Akimitsu Narita
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University
- Max Planck Institute for Polymer Research
| |
Collapse
|
28
|
Singh V, Gupta N, Hargenrader GN, Askins EJ, Valentine AJS, Kumar G, Mara MW, Agarwal N, Li X, Chen LX, Cordones AA, Glusac KD. Photophysics of graphene quantum dot assemblies with axially coordinated cobaloxime catalysts. J Chem Phys 2020; 153:124903. [PMID: 33003752 DOI: 10.1063/5.0018581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report a study of chromophore-catalyst assemblies composed of light harvesting hexabenzocoronene (HBC) chromophores axially coordinated to two cobaloxime complexes. The chromophore-catalyst assemblies were prepared using bottom-up synthetic methodology and characterized using solid-state NMR, IR, and x-ray absorption spectroscopy. Detailed steady-state and time-resolved laser spectroscopy was utilized to identify the photophysical properties of the assemblies, coupled with time-dependent DFT calculations to characterize the relevant excited states. The HBC chromophores tend to assemble into aggregates that exhibit high exciton diffusion length (D = 18.5 molecule2/ps), indicating that over 50 chromophores can be sampled within their excited state lifetime. We find that the axial coordination of cobaloximes leads to a significant reduction in the excited state lifetime of the HBC moiety, and this finding was discussed in terms of possible electron and energy transfer pathways. By comparing the experimental quenching rate constant (1.0 × 109 s-1) with the rate constant estimates for Marcus electron transfer (5.7 × 108 s-1) and Förster/Dexter energy transfers (8.1 × 106 s-1 and 1.0 × 1010 s-1), we conclude that both Dexter energy and Marcus electron transfer process are possible deactivation pathways in CoQD-A. No charge transfer or energy transfer intermediate was detected in transient absorption spectroscopy, indicating fast, subpicosecond return to the ground state. These results provide important insights into the factors that control the photophysical properties of photocatalytic chromophore-catalyst assemblies.
Collapse
Affiliation(s)
- Varun Singh
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor Street, Chicago, Illinois 60607, USA
| | - Nikita Gupta
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor Street, Chicago, Illinois 60607, USA
| | - George N Hargenrader
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor Street, Chicago, Illinois 60607, USA
| | - Erik J Askins
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor Street, Chicago, Illinois 60607, USA
| | - Andrew J S Valentine
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA
| | - Gaurav Kumar
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Michael W Mara
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 Cass Ave., Lemont, Illinois 60439, USA
| | - Neeraj Agarwal
- School of Chemical Sciences, UM DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina, Santacruz (E), Mumbai 400098, India
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA
| | - Lin X Chen
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 Cass Ave., Lemont, Illinois 60439, USA
| | - Amy A Cordones
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Ksenija D Glusac
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor Street, Chicago, Illinois 60607, USA
| |
Collapse
|
29
|
Feng T, Tao S, Yue D, Zeng Q, Chen W, Yang B. Recent Advances in Energy Conversion Applications of Carbon Dots: From Optoelectronic Devices to Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001295. [PMID: 32529773 DOI: 10.1002/smll.202001295] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/06/2020] [Indexed: 05/19/2023]
Abstract
Exploitation and utilization of sustainable energy sources has increasingly become the common theme of global social development, which has promoted tremendous development of energy conversion devices/technologies. Owing to excellent and unique optical/electrical properties, carbon dots (CDs) have attracted extensive research interest for numerous energy conversion applications. Strong absorption, downconversion photoluminescence, electron acceptor/donor characteristics, and excellent electron conductivity endow CDs with enormous potential for applications in optoelectronic devices. Furthermore, excellent electron transfers/transport capacities and easily manipulable structural defects of CDs offer distinct advantages for electrocatalytic applications. Recent advances in CD-based energy conversion applications, including optoelectronic devices such as light-emitting diodes and solar cells, and electrocatalytic reactions including the hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, and carbon dioxide reduction reaction, are summarized. Finally, current challenges and future prospects for CD-based energy conversion applications are proposed, highlighting the importance of controllable structural design and modifications.
Collapse
Affiliation(s)
- Tanglue Feng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Songyuan Tao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Da Yue
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Qingsen Zeng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Weihua Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, University of Science and Technology of China, Changchun, 130022, China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
30
|
Xu X, Müllen K, Narita A. Syntheses and Characterizations of Functional Polycyclic Aromatic Hydrocarbons and Graphene Nanoribbons. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190368] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiushang Xu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami, Okinawa 904-0495, Japan
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Institute of Physical Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Akimitsu Narita
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami, Okinawa 904-0495, Japan
| |
Collapse
|
31
|
Shen S, Wang J, Wu Z, Du Z, Tang Z, Yang J. Graphene Quantum Dots with High Yield and High Quality Synthesized from Low Cost Precursor of Aphanitic Graphite. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E375. [PMID: 32098041 PMCID: PMC7075322 DOI: 10.3390/nano10020375] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/16/2020] [Accepted: 02/18/2020] [Indexed: 11/25/2022]
Abstract
It is difficult to keep the balance of high quality and high yield for graphene quantum dots (GQDs). Because the quality is uncontrollable during cutting large 2D nanosheets to small 0D nanodots by top-down methods and the yield is low for GQDs with high quality obtained from bottom-up strategy. Here, aphanitic graphite (AG), a low-cost graphite contains a large amount of small graphite nanocrystals with size of about 10 nm is used as the precursor of graphene oxide quantum dots (GO-QDs) for the first time. GO-QDs with high yield and high quality were successfully obtained directly by liquid phase exfoliating AG without high strength cutting. The yield of these GO-QDs can reach up to 40 wt. %, much higher than that obtained from flake graphite (FG) precursor (less than 10 wt. %). The size of GO-QDs can be controlled in 2-10 nm. The average thickness of GO-QDs is about 3 nm, less than 3 layer of graphene sheet. Graphene quantum dots (GQDs) with different surface properties can be easily obtained by simple hydrothermal treatment of GO-QDs, which can be used as highly efficient fluorescent probe. Developing AG as precursor for GQDs offers a way to produce GQDs in a low-cost, highly effective and scalable manner.
Collapse
Affiliation(s)
- Shuling Shen
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China (Z.D.); (Z.T.)
| | | | | | | | | | - Junhe Yang
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China (Z.D.); (Z.T.)
| |
Collapse
|
32
|
Zhao XJ, Hou H, Ding PP, Deng ZY, Ju YY, Liu SH, Liu YM, Tang C, Feng LB, Tan YZ. Molecular defect-containing bilayer graphene exhibiting brightened luminescence. SCIENCE ADVANCES 2020; 6:eaay8541. [PMID: 32158946 PMCID: PMC7048428 DOI: 10.1126/sciadv.aay8541] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/06/2019] [Indexed: 05/03/2023]
Abstract
The electronic structure of bilayer graphene can be altered by creating defects in its carbon skeleton. However, the natural defects are generally heterogeneous. On the other hand, rational bottom-up synthesis offers the possibility of building well-defined molecular cutout of defect-containing bilayer graphene, which allows defect-induced modulation with atomic precision. Here, we report the construction of a molecular defect-containing bilayer graphene (MDBG) with an inner cavity by organic synthesis. Single-crystal x-ray diffraction, mass spectrometry, and nuclear magnetic resonance spectroscopy unambiguously characterize the structure of MDBG. Compared with its same-sized, defect-free counterpart, the MDBG exhibits a notable blue shift of optical absorption and emission, as well as a 9.6-fold brightening of its photoluminescence, which demonstrates that a single defect can markedly alter the optical properties of bilayer graphene.
Collapse
|
33
|
Singh V, Zoric MR, Hargenrader GN, Valentine AJS, Zivojinovic O, Milic DR, Li X, Glusac KD. Exciton Coherence Length and Dynamics in Graphene Quantum Dot Assemblies. J Phys Chem Lett 2020; 11:210-216. [PMID: 31842548 DOI: 10.1021/acs.jpclett.9b03384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Exciton size and dynamics were studied in assemblies of two well-defined graphene quantum dots of varying size: hexabenzocoronene (HBC), where the aromatic core consists of 42 C atoms, and carbon quantum dot (CQD) with 78 C atoms. The synthesis of HBC and CQD were achieved using bottom-up chemical methods, while their assembly was studied using steady-state UV/vis spectroscopy, X-ray scattering, and electron microscopy. While HBC forms long ordered fibers, CQD was found not to assemble well. The exciton size and dynamics were studied using time-resolved laser spectroscopy. At early times (∼100 fs), the exciton was found to delocalize over ∼1-2 molecular units in both assemblies, which reflects the confined nature of excitons in carbon-based materials and is consistent with the calculated value of ∼2 molecular units. Exciton-exciton annihilation measurements provided the exciton diffusion lengths of 16 and 3 nm for HBC and CQD, respectively.
Collapse
Affiliation(s)
- Varun Singh
- Department of Chemistry , University of Illinois at Chicago , 845 West Taylor Street , Chicago , Illinois 60607 , United States
- Chemical Sciences and Engineering Division , Argonne National Laboratory , 9700 Cass Avenue , Lemont , Illinois 60439 , United States
| | - Marija R Zoric
- Department of Chemistry , University of Illinois at Chicago , 845 West Taylor Street , Chicago , Illinois 60607 , United States
- Chemical Sciences and Engineering Division , Argonne National Laboratory , 9700 Cass Avenue , Lemont , Illinois 60439 , United States
| | - George N Hargenrader
- Department of Chemistry , University of Illinois at Chicago , 845 West Taylor Street , Chicago , Illinois 60607 , United States
- Chemical Sciences and Engineering Division , Argonne National Laboratory , 9700 Cass Avenue , Lemont , Illinois 60439 , United States
| | - Andrew J S Valentine
- Department of Chemistry , University of Washington , Seattle , Washington 98195-1700 , United States
| | - Olivera Zivojinovic
- Laboratory of Organic Chemistry , ETH Zurich , Vladimir-Prelog-Weg 3 , 8093 Zurich , Switzerland
- University of Belgrade-Faculty of Chemistry , Studentski trg 12-16 , P.O. Box 51, 11158 Belgrade , Serbia
| | - Dragana R Milic
- University of Belgrade-Faculty of Chemistry , Studentski trg 12-16 , P.O. Box 51, 11158 Belgrade , Serbia
| | - Xiaosong Li
- Department of Chemistry , University of Washington , Seattle , Washington 98195-1700 , United States
| | - Ksenija D Glusac
- Department of Chemistry , University of Illinois at Chicago , 845 West Taylor Street , Chicago , Illinois 60607 , United States
- Chemical Sciences and Engineering Division , Argonne National Laboratory , 9700 Cass Avenue , Lemont , Illinois 60439 , United States
| |
Collapse
|
34
|
Tejwan N, Saha SK, Das J. Multifaceted applications of green carbon dots synthesized from renewable sources. Adv Colloid Interface Sci 2020; 275:102046. [PMID: 31757388 DOI: 10.1016/j.cis.2019.102046] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/25/2019] [Accepted: 10/05/2019] [Indexed: 12/21/2022]
Abstract
Fluorescent carbon dots (CDs) are an emerging class of nanomaterials in the carbon family. There are various inexpensive and renewable resources that can be used to synthesize green CDs, which have received immense attention from researchers because of their improved aqueous solubility, high biocompatibility, and eco-friendly nature compared with chemically derived CDs. Additional surface passivation is not required, as heteroatoms are present on the surface of green CDs in the form of amine, hydroxyl, carboxyl, or thiol functional groups, which can improve their physicochemical properties, quantum yield, and the probability of visible light absorption. Green CDs have potential applications in the fields of bioimaging, drug/gene delivery systems, catalysis, and sensing. Since their discovery, there have been several review articles that describe the synthesis of green CDs and some of their applications. However, there are no review articles describing the synthesis and complete applications of green CDs. Here, we provide detailed information regarding their synthesis and applications based on the available literature. In addition, we discuss some of the less explored applications of green CDs and the challenges that remain to be overcome.
Collapse
|
35
|
Selective fluorometric determination of sulfadiazine based on the growth of silver nanoparticles on graphene quantum dots. Mikrochim Acta 2019; 187:54. [DOI: 10.1007/s00604-019-4001-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 11/03/2019] [Indexed: 11/26/2022]
|
36
|
Ogata H, Yoshimoto S. Tuning of 2D Nanographene Adlayers on Au(111) by Electrodeposition of Metal Halide Complexes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:46361-46367. [PMID: 31742378 DOI: 10.1021/acsami.9b15276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The electrodeposition of AuBr4- and PtBr42- onto an adlayer of circobiphenyl-a structurally defined nanographene with low symmetry-on a Au(111) electrode was investigated via electrochemical scanning tunneling microscopy (EC-STM) to control and understand the formation of characteristic nanoclusters. By immersing a circobiphenyl-coated Au(111) substrate in a 0.1 mM aqueous AuBr4- solution, AuBr4- was spontaneously reduced, and a characteristic mixed adlayer consisting of circobiphenyl molecules and Br- ions with monatomic Au islands was produced on the Au(111) surface. A similar electrodeposition process was performed in an aqueous solution of PtBr42-, and an identical mixed adlayer was obtained with Pt nanoclusters. The electrodeposition of Au and Pt complexes was facilitated by the "negatively charged" reconstructed Au(111) surface, which is stabilized by the formation of a highly ordered circobiphenyl adlayer. EC-STM revealed the formation of characteristic dimers of Pt clusters ranging 2-4 nm in diameter on the circobiphenyl adlayer. Thus, Br- metal complexes were found to play an important role in controlling the structure and size of a mixed adlayer containing Br- and the shape of Pt clusters.
Collapse
|
37
|
Dervishi E, Ji Z, Htoon H, Sykora M, Doorn SK. Raman spectroscopy of bottom-up synthesized graphene quantum dots: size and structure dependence. NANOSCALE 2019; 11:16571-16581. [PMID: 31460557 DOI: 10.1039/c9nr05345j] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Graphene quantum dots (GQDs) have attracted significant interest as synthetically tunable optoelectronic and photonic materials that can also serve as model systems for understanding size-dependent behaviors of related graphene structures such as nanoribbons. We present a Raman spectroscopy study of bottom-up synthesized GQDs with lateral dimensions between 0.97 to 1.62 nm, well-defined (armchair) edge type, and fully benzenoid structures. For a better understanding of observed size-dependent trends, the study is extended to larger graphene structures including nano-graphene platelets (>25 nm) and large-area graphene. Raman spectra of GQDs reveal the presence of D and G bands, as well as higher order modes (2D, D + G, and 2G). The D and G band frequencies and intensity were found to increase as GQD size increases, while higher order modes (2D, D + G, and 2G) also increased in intensity and became more well-defined. The integrated intensity ratios of D and G bands (ID/IG) increase as the size of the GQDs approaches 2 nm and rapidly decrease for larger graphene structures. We present a quantitative comparison of ID/IG ratios for the GQDs and for defects introduced into large area graphenes through ion bombardment, for which inter-defect distances are comparable to the sizes of GQDs studied here. Close agreement suggests the ID/IG ratio as a size diagnostic for other nanographenes. Finally, we show that Raman spectroscopy is also a good diagnostic tool for monitoring the formation of bottom-up synthesized GQDs.
Collapse
Affiliation(s)
- Enkeleda Dervishi
- Materials Physics and Applications Division, Center for Integrated Nanotechnologies, Los Alamos, New Mexico 87545, USA.
| | - Zhiqiang Ji
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
| | - Han Htoon
- Materials Physics and Applications Division, Center for Integrated Nanotechnologies, Los Alamos, New Mexico 87545, USA.
| | - Milan Sykora
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
| | - Stephen K Doorn
- Materials Physics and Applications Division, Center for Integrated Nanotechnologies, Los Alamos, New Mexico 87545, USA.
| |
Collapse
|
38
|
FÖrster resonance energy transfer (FRET)-based biosensors for biological applications. Biosens Bioelectron 2019; 138:111314. [DOI: 10.1016/j.bios.2019.05.019] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/08/2019] [Indexed: 12/14/2022]
|
39
|
Umeyama T, Hanaoka T, Yamada H, Namura Y, Mizuno S, Ohara T, Baek J, Park J, Takano Y, Stranius K, Tkachenko NV, Imahori H. Exclusive occurrence of photoinduced energy transfer and switching of its direction by rectangular π-extension of nanographenes. Chem Sci 2019; 10:6642-6650. [PMID: 31367317 PMCID: PMC6624990 DOI: 10.1039/c9sc01538h] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/28/2019] [Indexed: 01/20/2023] Open
Abstract
As structure defined cutouts of the graphene lattice, nanographene molecules have gained plenty of attention because of their high potential for versatile applications in organic electronics and energy conversion devices and as ideal model systems for the better understanding of intrinsic structure-property correlations of graphenes. In this study, well-defined nanographenes with sp2 carbon networks of different sizes, hexa-peri-hexabenzocoronene (HBC) and its rectangularly π-extended version, a short graphene nanoribbon (GNR), have been covalently functionalized with photoactive porphyrin molecules. On the basis of their spectroscopic studies, the photodynamics of the porphyrin-linked nanographenes was found to be influenced substantially by the size of the nanographenes. Photoexcitation of the porphyrin-HBC linked system led to exclusive energy transfer (EnT) from the first singlet excited state (S1) of the nanographene to the porphyrin, whereas opposite selective EnT occurred from the first and second singlet excited states (S1 and S2) of the porphyrin to the nanographene in the porphyrin-GNR linked system. In particular, ultrafast efficient EnTs from both the S2 and S1 states of the porphyrin to GNR mimic the corresponding ultrafast EnTs from the S2 and S1 states of carotenoids to chlorophylls in light-harvesting systems of natural photosynthesis. Such unique photophysical properties will be useful for the rational design of carbon-based photofunctional nanomaterials for optoelectronics and solar energy conversion devices.
Collapse
Affiliation(s)
- Tomokazu Umeyama
- Department of Molecular Engineering , Graduate School of Engineering , Kyoto University , Nishikyo-ku , Kyoto , 615-8510 , Japan . ;
| | - Takuma Hanaoka
- Department of Molecular Engineering , Graduate School of Engineering , Kyoto University , Nishikyo-ku , Kyoto , 615-8510 , Japan . ;
| | - Hiroki Yamada
- Department of Molecular Engineering , Graduate School of Engineering , Kyoto University , Nishikyo-ku , Kyoto , 615-8510 , Japan . ;
| | - Yuki Namura
- Department of Molecular Engineering , Graduate School of Engineering , Kyoto University , Nishikyo-ku , Kyoto , 615-8510 , Japan . ;
| | - Satoshi Mizuno
- Department of Molecular Engineering , Graduate School of Engineering , Kyoto University , Nishikyo-ku , Kyoto , 615-8510 , Japan . ;
| | - Tomoya Ohara
- Department of Molecular Engineering , Graduate School of Engineering , Kyoto University , Nishikyo-ku , Kyoto , 615-8510 , Japan . ;
| | - Jinseok Baek
- Department of Molecular Engineering , Graduate School of Engineering , Kyoto University , Nishikyo-ku , Kyoto , 615-8510 , Japan . ;
| | - JaeHong Park
- Department of Molecular Engineering , Graduate School of Engineering , Kyoto University , Nishikyo-ku , Kyoto , 615-8510 , Japan . ;
| | - Yuta Takano
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) , Kyoto University , Sakyo-ku , Kyoto 606-8501 , Japan
| | - Kati Stranius
- Faculty of Engineering and Natural Sciences , Tampere University , Korkeakoulunkatu 8 , 33720 Tampere , Finland .
| | - Nikolai V Tkachenko
- Faculty of Engineering and Natural Sciences , Tampere University , Korkeakoulunkatu 8 , 33720 Tampere , Finland .
| | - Hiroshi Imahori
- Department of Molecular Engineering , Graduate School of Engineering , Kyoto University , Nishikyo-ku , Kyoto , 615-8510 , Japan . ;
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) , Kyoto University , Sakyo-ku , Kyoto 606-8501 , Japan
| |
Collapse
|
40
|
|
41
|
Han P, Hou ICY, Lu H, Wang XY, Müllen K, Bonn M, Narita A, Cánovas E. Chemisorption of Atomically Precise 42-Carbon Graphene Quantum Dots on Metal Oxide Films Greatly Accelerates Interfacial Electron Transfer. J Phys Chem Lett 2019; 10:1431-1436. [PMID: 30848919 PMCID: PMC6727373 DOI: 10.1021/acs.jpclett.9b00399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/08/2019] [Indexed: 05/27/2023]
Abstract
Graphene quantum dots (GQDs) are emerging as environmentally friendly, low-cost, and highly tunable building blocks in solar energy conversion architectures, such as solar (fuel) cells. Specifically, GQDs constitute a promising alternative for organometallic dyes in sensitized oxide systems. Current sensitized solar cells employing atomically precise GQDs are based on physisorbed sensitizers, with typically limited efficiencies. Chemisorption has been pointed out as a solution to boost photoconversion efficiencies, by allowing improved control over sensitizer surface coverage and sensitizer-oxide coupling strength. Here, employing time-resolved THz spectroscopy, we demonstrate that chemisorption of atomically precise C42-GQDs (hexa- peri-hexabenzocoronene derivatives consisting of 42 sp2 carbon atoms) onto mesoporous metal oxides, enabled by their functionalization with a carboxylate group, enhances electron transfer (ET) rates by almost 2 orders of magnitude when compared with physisorbed sensitizers. Density functional theory (DFT) calculations, absorption spectroscopy and valence band X-ray photoelectron spectroscopy reveal that the enhanced ET rates can be traced to stronger donor-acceptor coupling strength enabled by chemisorption.
Collapse
Affiliation(s)
- Peng Han
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Ian Cheng-Yi Hou
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Hao Lu
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Xiao-Ye Wang
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Klaus Müllen
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute
of Physical Chemistry, Johannes Gutenberg
University Mainz, Duesbergweg
10-14, 55128 Mainz, Germany
| | - Mischa Bonn
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Akimitsu Narita
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Organic
and Carbon Nanomaterials Unit, Okinawa Institute
of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Enrique Cánovas
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Instituto
Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Faraday 9, 28049 Madrid, Spain
| |
Collapse
|
42
|
Ji Z, Dervishi E, Doorn SK, Sykora M. Size-Dependent Electronic Properties of Uniform Ensembles of Strongly Confined Graphene Quantum Dots. J Phys Chem Lett 2019; 10:953-959. [PMID: 30764609 DOI: 10.1021/acs.jpclett.9b00119] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The electronic structure of a series of bottom-up synthesized graphene quantum dots (GQDs) smaller than 2 nm was investigated by spectroelectrochemistry, yielding insights not previously available from ensemble-level studies. The results show that for the strongly confined GQDs the dependence of the band gap on the GQD size deviates from the prediction of the standard Dirac Fermion model but agrees well with the models explicitly accounting for the electron-electron and electron-hole interactions. The HOMO/LUMO energy levels are found to be distributed nearly symmetrically around the 0 V value versus normal hydrogen electrode (NHE), becoming more positive/negative, respectively, with increasing GQD size. The exciton binding energies are found to follow power dependence on the number of carbon atoms per GQD, with the experimental values falling within the range of ∼0.1 to ∼0.6 eV. Given the broad accessibility of the described experimental tools and methods, our work opens a path to a more systematic examination of quantum confinement effects in GQDs.
Collapse
Affiliation(s)
- Zhiqiang Ji
- Chemistry Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Enkeleda Dervishi
- Materials Physics and Applications Division, Center for Integrated Nanotechnologies , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Stephen K Doorn
- Materials Physics and Applications Division, Center for Integrated Nanotechnologies , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Milan Sykora
- Chemistry Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| |
Collapse
|
43
|
Entacapone detection by a GOQDs-molecularly imprinted silica fluorescent chemical nanosensor. Anal Bioanal Chem 2019; 411:1075-1084. [DOI: 10.1007/s00216-018-1534-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 11/08/2018] [Accepted: 12/03/2018] [Indexed: 10/27/2022]
|
44
|
Origuchi S, Kishimoto M, Yoshizawa M, Yoshimoto S. A Supramolecular Approach to the Preparation of Nanographene Adlayers Using Water‐Soluble Molecular Capsules. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Sakura Origuchi
- Graduate School of Science and TechnologyKumamoto University 2-39-1 Kurokami Chuo-ku Kumamoto 860-8555 Japan
| | - Mai Kishimoto
- Laboratory for Chemistry and Life ScienceInstitute of Innovative ResearchTokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Michito Yoshizawa
- Laboratory for Chemistry and Life ScienceInstitute of Innovative ResearchTokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Soichiro Yoshimoto
- Division of Materials Science and ChemistryFaculty of Advanced Science and TechnologyKumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| |
Collapse
|
45
|
Origuchi S, Kishimoto M, Yoshizawa M, Yoshimoto S. A Supramolecular Approach to the Preparation of Nanographene Adlayers Using Water-Soluble Molecular Capsules. Angew Chem Int Ed Engl 2018; 57:15481-15485. [PMID: 30259612 DOI: 10.1002/anie.201809258] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Indexed: 02/02/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are excellent building blocks for the creation of two-dimensional (2D) nanosheets. However, large PAHs tend to exhibit poor or no solubility in organic solvents and water. To overcome this issue, we employed water-soluble micellar capsules consisting of V-shaped amphiphilic molecules. Characteristic electrochemical behavior was observed in 0.1 m H2 SO4 in the presence of the water-soluble capsules containing PAHs, such as ovalene, circobiphenyl, and dicoronylene. Furthermore, under these conditions, PAHs were released from the capsules, resulting in the formation of a 2D adlayer of PAHs at the electrochemical interface. Finally, using electrochemical scanning tunneling microscopy, we demonstrate that our molecular containers based on water-soluble molecular capsules allow the facile preparation of 2D PAH adlayers in addition to structurally controlling nanostructure formation on Au surfaces.
Collapse
Affiliation(s)
- Sakura Origuchi
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Mai Kishimoto
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Michito Yoshizawa
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Soichiro Yoshimoto
- Division of Materials Science and Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| |
Collapse
|
46
|
Song H, Zhang X, Liu Y, Su Z. Developing Graphene-Based Nanohybrids for Electrochemical Sensing. CHEM REC 2018; 19:534-549. [PMID: 30182467 DOI: 10.1002/tcr.201800084] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 08/17/2018] [Indexed: 01/21/2023]
Abstract
Graphene-based nanohybrid is considered to be the most promising nanomaterial for electrochemical sensing applications due to the defects created on the graphene oxide layers. These defects provide graphene oxide unique properties, such as excellent conductivity, large specific surface area, and electrocatalytic activity. These unique properties encourage scientists to develop novel graphene-based nanohybrids and improve the sensing efficiency. This review, therefore, addresses this topic by comprehensively discussing the strategies to fabricate novel graphene based nanohybrids with high sensitivity. The combinations of graphene with various nanomaterials, such as metal nanoclusters, metal compound nanoparticles, carbon materials, polymers and peptides, in the direction of electrochemical sensing, were systematically analyzed. Meanwhile, the challenges in the functional design and application of graphene-based nanohybrids were described and the reasonable solutions were proposed.
Collapse
Affiliation(s)
- He Song
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing, China
| | - Xiaoyuan Zhang
- Chair of Materials Science, Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Jena, Germany
| | - Yunfang Liu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing, China
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
47
|
Xu Q, Yuan H, Dong X, Zhang Y, Asif M, Dong Z, He W, Ren J, Sun Y, Xiao F. Dual nanoenzyme modified microelectrode based on carbon fiber coated with AuPd alloy nanoparticles decorated graphene quantum dots assembly for electrochemical detection in clinic cancer samples. Biosens Bioelectron 2018; 107:153-162. [PMID: 29455025 DOI: 10.1016/j.bios.2018.02.026] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 01/27/2018] [Accepted: 02/08/2018] [Indexed: 10/18/2022]
Abstract
The development of high-efficient technologies for cancer biomarkers detection has attracted tremendous research effort for its great clinic significance. In this work, we designed a new type of flexible and robust nanohybrid microelectrode by modifying carbon fiber with dual nanoenzyme, i.e., AuPd alloy nanoparticles (AuPd-ANPs) decorated graphene quantum dots (GQDs) assembly, and explored its practical application in electrochemical sensing system for sensitive detection of cancer biomarker hydrogen peroxide (H2O2) in human breast cancer cells and tissue. For the preparation of dual nanoenzyme modified microelectrode, ionic liquid was used as the electrolyte for the effective electrodeposition of GQDs on carbon fiber substrate to form a close-packed assembly under a very negative potential, then the highly dense AuPd-ANPs were uniformly decorated on GQDs assembly by electrodeposition. In virtue of the structural merits and synergistic contribution of dual nanoenzyme in enhancing the electrocatalytic activity to H2O2, the resultant nanohybrid microelectrode exhibited good sensing performances for electrochemical detection of H2O2, including a high sensitivity of 371 μA cm-2 mM-1, a wide linear range from 1.0 μM to 18.44 mM, a low detection limit of 500 nM (a signal-to-noise ratio of 3:1), as well as good selectivity and biocompatibility, which could be used for real-time tracking H2O2 released from different types of human breast cells and in situ sensitive detection of H2O2 in clinical breast cancer tissue.
Collapse
Affiliation(s)
- Qi Xu
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Hao Yuan
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Xulin Dong
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yan Zhang
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Muhammad Asif
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zehua Dong
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Wenshan He
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Jinghua Ren
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Yimin Sun
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430073, PR China
| | - Fei Xiao
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
48
|
Zhang R, Ding Z. Recent Advances in Graphene Quantum Dots as Bioimaging Probes. JOURNAL OF ANALYSIS AND TESTING 2018. [DOI: 10.1007/s41664-018-0047-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
49
|
Raman enhancement on ultra-clean graphene quantum dots produced by quasi-equilibrium plasma-enhanced chemical vapor deposition. Nat Commun 2018; 9:193. [PMID: 29335471 PMCID: PMC5768689 DOI: 10.1038/s41467-017-02627-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/13/2017] [Indexed: 11/17/2022] Open
Abstract
Graphene is regarded as a potential surface-enhanced Raman spectroscopy (SERS) substrate. However, the application of graphene quantum dots (GQDs) has had limited success due to material quality. Here, we develop a quasi-equilibrium plasma-enhanced chemical vapor deposition method to produce high-quality ultra-clean GQDs with sizes down to 2 nm directly on SiO2/Si, which are used as SERS substrates. The enhancement factor, which depends on the GQD size, is higher than conventional graphene sheets with sensitivity down to 1 × 10−9 mol L−1 rhodamine. This is attributed to the high-quality GQDs with atomically clean surfaces and large number of edges, as well as the enhanced charge transfer between molecules and GQDs with appropriate diameters due to the existence of Van Hove singularities in the electronic density of states. This work demonstrates a sensitive SERS substrate, and is valuable for applications of GQDs in graphene-based photonics and optoelectronics. Surface-enhanced Raman spectroscopy (SERS) is a promising technology for sensitive optical sensors, generally using rough metal films. Here, Liu et al. synthesize high-quality graphene quantum dot films which offer a large SERS enhancement due to a strong light-matter interaction with Van Hove singularities.
Collapse
|
50
|
Miao X, Qu D, Yang D, Nie B, Zhao Y, Fan H, Sun Z. Synthesis of Carbon Dots with Multiple Color Emission by Controlled Graphitization and Surface Functionalization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1704740. [PMID: 29178388 DOI: 10.1002/adma.201704740] [Citation(s) in RCA: 472] [Impact Index Per Article: 78.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 09/28/2017] [Indexed: 05/19/2023]
Abstract
Multiple-color-emissive carbon dots (CDots) have potential applications in various fields such as bioimaging, light-emitting devices, and photocatalysis. The majority of the current CDots to date exhibit excitation-wavelength-dependent emissions with their maximum emission limited at the blue-light region. Here, a synthesis of multiple-color-emission CDots by controlled graphitization and surface function is reported. The CDots are synthesized through controlled thermal pyrolysis of citric acid and urea. By regulating the thermal-pyrolysis temperature and ratio of reactants, the maximum emission of the resulting CDots gradually shifts from blue to red light, covering the entire light spectrum. Specifically, the emission position of the CDots can be tuned from 430 to 630 nm through controlling the extent of graphitization and the amount of surface functional groups, COOH. The relative photoluminescence quantum yields of the CDots with blue, green, and red emission reach up to 52.6%, 35.1%, and 12.9%, respectively. Furthermore, it is demonstrated that the CDots can be uniformly dispersed into epoxy resins and be fabricated as transparent CDots/epoxy composites for multiple-color- and white-light-emitting devices. This research opens a door for developing low-cost CDots as alternative phosphors for light-emitting devices.
Collapse
Affiliation(s)
- Xiang Miao
- Beijing Key Lab for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, 100 Pingleyuan, Beijing, 100124, P. R. China
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Changchun, 130033, Jilin, P. R. China
- Graduate School, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Dan Qu
- Beijing Key Lab for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, 100 Pingleyuan, Beijing, 100124, P. R. China
| | - Dongxue Yang
- Beijing Key Lab for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, 100 Pingleyuan, Beijing, 100124, P. R. China
| | - Bing Nie
- Beijing Key Lab for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, 100 Pingleyuan, Beijing, 100124, P. R. China
- Beijing Guangqumen High School, Dongcheng District, Beijing, 100000, P. R. China
| | - Yikang Zhao
- Beijing Key Lab for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, 100 Pingleyuan, Beijing, 100124, P. R. China
- Beijing Guangqumen High School, Dongcheng District, Beijing, 100000, P. R. China
| | - Hongyou Fan
- Sandia National Labs, 1001 University Blvd., Albuquerque, NM, 87106, USA
| | - Zaicheng Sun
- Beijing Key Lab for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, 100 Pingleyuan, Beijing, 100124, P. R. China
| |
Collapse
|