1
|
Zheng B, Wang S, Xu J, Huang L, Zhao S. A ratiometric fluorescent probe with dual near infrared emission for in vivo ratio imaging of cysteine. Talanta 2025; 286:127564. [PMID: 39799884 DOI: 10.1016/j.talanta.2025.127564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/31/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Accurately detecting cysteine (Cys) in vivo is crucial for diagnosing Cys-related diseases. A novel ratiometric fluorescent probe featuring dual near-infrared emission is developed in this study for the in vivo ratio imaging of Cys. The probe comprises a hemicyanine organic small-molecule dye (HCy-CYS) with specific Cys recognition capabilities covalently coupled with carbon dots (CDs) synthesized using glutathione (GSH) as the carbon source (GCDs), forming a unique composite nanofluorescent probe (GCDs@CYS). The probe undergoes a specific reaction with acrylate upon the addition of Cys, converting HCy-CYS to HCy-OH. Consequently, the GCD fluorescence intensity at 685 nm gradually decreases, whereas that of HCy-OH at 720 nm progressively increases, yielding a ratiometric fluorescence signal. Notably, both emission wavelengths of the probe exceed 650 nm, thereby effectively mitigating the interference from background signals during cellular and in vivo imaging. Furthermore, the probe demonstrates high specificity for Cys, enabling its differentiation from homocysteine and GSH. The Cys concentration and fluorescence ratiometric intensity exhibit a strong linear correlation at 10-150 μM with a detection limit of 0.95 μM. These results indicate that the ratiometric fluorescent probe can serve as a valuable tool for monitoring Cys-related physiological or pathological processes.
Collapse
Affiliation(s)
- Bing Zheng
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Guangxi Colleges and Universities Key Laboratory of Efficient Utilization of Special Resources in Southeast Guangxi, College of Chemistry and Food Science, Yulin Normal University, Yulin, 537000, China; State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Shulong Wang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Guangxi Colleges and Universities Key Laboratory of Efficient Utilization of Special Resources in Southeast Guangxi, College of Chemistry and Food Science, Yulin Normal University, Yulin, 537000, China; State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| | - Jiayao Xu
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Guangxi Colleges and Universities Key Laboratory of Efficient Utilization of Special Resources in Southeast Guangxi, College of Chemistry and Food Science, Yulin Normal University, Yulin, 537000, China; State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Lixian Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| |
Collapse
|
2
|
Zhang Y, Yang Y, Ding S, Zeng X, Li T, Hu Y, Lu S. Exploring Carbon Dots for Biological Lasers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418118. [PMID: 40066477 DOI: 10.1002/adma.202418118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/21/2025] [Indexed: 04/24/2025]
Abstract
Biological lasers, representing innovative miniaturized laser technology, hold immense potential in the fields of biological imaging, detection, sensing, and medical treatment. However, the reported gain media for biological lasers encounter several challenges complex preparation procedures, high cost, toxicity concerns, limited biocompatibility, and stability issues along with poor processability and tunability. These drawbacks have impeded the sustainable development of biological lasers. Carbon dots (CDs), as a novel solution-processable gain materials characterized by facile preparation, low cost, low toxicity, excellent biocompatibility, high stability, easy modification, and luminescence tuning capabilities along with outstanding luminescence performance. Consequently, they find extensive applications in diverse fields such as biology, sensing, photoelectricity, and lasers. Henceforth, they are particularly suitable for constructing biological lasers. This paper provides a comprehensive review on the classification and application of existing biological lasers while emphasizing the advantages of CDs compared to other gain media. Furthermore, it presents the latest progress made by utilizing CDs as gain media and forecasts both promising prospects and potential challenges for biological lasers based on CDs. This study aims to enhance understanding of CD lasers and foster advancements in the field of biological lasers.
Collapse
Affiliation(s)
- Yongqiang Zhang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, No. 100 Kexue Road, Zhengzhou, 450001, China
| | - Yuzhuo Yang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, No. 100 Kexue Road, Zhengzhou, 450001, China
| | - Shurong Ding
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, No. 100 Kexue Road, Zhengzhou, 450001, China
| | - Xiao Zeng
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, No. 100 Kexue Road, Zhengzhou, 450001, China
| | - Ting Li
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, No. 100 Kexue Road, Zhengzhou, 450001, China
| | - Yongsheng Hu
- School of Physics and Microelectronics, Zhengzhou University, No. 100 Kexue Road, Zhengzhou, 450001, China
| | - Siyu Lu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, No. 100 Kexue Road, Zhengzhou, 450001, China
| |
Collapse
|
3
|
Yuan X, Liu S, Wang J, Liu J, Qin F, Zhang M, Song J, Mao X. Self-assembled metal cluster-carbon quantum dot heterostructures with photothermal antibacterial properties. DISCOVER NANO 2025; 20:62. [PMID: 40163269 PMCID: PMC11958913 DOI: 10.1186/s11671-025-04243-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 03/17/2025] [Indexed: 04/02/2025]
Abstract
Noble metal (Au, Ag, Cu) cluster is an emerging category of promising interest functions in form of designed constructions. Among various candidates, carbon dots could be treated as one interesting component for synthesis functional candidates while heterogeneous contents are orderly integrated together. In this work, we successfully fabricate heterostructural nanoparticles (HNPs) based on noble metal clusters (Au, Ag and Cu) integrated with carbon quantum dots (CQDs) through self-assembling approach. These HNPs demonstrate remarkable photothermal efficiency, high stability, low hemolysis ratio, excellent biocompatibility and significant bactericidal effects, making them promising candidates for photothermal applications. Notably, the Au-C achieved remarkable photothermal conversion efficiency (PTE) of 54.16% and antibacterial rate over 99%, which also significantly accelerated the healing process in methicillin-resistant Staphylococcus aureus (MRSA)-infected subcutaneous abscess model mice. Our findings highlight the potential of these self-assembled heterostructures, especially Au-C, as effective and promising photothermal agents with antibacterial functionality.
Collapse
Affiliation(s)
- Xulei Yuan
- Chongqing Key Laboratory for Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Municipal Health Commission Key Laboratory of Oral Biomedical Engineering, Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, China
| | - Shaojun Liu
- College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Jun Wang
- Chongqing Key Laboratory for Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Municipal Health Commission Key Laboratory of Oral Biomedical Engineering, Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, China
| | - Jiaqi Liu
- College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Fang Qin
- College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Min Zhang
- College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Jinling Song
- Chongqing Key Laboratory for Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Municipal Health Commission Key Laboratory of Oral Biomedical Engineering, Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, China.
| | - Xiang Mao
- College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
4
|
Liu Z, Li J, Zhao C, Zhang Z, Wu P, Chen J, He X, Zhang S, Tian Y. Molecular Engineering Enables Bright Carbon Dots for Super-Resolution Fluorescence Imaging and In Vivo Optogenetics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2410786. [PMID: 40159783 DOI: 10.1002/adma.202410786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 03/20/2025] [Indexed: 04/02/2025]
Abstract
Improving the fluorescence quantum yield (QY) of carbon dots (CDs) is essential for expanding their applications. Understanding the photoluminescence mechanism of CDs can provide valuable insights for QY improvement. In this study, it is demonstrated that polarization facilitated the surface state emission of CDs through a single decay pathway, while hydrogen bonding (HB) is identified as a factor that hindered the surface state emission of CDs through non-radiative decay. Following an in-depth evaluation of these mechanisms, the QY of CDs is markedly enhanced by engineering molecules onto their surfaces. This strategy not only eliminated HB but also promoted polarization-induced charge transfer. Notably, the QY of the yellow-emitting CD is elevated to 98.1%. Capitalizing on their long-term stability, excellent water solubility, two-photon excitation capacity, and non-toxicity, the engineered CDs are successfully applied in dual-color super-resolution fluorescence imaging in living cells, two-photon imaging of zebrafish, and optogenetic regulation in the deep brain of freely-moving animals.
Collapse
Affiliation(s)
- Zhichao Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Jiajia Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Chong Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Zhonghui Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Peicong Wu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Xiao He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Sanjun Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| |
Collapse
|
5
|
Wied MC, Sørensen TJ. Towards homogenous multiwell plate based pH sensors using a responsive triangulenium dye and an ATTO-647 reference dye. RSC Adv 2025; 15:1438-1446. [PMID: 39822565 PMCID: PMC11736390 DOI: 10.1039/d4ra07949c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/24/2024] [Indexed: 01/19/2025] Open
Abstract
pH remains the most important chemical parameter and must be monitored for positive outcomes in areas as different as cheese making and in vitro fertilisation (IVF). Where blood gas analysers enable patient monitoring, starter cultures in cheese manufacturing are still monitored using conventional pH electrodes. Here, we present a homogeneous multiwell plate sensor for monitoring pH, with the same sensitivity as a pH electrode. The homogenous sensor operates in small liquid samples and uses two components: a pH responsive triangulenium dye on a polystyrene nanoparticle, and a freely diffusing commercial reference dye. Sensor measurements were made in triplicate to investigate and document the performance and robustness of the individual components, before we moved on to investigate the multiwell plate sensor design. The pH sensor was first tested in cuvettes, before moving to microwells and smaller volumes. The target is to monitor pH in IVF cultures, and the sensor proved to be operational in the pH range found in in vitro fertilisation buffers, but the references dye was shown not to be suitable for sensors. We conclude that the homogeneous sensor design is sound, but reaching the required precision of ΔpH = 0.01 can only be done with a different reference dye.
Collapse
Affiliation(s)
- Magnus Christian Wied
- Nano-Science Center & Department of Chemistry, University of Copenhagen Universitetsparken 5 2100 København Ø Denmark
| | - Thomas Just Sørensen
- Nano-Science Center & Department of Chemistry, University of Copenhagen Universitetsparken 5 2100 København Ø Denmark
| |
Collapse
|
6
|
Zhang H, Zhang Q, Li N, Yang G, Cheng Z, Du X, Sun L, Wang W, Li B. Advances in the application of carbon dots-based fluorescent probes in disease biomarker detection. Colloids Surf B Biointerfaces 2025; 245:114360. [PMID: 39520938 DOI: 10.1016/j.colsurfb.2024.114360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Carbon dots (CDs), as an emerging nanomaterial, have shown tremendous potential in disease biomarker detection. CDs can selectively interact with different target molecules, enabling highly sensitive and specific detection of these biomolecules. Compared to traditional detection methods, CDs sensors offer advantages such as rapid response, high detection sensitivity, and low cost. In this review, we summarize the latest advances in the application of CDs fluorescence probes for the detection of disease biomarkers, including sensing mechanisms, and their applications in the selective detection of metal ions, amino acids, enzymes, proteins, other biomolecules, as well as bacteria and viruses. We discuss the current challenges and issues associated with the practical application of CDs-based fluorescent probes. Furthermore, we propose future directions for the development of CDs. We hope that this review will provide new insights for researchers in the field of disease biomarker detection.
Collapse
Affiliation(s)
- Haoqi Zhang
- School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Qingmei Zhang
- School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China.
| | - Naihui Li
- School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Guoqing Yang
- School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Zewei Cheng
- School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Xiujuan Du
- School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China.
| | - Lingxiang Sun
- Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, China
| | - Wei Wang
- Departments of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan 030001, China.
| | - Bing Li
- Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
7
|
Rahmatpour A, Hesarsorkh AHA. XG and CS-based self-assembled nanocomposite hydrogel embedding fluorescent NCQDs capable of detection and adsorptive removal of the polar MO and Cr(VI) pollutants. Carbohydr Polym 2024; 346:122588. [PMID: 39245483 DOI: 10.1016/j.carbpol.2024.122588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024]
Abstract
Aiming at dealing with organic and inorganic pollutants dissolved in aquatic environments, we introduce self-assembled fluorescent nanocomposite hydrogel based on a binary polysaccharide network (xanthan gum/chitosan) embedding nitrogen-doped carbon quantum dots not only as a hybrid solid optical sensor for detecting Cr(VI) ions but also to remove anionically charged contaminants Cr(VI) and methyl orange (MO) by acting as an adsorbent. This fluorescent nanocomposite achieved a detection limit of 0.29 μM when used to detect Cr(VI) and demonstrated a fluorescence quantum yield of 59.7 %. Several factors contributed to the effectiveness of the adsorption of Cr(VI) and MO in batch studies, including the solution pH, dosage of the adsorbent, temperature, initial contamination level, and contact time. Experimental results showed 456 mg/g maximum adsorption capacity at pH 4 for MO compared to 291 mg/g at pH 2 for Cr(VI) at 25 °C. In addition to conforming to Langmuir's model, Cr(VI) and MO's adsorption kinetics closely matched pseudo-second-order. Using thermodynamic parameters, the results indicate that Cr(VI) and MO adsorb spontaneously and exothermically. Recycling spent adsorbent for Cr(VI) and MO using NaOH at 0.1 M was possible; the respective adsorption efficiency remained at approximately 82.2 % and 83 % after the fifth regeneration cycle.
Collapse
Affiliation(s)
- Ali Rahmatpour
- Polymer Chemistry Research Laboratory, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, P.O. Box: 1983969411, Tehran, Iran.
| | - Amir Hossein Alizadeh Hesarsorkh
- Polymer Chemistry Research Laboratory, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, P.O. Box: 1983969411, Tehran, Iran
| |
Collapse
|
8
|
Wu X, Cai H, Liao R, Tedesco AC, Li Z, Wang F, Bi H. Bio-Inspired Carbon Dots as Malondialdehyde Indicator for Real-Time Visualization of Lipid Peroxidation in Depression. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400671. [PMID: 39101624 DOI: 10.1002/smll.202400671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/29/2024] [Indexed: 08/06/2024]
Abstract
Brain lipidic peroxidation is closely associated with the pathophysiology of various psychiatric diseases including depression. Malondialdehyde (MDA), a reactive aldehyde produced in lipid region, serves as a crucial biomarker for lipid peroxidation. However, techniques enabling real-time detection of MDA are still lacking due to the inherent trade-off between recognition dynamics and robustness. Inspired by the structure of phospholipid bilayers, amphiphilic carbon dots named as CG-CDs targeted to cell membrane are designed for real-time monitoring of MDA fluctuations. The design principle relies on the synergy of dynamic hydrogen bonding recognition and cell membrane targetability. The latter facilitates the insertion of CG-CDs into lipid regions and provides a hydrophobic environment to stabilize the labile hydrogen bonding between CG-CDs and MDA. As a result, recognition robustness and dynamics are simultaneously achieved for CG-CDs/MDA, allowing for in situ visualization of MDA kinetics in cell membrane due to the instant response (<5 s), high sensitivity (9-fold fluorescence enhancement), intrinsic reversibility (fluorescence on/off), and superior selectivity. Subsequently, CG-CDs are explored to visualize nerve cell membrane impairment in depression models of living cells and zebrafish, unveiling the extensive heterogeneity of the lipid peroxidation process and indicating a positive correlation between MDA levels and depression.
Collapse
Affiliation(s)
- Xiaoyan Wu
- School of Materials Science and Engineering, Anhui University, 111 Jiulong Road, Hefei, 230601, China
| | - Hao Cai
- School of Materials Science and Engineering, Anhui University, 111 Jiulong Road, Hefei, 230601, China
| | - Rui Liao
- Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, China
| | | | - Zijian Li
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering-Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, 14040-901, Brazil
| | - Feng Wang
- Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, China
| | - Hong Bi
- School of Materials Science and Engineering, Anhui University, 111 Jiulong Road, Hefei, 230601, China
| |
Collapse
|
9
|
Barman BK, Hernández‐Pinilla D, Cretu O, Kikkawa J, Kimoto K, Nagao T. Generated White Light Having Adaptable Chromaticity and Emission, Using Spectrally Reconfigurable Microcavities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407090. [PMID: 39231338 PMCID: PMC11538638 DOI: 10.1002/advs.202407090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/10/2024] [Indexed: 09/06/2024]
Abstract
Metal-free, luminescent, carbogenic nanomaterials (LCNMs) constitute a novel class of optical materials with low environmental impact. LCNMs, e.g., carbon dots (CDs), graphitic carbon nitride (g-C3N4), and carbonized polymer microspheres (CPM) show strong blue/cyan emissions, but rather weak yellow/red emission. This has been a serious drawback in applying them to light-emitting and bio-imaging applications. Here, by integrating single-component LCNMs in photonic microcavities, the study spectroscopically engineers the coupling between photonic modes in these microcavities and optical transitions to "reconfigure" the emission spectra of these luminescent materials. Resonant photons are confined in the microcavity, which allows selective re-excitation of phosphors to effectively emit down-converted photons. The down-converted photons re-excite the phosphors and are multiply recycled, leading to enhanced yellow/red emissions and resulting in white-light emission (WLE). Furthermore, by adjusting photonic stop bands of microcavity components, color adaptable (cool, pure, and warm) WLE is flexibly generated, which precisely follows the black-body Planckian locus in the chromaticity diagram. The proposed approach offers practical low-cost chromaticity-adjustable WLE from single-component, luminescent materials without any chemical or surface modification, or elaborate machinery and processing, paving the way for practical WLE devices.
Collapse
Affiliation(s)
- Barun Kumar Barman
- Research Center for Materials Nanoarchitectonics (WPI‐MANA)National Institute for Materials Science(NIMS)TsukubaIbaraki305‐0044Japan
| | - David Hernández‐Pinilla
- Research Center for Materials Nanoarchitectonics (WPI‐MANA)National Institute for Materials Science(NIMS)TsukubaIbaraki305‐0044Japan
| | - Ovidiu Cretu
- Electron Microscopy GroupNational Institute for Materials Science (NIMS)TsukubaIbaraki305‐0044Japan
| | - Jun Kikkawa
- Electron Microscopy GroupNational Institute for Materials Science (NIMS)TsukubaIbaraki305‐0044Japan
| | - Koji Kimoto
- Electron Microscopy GroupNational Institute for Materials Science (NIMS)TsukubaIbaraki305‐0044Japan
| | - Tadaaki Nagao
- Research Center for Materials Nanoarchitectonics (WPI‐MANA)National Institute for Materials Science(NIMS)TsukubaIbaraki305‐0044Japan
- Department of Condensed Matter Physics, Graduate School of ScienceHokkaido UniversitySapporo060‐0810Japan
| |
Collapse
|
10
|
Tong YL, Yang K, Wei W, Gao LT, Li PC, Zhao XY, Chen YM, Li J, Li H, Miyatake H, Ito Y. A novel red fluorescent and dynamic nanocomposite hydrogel based on chitosan and alginate doped with inclusion complex of carbon dots. Carbohydr Polym 2024; 342:122203. [PMID: 39048182 DOI: 10.1016/j.carbpol.2024.122203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/05/2024] [Accepted: 04/22/2024] [Indexed: 07/27/2024]
Abstract
Red fluorescent hydrogels possessing injectable and self-healing properties have widespread potential in biomedical field. It is still a challenge to achieve a biomacromolecules based dynamic hydrogels simultaneously combining with excellent red fluorescence, good mechanical properties, and biocompatibility. Here we first explore hydrophilic inclusion complex of (R-CDs@α-CD) derived from hydrophobic red fluorescent carbon dots (R-CDs) and α-cyclodextrin (α-CD), and then achieved a red fluorescent and dynamic polysaccharide R-CDs@α-CD/CEC-l-OSA hydrogel. The nanocomposite hydrogel can be fabricated through controlled doping of red fluorescent R-CDs@α-CD into dynamic polymer networks, taking reversibly crosslinked N-carboxyethyl chitosan (CEC) and oxidized sodium alginate (OSA) as an example. The versatile red fluorescent hydrogel simultaneously combines the features of injection, biocompatibility, and augmented mechanical properties and self-healing behavior, especially in rapid self-recovery even after integration. The R-CDs@α-CD uniformly dispersed into dynamic hydrogel played the role of killing two birds with one stone, that is, endowing red emission of a hydrophilic fluorescent substance, and improving mechanical and self-healing properties as a dynamic nano-crosslinker, via forming hydrogen bonds as reversible crosslinkings. The novel red fluorescent and dynamic hydrogel based on polysaccharides is promising for using as biomaterials in biomedical field.
Collapse
Affiliation(s)
- Yu Lan Tong
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center forExperimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Kuan Yang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center forExperimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Wei Wei
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center forExperimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Li Ting Gao
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center forExperimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Peng Cheng Li
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center forExperimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Xin Yi Zhao
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center forExperimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Yong Mei Chen
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center forExperimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China.
| | - Jianhui Li
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi''an, Shaanxi 710068,China
| | - Haopeng Li
- Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Hideyuki Miyatake
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
| |
Collapse
|
11
|
Nikolaev VV, Lepekhina TB, Alliluev AS, Bidram E, Sokolov PM, Nabiev IR, Kistenev YV. Quantum Dot-Based Nanosensors for In Vitro Detection of Mycobacterium tuberculosis. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1553. [PMID: 39404280 PMCID: PMC11478040 DOI: 10.3390/nano14191553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024]
Abstract
Despite the existing effective treatment methods, tuberculosis (TB) is the second most deadly infectious disease, its carriers in the latent and active phases accounting for more than 20% of the world population. An effective method for controlling TB and reducing TB mortality is regular population screening aimed at diagnosing the latent form of TB and taking preventive and curative measures. Numerous methods allow diagnosing TB by directly detecting Mycobacterium tuberculosis (M.tb) biomarkers, including M.tb DNA, proteins, and specific metabolites or antibodies produced by the host immune system in response to M.tb. PCR, ELISA, immunofluorescence and immunochemical analyses, flow cytometry, and other methods allow the detection of M.tb biomarkers or the host immune response to M.tb by recording the optical signal from fluorescent or colorimetric dyes that are components of the diagnostic systems. Current research in biosensors is aimed at increasing the sensitivity of detection, a promising approach being the use of fluorescent quantum dots as brighter and more photostable optical tags. Here, we review current methods for the detection of M.tb biomarkers using quantum dot-based nanosensors and summarize data on the M.tb biomarkers whose detection can be made considerably more sensitive by using these sensors.
Collapse
Affiliation(s)
- Viktor V. Nikolaev
- Laboratory of Laser Molecular Imaging and Machine Learning, National Research Tomsk State University, 634050 Tomsk, Russia; (V.V.N.); (T.B.L.); (A.S.A.)
| | - Tatiana B. Lepekhina
- Laboratory of Laser Molecular Imaging and Machine Learning, National Research Tomsk State University, 634050 Tomsk, Russia; (V.V.N.); (T.B.L.); (A.S.A.)
| | - Alexander S. Alliluev
- Laboratory of Laser Molecular Imaging and Machine Learning, National Research Tomsk State University, 634050 Tomsk, Russia; (V.V.N.); (T.B.L.); (A.S.A.)
- Tomsk Phthisiopulmonology Medical Center, Rosa Luxemburg St., 634009 Tomsk, Russia
| | - Elham Bidram
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran;
| | - Pavel M. Sokolov
- Life Improvement by Future Technologies (LIFT) Center, Skolkovo, 143025 Moscow, Russia;
- Laboratory of Nano-Bioengineering, Moscow Engineering Physics Institute (MEPhI), National Research Nuclear University, 115409 Moscow, Russia
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
| | - Igor R. Nabiev
- Life Improvement by Future Technologies (LIFT) Center, Skolkovo, 143025 Moscow, Russia;
- Laboratory of Nano-Bioengineering, Moscow Engineering Physics Institute (MEPhI), National Research Nuclear University, 115409 Moscow, Russia
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
- Laboratoire BioSpecT (BioSpectroscopie Translationnelle), Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Yury V. Kistenev
- Laboratory of Laser Molecular Imaging and Machine Learning, National Research Tomsk State University, 634050 Tomsk, Russia; (V.V.N.); (T.B.L.); (A.S.A.)
| |
Collapse
|
12
|
Zhang X, Yang L, Wang F, Su Y. Carbon quantum dots for the diagnosis and treatment of ophthalmic diseases. Hum Cell 2024; 37:1336-1346. [PMID: 39093514 DOI: 10.1007/s13577-024-01111-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
Carbon quantum dots (CQDs), an emerging nanomaterial, are gaining attention in ophthalmological applications due to their distinctive physical, chemical, and biological characteristics. For example, their inherent fluorescent capabilities offer a novel and promising alternative to conventional fluorescent dyes for ocular disease diagnostics. Furthermore, because of the excellent biocompatibility and minimal cytotoxicity, CQDs are well-suited for therapeutic applications. In addition, functionalized CQDs can effectively deliver drugs to the posterior part of the eyeball to inhibit neovascularization. This review details the use of CQDs in the management of ophthalmic diseases, including various retinal diseases, and ocular infections. While still in its initial phases within ophthalmology, the significant potential of CQDs for diagnosing and treating eye conditions is evident.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Ophthalmology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liang Yang
- Harbin Purui Eye Hospital, Harbin, China
| | - Feng Wang
- Department of Ophthalmology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Ying Su
- Eye Hospital, The first affiliated hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
13
|
Bhattacharya T, Preetam S, Mukherjee S, Kar S, Roy DS, Singh H, Ghose A, Das T, Mohapatra G. Anticancer activity of quantum size carbon dots: opportunities and challenges. DISCOVER NANO 2024; 19:122. [PMID: 39103694 DOI: 10.1186/s11671-024-04069-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024]
Abstract
Research into the anticancer activity of quantum-sized carbon dots (CDs) has emerged as a promising avenue in cancer research. This CDs delves into the opportunities and challenges associated with harnessing the potential of these nanostructures for combating cancer. Quantum-sized carbon dots, owing to their unique physicochemical properties, exhibit distinct advantages as potential therapeutic agents. Opportunities lie in their tunable size, surface functionalization capabilities, and biocompatibility, enabling targeted drug delivery and imaging in cancer cells. However, we include challenges, a comprehensive understanding of the underlying mechanisms, potential toxicity concerns, and the optimization of synthesis methods for enhanced therapeutic efficacy. A succinct summary of the state of the research in this area is given in this review, emphasizing the exciting possibilities and ongoing challenges in utilizing quantum-sized carbon dots as a novel strategy for cancer treatment.
Collapse
Affiliation(s)
- Tanima Bhattacharya
- Faculty of Applied Science, Lincoln University College, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia.
| | - Subham Preetam
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Sohini Mukherjee
- Department of Environmental Science, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Sanjukta Kar
- Dietetics and Applied Nutrition, Amity University Kolkata, Kadampukur, India
| | | | - Harshita Singh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Arak Ghose
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Tanmoy Das
- Faculty of Engineering, Lincoln University College, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia.
| | - Gautam Mohapatra
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| |
Collapse
|
14
|
Chopra A, Kumari Y, Singh AP, Sharma Y. A review on green synthesis, biological applications of carbon dots in the field of drug delivery, biosensors, and bioimaging. LUMINESCENCE 2024; 39:e4870. [PMID: 39155541 DOI: 10.1002/bio.4870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/18/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
Since the beginning of nanoscience and nanotechnology, carbon dots (CDs) have been the foundational idea and have dominated the growth of the nano-field. CDs are an intriguing platform for utilization in biology, technology, catalysis, and other fields thanks to their numerous distinctive structural, physicochemical, and photochemical characteristics. Since several carbon dots have already been created, they have been assessed based on their synthesis process, and luminescence characteristics. Due to their biocompatibility, less toxic effects, and most significantly their fluorescent features in contrast to other carbon nanostructures, CDs have several benefits. This review focuses on the most recent advancements in the characterization, applications, and synthesis techniques used for CDs made from natural sources. It will also direct scientists in the creation of a synthesis technique for adjustable carbon dots that is more practical, effective, and environmentally benign. With low toxicity and low cost, CDs are meeting the new era's requirements for more selectivity and sensitivity in the detection and sensing of various things, such as biomaterial sensing, enzymes, chemical contamination, and temperature sensing. Its variety of properties, such as optical properties, chemiluminescence, and morphological analysis, make it a good option to use in bioimaging, drug delivery, biosensors, and cancer diagnosis.
Collapse
Affiliation(s)
- Arshdeep Chopra
- School of Pharmacy, Lingaya's Vidyapeeth, Faridabad, Haryana, India
| | - Yogindra Kumari
- School of Pharmacy, Lingaya's Vidyapeeth, Faridabad, Haryana, India
| | - Ajay Pal Singh
- School of Pharmacy, Lingaya's Vidyapeeth, Faridabad, Haryana, India
| | - Yash Sharma
- School of Pharmacy, Lingaya's Vidyapeeth, Faridabad, Haryana, India
| |
Collapse
|
15
|
Bazazi S, Hashemi E, Mohammadjavadi M, Saeb MR, Liu Y, Huang Y, Xiao H, Seidi F. Metal-organic framework (MOF)/C-dots and covalent organic framework (COF)/C-dots hybrid nanocomposites: Fabrications and applications in sensing, medical, environmental, and energy sectors. Adv Colloid Interface Sci 2024; 328:103178. [PMID: 38735101 DOI: 10.1016/j.cis.2024.103178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/31/2024] [Accepted: 05/03/2024] [Indexed: 05/14/2024]
Abstract
Developing new hybrid materials is critical for addressing the current needs of the world in various fields, such as energy, sensing, health, hygiene, and others. C-dots are a member of the carbon nanomaterial family with numerous applications. Aggregation is one of the barriers to the performance of C-dots, which causes luminescence quenching, surface area decreases, etc. To improve the performance of C-dots, numerous matrices including metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), and polymers have been composited with C-dots. The porous crystalline structures, which are constituents of metal nodes and organic linkers (MOFs) or covalently attached organic units (COFs) provide privileged features such as high specific surface area, tunable structures, and pore diameters, modifiable surface, high thermal, mechanical, and chemical stabilities. Also, the MOFs and COFs protect the C-dots from the environment. Therefore, MOF/C-dots and COF/C-dots composites combine their features while retaining topological properties and improving performances. In this review, we first compare MOFs with COFs as matrices for C-dots. Then, the recent progress in developing hybrid MOFs/C-dots and COFs/C-dots composites has been discussed and their applications in various fields have been explained briefly.
Collapse
Affiliation(s)
- Sina Bazazi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Esmaeil Hashemi
- Department of Chemistry, Faculty of Science, University of Guilan, PO Box 41335-1914, Rasht, Iran
| | - Mahdi Mohammadjavadi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Mohammad Reza Saeb
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, 80-416 Gdańsk, Poland
| | - Yuqian Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yang Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada.
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
16
|
Long Q, Zhao X, Gao L, Liu M, Pan F, Gao X, Zhan C, Chen Y, Wang J, Qian J. Effects of Surface IR783 Density on the In Vivo Behavior and Imaging Performance of Liposomes. Pharmaceutics 2024; 16:744. [PMID: 38931866 PMCID: PMC11206891 DOI: 10.3390/pharmaceutics16060744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Background: Nanoparticles conjugated with fluorescent probes have versatile applications, serving not only for targeted fluorescent imaging but also for evaluating the in vivo profiles of designed nanoparticles. However, the relationship between fluorophore density and nanoparticle behavior remains unexplored. Methods: The IR783-modified liposomes (IR783-sLip) were prepared through a modified ethanol injection and extrusion method. The cellular uptake efficiency of IR783-sLip was characterized by flow cytometry and fluorescence microscope imaging. The effects of IR783 density on liposomal in vivo behavior were investigated by pharmacokinetic studies, biodistribution studies, and in vivo imaging. The constitution of protein corona was analyzed by the Western blot assay. Results: Dense IR783 modification improved cellular uptake of liposomes in vitro but hindered their blood retention and tumor imaging performance in vivo. We found a correlation between IR783 density and protein corona absorption, particularly IgM, which significantly impacted the liposome performance. Meanwhile, we observed that increasing IR783 density did not consistently improve the effectiveness of tumor imaging. Conclusions: Increasing the density of modified IR783 on liposomes is not always beneficial for tumor near-infrared (NIR) imaging yield. It is not advisable to prematurely evaluate novel nanomaterials through fluorescence dye conjugation without carefully optimizing the density of the modifications.
Collapse
Affiliation(s)
- Qianqian Long
- School of Pharmacy, Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; (Q.L.); (X.Z.); (M.L.); (F.P.)
| | - Xinmin Zhao
- School of Pharmacy, Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; (Q.L.); (X.Z.); (M.L.); (F.P.)
| | - Lili Gao
- Department of Pathology, Pudong New Area People’s Hospital, Shanghai 201299, China;
| | - Mengyuan Liu
- School of Pharmacy, Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; (Q.L.); (X.Z.); (M.L.); (F.P.)
| | - Feng Pan
- School of Pharmacy, Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; (Q.L.); (X.Z.); (M.L.); (F.P.)
| | - Xihui Gao
- School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (X.G.); (C.Z.)
| | - Changyou Zhan
- School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (X.G.); (C.Z.)
| | - Yang Chen
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
| | - Jialei Wang
- School of Pharmacy, Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; (Q.L.); (X.Z.); (M.L.); (F.P.)
| | - Jun Qian
- School of Pharmacy, Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; (Q.L.); (X.Z.); (M.L.); (F.P.)
| |
Collapse
|
17
|
Rehman S, Nadeem A, Akram U, Sarwar A, Quraishi A, Siddiqui H, Malik MAJ, Nabi M, Ul Haq I, Cho A, Mazumdar I, Kim M, Chen K, Sepehri S, Wang R, Balar AB, Lakhani DA, Yedavalli VS. Molecular Mechanisms of Ischemic Stroke: A Review Integrating Clinical Imaging and Therapeutic Perspectives. Biomedicines 2024; 12:812. [PMID: 38672167 PMCID: PMC11048412 DOI: 10.3390/biomedicines12040812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Ischemic stroke poses a significant global health challenge, necessitating ongoing exploration of its pathophysiology and treatment strategies. This comprehensive review integrates various aspects of ischemic stroke research, emphasizing crucial mechanisms, therapeutic approaches, and the role of clinical imaging in disease management. It discusses the multifaceted role of Netrin-1, highlighting its potential in promoting neurovascular repair and mitigating post-stroke neurological decline. It also examines the impact of blood-brain barrier permeability on stroke outcomes and explores alternative therapeutic targets such as statins and sphingosine-1-phosphate signaling. Neurocardiology investigations underscore the contribution of cardiac factors to post-stroke mortality, emphasizing the importance of understanding the brain-heart axis for targeted interventions. Additionally, the review advocates for early reperfusion and neuroprotective agents to counter-time-dependent excitotoxicity and inflammation, aiming to preserve tissue viability. Advanced imaging techniques, including DWI, PI, and MR angiography, are discussed for their role in evaluating ischemic penumbra evolution and guiding therapeutic decisions. By integrating molecular insights with imaging modalities, this interdisciplinary approach enhances our understanding of ischemic stroke and offers promising avenues for future research and clinical interventions to improve patient outcomes.
Collapse
Affiliation(s)
- Sana Rehman
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Arsalan Nadeem
- Department of Medicine, Allama Iqbal Medical College, Lahore 54700, Pakistan;
| | - Umar Akram
- Department of Medicine, Allama Iqbal Medical College, Lahore 54700, Pakistan;
| | - Abeer Sarwar
- Department of Medicine, Fatima Memorial Hospital College of Medicine and Dentistry, Lahore 54000, Pakistan; (A.S.); (H.S.)
| | - Ammara Quraishi
- Department of Medicine, Dow University of Health Sciences, Karachi 74200, Pakistan;
| | - Hina Siddiqui
- Department of Medicine, Fatima Memorial Hospital College of Medicine and Dentistry, Lahore 54000, Pakistan; (A.S.); (H.S.)
| | | | - Mehreen Nabi
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Ihtisham Ul Haq
- Department of Medicine, Amna Inayat Medical College, Sheikhupura 54300, Pakistan;
| | - Andrew Cho
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Ishan Mazumdar
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Minsoo Kim
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Kevin Chen
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Sadra Sepehri
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Richard Wang
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Aneri B. Balar
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Dhairya A. Lakhani
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Vivek S. Yedavalli
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| |
Collapse
|
18
|
Nethaji P, Revathi P, Senthil Kumar P, Logesh M, Rajabathar JR, Al-Lohedan HA, Arokiyaraj S, Rangasamy G. Fluorescence enhancing and quenching signal based on new approach for selective detection of multiple organochlorine pesticides using blue emissive-carbon dot. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123418. [PMID: 38307243 DOI: 10.1016/j.envpol.2024.123418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/04/2024]
Abstract
Measuring the concentration of organochlorine pesticides (OCPs) in agriculture has engaged significant awareness for healthcare investigation since OCPs are harmful to many physiological processes. Excessive usage of these compounds can result in major contamination of the environment and food supply chains. As a result, more accurate and rapid ways to detect pesticide residues in food are required. In this work, we have portrayed the surface-engineered fluorescent blue emissive-carbon dot (B-CD) with a high quantum yield (49.3 %) via the hydrothermal method for fluorescent sensing of OCPs on real samples. The amine group functionalities of carbon dots have supported the direct coordination with -Cl and -OH groups of HEP, ENS, CDF and 2,4-DPAC for the sensitive detection of OCPs, by switching in the fluorescent intensity of B-CD. The functional group of OCPs exhibits a variety of binding interactions with B-CD to contribute a complex formation, which leads to static quenching via an insubstantial restricted electron transfer process. The synthesized carbon dots exhibit individuality in binding nature towards different OCPs. Fluorescence studies help to distinguish the target OCPs and their low detection limits (LODs) were 0.002, 0.099, 0.16 and 0.082 μM for Heptachlor (HEP - turn "on"), Endosulfan (ENS), Chlordimeform (CDF) and 2,4-dichlorophenoxyacetic acid (2,4-DPAC - turn "off") OCPs respectively. The real water samples and agriculture food samples were effectively investigated and the OCP toxicity was noted. Thus, the design of the fluorescence sensor is established as an easy and proficient sensing method for detecting OCPs.
Collapse
Affiliation(s)
- P Nethaji
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, Tamil Nadu, India
| | - P Revathi
- Department of Chemistry, Annamalai University, Chidambaram, 608 002, Tamil Nadu, India
| | - P Senthil Kumar
- Centre for Pollution Control and Environmental Engineering, School of Engineering and Technology, Pondicherry University, Kalapet, Puducherry, 605014, India
| | - M Logesh
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Jothi Ramalingam Rajabathar
- Department of Chemistry, College of Science, King Saud University, P.O. Box. 2455, Riyadh, 11451, Kingdom of Saudi Arabia
| | - H A Al-Lohedan
- Department of Chemistry, College of Science, King Saud University, P.O. Box. 2455, Riyadh, 11451, Kingdom of Saudi Arabia
| | - S Arokiyaraj
- Department of Food Science and Biotechnology, Sejong University, Seoul, 05006, South Korea
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| |
Collapse
|
19
|
Wang H, Yang S, Chen L, Li Y, He P, Wang G, Dong H, Ma P, Ding G. Tumor diagnosis using carbon-based quantum dots: Detection based on the hallmarks of cancer. Bioact Mater 2024; 33:174-222. [PMID: 38034499 PMCID: PMC10684566 DOI: 10.1016/j.bioactmat.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/15/2023] [Accepted: 10/05/2023] [Indexed: 12/02/2023] Open
Abstract
Carbon-based quantum dots (CQDs) have been shown to have promising application value in tumor diagnosis. Their use, however, is severely hindered by the complicated nature of the nanostructures in the CQDs. Furthermore, it seems impossible to formulate the mechanisms involved using the inadequate theoretical frameworks that are currently available for CQDs. In this review, we re-consider the structure-property relationships of CQDs and summarize the current state of development of CQDs-based tumor diagnosis based on biological theories that are fully developed. The advantages and deficiencies of recent research on CQDs-based tumor diagnosis are thus explained in terms of the manifestation of nine essential changes in cell physiology. This review makes significant progress in addressing related problems encountered with other nanomaterials.
Collapse
Affiliation(s)
- Hang Wang
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- CAS Center for Excellence in Superconducting Electronics (CENSE), Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Siwei Yang
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Liangfeng Chen
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Yongqiang Li
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Peng He
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Gang Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, PR China
| | - Hui Dong
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- CAS Center for Excellence in Superconducting Electronics (CENSE), Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Peixiang Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
| | - Guqiao Ding
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| |
Collapse
|
20
|
Liu C, Hu J, Yang W, Shi J, Chen Y, Fan X, Gao W, Cheng L, Luo QY, Zhang M. Carbon dot enhanced peroxidase-like activity of platinum nanozymes. NANOSCALE 2024; 16:4637-4646. [PMID: 38314787 DOI: 10.1039/d3nr04964g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
As one of the most intriguing nanozymes, the platinum (Pt) nanozyme has attracted tremendous research interest due to its various catalytic activities but its application is still limited by its poor colloidal stability and low affinity to substrates. Here, we design a highly stable Pt@carbon dot (Pt@CD) hybrid nanozyme with enhanced peroxidase (POD)-like activity (specific activity of 1877 U mg-1). The Pt@CDs catalyze the decomposition of hydrogen peroxide (H2O2) to produce singlet oxygen and hydroxyl radicals and exhibit high affinity to H2O2 and high specificity to 3,3',5,5'-tetramethyl-benzidine. We reveal that both the hydroxyl and carbonyl groups of CDs could coordinate with Pt2+ and then regulate the charge state of the Pt nanozyme, facilitating the formation of Pt@CDs and improving the POD-like activity of Pt@CDs. Colorimetric detection assays based on Pt@CDs for H2O2, dopamine, and glucose with a satisfactory detection performance are achieved. Moreover, the Pt@CDs show a H2O2-involving antibacterial effect by destroying the cell membrane. Our findings provide new opportunities for designing hybrid nanozymes with desirable stability and catalytic performance by using CDs as nucleating templates and stabilizers.
Collapse
Affiliation(s)
- Cui Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 400044, P. R. China
| | - Jiao Hu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, P. R. China
| | - Wenwen Yang
- School of Food and Drug, Shenzhen Polytechnic University, Shenzhen 518055, P. R. China.
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, P. R. China
| | - Jinyu Shi
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 400044, P. R. China
- School of Chemical Science and Technology, Yunnan University, Kunming, 650500, P.R. China
| | - Yiming Chen
- School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, P. R. China.
| | - Xing Fan
- Department of Pathology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Wenhui Gao
- School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, P. R. China.
| | - Liangliang Cheng
- School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, P. R. China.
| | - Qing-Ying Luo
- School of Food and Drug, Shenzhen Polytechnic University, Shenzhen 518055, P. R. China.
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, P. R. China.
| |
Collapse
|
21
|
Terzapulo X, Kassenova A, Bukasov R. Immunoassays: Analytical and Clinical Performance, Challenges, and Perspectives of SERS Detection in Comparison with Fluorescent Spectroscopic Detection. Int J Mol Sci 2024; 25:2080. [PMID: 38396756 PMCID: PMC10889711 DOI: 10.3390/ijms25042080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Immunoassays (IAs) with fluorescence-based detection are already well-established commercialized biosensing methods, such as enzyme-linked immunosorbent assay (ELISA) and lateral flow immunoassay (LFIA). Immunoassays with surface-enhanced Raman spectroscopy (SERS) detection have received significant attention from the research community for at least two decades, but so far they still lack a wide clinical commercial application. This review, unlike any other review that we have seen, performs a three-dimensional performance comparison of SERS IAs vs. fluorescence IAs. First, we compared the limit of detection (LOD) as a key performance parameter for 30 fluorescence and 30 SERS-based immunoassays reported in the literature. We also compared the clinical performances of a smaller number of available reports for SERS vs. fluorescence immunoassays (FIAs). We found that the median and geometric average LODs are about 1.5-2 orders of magnitude lower for SERS-based immunoassays in comparison to fluorescence-based immunoassays. For instance, the median LOD for SERS IA is 4.3 × 10-13 M, whereas for FIA, it is 1.5 × 10-11 M. However, there is no significant difference in average relative standard deviation (RSD)-both are about 5-6%. The analysis of sensitivity, selectivity, and accuracy reported for a limited number of the published clinical studies with SERS IA and FIA demonstrates an advantage of SERS IA over FIA, at least in terms of the median value for all three of those parameters. We discussed common and specific challenges to the performances of both SERS IA and FIA, while proposing some solutions to mitigate those challenges for both techniques. These challenges include non-specific protein binding, non-specific interactions in the immunoassays, sometimes insufficient reproducibility, relatively long assay times, photobleaching, etc. Overall, this review may be useful for a large number of researchers who would like to use immunoassays, but particularly for those who would like to make improvements and move forward in both SERS-based IAs and fluorescence-based IAs.
Collapse
Affiliation(s)
| | | | - Rostislav Bukasov
- Department of Chemistry, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan
| |
Collapse
|
22
|
Menichetti A, Mordini D, Montalti M. Polydopamine Nanosystems in Drug Delivery: Effect of Size, Morphology, and Surface Charge. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:303. [PMID: 38334574 PMCID: PMC10856634 DOI: 10.3390/nano14030303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
Recently, drug delivery strategies based on nanomaterials have attracted a lot of interest in different kinds of therapies because of their superior properties. Polydopamine (PDA), one of the most interesting materials in nanomedicine because of its versatility and biocompatibility, has been widely investigated in the drug delivery field. It can be easily functionalized to favor processes like cellular uptake and blood circulation, and it can also induce drug release through two kinds of stimuli: NIR light irradiation and pH. In this review, we describe PDA nanomaterials' performance on drug delivery, based on their size, morphology, and surface charge. Indeed, these characteristics strongly influence the main mechanisms involved in a drug delivery system: blood circulation, cellular uptake, drug loading, and drug release. The understanding of the connections between PDA nanosystems' properties and these phenomena is pivotal to obtain a controlled design of new nanocarriers based on the specific drug delivery applications.
Collapse
Affiliation(s)
| | | | - Marco Montalti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.); (D.M.)
| |
Collapse
|
23
|
Gao J, Zhu X, Long Y, Liu M, Li H, Zhang Y, Yao S. Boronic Acid-Decorated Carbon Dot-Based Semiselective Multichannel Sensor Array for Cytokine Discrimination and Oral Cancer Diagnosis. Anal Chem 2024; 96:1795-1802. [PMID: 38241199 DOI: 10.1021/acs.analchem.3c05240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Cytokines are essential components of the immune system and are recognized as significant biomarkers. However, detection of a single cytokine is not precise and reliable enough to satisfy the requirements for diagnosis. Herein, we developed a pattern recognition-based method for the multiplexed sensing of cytokines, which involves three-color-emitting boronic acid-decorated carbon dots (BCDs) and arginine-modified titanium carbide (Ti3C2 MXenes) as the sensor array. Initially, the fluorescence signals of the three BCDs were quenched by Ti3C2 MXenes. In the presence of cytokines, the fluorescence intensity of the BCDs was restored or further quenched by different cytokines. The fluorescence response occurs in two steps: first, boronic acid interacts with cis-diol functional groups of cytokines, and second, arginine headgroup selectively interacts with glycans. By exploiting the different competing binding of the BCDs and the cytokines toward Ti3C2 MXenes, seven cytokines and their mixtures can be effectively discriminated at a concentration of 20 ng mL-1. Furthermore, our sensor array demonstrated an excellent performance in classifying human oral cancer saliva samples from healthy individuals with clinically relevant specificity. The noninvasive method offers a rapid approach to cytokine analysis, benefiting early and timely clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Jie Gao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Xiaohua Zhu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Ying Long
- Translational Medicine Centre, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Meiling Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Haitao Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Shouzhuo Yao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| |
Collapse
|
24
|
Ansari MA, Shoaib S, Chauhan W, Gahtani RM, Hani U, Alomary MN, Alasiri G, Ahmed N, Jahan R, Yusuf N, Islam N. Nanozymes and carbon-dots based nanoplatforms for cancer imaging, diagnosis and therapeutics: Current trends and challenges. ENVIRONMENTAL RESEARCH 2024; 241:117522. [PMID: 37967707 DOI: 10.1016/j.envres.2023.117522] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/14/2023] [Accepted: 10/25/2023] [Indexed: 11/17/2023]
Abstract
Cancer patients face a significant clinical and socio-economic burden due to increased incidence, mortality, and poor survival. Factors like late diagnosis, recurrence, drug resistance, severe side effects, and poor bioavailability limit the scope of current therapies. There is a need for novel, cost-effective, and safe diagnostic methods, therapeutics to overcome recurrence and drug resistance, and drug delivery vehicles with enhanced bioavailability and less off-site toxicity. Advanced nanomaterial-based research is aiding cancer biologists by providing solutions for issues like hypoxia, tumor microenvironment, low stability, poor penetration, target non-specificity, and rapid drug clearance. Currently, nanozymes and carbon-dots are attractive due to their low cost, high catalytic activity, biocompatibility, and lower toxicity. Nanozymes and carbon-dots are increasingly used in imaging, biosensing, diagnosis, and targeted cancer therapy. Integrating these materials with advanced diagnostic tools like CT scans and MRIs can aid in clinical decision-making and enhance the effectiveness of chemotherapy, photothermal, photodynamic, and sonodynamic therapies, with minimal invasion and reduced collateral effects.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia.
| | - Shoaib Shoaib
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Waseem Chauhan
- Division of Hematology, Duke Comprehensive Sickle Cell Center, Department of Medicine, Duke University School of Medicine, Research Drive, Durham, NC 27710, USA
| | - Reem M Gahtani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62529, Saudi Arabia
| | - Umme Hani
- Department of pharmaceutics, Collage of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Mohammad N Alomary
- Advanced Diagnostic and Therapeutic Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Glowi Alasiri
- Department of Biochemistry, College of Medicine, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13317, Saudi Arabia
| | - Nabeel Ahmed
- Department of Life Sciences, Shiv Nadar University, Greater Noida 201314, Uttar Pradesh, India
| | - Roshan Jahan
- Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Nabiha Yusuf
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Najmul Islam
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia.
| |
Collapse
|
25
|
Han C, Yang H, Fan Y, Wang Z, Li P, Jiang J, Huang M, Xu J, Chen J, Chen L. Opposite regulation effects of Al 3+ on different types of carbon quantum dots and potential applications in information encryption. RSC Adv 2024; 14:1944-1951. [PMID: 38192313 PMCID: PMC10772954 DOI: 10.1039/d3ra07801a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/01/2024] [Indexed: 01/10/2024] Open
Abstract
Regulating the photoluminescence (PL) of carbon quantum dots (CQDs) through ion modification is a well-established and effective approach. Herein, we report the opposite regulation effects of Al3+ ions on the PL properties of two distinct types of CQDs (graphene quantum dots, GQDs, and nitrogen-doped carbon quantum dots of 2,3-diaminophenazine, DAP), and elucidate the underlying mechanism of the binding of Al3+ ions to different PL sites on CQDs by employing ultraviolet-visible spectroscopy, X-ray photoelectron spectroscopy, and density functional theory calculations. Specifically, Al3+ ions are primarily situated around the oxygen-containing groups, which do not impact the π-π regions of GQDs. However, Al3+ ions are preferentially adsorbed on the top of pyridine nitrogen in the phenazine rings of DAP, thus reducing the PL regions of DAP. Based on the opposite PL effects of Al3+ on GQDs and DAP, we explore potential applications of information encryption and successfully realize multi-level information encryption and decryption, which may provide new strategies for CQDs in information security.
Collapse
Affiliation(s)
- Changdao Han
- Department of Optical Engineering, College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University Hangzhou 311300 China
| | - Huan Yang
- School of Physical Science and Technology, Ningbo University Ningbo 315211 China
| | - Yan Fan
- Department of Optical Engineering, College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University Hangzhou 311300 China
| | - Zhikun Wang
- Department of Optical Engineering, College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University Hangzhou 311300 China
| | - Pei Li
- School of Physical Science and Technology, Ningbo University Ningbo 315211 China
| | - Jie Jiang
- School of Physical Science and Technology, Ningbo University Ningbo 315211 China
| | - Mohan Huang
- Department of Optical Engineering, College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University Hangzhou 311300 China
| | - Jing Xu
- Department of Optical Engineering, College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University Hangzhou 311300 China
| | - Junlang Chen
- Department of Optical Engineering, College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University Hangzhou 311300 China
| | - Liang Chen
- School of Physical Science and Technology, Ningbo University Ningbo 315211 China
| |
Collapse
|
26
|
Su D, Zhang R, Wang X, Ding Q, Che F, Zhang W, Wu W, Li P, Tang B. A new multi-parameter imaging platform for in vivo drug efficacy evaluation of ischemic stroke. Talanta 2024; 266:125133. [PMID: 37659227 DOI: 10.1016/j.talanta.2023.125133] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/06/2023] [Accepted: 08/26/2023] [Indexed: 09/04/2023]
Abstract
Ischemic stroke with high incidence and disability rate severely endangers human health. Current clinical treatment strategies are quite limited, new drugs for ischemic stroke are urgently needed. However, most existing methods for the efficacy evaluation of new drugs possess deficiencies of divorcing from the true biological context, single detection indicator and complex operations, leading to evaluation biases and delaying drug development process. In this work, leveraging the advantages of fluorescence imaging with non-invasive, real-time, in-situ, high selectivity and high sensitivity, a new multi-parameter simultaneous fluorescence imaging platform (MPSFL-Platform) based on two fluorescence materials was constructed to evaluate the efficacy of new drug for ischemic stroke. Through simultaneous fluorescence observing three key indicators of ischemic stroke, malondialdehyde (MDA), formaldehyde (FA), and monoamine oxidase A (MAO-A), the efficacy evaluations of three drugs for ischemic stroke were real-time and in-situ performed. Compared with edaravone and butylphthalide, edaravone dexborneol exhibited better therapeutic effect by using MPSFL-Platform. The successful establishment of MPSFL-Platform is serviceable to accelerate the conduction of preclinical trial and the exploration of pathophysiology mechanism for drugs related to ischemic stroke and other brain diseases, which is perspective to promote the efficiency of new drug development.
Collapse
Affiliation(s)
- Di Su
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, People's Republic of China
| | - Ran Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, People's Republic of China
| | - Xin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, People's Republic of China.
| | - Qi Ding
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, People's Republic of China
| | - Feida Che
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, People's Republic of China
| | - Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, People's Republic of China
| | - Wei Wu
- Department of Neurology, Qi-Lu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, Shandong, People's Republic of China.
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, People's Republic of China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, People's Republic of China; Laoshan Laboratory, Qingdao, 266237, Shandong, People's Republic of China.
| |
Collapse
|
27
|
Tripti T, Singh P, Rani N, Kumar S, Kumar K, Kumar P. Carbon dots as potential candidate for photocatalytic treatment of dye wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:6738-6765. [PMID: 38157163 DOI: 10.1007/s11356-023-31437-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
Water is the utmost important element for the existence of life. In recent decades, water resources have become highly contaminated by a variety of pollutants, especially toxic dyes that are harmful to both living beings and environment. Hence, there is an urgent need to develop more effective methods than traditional wastewater treatment approaches for treatment of hazardous dyes. Herein, we have addressed the various aspects related to the effective and economically feasible method for photocatalytic degradation of these dyes employing carbon dots. The photocatalysts based on carbon dots including those mediated from biomass have many superiorities over conventional methods such as utilization of economically affordable, non-toxic, rapid reactions, and simple post-processing steps. The current study will also facilitate better insight into the understanding of photocatalytic treatment of dye-polluted wastewater for future wastewater treatment studies. Additionally, the possible mechanistic pathways of photocatalytic dye decontamination, several challenges, and future perspectives have also been summarized.
Collapse
Affiliation(s)
- Tripti Tripti
- J. C, Bose University of Science & Technology, YMCA, Faridabad, 121006, Haryana, India
| | - Permender Singh
- Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Sonepat, 131039, Haryana, India
| | - Neeru Rani
- Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Sonepat, 131039, Haryana, India
| | - Sandeep Kumar
- J. C, Bose University of Science & Technology, YMCA, Faridabad, 121006, Haryana, India
| | - Krishan Kumar
- Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Sonepat, 131039, Haryana, India
| | - Parmod Kumar
- J. C, Bose University of Science & Technology, YMCA, Faridabad, 121006, Haryana, India.
| |
Collapse
|
28
|
Zhao W, Ma X, Gao L, Wang X, Luo Y, Wang Y, Li T, Ying B, Zheng D, Sun S, Liu Q, Zheng Y, Sun X, Feng W. Hierarchical Architecture Engineering of Branch-Leaf-Shaped Cobalt Phosphosulfide Quantum Dots: Enabling Multi-Dimensional Ion-Transport Channels for High-Efficiency Sodium Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305190. [PMID: 37640375 DOI: 10.1002/adma.202305190] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/13/2023] [Indexed: 08/31/2023]
Abstract
New-fashioned electrode hosts for sodium-ion batteries (SIBs) are elaborately engineered to involve multifunctional active components that can synergistically conquer the critical issues of severe volume deformation and sluggish reaction kinetics of electrodes toward immensely enhanced battery performance. Herein, it is first reported that single-phase CoPS, a new metal phosphosulfide for SIBs, in the form of quantum dots, is successfully introduced into a leaf-shaped conductive carbon nanosheet, which can be further in situ anchored on a 3D interconnected branch-like N-doped carbon nanofiber (N-CNF) to construct a hierarchical branch-leaf-shaped CoPS@C@N-CNF architecture. Both double carbon decorations and ultrafine crystal of the CoPS in-this exquisite architecture hold many significant superiorities, such as favorable train-relaxation, fast interfacial ion-migration, multi-directional migration pathways, and sufficiently exposed Na+ -storage sites. In consequence, the CoPS@C@N-CNF affords remarkable long-cycle durability over 10 000 cycles at 20.0 A g-1 and superior rate capability. Meanwhile, the CoPS@C@N-CNF-based sodium-ion full cell renders the potential proof-of-feasibility for practical applications in consideration of its high durability over a long-term cyclic lifespan with remarkable reversible capacity. Moreover, the phase transformation mechanism of the CoPS@C@N-CNF and fundamental springhead of the enhanced performance are disclosed by in situ X-ray diffraction, ex situ high-resolution TEM, and theoretical calculations.
Collapse
Affiliation(s)
- Wenxi Zhao
- School of Electronic Information Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Xiaoqing Ma
- School of Electronic Information Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China
| | - Lixia Gao
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, College of Pharmacy, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, 402160, China
| | - Xiaodeng Wang
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, College of Pharmacy, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, 402160, China
| | - Yongsong Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Yan Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Tingshuai Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Binwu Ying
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Dongdong Zheng
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Yinyuan Zheng
- Huzhou Key Laboratory of Translational Medicine, Department of General Surgery, First People's Hospital affiliated to Huzhou University, Huzhou, Zhejiang, 313000, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Wenming Feng
- Huzhou Key Laboratory of Translational Medicine, Department of General Surgery, First People's Hospital affiliated to Huzhou University, Huzhou, Zhejiang, 313000, China
| |
Collapse
|
29
|
Hussain MM, Li F, Ahmed F, Khan WU, Xiong H. Fluorescence switch based on NIR-emitting carbon dots revealing high selectivity in the rapid response and bioimaging of oxytetracycline. J Mater Chem B 2023; 11:11290-11299. [PMID: 38013459 DOI: 10.1039/d3tb02139d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The abuse of antibiotics has led to serious environmental pollution and the emergence of drug-resistant bacteria surpassing the replacement rate of antibiotics. Herein, near-infrared fluorescent carbon dots (NIR-CDs) were developed to meet the requirements for oxytetracycline (OTC) detection in food and water samples (milk, honey, and lake water) with a detection limit of 0.112 μM. These NIR-CDs, possessing excellent water-solubility, deep tissue penetration ability, and tunable optical properties, exhibit maximum emission at 790 nm (NIR-I window). Unlike traditional CDs, this novel NIR-CDs nanoprobe provides a dual response in the presence of OTC (quenching and bathochromic shifting), without obvious interference from other existing biomolecules and metal ions. Additionally, these NIR-CDs exhibit excellent photostability and multi-resistance under UV irradiation, exceptional pH stability (pH 6-12), reliable long-time exposure, and durability in ionic (NaCl) environments. Moreover, NIR-CDs and NIR-CDs@OTC are nontoxic and were successfully utilized for cell-imaging applications in normal (NIH3T3) and cancer cells (HeLa).
Collapse
Affiliation(s)
| | - Fengli Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Farid Ahmed
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Waheed Ullah Khan
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Hai Xiong
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China.
| |
Collapse
|
30
|
Su D, Zhang R, Wang X, Ding Q, Che F, Liu Z, Xu J, Zhao Y, Ji K, Wu W, Yan C, Li P, Tang B. Shedding Light on Lysosomal Malondialdehyde Affecting Vitamin B 12 Transport during Cerebral Ischemia/Reperfusion Injury. J Am Chem Soc 2023; 145:22609-22619. [PMID: 37803879 DOI: 10.1021/jacs.3c07809] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
Cerebral ischemia-reperfusion injury (CIRI) is often accompanied by upregulation of homocysteine (Hcy). Excessive Hcy damages cerebral vascular endothelial cells and neurons, inducing neurotoxicity and even neurodegeneration. Normally, supplementation of vitamin B12 is an ideal intervention to reduce Hcy. However, vitamin B12 therapy is clinically inefficacious for CIRI. Considering oxidative stress is closely related to CIRI, the lysosome is the pivotal site for vitamin B12 transport. Lysosomal oxidative stress might hinder the transport of vitamin B12. Whether lysosomal malondialdehyde (lysosomal MDA), as the authoritative biomarker of lysosomal oxidative stress, interferes with the transport of vitamin B12 has not been elucidated. This is ascribed to the absence of effective methods for real-time and in situ measurement of lysosomal MDA within living brains. Herein, a fluorescence imaging agent, Lyso-MCBH, was constructed to specifically monitor lysosomal MDA by entering the brain and targeting the lysosome. Erupting the lysosomal MDA level in living brains of mice under CIRI was first observed using Lyso-MCBH. Excessive lysosomal MDA was found to affect the efficacy of vitamin B12 by blocking the transport of vitamin B12 from the lysosome to the cytoplasm. More importantly, the expression and function of the vitamin B12 transporter LMBD1 were proved to be associated with excessive lysosomal MDA. Altogether, the revealing of the lysosomal MDA-LMBD1 axis provides a cogent interpretation of the inefficacy of vitamin B12 in CIRI, which could be a prospective therapeutic target.
Collapse
Affiliation(s)
- Di Su
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
| | - Ran Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
| | - Xin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
| | - Qi Ding
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
| | - Feida Che
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
| | - Zhenzhen Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
| | - Jingwen Xu
- Department of Neurology, Qi-Lu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qi-Lu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Yuying Zhao
- Department of Neurology, Qi-Lu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qi-Lu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Kunqian Ji
- Department of Neurology, Qi-Lu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qi-Lu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Wei Wu
- Department of Neurology, Qi-Lu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
- Brain Science Research Institute, Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Chuanzhu Yan
- Department of Neurology, Qi-Lu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qi-Lu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
- Brain Science Research Institute, Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China
- Laoshan Laboratory, Qingdao 266237, Shandong, People's Republic of China
| |
Collapse
|
31
|
Yang Z, Xu T, Li H, She M, Chen J, Wang Z, Zhang S, Li J. Zero-Dimensional Carbon Nanomaterials for Fluorescent Sensing and Imaging. Chem Rev 2023; 123:11047-11136. [PMID: 37677071 DOI: 10.1021/acs.chemrev.3c00186] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Advances in nanotechnology and nanomaterials have attracted considerable interest and play key roles in scientific innovations in diverse fields. In particular, increased attention has been focused on carbon-based nanomaterials exhibiting diverse extended structures and unique properties. Among these materials, zero-dimensional structures, including fullerenes, carbon nano-onions, carbon nanodiamonds, and carbon dots, possess excellent bioaffinities and superior fluorescence properties that make these structures suitable for application to environmental and biological sensing, imaging, and therapeutics. This review provides a systematic overview of the classification and structural properties, design principles and preparation methods, and optical properties and sensing applications of zero-dimensional carbon nanomaterials. Recent interesting breakthroughs in the sensitive and selective sensing and imaging of heavy metal pollutants, hazardous substances, and bioactive molecules as well as applications in information encryption, super-resolution and photoacoustic imaging, and phototherapy and nanomedicine delivery are the main focus of this review. Finally, future challenges and prospects of these materials are highlighted and envisaged. This review presents a comprehensive basis and directions for designing, developing, and applying fascinating fluorescent sensors fabricated based on zero-dimensional carbon nanomaterials for specific requirements in numerous research fields.
Collapse
Affiliation(s)
- Zheng Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Tiantian Xu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Hui Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Mengyao She
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- Ministry of Education Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Provincial Key Laboratory of Biotechnology of Shaanxi, The College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Jiao Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- Ministry of Education Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Provincial Key Laboratory of Biotechnology of Shaanxi, The College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Zhaohui Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Shengyong Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Jianli Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
32
|
Wolski P, Panczyk T, Brzyska A. Molecular Dynamics Simulations of Carbon Quantum Dots/Polyamidoamine Dendrimer Nanocomposites. THE JOURNAL OF PHYSICAL CHEMISTRY C 2023; 127:16740-16750. [DOI: 10.1021/acs.jpcc.3c04661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Pawel Wolski
- Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30239 Cracow, Poland
| | - Tomasz Panczyk
- Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30239 Cracow, Poland
| | - Agnieszka Brzyska
- Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30239 Cracow, Poland
| |
Collapse
|
33
|
Yang J, Liu H, Huang Y, Li L, Zhu X, Ding Y. One-step hydrothermal synthesis of near-infrared emission carbon quantum dots as fluorescence aptamer sensor for cortisol sensing and imaging. Talanta 2023; 260:124637. [PMID: 37172433 DOI: 10.1016/j.talanta.2023.124637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/12/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Fluorescence carbon quantum dots (CQDs) have been widely applied to sensing and bioimaging. In this paper, near-infrared carbon quantum dots (NIR-CQDs) were prepared through a simple one-step hydrothermal approach using reduced glutathione and formamide as raw materials. Based on NIR-CQDs, aptamer (Apt) and graphene oxide (GO) has been applied to fluorescence sensing cortisol. NIR-CQDs-Apt adsorbed to the surface of GO through π-π stacking and an inner filter effect (IFE) occurred between NIR-CQDs-Apt and GO leading to NIR-CQDs-Apt fluorescence "off". The IFE process is disrupted in the presence of cortisol, allowing NIR-CQDs-Apt fluorescence "on". This led us to construct a detection method with excellent selectivity over other cortisol sensors. The sensor can detect cortisol from 0.4 to 500 nM and has a detection limit as low as 0.13 nM. Importantly, this sensor can be used to detect intracellular cortisol with excellent biocompatibility and cellular imaging capabilities, which is promising for biosensing.
Collapse
Affiliation(s)
- Jing Yang
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Hao Liu
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Yan Huang
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Li Li
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, PR China.
| | - Xiaoli Zhu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, PR China.
| | - Yaping Ding
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
34
|
Yang J, Yang Y, Su L, Tao X, Zhang J, Chen Y, Yang L. Diethylenetriamine-β-CD-modified carbon quantum dots for selective fluorescence sensing of Hg 2+ and Fe 3+ and cellular imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122364. [PMID: 36652803 DOI: 10.1016/j.saa.2023.122364] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Diethylenetriamine-β-cyclodextrin-modified carbon quantum dots (3 N-CQDs) were synthesized via a one-step hydrothermal method using citric acid as the carbon source and diethylenetriamine-β-cyclodextrin (3 N-β-CD) as the nitrogen source. The successful preparation of 3 N-CQDs were revealed by infrared absorption spectroscopy, ultraviolet (UV)-visible absorption spectroscopy, fluorescence spectroscopy, XRD, XPS, TEM, and TG. Further spectroscopic studies showed that the synthesized carbon quantum dots offered good anti-interference capability. The relative fluorescence quantum yield was 67.2 %. The limits of detection for Hg2+ and Fe3+ were 0.25 µM and 0.57 μM, respectively. Cytotoxicity and imaging studies showed that the prepared carbon quantum dots had low cytotoxicity, good biocompatibility, and good cellular imaging capability for HeLa cells. They offered fluorescent sensing of Hg2+ and Fe3+ in live cells. Therefore, 3 N-CQDs were ideal fluorescent probes for the detection of Hg2+ and Fe3+ in water.
Collapse
Affiliation(s)
- Ju Yang
- Key Laboratory of Intelligent Supramolecular Chemistry at the University of Yunnan Province, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650500, PR China
| | - Yunhan Yang
- Key Laboratory of Intelligent Supramolecular Chemistry at the University of Yunnan Province, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650500, PR China
| | - Lijiao Su
- Key Laboratory of Intelligent Supramolecular Chemistry at the University of Yunnan Province, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650500, PR China
| | - Xin Tao
- Key Laboratory of Intelligent Supramolecular Chemistry at the University of Yunnan Province, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650500, PR China
| | - Juntong Zhang
- Key Laboratory of Intelligent Supramolecular Chemistry at the University of Yunnan Province, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650500, PR China
| | - Yan Chen
- Key Laboratory of Intelligent Supramolecular Chemistry at the University of Yunnan Province, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650500, PR China
| | - Lijuan Yang
- Key Laboratory of Intelligent Supramolecular Chemistry at the University of Yunnan Province, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650500, PR China.
| |
Collapse
|
35
|
Zhou Z, Zhou A, Jalil AT, Saleh MM, Huang C. Carbon nanoparticles-based hydrogel nanocomposite induces bone repair in vivo. Bioprocess Biosyst Eng 2023; 46:577-588. [PMID: 36580135 DOI: 10.1007/s00449-022-02843-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 12/15/2022] [Indexed: 12/30/2022]
Abstract
The main objective of the current study is to fabricate a 3D scaffold using alginate hydrogel implemented with carbon nanoparticles (CNPs) as the filler. The SEM imaging revealed that the scaffold possesses a porous internal structure with interconnected pores. The swelling value of the scaffolds (more than 400%) provides a wet niche for bone cell proliferation and migration. The in vitro evaluations showed that the scaffolds were hemocompatible (with hemolysis induction lower than 5%) and cytocompatible (inducing significant proliferative effect (cell viability of 121 ± 4%, p < 0.05) for AlG/CNPs 10%). The in vivo studies showed that the implantation of the fabricated 3D nanocomposite scaffolds induced a bone-forming effect and mediated bone formation into the induced bone defect. In conclusion, these results implied that the fabricated NFC-integrated 3D scaffold exhibited promising characteristics beneficial for bone regeneration and can be applied as the bone tissue engineering scaffold.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Orthopaedic Surgery, Yangzhou Hongquan Hospital, Yangzhou, 225200, China
| | - Ao Zhou
- Department of Bone and Soft Tissue Oncology, Cancer Hospital Affiliated to Chongqing University, Chongqing, 400020, China
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Hilla, 51001, Babylon, Iraq
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University of Anbar, Ramadi, Iraq.,Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Chengjun Huang
- Center for Joint Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
36
|
Jin W, Fan B, Qin X, Liu Y, Qian C, Tang B, James TD, Chen G. Structure-activity of chlormethine fluorescent prodrugs: Witnessing the development of trackable drug delivery. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
37
|
Qi H, Cui X, Zhang H, Tong Y, Qian M, Zhou W, Ding S, Qi H. Rationally Designed Matrix-Free Carbon Dots with Wavelength-Tunable Room-Temperature Phosphorescence. Chem Asian J 2023; 18:e202201284. [PMID: 36719254 DOI: 10.1002/asia.202201284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/01/2023]
Abstract
We report the rational design of the matrix-free carbon dots (C-dots) with long wavelength and wavelength-tunable room-temperature phosphorescence (RTP). Taking advantage of microwave-assisted heating treatment, three RTP C-dots in boric acid (BA) composites are synthesized by using diethylenetriaminepentakis (methylphosphonic acid) as a multiple-sites crosslink agent, a moderately acid catalyst and P source; phenylenediamines (either o-PD, m-PD, or p-PD, respectively) as building block while BA as a carbonization-retardant matrix. After the water-soluble BA matrix is removed by dialysis, three matrix-free C-dots are obtained with RTP emission at 540, 550 and 570 nm under an excitation wavelength of 365 nm. Alterations of RTP emission of three matrix-free C-dots are ascribed to the difference in their particle size and band gap from n-π* transition. Furthermore, the application of three matrix-free C-dots are successfully performed in information encryption and decryption.
Collapse
Affiliation(s)
- Hetong Qi
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiaofeng Cui
- School of Future Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hengqi Zhang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yuxi Tong
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Manping Qian
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Wenshuai Zhou
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Shujiang Ding
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.,School of Future Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| |
Collapse
|
38
|
Hydrothermal synthesis of N,S-doped carbon quantum dots as a dual mode sensor for azo dye tartrazine and fluorescent ink applications. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Watt MM, Moitra P, Sheffield Z, Ostadhossein F, Maxwell EA, Pan D. A narrative review on the role of carbon nanoparticles in oncology. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1845. [PMID: 35975704 DOI: 10.1002/wnan.1845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 11/10/2022]
Abstract
The lymphatic system is the first site of metastasis for most tumors and is a common reason for the failure of cancer therapy. The lymphatic system's anatomical properties make it difficult to deliver chemotherapy agents at therapeutic concentrations while avoiding systemic toxicity. Carbon nanoparticles offer a promising alternative for identifying and transporting therapeutic molecules. The larger diameter of lymphatic vessels compared to the diameter of blood vessels, allows carbon nanoparticles to selectively enter the lymphatic system once administered subcutaneously. Carbon nanoparticles stain tumor-draining lymph nodes black following intratumoral injection, making them useful in sentinel lymph node mapping. Drug-loaded carbon nanoparticles allow higher concentrations of chemotherapeutics to accumulate in regional lymph nodes while decreasing plasma drug accumulation. The use of carbon nanoparticles for chemotherapy delivery has been associated with lower mortality, fewer histopathology changes in vital organs, and lower serum concentrations of hepatocellular enzymes. This review will focus on the ability of carbon nanoparticles to target the lymphatics as well as their current and potential applications in sentinel lymph node mapping and oncology treatment regimens. This article is categorized under: Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery.
Collapse
Affiliation(s)
- Meghan M Watt
- Department of Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine, Gainesville, Florida, USA
| | - Parikshit Moitra
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, Health Sciences Facility III, University of Maryland Baltimore School of Medicine, Baltimore, Maryland, USA.,Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Zach Sheffield
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Fatemeh Ostadhossein
- Department of Bioengineering, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Mills Breast Cancer Institute, Urbana, Illinois, USA.,Carle Foundation Hospital, Urbana, Illinois, USA
| | - Elizabeth A Maxwell
- Department of Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine, Gainesville, Florida, USA
| | - Dipanjan Pan
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, Health Sciences Facility III, University of Maryland Baltimore School of Medicine, Baltimore, Maryland, USA.,Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA.,Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA.,Department of Bioengineering, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Mills Breast Cancer Institute, Urbana, Illinois, USA.,Carle Foundation Hospital, Urbana, Illinois, USA.,Department of Diagnostic Radiology and Nuclear Medicine, Health Sciences Facility III, University of Maryland Baltimore, Baltimore, Maryland, USA
| |
Collapse
|
40
|
Abstract
The genetically encoded fluorescent sensors convert chemical and physical signals into light. They are powerful tools for the visualisation of physiological processes in living cells and freely moving animals. The fluorescent protein is the reporter module of a genetically encoded biosensor. In this study, we first review the history of the fluorescent protein in full emission spectra on a structural basis. Then, we discuss the design of the genetically encoded biosensor. Finally, we briefly review several major types of genetically encoded biosensors that are currently widely used based on their design and molecular targets, which may be useful for the future design of fluorescent biosensors.
Collapse
Affiliation(s)
- Minji Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| | - Yifan Da
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| |
Collapse
|
41
|
Ratre P, Nazeer N, Kumari R, Thareja S, Jain B, Tiwari R, Kamthan A, Srivastava RK, Mishra PK. Carbon-Based Fluorescent Nano-Biosensors for the Detection of Cell-Free Circulating MicroRNAs. BIOSENSORS 2023; 13:226. [PMID: 36831992 PMCID: PMC9953975 DOI: 10.3390/bios13020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Currently, non-communicable diseases (NCDs) have emerged as potential risks for humans due to adopting a sedentary lifestyle and inaccurate diagnoses. The early detection of NCDs using point-of-care technologies significantly decreases the burden and will be poised to transform clinical intervention and healthcare provision. An imbalance in the levels of circulating cell-free microRNAs (ccf-miRNA) has manifested in NCDs, which are passively released into the bloodstream or actively produced from cells, improving the efficacy of disease screening and providing enormous sensing potential. The effective sensing of ccf-miRNA continues to be a significant technical challenge, even though sophisticated equipment is needed to analyze readouts and expression patterns. Nanomaterials have come to light as a potential solution as they provide significant advantages over other widely used diagnostic techniques to measure miRNAs. Particularly, CNDs-based fluorescence nano-biosensors are of great interest. Owing to the excellent fluorescence characteristics of CNDs, developing such sensors for ccf-microRNAs has been much more accessible. Here, we have critically examined recent advancements in fluorescence-based CNDs biosensors, including tools and techniques used for manufacturing these biosensors. Green synthesis methods for scaling up high-quality, fluorescent CNDs from a natural source are discussed. The various surface modifications that help attach biomolecules to CNDs utilizing covalent conjugation techniques for multiple applications, including self-assembly, sensing, and imaging, are analyzed. The current review will be of particular interest to researchers interested in fluorescence-based biosensors, materials chemistry, nanomedicine, and related fields, as we focus on CNDs-based nano-biosensors for ccf-miRNAs detection applications in the medical field.
Collapse
Affiliation(s)
- Pooja Ratre
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Nazim Nazeer
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Roshani Kumari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151401, India
| | - Bulbul Jain
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Arunika Kamthan
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Rupesh K. Srivastava
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal 462030, India
| |
Collapse
|
42
|
Song J, Vikulina AS, Parakhonskiy BV, Skirtach AG. Hierarchy of hybrid materials. Part-II: The place of organics- on-inorganics in it, their composition and applications. Front Chem 2023; 11:1078840. [PMID: 36762189 PMCID: PMC9905839 DOI: 10.3389/fchem.2023.1078840] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023] Open
Abstract
Hybrid materials or hybrids incorporating organic and inorganic constituents are emerging as a very potent and promising class of materials due to the diverse but complementary nature of their properties. This complementarity leads to a perfect synergy of properties of the desired materials and products as well as to an extensive range of their application areas. Recently, we have overviewed and classified hybrid materials describing inorganics-in-organics in Part-I (Saveleva, et al., Front. Chem., 2019, 7, 179). Here, we extend that work in Part-II describing organics-on-inorganics, i.e., inorganic materials modified by organic moieties, their structure and functionalities. Inorganic constituents comprise of colloids/nanoparticles and flat surfaces/matrices comprise of metallic (noble metal, metal oxide, metal-organic framework, magnetic nanoparticles, alloy) and non-metallic (minerals, clays, carbons, and ceramics) materials; while organic additives can include molecules (polymers, fluorescence dyes, surfactants), biomolecules (proteins, carbohydtrates, antibodies and nucleic acids) and even higher-level organisms such as cells, bacteria, and microorganisms. Similarly to what was described in Part-I, we look at similar and dissimilar properties of organic-inorganic materials summarizing those bringing complementarity and composition. A broad range of applications of these hybrid materials is also presented whose development is spurred by engaging different scientific research communities.
Collapse
Affiliation(s)
- Junnan Song
- Nano-BioTechnology Group, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Anna S. Vikulina
- Bavarian Polymer Institute, Friedrich-Alexander-Universität Erlangen-Nürnberg, Bayreuth, Germany
| | - Bogdan V. Parakhonskiy
- Nano-BioTechnology Group, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Andre G. Skirtach
- Nano-BioTechnology Group, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
43
|
Green synthetic carbon quantum dots based on waste tobacco leaves and its application to detecting borax content in Flour and its Products. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
44
|
Miao Y, Wang S, Zhang B, Liu L. Carbon dot-based nanomaterials: a promising future nano-platform for targeting tumor-associated macrophages. Front Immunol 2023; 14:1133238. [PMID: 37205099 PMCID: PMC10186348 DOI: 10.3389/fimmu.2023.1133238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/05/2023] [Indexed: 05/21/2023] Open
Abstract
The tumor microenvironment (TME) is the internal environment that tumors depend on for survival and development. Tumor-associated macrophages (TAMs), as an important part of the tumor microenvironment, which plays a crucial role in the occurrence, development, invasion and metastasis of various malignant tumors and has immunosuppressant ability. With the development of immunotherapy, eradicating cancer cells by activating the innate immune system has yielded encouraging results, however only a minority of patients show a lasting response. Therefore, in vivo imaging of dynamic TAMs is crucial in patient-tailored immunotherapy to identify patients who will benefit from immunotherapy, monitor efficacy after treatment, and identify alternative strategies for non-responders. Meanwhile, developing nanomedicines based on TAMs-related antitumor mechanisms to effectively inhibit tumor growth is expected to become a promising research field. Carbon dots (CDs), as an emerging member of the carbon material family, exhibit unexpected superiority in fluorescence imaging/sensing, such as near infrared imaging, photostability, biocompatibility and low toxicity. Their characteristics naturally integrate therapy and diagnosis, and when CDs are combined with targeted chemical/genetic/photodynamic/photothermal therapeutic moieties, they are good candidates for targeting TAMs. We concentrate our discussion on the current learn of TAMs and describe recent examples of macrophage modulation based on carbon dot-associated nanoparticles, emphasizing the advantages of their multifunctional platform and their potential for TAMs theranostics.
Collapse
Affiliation(s)
| | | | | | - Lin Liu
- *Correspondence: Butian Zhang, ; Lin Liu,
| |
Collapse
|
45
|
Vijayakanth V, Vinodhini V, Chintagumpala K. Biocompatible Carbon-Coated Magnetic Nanoparticles for Biomedical Applications. MATERIALS HORIZONS: FROM NATURE TO NANOMATERIALS 2023:955-986. [DOI: 10.1007/978-981-19-7188-4_34] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
46
|
Sun X, Guo F, Ye Q, Zhou J, Han J, Guo R. Fluorescent Sensing of Glutathione and Related Bio-Applications. BIOSENSORS 2022; 13:16. [PMID: 36671851 PMCID: PMC9855688 DOI: 10.3390/bios13010016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Glutathione (GSH), as the most abundant low-molecular-weight biological thiol, plays significant roles in vivo. Abnormal GSH levels have been demonstrated to be related to the dysfunction of specific physiological activities and certain kinds of diseases. Therefore, the sensing of GSH is emerging as a critical issue. Cancer, with typical high morbidity and mortality, remains one of the most serious diseases to threaten public health. As it is clear that much more concentrated GSH is present at tumor sites than at normal sites, the in vivo sensing of GSH offers an option for the early diagnosis of cancer. Moreover, by monitoring the amounts of GSH in specific microenvironments, effective diagnosis of ROS levels, neurological diseases, or even stroke has been developed as well. In this review, we focus on the fluorescent methodologies for GSH detection, since they can be conveniently applied in living systems. First, the fluorescent sensing methods are introduced. Then, the principles for fluorescent sensing of GSH are discussed. In addition, the GSH-sensing-related biological applications are reviewed. Finally, the future opportunities in in the areas of fluorescent GSH sensing-in particular, fluorescent GSH-sensing-prompted disease diagnosis-are addressed.
Collapse
|
47
|
Tian M, Zhou W, Guan W, Lu C. Real-Time Imaging of Stress in Single Spherulites and Its Relaxation at the Single-Particle Level in Semicrystalline Polymers. Anal Chem 2022; 94:17716-17724. [PMID: 36480806 DOI: 10.1021/acs.analchem.2c04683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Crystallization-induced microscopic stress and its relaxation play a vital role in understanding crystallization behavior and mechanism. However, the real-time measurements for stress and its relaxation seem to be an unachievable task due to difficulties in simultaneous labeling, spatiotemporal discrimination, and continuous quantification. We designed a micron-sized fluorescent probe, whose fluorescence can respond to stress-induced environmental rigidity and whose three-dimensional (3D) flow can respond to stress relaxation. Using the as-prepared fluorescent probe, we established a versatile strategy to realize the real-time 3D imaging of stress and its relaxation in the crystallization process. The rigidity-responsive fluorescence clearly indicated the stress, while the 3D flow movement could quantify the stress relaxation. It is revealed that stress in spherulites increased dramatically as a result of the suppression of stress relaxation in polymer melts. The developed method provides a novel avenue to simultaneously detect stress and its relaxation in various semicrystalline polymers at the single-particle level. This success would achieve the microscopic ways to guide the development of advanced crystallization-dependent materials.
Collapse
Affiliation(s)
- Mingce Tian
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wenjuan Zhou
- Department of Chemistry, Capital Normal University, Beijing 100089, China
| | - Weijiang Guan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.,Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
48
|
Zhong Z, Zhang Y, Fu X, Liu S, Zhang C, Guo W, Xu X, Liao L. Construction of photo-induced zinc-doped carbon dots based on drug-resistant bactericides and their application for local treatment. NANOSCALE ADVANCES 2022; 4:5365-5377. [PMID: 36540119 PMCID: PMC9724749 DOI: 10.1039/d2na00375a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/18/2022] [Indexed: 06/17/2023]
Abstract
In this project, we propose a highly effective photosensitizer that breaks through drug-resistant bacterial infections with zinc-doped carbon dots. By passing through the membrane of drug-resistant bacteria, the photosensitizers produce ROS in bacteria under the action of blue light to directly kill bacteria, so as to realize the antibacterial local treatment of drug-resistant bacteria. The experiment firstly uses an efficient one-step hydrothermal method to prepare zinc-doped red-light CDs as photosensitizers, in which zinc metal was doped to improve the optical properties of the CDs. Then we try first to use EDTA as a second-step attenuator for preparing CDs to obtain photosensitizers with high-efficiency and low toxicity. In vitro cytotoxicity tests, bacterial effect tests, and in vivo animal experiments have also demonstrated that this antibacterial method has great potential for clinical translation, with a bactericidal efficiency of up to 90%. More notably, we used this antibacterial regimen seven times repeatedly to simulate the bacterial resistance process, with a bactericidal efficiency of up to 90% every time. The result indicated that S. aureus did not develop resistance to our method, showing that our method has the potential to break through drug-resistant bacterial infections as an alternative to antibiotic candidates.
Collapse
Affiliation(s)
- Zhuoling Zhong
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China
| | - Yaoyao Zhang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University Chengdu Sichuan 610041 China
| | - Xiaoyun Fu
- Neijiang Medical School in Sichuan Province Neijiang 641199 China
| | - Shuyao Liu
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China
| | - Chuanwei Zhang
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China
| | - Weijie Guo
- West China School of Public Health, West China Fourth Hospital, Sichuan University Chengdu 610041 China
| | - Xiaoping Xu
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China
| | - Liyun Liao
- School of Pharmacy, Chengdu Medical College 783, Xindu Avenue Chengdu 610500 China
| |
Collapse
|
49
|
Ghorai N, Bhunia S, Burai S, Ghosh HN, Purkayastha P, Mondal S. Ultrafast insights into full-colour light-emitting C-Dots. NANOSCALE 2022; 14:15812-15820. [PMID: 36255011 DOI: 10.1039/d2nr04642c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Designing carbon dots (C-Dots) in a controlled way requires a profound understanding of their photophysical properties, such as the origin of their fluorescence and excitation wavelength-dependent emission properties, which has been a perennial problem in the last few decades. Herein, we synthesized three different C-Dots (blue, green, and red-emitting C-Dots) from the same starting materials via a hydrothermal method and separated them by silica column chromatography. All the purified C-Dots exhibited three different emission maxima after a certain range of different excitations, showing a high optical uniformity in their emission properties. It was also observed that the average distributions of the particle size in all the C-Dots were the same with a typical size of 4 nm and the same interplanar d spacing of ∼0.21 nm. Here, we tried to establish a well-defined conclusive answer to the puzzling optical properties of C-Dots via successfully investigating the carrier dynamics of their core and surface state with a myriad use of steady-state, time-resolved photoluminescence, and ultrafast transient absorbance spectroscopy techniques. The ultrafast charge-carrier dynamics of the core and surface state clearly indicated that the graphitic nitrogen in the core state and the oxygen-containing functional group in the surface state predominately contribute to controlling their wide range of emission properties. We believe that these findings will give the C-Dots their own designation in the fluorophore world and create a new avenue for designing and developing C-Dot-based new architectures.
Collapse
Affiliation(s)
- Nandan Ghorai
- Institute of Nano Science and Technology, Mohali, Punjab 140306, India
| | - Soumyadip Bhunia
- Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, WB, India
| | - Subham Burai
- Institute of Chemical Technology, Mumbai, Marathwada Campus, Jalna, Maharashtra 431203, India.
| | - Hirendra N Ghosh
- Institute of Nano Science and Technology, Mohali, Punjab 140306, India
- Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Pradipta Purkayastha
- Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, WB, India
| | - Somen Mondal
- Institute of Chemical Technology, Mumbai, Marathwada Campus, Jalna, Maharashtra 431203, India.
| |
Collapse
|
50
|
Strickland S, Jorns M, Heyd L, Pappas D. Novel synthesis of fibronectin derived photoluminescent carbon dots for bioimaging applications. RSC Adv 2022; 12:30487-30494. [PMID: 36337972 PMCID: PMC9597609 DOI: 10.1039/d2ra05137k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Fibronectin (FN) derived from human plasma has been used for the first time as the carbon precursor in the top-down, microwave-assisted hydrothermal synthesis of nitrogen doped carbon dots (CDs). FN is a large glycoprotein primarily known for its roles in cell adhesion and cell growth. Due to these properties FN can be over expressed in the extracellular matrix (ECM) of some cancers allowing FN to be used as an indicator for the detection of cancerous cells over non-cancerous cells. These FN derived CDs display violet photoluminescence with UV excitation and appear to possess similar functional groups on their surface to their carbon precursor (-COOH and -NH2). This is believed to be due to the self-passivation of the CDs' nitrogen-containing surface functional groups during the heating process. These CDs were then used to stain MCF-7 and MDA-231 breast cancer cells and were observed to interact primarily with the cell membrane rather than intercalating into the cell like the many other types of CDs. This led to the hypothesis that the CDs are selectively binding to the FN overexpressed within the cancer cells' ECM via amide linkages. This is in agreement with the EDX and FTIR spectra of the FN CDs which indicate the presence of -COOH and nitrogen containing surface groups like -NH3. The inherent selectivity of the CDs combined with their ability to photoluminesce enables their use as a fluorophore for bioimaging applications.
Collapse
Affiliation(s)
- Sara Strickland
- Department of Chemistry and Biochemistry, Texas Tech University Lubbock TX USA
| | - Mychele Jorns
- Department of Chemistry and Biochemistry, Texas Tech University Lubbock TX USA
| | - Lindsey Heyd
- Department of Chemistry and Biochemistry, Texas Tech University Lubbock TX USA
| | - Dimitri Pappas
- Department of Chemistry and Biochemistry, Texas Tech University Lubbock TX USA
| |
Collapse
|