1
|
Kim N, Choi M, Suh SE, Chenoweth DM. Aryne Chemistry: Generation Methods and Reactions Incorporating Multiple Arynes. Chem Rev 2024; 124:11435-11522. [PMID: 39383091 DOI: 10.1021/acs.chemrev.4c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Arynes hold significance for the efficient fusion of (hetero) arenes with diverse substrates, advancing the construction of complex molecular frameworks. Employing multiple equivalents of arynes is particularly effective in the rapid formation of polycyclic cores found in optoelectronic materials and bioactive compounds. However, the inherent reactivity of arynes often leads to side reactions, yielding unanticipated products and underlining the importance of a detailed investigation into the use of multiple arynes to fine-tune their reactivity. This review centers on methodologies and syntheses in organic reactions involving multiple arynes, categorizing based on mechanisms like cycloadditions, σ-bond insertions, nucleophilic additions, and ene reactions, and discusses aryne polymerization. The categorization based on these mechanisms includes two primary approaches: the first entails multiple aryne engagement within a single step while the second approach involves using a single equivalent of aryne sequentially across multiple steps, with both requiring strict reactivity control to ensure precise aryne participation in each respective step. Additionally, the review provides an in-depth analysis of the selection of aryne precursors, organized chronologically and by activation strategy, offering a comprehensive background that supports the main theme of multiple aryne utilization. The expectation remains that this comprehensive review will be invaluable in designing advanced syntheses engaging multiple arynes.
Collapse
Affiliation(s)
- Nayoung Kim
- Ajou Energy Science Research Center, Ajou University, Suwon 16499, Republic of Korea
| | - Myungsoo Choi
- Ajou Energy Science Research Center, Ajou University, Suwon 16499, Republic of Korea
| | - Sung-Eun Suh
- Department of Chemistry, Ajou University, Suwon 16499, Republic of Korea
| | - David M Chenoweth
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
2
|
Wang XX, Deng BQ, Ouyang ZQ, Yan Y, Lv JM, Qin SY, Hu D, Chen GD, Yao XS, Gao H. Targeted Discovery of a Natural ortho-Quinone Methide Precursor and Green Generation of Its Oligomers. JOURNAL OF NATURAL PRODUCTS 2024; 87:2139-2147. [PMID: 39194958 DOI: 10.1021/acs.jnatprod.4c00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
ortho-Quinone methides (o-QMs) are a class of highly reactive intermediates that serve as important nonisolable building blocks (NBBs) in organic synthesis and small-molecule library construction. Because of their instability and nonisolability, most reported o-QMs are generated through in situ chemical synthesis, and only a few natural o-QMs have been reported due to the lack of directed discovery strategies. Herein, a new natural o-QM precursor (trichophenol A, 2) was identified from the fungal strain of Trichoderma sp. AT0167 through genome mining, which was generated by trilA (nonreducing polyketide synthase) and trilB (2-oxoglutarate dependent dioxygenase). Combinatorial biosynthesis via two other known NRPKS genes with trilA and trilB was performed, leading to the generation of five new trichophenol o-QM oligomers (trichophenols D-H, 5-9). The strategy combining genome mining with combinatorial biosynthesis not only targetedly uncovered a new natural o-QM precursor but also produced various new molecules through oligomerization of the new o-QM and its designated o-QM acceptors without chemical synthesis and isolation of intermediates, which was named NBB genome mining-combinatorial biosynthesis strategy for o-QM molecule library construction. This study provides a new strategy for the targeted discovery of natural o-QMs and small-molecule library construction with natural o-QMs.
Collapse
Affiliation(s)
- Xiao-Xia Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Bei-Qian Deng
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Zhi-Qiu Ouyang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Yang Yan
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Jian-Ming Lv
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Sheng-Ying Qin
- Clinical Experimental Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Dan Hu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Guo-Dong Chen
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Hao Gao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| |
Collapse
|
3
|
Nian C, Yu R, Han Z, Bai Y, Wang J, Sun J, Huang H. Trifluoroethanol promoted formal nucleophilic substitution of indol-2-yl diaryl methanol for the synthesis of tetraarylmethanes. Chem Commun (Camb) 2024; 60:9797-9800. [PMID: 39162023 DOI: 10.1039/d4cc03420a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The synthesis of tetraarylmethanes has long been a challenge in the field of synthetic chemistry. In this study, a series of tetraarylmethanes were successfully synthesized through the formal nucleophilic substitution reaction of indol-2-yl diaryl methanol catalyzed by Brønsted acid. The key success of this study lies in suppressing the influence of water molecules by forming hydrogen bonds with the TFE solvent. This process leads to the formation of active 2-indole imine methide (2-IIM) intermediates, ensuring the successful synthesis of tetraarylmethanes. Furthermore, some of the products also exhibited potential anticancer activity.
Collapse
Affiliation(s)
- Cuicui Nian
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China.
| | - Run Yu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China.
| | - Zhengyu Han
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China.
| | - Yang Bai
- School of Pharmacy, Changzhou University, Changzhou, P. R. China
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou, P. R. China
| | - Jianwei Sun
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, P. R. China.
| | - Hai Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China.
| |
Collapse
|
4
|
Zhu XQ, Yang HY, Ye LW. Chiral Brønsted Acid-Catalyzed Asymmetric Reaction via Vinylidene Ortho-Quinone Methides. Chemistry 2024; 30:e202402247. [PMID: 38923595 DOI: 10.1002/chem.202402247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
Vinylidene ortho-quinone methides (VQMs) have been proven to be versatile and crucial intermediates in the catalytic asymmetric reaction in last decade, and thus have drawn considerable concentrations on account of the practical application in the construction of enantiomerically pure functional organic molecules. However, in comparison to the well established chiral Brønsted base-catalyzed asymmetric reaction via VQMs, chiral Brønsted acid-catalyzed reaction is rarely studied and there is no systematic summary to date. In this review, we summarize the recent advances in the chiral Brønsted acid-catalyzed asymmetric reaction via VQMs according to three types of reactions: a) intermolecular asymmetric nucleophilic addition to VQMs; b) intermolecular asymmetric cycloaddition of VQMs; c) intramolecular asymmetric cyclization of VQMs. Finally, we put forward the remained challenges and opportunities for potential breakthroughs in this area.
Collapse
Affiliation(s)
- Xin-Qi Zhu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, China
| | - Hai-Yu Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, China
| | - Long-Wu Ye
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, China
- Key Laboratory for Chemical Biology of Fujian Province and State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, Xiamen University, Xiamen, 361005, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China
| |
Collapse
|
5
|
Guo Y, Ge L, Phillips DL, Ma J, Fang Y. Different Reaction Mechanisms Triggered by the Meta Effect: Photoinduced Generation of Quinone Methides from Hydroxybiphenyl Derivatives. J Phys Chem Lett 2024; 15:8569-8576. [PMID: 39140706 DOI: 10.1021/acs.jpclett.4c01875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
A series of sterically congested quinone methides (QMs) exhibit photoinduced antiproliferative activity against some human cancer cell lines. To elucidate the structure-reactivity relationship and details of mechanisms of the photogeneration of sterically congested QMs, we chose phenylphenol derivatives 1-3 as QM precursors and investigated their photodehydration processes in aqueous solutions using ultrafast spectroscopy and theoretical computations. We found that meta derivatives 1 and 2 undergo water-mediated excited-state proton transfer (ESPT) from the phenol OH, followed by expulsion of the OH- to form QMs. By comparison, para derivative 3 proceeds via water-mediated ESPT from H2O to benzyl alcohol coupled with dehydration as the first step, delivering a cation intermediate, which further deprotonates to yield QM. Such results would help chemists understand more about the meta effects in photochemistry and about ESPT and would help synthetic chemists design sterically congested QM precursors with extraordinary reactivities and expand applications of QMs in biological and medical systems.
Collapse
Affiliation(s)
- Yan Guo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Lingfeng Ge
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - David Lee Phillips
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R. 999077, P. R. China
| | - Jiani Ma
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
6
|
Wang X, Lv R, Li X. Kinetic resolution of 1-(1-alkynyl)cyclopropyl ketones via gold-catalyzed divergent (4 + 4) cycloadditions: stereoselective access to furan fused eight-membered heterocycles. Chem Sci 2024; 15:9361-9368. [PMID: 38903218 PMCID: PMC11186327 DOI: 10.1039/d4sc02763a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/14/2024] [Indexed: 06/22/2024] Open
Abstract
Chiral eight-membered heterocycles comprise a diverse array of natural products and bioactive compounds, yet accessing them poses significant challenges. Here we report a gold-catalyzed stereoselective (4 + 4) cycloaddition as a reliable and divergent strategy, enabling readily accessible precursors (anthranils and ortho-quinone methides) to be intercepted by in situ generated gold-furyl 1,4-dipoles, delivering previously inaccessible chiral furan/pyrrole-containing eight-membered heterocycles with good results (56 examples, all >20 : 1 dr, up to 99% ee). Moreover, we achieve a remarkably efficient kinetic resolution (KR) process (s factor up to 747). The scale-up synthesis and diversified transformations of cycloadducts highlight the synthetic potential of this protocol. Computational calculations provide an in-depth understanding of the stereoselective cycloaddition process.
Collapse
Affiliation(s)
- Xunhua Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University Jinan Shandong 250012 China
| | - Ruifeng Lv
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University Jinan Shandong 250012 China
| | - Xiaoxun Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University Jinan Shandong 250012 China
- Suzhou Research Institute of Shandong University NO. 388 Ruoshui Road, SIP Suzhou Jiangsu 215123 China
| |
Collapse
|
7
|
Hu T, Zhao Y, Luo X, Li Z, Yang WL. Brønsted acid catalyzed [4 + 2] cycloaddition for the synthesis of bisbenzannulated spiroketals with antifungal activities. Org Biomol Chem 2024; 22:4656-4661. [PMID: 38804023 DOI: 10.1039/d4ob00584h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The intermolecular [4 + 2] cycloaddition of o-hydroxy benzyl alcohols with isochroman ketals was realized by CF3CO2H catalysis. A broad range of bisbenzannulated [6,6]-spiroketals were formed under the metal-free mild conditions in moderate to excellent yields (45-98%) with mostly excellent diastereoselectivities (up to >20 : 1 dr). Furthermore, the enantioselective version was also preliminarily investigated and the bisbenzannulated [6,6]-spiroketal was obtained with 61% ee in the presence of Sc(OTf)3/Feng's chiral N,N'-dioxide ligand. Some of the bisbenzannulated [6,6]-spiroketal products showed good in vitro antifungal activities against Sclerotinia sclerotiorum and Rhizoctonia solani.
Collapse
Affiliation(s)
- Teng Hu
- Shanghai Key Laboratory of Chemical Biology & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| | - Yuxuan Zhao
- Shanghai Key Laboratory of Chemical Biology & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| | - Xiaoyan Luo
- Shanghai Key Laboratory of Chemical Biology & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| | - Wu-Lin Yang
- Shanghai Key Laboratory of Chemical Biology & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| |
Collapse
|
8
|
Zhang Y, Liu S, Guo F, Qin S, Zhou N, Liu Z, Fan X, Chen PR. Bioorthogonal Quinone Methide Decaging Enables Live-Cell Quantification of Tumor-Specific Immune Interactions. J Am Chem Soc 2024; 146:15186-15197. [PMID: 38789930 DOI: 10.1021/jacs.4c02052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Effective antitumor immunity hinges on the specific engagement between tumor and cytotoxic immune cells, especially cytotoxic T cells. Although investigating these intercellular interactions is crucial for characterizing immune responses and guiding immunotherapeutic applications, direct and quantitative detection of tumor-T cell interactions within a live-cell context remains challenging. We herein report a photocatalytic live-cell interaction labeling strategy (CAT-Cell) relying on the bioorthogonal decaging of quinone methide moieties for sensitive and selective investigation and quantification of tumor-T cell interactions. By developing quinone methide-derived probes optimized for capturing cell-cell interactions (CCIs), we demonstrated the capacity of CAT-Cell for detecting CCIs directed by various types of receptor-ligand pairs (e.g., CD40-CD40L, TCR-pMHC) and further quantified the strengths of tumor-T cell interactions that are crucial for evaluating the antitumor immune responses. We further applied CAT-Cell for ex vivo quantification of tumor-specific T cell interactions on splenocyte and solid tumor samples from mouse models. Finally, the broad compatibility and utility of CAT-Cell were demonstrated by integrating it with the antigen-specific targeting system as well as for tumor-natural killer cell interaction detection. By leveraging the bioorthogonal photocatalytic decaging chemistry on quinone methide, CAT-Cell provides a sensitive, tunable, universal, and noninvasive toolbox for unraveling and quantifying the crucial but delicate tumor-immune interactions under live-cell settings.
Collapse
Affiliation(s)
- Yan Zhang
- New Cornerstone Science Laboratory, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Shibo Liu
- New Cornerstone Science Laboratory, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Fuhu Guo
- New Cornerstone Science Laboratory, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shan Qin
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Nan Zhou
- New Cornerstone Science Laboratory, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ziqi Liu
- New Cornerstone Science Laboratory, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xinyuan Fan
- New Cornerstone Science Laboratory, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Peng R Chen
- New Cornerstone Science Laboratory, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
9
|
Trometer N, Cichocki B, Chevalier Q, Pécourneau J, Strub JM, Hemmerlin A, Specht A, Davioud-Charvet E, Elhabiri M. Synthesis and Photochemical Properties of Fluorescent Metabolites Generated from Fluorinated Benzoylmenadiones in Living Cells. J Org Chem 2024; 89:2104-2126. [PMID: 37267444 DOI: 10.1021/acs.joc.3c00620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This work describes the reactivity and properties of fluorinated derivatives (F-PD and F-PDO) of plasmodione (PD) and its metabolite, the plasmodione oxide (PDO). Introduction of a fluorine atom on the 2-methyl group markedly alters the redox properties of the 1,4-naphthoquinone electrophore, making the compound highly oxidizing and particularly photoreactive. A fruitful set of analytical methods (electrochemistry, absorption and emission spectrophotometry, and HRMS-ESI) have been used to highlight the products resulting from UV photoirradiation in the absence or presence of selected nucleophiles. With F-PDO and in the absence of nucleophile, photoreduction generates a highly reactive ortho-quinone methide (o-QM) capable of leading to the formation of a homodimer. In the presence of thiol nucleophiles such as β-mercaptoethanol, which was used as a model, o-QMs are continuously regenerated in sequential photoredox reactions generating mono- or disulfanylation products as well as various unreported sulfanyl products. Besides, these photoreduced adducts derived from F-PDO are characterized by a bright yellowish emission due to an excited-state intramolecular proton transfer (ESIPT) process between the dihydronapthoquinone and benzoyl units. In order to evidence the possibility of an intramolecular coupling of the o-QM intermediate, a synthetic route to the corresponding anthrones is described. Tautomerization of the targeted anthrones occurs and affords highly fluorescent stable hydroxyl-anthraquinones. Although probable to explain the intense visible fluorescence emission also observed in tobacco BY-2 cells used as a cellular model, these coupling products have never been observed during the photochemical reactions performed in this study. Our data suggest that the observed ESIPT-induced fluorescence most likely corresponds to the generation of alkylated products through reduction species, as demonstrated with the β-mercaptoethanol model. In conclusion, F-PDO thus acts as a novel (pro)-fluorescent probe for monitoring redox processes and protein alkylation in living cells.
Collapse
Affiliation(s)
- Nathan Trometer
- Team Bio(IN)organic and Medicinal Chemistry, Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR7042 Université de Strasbourg-CNRS-UHA, European School of Chemistry, Polymers and Materials (ECPM), 25 Rue Becquerel, F-67087 Strasbourg, France
| | - Bogdan Cichocki
- Team Bio(IN)organic and Medicinal Chemistry, Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR7042 Université de Strasbourg-CNRS-UHA, European School of Chemistry, Polymers and Materials (ECPM), 25 Rue Becquerel, F-67087 Strasbourg, France
| | - Quentin Chevalier
- Institut De Biologie Moléculaire Des Plantes, Unité Propre de Recherche 2357, Centre National de la Recherche Scientifique-Université de Strasbourg, Strasbourg F-67084, France
| | - Jérémy Pécourneau
- Team Bio(IN)organic and Medicinal Chemistry, Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR7042 Université de Strasbourg-CNRS-UHA, European School of Chemistry, Polymers and Materials (ECPM), 25 Rue Becquerel, F-67087 Strasbourg, France
| | - Jean-Marc Strub
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), UMR7178 Université de Strasbourg-CNRS, IPHC, 25 Rue Becquerel, 67087 Strasbourg, France
| | - Andréa Hemmerlin
- Institut De Biologie Moléculaire Des Plantes, Unité Propre de Recherche 2357, Centre National de la Recherche Scientifique-Université de Strasbourg, Strasbourg F-67084, France
| | - Alexandre Specht
- Conception et Applications des Molécules Bioactives, Faculté de Pharmacie, UMR 7199 CNRS-Université de Strasbourg, 74 Route du Rhin, Illkirch 67401, France
| | - Elisabeth Davioud-Charvet
- Team Bio(IN)organic and Medicinal Chemistry, Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR7042 Université de Strasbourg-CNRS-UHA, European School of Chemistry, Polymers and Materials (ECPM), 25 Rue Becquerel, F-67087 Strasbourg, France
| | - Mourad Elhabiri
- Team Bio(IN)organic and Medicinal Chemistry, Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR7042 Université de Strasbourg-CNRS-UHA, European School of Chemistry, Polymers and Materials (ECPM), 25 Rue Becquerel, F-67087 Strasbourg, France
| |
Collapse
|
10
|
Hu X, Zhu Z, Li Z, Adili A, Odagi M, Abboud KA, Seidel D. Catalytic Enantioselective [4+2] Cycloadditions of Salicylaldehyde Acetals with Enol Ethers. Angew Chem Int Ed Engl 2024; 63:e202315759. [PMID: 38055210 DOI: 10.1002/anie.202315759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023]
Abstract
A readily accessible conjugate-base-stabilized carboxylic acid (CBSCA) catalyst facilitates highly enantioselective [4+2] cycloaddition reactions of salicylaldehyde-derived acetals and cyclic enol ethers, resulting in the formation of polycyclic chromanes with oxygenation in the 2- and 4-positions. Stereochemically more complex products can be obtained from racemic enol ethers. Spirocyclic products are also accessible.
Collapse
Affiliation(s)
- Xiaojun Hu
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Zhengbo Zhu
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Zhongzheng Li
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Alafate Adili
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Minami Odagi
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
- Department of Biotechnology and Life Science, Graduate School of Technology, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei city, 184-8588, Tokyo, Japan
| | - Khalil A Abboud
- Center for X-ray Crystallography, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Daniel Seidel
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
11
|
Li S, Zhou L. gem-Difluoro-Masked o-Quinone Methides Generated by Photocatalytic Radical (3+3) Annulation and Their (4+1) Cycloaddition with Sulfur Ylides. Org Lett 2023. [PMID: 37996080 DOI: 10.1021/acs.orglett.3c03612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
A visible light-promoted radical (3+3) annulation of vinyldiazo compounds and bromodifluoromethyl alkynyl ketones for the construction of gem-difluoro-masked o-quinone methides (o-QMs) is described. The reactivity of this new type of o-QM precursor is demonstrated by its (4+1) cycloaddition with sulfur ylides, affording monofluorinated aromatic benzofurans by the elimination of HBr without external oxidants.
Collapse
Affiliation(s)
- Sen Li
- Institute of Green Chemistry and Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Lei Zhou
- Institute of Green Chemistry and Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
12
|
Sviben I, Glavaš M, Erben A, Bachelart T, Pavlović Saftić D, Piantanida I, Basarić N. Dipeptides Containing Pyrene and Modified Photochemically Reactive Tyrosine: Noncovalent and Covalent Binding to Polynucleotides. Molecules 2023; 28:7533. [PMID: 38005255 PMCID: PMC10672942 DOI: 10.3390/molecules28227533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Dipeptides 1 and 2 were synthesized from unnatural amino acids containing pyrene as a fluorescent label and polynucleotide binding unit, and modified tyrosine as a photochemically reactive unit. Photophysical properties of the peptides were investigated by steady-state and time-resolved fluorescence. Both peptides are fluorescent (Φf = 0.3-0.4) and do not show a tendency to form pyrene excimers in the concentration range < 10-5 M, which is important for their application in the fluorescent labeling of polynucleotides. Furthermore, both peptides are photochemically reactive and undergo deamination delivering quinone methides (QMs) (ΦR = 0.01-0.02), as indicated from the preparative photomethanolysis study of the corresponding N-Boc protected derivatives 7 and 8. Both peptides form stable complexes with polynucleotides (log Ka > 6) by noncovalent interactions and similar affinities, binding to minor grooves, preferably to the AT reach regions. Peptide 2 with a longer spacer between the fluorophore and the photo-activable unit undergoes a more efficient deamination reaction, based on the comparison with the N-Boc protected derivatives. Upon light excitation of the complex 2·oligoAT10, the photo-generation of QM initiates the alkylation, which results in the fluorescent labeling of the oligonucleotide. This study demonstrated, as a proof of principle, that small molecules can combine dual forms of fluorescent labeling of polynucleotides, whereby initial addition of the dye rapidly forms a reversible high-affinity noncovalent complex with ds-DNA/RNA, which can be, upon irradiation by light, converted to the irreversible (covalent) form. Such a dual labeling ability of a dye could have many applications in biomedicinal sciences.
Collapse
Affiliation(s)
| | | | | | | | | | - Ivo Piantanida
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (I.S.); (M.G.); (A.E.); (T.B.); (D.P.S.)
| | - Nikola Basarić
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (I.S.); (M.G.); (A.E.); (T.B.); (D.P.S.)
| |
Collapse
|
13
|
Zlatić K, Popović M, Uzelac L, Kralj M, Basarić N. Antiproliferative activity of meso-substituted BODIPY photocages: Effect of electrophiles vs singlet oxygen. Eur J Med Chem 2023; 259:115705. [PMID: 37544182 DOI: 10.1016/j.ejmech.2023.115705] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
A series of BODIPY compounds with a methylphenol substituent at the meso-position and halogen atoms on the BODIPY core, or OCH3 or OAc substituents at the phenolic moiety was synthesized. Their spectral and photophysical properties and the photochemical reactivity upon irradiation in CH3OH were investigated. The molecules with the phenolic substituent at the meso-position undergo more efficient photo-methanolysis at the boron atom, while the introduction of the OCH3 group at the phenolic moiety changes the reaction selectivity towards the cleavage at the meso-position. The introduction of the halogen atoms into the BODIPY increases the photo-cleavage reaction efficiency, as well as the ability of the molecules to sensitize oxygen and form reactive oxygen species (ROS). The efficiency of the ROS formation was measured in comparison with that of tetraphenylporphyrin. The antiproliferative effect of BODIPY molecules was investigated against three human cancer cell lines MCF-7 (breast carcinoma), H460 (lung carcinoma), HCT116 (colon carcinoma), and two non-cancer cell lines, HEK293T (embryonic kindey) and HaCaT (keratinocytes), with the cells kept in the dark or irradiated with visible light. For most of the compounds a modest or no antiproliferative activity was observed for cells in the dark. However, when cells were irradiated, a dramatic increase in cytotoxicity was observed (more than 100-fold), with IC50 values in the submicromolar concentration range. The enhancement of the cytotoxic effect was explained by the formation of ROS, which was studied for cells in vitro. However, for some BODIPY compounds, the effects due to the formation of electrophilic species (carbocations and quinone methides, which react with biomolecules) cannot be disregarded. Confocal fluorescence microscopy images of H460 cells and HEK293T show that the compounds enter the cells and are retained in the cytoplasm and membranes of the various organelles. When the cells treated with the compounds are irradiated, photo-processes lead to cell death by apoptosis. The study performed is important because it provides bases for the development of novel photo-therapeutics capable of exerting photo-cytotoxic effects in both oxygenated and hypoxic cells.
Collapse
Affiliation(s)
- Katarina Zlatić
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10 000, Zagreb, Croatia; Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10 000, Zagreb, Croatia; Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, 10000, Zagreb, Croatia.
| | - Matija Popović
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10 000, Zagreb, Croatia
| | - Lidija Uzelac
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10 000, Zagreb, Croatia
| | - Marijeta Kralj
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10 000, Zagreb, Croatia.
| | - Nikola Basarić
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10 000, Zagreb, Croatia.
| |
Collapse
|
14
|
Guo M, Zhang P, Li EQ. Recent Advances in Palladium-Catalyzed [4 + n] Cycloaddition of Lactones, Benzoxazinanones, Allylic Carbonates, and Vinyloxetanes. Top Curr Chem (Cham) 2023; 381:33. [PMID: 37921912 DOI: 10.1007/s41061-023-00442-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 10/06/2023] [Indexed: 11/05/2023]
Abstract
Palladium-catalyzed allylation cyclization reaction has recently emerged as an efficient and powerful synthetic platform for the construction of diverse and valuable carbo- and heterocycles. Thus the development of new allylic motifs for achieving this type of transformations in high reactivity and selectivity is of great importance. Generally, these substrates have been utilized as 1,3-, 1,4-, 1,5-, 1,6-dipoles in many reactions, which are applied to prepare highly functionalized products with complete control of chemo-, regio-, diastereo-, and enantioselectivity. In this review, we focus our attention on the development of palladium-catalyzed [4 + n] cycloaddition of allylic motifs and describe a comprehensive and impressive advances in this area. Meanwhile, the related mechanism and the application of these annulation strategies in natural product total synthesis will be highlighted in detail.
Collapse
Affiliation(s)
- Mengyan Guo
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Panke Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
| | - Er-Qing Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
15
|
Maestro A, Zurro M. Phosphine-catalysed transformations of ortho- and para-quinone methides. Org Biomol Chem 2023; 21:8244-8258. [PMID: 37807758 DOI: 10.1039/d3ob01276j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Organocatalytic methodologies for the derivatization of o-QM, p-QM and the analogous aza-QM have been recently developed and involve different catalytic systems such as phosphoric acids, thioureas, squaramides, NHC carbenes or chiral ammonium salts. Besides, phosphines, commonly used as ligands in metal-catalysed reactions, can be also used as organocatalysts. In this case, they are mainly involved as nucleophilic catalysts in reactions such as the Rauhut-Currier (RC) reaction. In this review, an analysis of the recent developments in racemic and enantioselective phosphine-catalysed transformations of o-QM, p-QM and aza-o-QM has been carried out.
Collapse
Affiliation(s)
- Aitor Maestro
- Departamento de Química Orgánica I, Centro de Investigación y Estudios Avanzados "Lucio Lascaray" - Facultad de Farmacia, University of the Basque Country, UPV/EHU Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain.
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | - Mercedes Zurro
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá (IRYCIS), 28805-Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
16
|
Stockhammer L, Radetzky M, Khatoon SS, Bechmann M, Waser M. Chiral Lewis Base-Catalysed Asymmetric Syntheses of Benzo-fused ϵ-Lactones. European J Org Chem 2023; 26:e202300704. [PMID: 38601860 PMCID: PMC11005097 DOI: 10.1002/ejoc.202300704] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/24/2023] [Indexed: 04/12/2024]
Abstract
We herein report a two-step protocol for the asymmetric synthesis of novel chiral benzofused ϵ-lactones starting from O-protected hydroxymethyl-para-quinone methides and activated aryl esters. By using chiral isothiourea Lewis base catalysts a broad variety of differently substituted products could be obtained in yields of around 50 % over both steps with high levels of enantioselectivities, albeit low diastereoselectivities only.
Collapse
Affiliation(s)
- Lotte Stockhammer
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstrasse 694040LinzAustria
| | - Maximilian Radetzky
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstrasse 694040LinzAustria
| | - Syeda Sadia Khatoon
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstrasse 694040LinzAustria
| | - Matthias Bechmann
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstrasse 694040LinzAustria
| | - Mario Waser
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstrasse 694040LinzAustria
| |
Collapse
|
17
|
Stockhammer L, Craik R, Monkowius U, Cordes DB, Smith AD, Waser M. Isothiourea-Catalyzed Enantioselective Functionalisation of Glycine Schiff Base Aryl Esters via 1,6- and 1,4-Additions. CHEMISTRYEUROPE 2023; 1:e202300015. [PMID: 38882579 PMCID: PMC7616101 DOI: 10.1002/ceur.202300015] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Indexed: 06/18/2024]
Abstract
The enantioselective α-functionalisation of glycine Schiff base aryl esters through isothiourea catalysis is successfully demonstrated for 1,6-additions to para-quinone methides (21 examples, up to 95:5 dr and 96:4 er) and 1,4-additions to methylene substituted dicarbonyl or disulfonyl Michael acceptors (17 examples, up to 98:2 er). This nucleophilic organocatalysis approach gives access to a range of α-functionalised α-amino acid derivatives and further transformations of the activated aryl ester group provide a straightforward entry to advanced amino acid-based esters, amides or thioesters.
Collapse
Affiliation(s)
- Lotte Stockhammer
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz (Austria)
| | - Rebecca Craik
- EaStCHEM, School of Chemistry, University of St Andrews, KY16 9ST St Andrews, Fife, (UK)
| | - Uwe Monkowius
- School of Education, Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz (Austria)
| | - David B Cordes
- EaStCHEM, School of Chemistry, University of St Andrews, KY16 9ST St Andrews, Fife, (UK)
| | - Andrew D Smith
- EaStCHEM, School of Chemistry, University of St Andrews, KY16 9ST St Andrews, Fife, (UK)
| | - Mario Waser
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz (Austria)
| |
Collapse
|
18
|
Neti SS, Wang B, Iwig DF, Onderko EL, Booker SJ. Enzymatic Fluoromethylation Enabled by the S-Adenosylmethionine Analog Te-Adenosyl- L-(fluoromethyl)homotellurocysteine. ACS CENTRAL SCIENCE 2023; 9:905-914. [PMID: 37252363 PMCID: PMC10214534 DOI: 10.1021/acscentsci.2c01385] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Indexed: 05/31/2023]
Abstract
Fluoromethyl, difluoromethyl, and trifluoromethyl groups are present in numerous pharmaceuticals and agrochemicals, where they play critical roles in the efficacy and metabolic stability of these molecules. Strategies for late-stage incorporation of fluorine-containing atoms in molecules have become an important area of organic and medicinal chemistry as well as synthetic biology. Herein, we describe the synthesis and use of Te-adenosyl-L-(fluoromethyl)homotellurocysteine (FMeTeSAM), a novel and biologically relevant fluoromethylating agent. FMeTeSAM is structurally and chemically related to the universal cellular methyl donor S-adenosyl-L-methionine (SAM) and supports the robust transfer of fluoromethyl groups to oxygen, nitrogen, sulfur, and some carbon nucleophiles. FMeTeSAM is also used to fluoromethylate precursors to oxaline and daunorubicin, two complex natural products that exhibit antitumor properties.
Collapse
Affiliation(s)
- Syam Sundar Neti
- Department
of Chemistry, Department of Biochemistry and Molecular Biology, and Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Bo Wang
- Department
of Chemistry, Department of Biochemistry and Molecular Biology, and Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - David F. Iwig
- Department
of Chemistry, Department of Biochemistry and Molecular Biology, and Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Elizabeth L. Onderko
- Department
of Chemistry, Department of Biochemistry and Molecular Biology, and Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Squire J. Booker
- Department
of Chemistry, Department of Biochemistry and Molecular Biology, and Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| |
Collapse
|
19
|
Sorabad GS, Yang DY. Lewis Acid-Catalyzed 1,4-Addition and Annulation of 4-Hydroxy-coumarins with o-Hydroxyphenyl Propargyl Amines: Entry to Regio-Selective Synthesis of Furano[3,2- c]coumarins and Pyrano[3,2- c]coumarins. J Org Chem 2023; 88:4730-4742. [PMID: 36935550 DOI: 10.1021/acs.joc.3c00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
A facile and regioselective Lewis acid-catalyzed cascade annulation of o-hydroxyphenyl propargyl amines with 4-hydroxycoumarin to afford furano[3,2-c]coumarin and pyrano[3,2-c]coumarin derivatives is reported. The reaction presumably proceeds by the conjugate addition of 4-hydroxycoumarin to the in situ-generated alkynyl o-quinone methide and is followed by intramolecular 5-exo-dig and 6-endo-dig annulation to form furano[3,2-c]coumarins and pyrano[3,2-c]coumarins, respectively. The prepared o-hydroxyl substituted pyrano[3,2-c]coumarins could be readily transformed into the corresponding coumarin-derived dioxabicycles by acid-mediated cyclization.
Collapse
Affiliation(s)
- Ganesh Shivayogappa Sorabad
- Department of Chemistry, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung 407224, Taiwan
| | - Ding-Yah Yang
- Department of Chemistry, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung 407224, Taiwan.,Graduate Program for Biomedical and Materials Science, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung 407224, Taiwan
| |
Collapse
|
20
|
Ash J, Kang JY. Catalyst-free thiophosphorylation of in situ formed ortho-quinone methides. Org Biomol Chem 2023; 21:2370-2374. [PMID: 36852656 DOI: 10.1039/d2ob02169b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
A metal-, chloride reagent and base-free thiophosphorylation reaction of in situ formed ortho-quinone methide (o-QM) to synthesize functionalized thiophosphates has been developed. The reaction is an atom-economical process, producing water as the sole byproduct. (EtO)2P(O)SH functions as both a Brønsted acid and nucleophilic thiolate to produce the o-QM intermediate and the thiophosphate product, respectively. The aza o-QMs were also successfully thiophosphorylated in the presence of catalytic TsOH to form sulfonamido thiophosphates.
Collapse
Affiliation(s)
- Jeffrey Ash
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada, 89154-4003, USA.
| | - Jun Yong Kang
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada, 89154-4003, USA.
| |
Collapse
|
21
|
Sahoo SR, Singh VK. Brønsted Acid Catalyzed Friedel-Crafts Alkylation of Naphthols with In Situ Generated Naphthol-Derived ortho-Quinone Methides: Synthesis of Chiral and Achiral Xanthene Derivatives. J Org Chem 2023. [PMID: 36866580 DOI: 10.1021/acs.joc.2c02939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
We disclose herein an enantioselective protocol for the Brønsted acid catalyzed addition of naphthols to in situ generated naphthol-derived ortho-quinone methides (o-QMs) followed by intramolecular cyclization, which delivers substituted chiral xanthene derivatives, in a one-pot reaction sequence under mild conditions. This process serves to convert naphthol-derived ortho-hydroxyl benzylic alcohols into reactive naphthol-derived o-QMs using a chiral phosphoric acid (CPA) catalyst. Moreover, it is helpful in controlling the enantioselectivity of the carbon-carbon bond-forming event via hydrogen-bonding followed by intramolecular cyclization. Additionally, for the first time, we observe a Brønsted acid catalyzed C(sp2)-C(sp3) bond cleavage of naphthol-derived ortho-hydroxyl benzylic alcohols for the synthesis of achiral xanthene (sigma plane containing) derivatives in good to excellent yields.
Collapse
Affiliation(s)
- Sushree Ranjan Sahoo
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Vinod K Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
22
|
Xu D, Chang Y, Liu Y, Qin W, Yan H. Mechanistic Features of Asymmetric Vinylidene ortho-Quinone Methide Construction and Subsequent Transformations. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Da Xu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yu Chang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yidong Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Wenling Qin
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Hailong Yan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| |
Collapse
|
23
|
Wong YF, Hernandez I, Pettus TRR. Nucleophilic Addition of 4,5-Dihydrooxazole Derivatives to Base Generated o-Quinone Methides: A Four-Component Reaction. J Org Chem 2023; 88:2583-2588. [PMID: 36720129 PMCID: PMC9942189 DOI: 10.1021/acs.joc.2c02614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A novel method for joining four components together in a single pot leading to an assortment of N-amino-benzylated phenols is described. The method involves the addition of different Grignard reagents to various o-OBoc salicylaldehydes in the presence of assorted 4,5-dihydrooxazoles, followed by aqueous workup. Seventeen examples are presented with varied (-R, -R' -R″, -R‴, -R⁗, and Cn) substituents.
Collapse
|
24
|
Wang R, Gan YF, Li YY, Chen XQ, Guo YY. Recent Advances in Quinone Methide Chemistry for Protein-Proximity Capturing. SYNTHESIS-STUTTGART 2023. [DOI: 10.1055/s-0042-1751402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
AbstractHere we summarize the most recent findings in the chemical-, photo-, or enzyme-triggered generation of nitrogen and oxygen anions leading to the formation of quinone methide intermediates (QMIs). This short review is divided into two categories: generation of nitrogen and oxygen anions. Based on quinone methide intermediates (QMIs), proximate capture of a wide range of proteins has been widely determined and studied. Generally, the triggers include, photoirradiation using 365/254 nm UV light, small molecules (ROS/TBAF/s-tetrazine), metal catalysis (iridium catalysis), and enzymes (NQO1/β-galactosidase). New directions including far-red light, heat, force, microwave, and more practical approaches are explored and illustrated.1 Introduction2 Generation of the Nitrogen Anion3 Generation of the Oxygen Anion4 Conclusion
Collapse
Affiliation(s)
- Rui Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology
- Shenzhen Huazhong University of Science and Technology Research Institute
| | - You F. Gan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology
| | - Yuan Y. Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology
| | - Xiao Q. Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology
| | - Yu Y. Guo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology
| |
Collapse
|
25
|
Happy S, Junaid M, Yadagiri D. Reactivity of quinone methides with carbenes generated from α-diazocarbonyl compounds and related compounds. Chem Commun (Camb) 2022; 59:29-42. [PMID: 36484325 DOI: 10.1039/d2cc05623b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the years, quinone methides have broadly been applied in synthesis and biological systems for synthesizing heterocyclic compounds and biologically active molecules. In this feature article, we have discussed the novel and uncovered reactivity of o-quinone methides, p-quinone methides, aza-o-quinone methides, and indolyl-2-methides with carbenes generated from α-diazocarbonyl compounds and related compounds. Two in situ-generated transient intermediates undergo cycloannulation reactions, metathesis-type reactions, 1,6-conjugate addition reactions, cyclopropanation reactions, and many other transformations to access nitrogen- and oxygen-containing heterocyclic compounds and beyond. The reactivity of quinone methides and carbenes is observed in various metal catalysts, Brønsted-acids, Lewis acids, phase transfer catalysts, additives, and visible-light-induced transformations.
Collapse
Affiliation(s)
- Sharma Happy
- Department of Chemistry, Laboratory of Organic Synthesis & Catalysis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Mohammad Junaid
- Department of Chemistry, Laboratory of Organic Synthesis & Catalysis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Dongari Yadagiri
- Department of Chemistry, Laboratory of Organic Synthesis & Catalysis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| |
Collapse
|
26
|
A Novel Method to Construct 2-Aminobenzofurans via [4 + 1] Cycloaddition Reaction of In Situ Generated Ortho-Quinone Methides with Isocyanides. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238538. [PMID: 36500630 PMCID: PMC9737762 DOI: 10.3390/molecules27238538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/09/2022]
Abstract
A new approach for the synthesis of 2-aminobenzofurans has been described via Sc(OTf)3 mediated formal cycloaddition of isocyanides with the in situ generated ortho-quinone methides (o-QMs) from o-hydroxybenzhydryl alcohol. Notably, as a class of readily available and highly active intermediates, o-QMs were first used in the construction of benzofurans. This [4 + 1] cycloaddition reaction provides a straightforward and efficient methodology for the construction of 2-aminobenzofurans scaffold in good yield (up to 93% yield) under mild conditions.
Collapse
|
27
|
He X, Li R, Choy PY, Duan J, Yin Z, Xu K, Tang Q, Zhong RL, Shang Y, Kwong FY. An expeditious FeCl 3-catalyzed cascade 1,4-conjugate addition/annulation/1,5-H shift sequence for modular access of all-pyrano-moiety-substituted chromenes. Chem Sci 2022; 13:13617-13622. [PMID: 36507178 PMCID: PMC9682991 DOI: 10.1039/d2sc04431e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
ortho-Alkynyl quinone methides are well-known four-atom synthons for direct [4 + n] cycloaddition in constructing useful oxa-heterocyclic compounds owing to their high reactivity as well as the thermodynamically favored aromatization nature of this process. Herein we report an operationally simple and eco-friendly protocol for the modular and regioselective access of (E)-4-(vinyl or aryl or alkynyl)iminochromenes from propargylamines and S-methylated β-ketothioamides in the presence of FeCl3, and particularly under undried acetonitrile and air atmosphere conditions. This method exhibits a broad substrate scope and displays nice functional group compatibility, thus providing an efficient access of 3,4-disubstituted iminochromenes.
Collapse
Affiliation(s)
- Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241000 P. R. China
| | - Ruxue Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241000 P. R. China
| | - Pui Ying Choy
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The Chinese University of Hong Kong New Territories, Shatin Hong Kong SAR P. R. China
- Shenzhen Center of Novel Functional Molecules, Shenzhen Municipal Key Laboratory of Chemical Synthesis of Medicinal Organic Molecules, CUHK Shenzhen Research Institute No. 10. Second Yuexing Road Shenzhen 518507 P. R. China
| | - Jiahui Duan
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241000 P. R. China
| | - Zhenzhen Yin
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241000 P. R. China
| | - Keke Xu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241000 P. R. China
| | - Qiang Tang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241000 P. R. China
| | - Rong-Lin Zhong
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The Chinese University of Hong Kong New Territories, Shatin Hong Kong SAR P. R. China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241000 P. R. China
| | - Fuk Yee Kwong
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The Chinese University of Hong Kong New Territories, Shatin Hong Kong SAR P. R. China
- Shenzhen Center of Novel Functional Molecules, Shenzhen Municipal Key Laboratory of Chemical Synthesis of Medicinal Organic Molecules, CUHK Shenzhen Research Institute No. 10. Second Yuexing Road Shenzhen 518507 P. R. China
| |
Collapse
|
28
|
Jayachandran B, Parvin TN, Alam MM, Chanda K, MM B. Insights on Chemical Crosslinking Strategies for Proteins. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238124. [PMID: 36500216 PMCID: PMC9738610 DOI: 10.3390/molecules27238124] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/23/2022]
Abstract
Crosslinking of proteins has gained immense significance in the fabrication of biomaterials for various health care applications. Various novel chemical-based strategies are being continuously developed for intra-/inter-molecular crosslinking of proteins to create a network/matrix with desired mechanical/functional properties without imparting toxicity to the host system. Many materials that are used in biomedical and food packaging industries are prepared by chemical means of crosslinking the proteins, besides the physical or enzymatic means of crosslinking. Such chemical methods utilize the chemical compounds or crosslinkers available from natural sources or synthetically generated with the ability to form covalent/non-covalent bonds with proteins. Such linkages are possible with chemicals like carbodiimides/epoxides, while photo-induced novel chemical crosslinkers are also available. In this review, we have discussed different protein crosslinking strategies under chemical methods, along with the corresponding crosslinking reactions/conditions, material properties and significant applications.
Collapse
Affiliation(s)
- Brindha Jayachandran
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, Chennai Campus, Vandalur-Kelambakkam Road, Chennai 600127, India
| | - Thansila N Parvin
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, Chennai Campus, Vandalur-Kelambakkam Road, Chennai 600127, India
| | - M Mujahid Alam
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Kaushik Chanda
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, India
- Correspondence: (K.C.); (B.M.)
| | - Balamurali MM
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, Chennai Campus, Vandalur-Kelambakkam Road, Chennai 600127, India
- Correspondence: (K.C.); (B.M.)
| |
Collapse
|
29
|
Gou B, Tang Y, Lin Y, Yu L, Jian Q, Sun H, Chen J, Zhou L. Modular Construction of Heterobiaryl Atropisomers and Axially Chiral Styrenes via All‐Carbon Tetrasubstituted VQMs. Angew Chem Int Ed Engl 2022; 61:e202208174. [DOI: 10.1002/anie.202208174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Indexed: 02/06/2023]
Affiliation(s)
- Bo‐Bo Gou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an 710127 P. R. China
| | - Yue Tang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an 710127 P. R. China
| | - Yan‐Hong Lin
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an 710127 P. R. China
| | - Le Yu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an 710127 P. R. China
| | - Qing‐Song Jian
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an 710127 P. R. China
| | - Huai‐Ri Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an 710127 P. R. China
| | - Jie Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an 710127 P. R. China
| | - Ling Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an 710127 P. R. China
| |
Collapse
|
30
|
Iwanek W. Theoretical calculations of formation and reactivity of o-quinomethide derivatives of resorcin[4]arene with reference to empirical data. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220541. [PMID: 36249340 PMCID: PMC9554518 DOI: 10.1098/rsos.220541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
This paper describes theoretical reaction pathways of alkoxybenzyl derivatives of resorcin[4]arene leading to the formation of o-quinomethide derivatives of resorcin[4]arene (o-QMR[4]A). For each case, the activation energies for the formation of one o-QMR[4]A unit and the activation energies for the backward reaction were calculated. Based on the calculated reaction pathways, the reaction mechanism of o-QMR[4]A formation was proposed. Using the example of o-QMR[4]A generated from a methoxy derivative of resorcin[4]arene, the activation energies with selected nucleophiles were calculated and the reaction mechanisms discussed. Reaction path calculations were performed using the nudged elastic band method and semiempirical extended tight-binding method (GFN2-xTB). Using hydroxybenzyl derivatives of resorcin[4]arene as an example, a comparison of calculated activation energies by selected density-functional theory methods with GFN2-xTB and B97-3c geometries was performed. B97-3c and wB97XD methods were used to calculate the energies of the reactants (R), transition states (TS) and products (P) of the analysed reactions. Theoretical reaction mechanisms were discussed with respect to the orbital-weighted Fukui dual descriptor (Δfw ) and experimental data.
Collapse
Affiliation(s)
- Waldemar Iwanek
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland
| |
Collapse
|
31
|
Li Z, Zhang PX, Li ZZ, Zhang XL, Cao HY, Gao YN, Bian M, Chen HY, Liu ZJ. Diastereoselective Synthesis of Chromeno[3,2- d]isoxazoles via Brønsted Acid Catalyzed Tandem 1,6-Addition/Double Annulations of o-Hydroxyl Propargylic Alcohols. Org Lett 2022; 24:6863-6868. [PMID: 36102802 DOI: 10.1021/acs.orglett.2c02830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A Brønsted acid catalyzed tandem process to access densely functionalized chromeno[3,2-d]isoxazoles with good to excellent yields and diastereoselectivities was disclosed. The procedure is proposed to involve a 1,6-conjugate addition/electrophilic addition/double annulations process of alkynyl o-quinone methides (o-AQMs) in situ generated from o-hydroxyl propargylic alcohols with nitrones. Mild conditions, good functional group compatibility, easy scale-up of the reaction, and further product transformation demonstrated its potential application.
Collapse
Affiliation(s)
- Zhu Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Pei-Xu Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Zhao-Zhao Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Xing-Lu Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Hong-Yuan Cao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Yu-Ning Gao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Ming Bian
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Hui-Yu Chen
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Zhen-Jiang Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| |
Collapse
|
32
|
Liao H, Miñoza S, Lee S, Rueping M. Aza‐
Ortho
‐Quinone Methides as Reactive Intermediates: Generation and Utility in Contemporary Asymmetric Synthesis. Chemistry 2022; 28:e202201112. [DOI: 10.1002/chem.202201112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Hsuan‐Hung Liao
- Department of Chemistry National Sun Yat-sen University (NSYSU) 70 Lien-hai Rd. Kaohsiung 80424 Taiwan, (R.O.C
| | - Shinje Miñoza
- Department of Chemistry National Sun Yat-sen University (NSYSU) 70 Lien-hai Rd. Kaohsiung 80424 Taiwan, (R.O.C
| | - Shao‐Chi Lee
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
33
|
Gou BB, Tang Y, Lin YH, Yu L, Jian QS, Sun HR, Chen J, Zhou L. Modular Construction of Heterobiaryl Atropisomers and Axially Chiral Styrenes via All‐Carbon Tetrasubstituted VQMs. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bo-Bo Gou
- Northwest University College of Chemistry & Materials Science CHINA
| | - Yue Tang
- Northwest University College of Chemistry & Materials Science CHINA
| | - Yan-Hong Lin
- Northwest University College of Chemistry & Materials Science CHINA
| | - Le Yu
- Northwest University College of Chemistry & Materials Science CHINA
| | - Qing-Song Jian
- Northwest University College of Chemistry & Materials Science CHINA
| | - Huai-Ri Sun
- Northwest University College of Chemistry & Materials Science CHINA
| | - Jie Chen
- Northwest University College of Chemistry & Materials Science CHINA
| | - Ling Zhou
- Northwest University College of Chemistry & Materials Science 1 Xuefu Ave., Chang’an District 710127 Xi'an CHINA
| |
Collapse
|
34
|
Photodehydration mechanisms of quinone methide formation from 2-naphthol derivatives. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Chu WD, Liang TT, Ni H, Dong ZH, Shao Z, Liu Y, He CY, Bai R, Liu QZ. Palladium-Catalyzed Intermolecular Asymmetric Dearomative Annulation of Phenols with Vinyl Cyclopropanes. Org Lett 2022; 24:4865-4870. [PMID: 35775729 DOI: 10.1021/acs.orglett.2c01594] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we report the Pd(0)-catalyzed intermolecular asymmetric dearomative [3 + 2] annulation of phenols with vinyl cyclopropanes via in situ generated ortho-quinone methide intermediates. A series of highly functionalized spiro-[5,6] bicycles which bear three contiguous stereogenic centers including one all-carbon quaternary were obtained with excellent stereoselectivities. Density functional theory (DFT) calculations indicate that the reactions were controlled by thermodynamics.
Collapse
Affiliation(s)
- Wen-Dao Chu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P. R. China.,Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, P. R. China
| | - Tian-Tian Liang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P. R. China
| | - Hao Ni
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, P. R. China
| | - Zhi-Hong Dong
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P. R. China
| | - Zhihui Shao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, P. R. China
| | - Yong Liu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P. R. China
| | - Cheng-Yu He
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P. R. China
| | - Ruopeng Bai
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, P. R. China
| | - Quan-Zhong Liu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P. R. China
| |
Collapse
|
36
|
Wang T, Huang B, Wang YQ. Enantioselective Synthesis of Spiro Chroman‐Isoindolinones via Formal (4+2) Cycloaddition of In Situ‐Generated ortho‐Quinone Methides with 3‐Methylene Isoindolinones. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Mishra DR, Panda BS, Nayak S, Panda J, Mohapatra S. Recent Advances in the Synthesis of 5‐Membered
N
‐Heterocycles via Rhodium Catalysed Cascade Reactions. ChemistrySelect 2022. [DOI: 10.1002/slct.202200531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Deepak R. Mishra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Bhabani S. Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Sabita Nayak
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Jasmine Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Seetaram Mohapatra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| |
Collapse
|
38
|
Guan Z, Zhong X, Ye Y, Li X, Cong H, Yi H, Zhang H, Huang Z, Lei A. Selective radical cascade (4+2) annulation with olefins towards the synthesis of chroman derivatives via organo-photoredox catalysis. Chem Sci 2022; 13:6316-6321. [PMID: 35733882 PMCID: PMC9159083 DOI: 10.1039/d2sc00903j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/21/2022] [Indexed: 12/02/2022] Open
Abstract
Due to the importance of chroman frameworks in medicinal chemistry, the development of novel synthetic methods for these structures is gaining increasing interest of chemists. Reported here is a new (4 + 2) radical annulation approach for the construction of these functional six-membered frameworks via photocatalysis. Featuring mild reaction conditions, the protocol allows readily available N-hydroxyphthalimide esters and electron-deficient olefins to be converted into a wide range of valuable chromans in a highly selective manner. Moreover, the present strategy can be used in the late-stage functionalization of natural product derivatives and biologically active compounds, which demonstrated the potential application. This method is complementary to the traditional Diels–Alder [4 + 2] cycloaddition reaction of ortho-quinone methides and electron-rich dienophiles, since electron-deficient dienophiles were smoothly transformed into the desired chromans. We have developed a (4 + 2) radical annulation approach for the synthesis of diverse chromans. This method is complementary to the traditional Diels–Alder [4 + 2] annulation of ortho-quinone methides and electron-rich dienophiles.![]()
Collapse
Affiliation(s)
- Zhipeng Guan
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 Hubei People's Republic of China
| | - Xingxing Zhong
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 Hubei People's Republic of China
| | - Yayu Ye
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 Hubei People's Republic of China
| | - Xiangwei Li
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 Hubei People's Republic of China
| | - Hengjiang Cong
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 Hubei People's Republic of China
| | - Hong Yi
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 Hubei People's Republic of China
| | - Heng Zhang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 Hubei People's Republic of China
| | - Zhiliang Huang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 Hubei People's Republic of China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 Hubei People's Republic of China
| |
Collapse
|
39
|
Ali K, Mishra P, Kumar A, Reddy DN, Chowdhury S, Panda G. Reactivity vs. selectivity of quinone methides: synthesis of pharmaceutically important molecules, toxicity and biological applications. Chem Commun (Camb) 2022; 58:6160-6175. [PMID: 35522910 DOI: 10.1039/d2cc00838f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Quinone methides (QMs) are considered to be highly reactive intermediates because of their aromatization both in chemical and biological systems. Being highly accessible, quinone methides (QMs) have been widely exploited and their concurrent use has been manifested for the synthesis of tertiary and quaternary carbon centers of bioactives, drugs and drug-like molecules. In this feature article, the synthetic routes, structure-reactivity relationships and synthetic applications of quinone methides are discussed. Formation of the intermediates during bioactivation of different chemical entities and possible chemical manifestations leading to their toxicity in biological systems are also covered.
Collapse
Affiliation(s)
- Kasim Ali
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sector 10, Lucknow 226031, UP, India. .,Academy of Scientific & Industrial Research (AcSIR), Ghaziabad, Uttar Pradesh-201 002, India
| | - Prajjval Mishra
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sector 10, Lucknow 226031, UP, India.
| | - Awnish Kumar
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sector 10, Lucknow 226031, UP, India.
| | - Damodara N Reddy
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sector 10, Lucknow 226031, UP, India. .,Academy of Scientific & Industrial Research (AcSIR), Ghaziabad, Uttar Pradesh-201 002, India
| | - Sushobhan Chowdhury
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sector 10, Lucknow 226031, UP, India.
| | - Gautam Panda
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sector 10, Lucknow 226031, UP, India. .,Academy of Scientific & Industrial Research (AcSIR), Ghaziabad, Uttar Pradesh-201 002, India
| |
Collapse
|
40
|
Yashmin S, Ali R, Mondal S, Khan AT. DMSO-assisted environmentally benign synthesis of benzo[ c]-chromeno[4,3,2- gh]phenanthridines by remote oxidative hetero cross-coupling cyclization and aromatization reaction. Chem Commun (Camb) 2022; 58:5853-5856. [PMID: 35467679 DOI: 10.1039/d2cc01067d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An unprecedented metal-free and catalyst-free synthesis of benzo[c]chromeno[4,3,2-gh]phenanthridine derivatives, a class of 1,6-diheterophenalenoid heterocycle, is reported for the first time. The oxidative cross-coupling reaction for the remote cyclization is achieved through the in situ generated o-quinone methide intermediate followed by an electrocyclic ring closure reaction. The aromatization of the cyclohexane ring is achieved by sequential H shift, hydroxylation, and elimination reaction. DMSO-assisted concomitant cyclization and aromatization reactions are also disclosed for the first time.
Collapse
Affiliation(s)
- Sabina Yashmin
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Rashid Ali
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Santa Mondal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Abu Taleb Khan
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| |
Collapse
|
41
|
Davis J, Gharaee M, Karunaratne CV, Cortes Vazquez J, Haynes M, Luo W, Nesterov VN, Cundari T, Wang H. Asymmetric Synthesis of Chromans Through Bifunctional Enamine-Metal Lewis Acid Catalysis. Chemistry 2022; 28:e202200224. [PMID: 35298095 DOI: 10.1002/chem.202200224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Indexed: 11/09/2022]
Abstract
Cooperative enamine-metal Lewis acid catalysis has emerged as a powerful tool to construct carbon-carbon and carbon-heteroatom bond forming reactions. A concise synthetic method for asymmetric synthesis of chromans from cyclohexanones and salicylaldehydes has been developed to afford tricyclic chromans containing three consecutive stereogenic centers in good yields (up to 87 %) and stereoselectivity (up to 99 % ee and 11 : 1 : 1 dr). This difficult organic transformation was achieved through bifunctional enamine-metal Lewis acid catalysis. It is believed that the strong activation of the salicylaldehydes through chelating to the metal Lewis acid and the bifunctional nature of the catalyst accounts for the high yields and enantioselectivity of the reaction. The absolute configurations of the chroman products were established through X-ray crystallography. DFT calculations were conducted to understand the mechanism and stereoselectivity of this reaction.
Collapse
Affiliation(s)
- Jacqkis Davis
- Department of Chemistry, University of North Texas, Denton, TX 76203, USA
| | - Mojgan Gharaee
- Department of Chemistry, University of North Texas, Denton, TX 76203, USA
| | | | | | - Mikayla Haynes
- Department of Chemistry, University of North Texas, Denton, TX 76203, USA
| | - Weiwei Luo
- School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, 410114, China
| | | | - Thomas Cundari
- Department of Chemistry, University of North Texas, Denton, TX 76203, USA
| | - Hong Wang
- Department of Chemistry, University of North Texas, Denton, TX 76203, USA
| |
Collapse
|
42
|
Roy Choudhury S, Houston KR, Mason DC, Dingemans TJ. Acid catalyzed
epoxy–methylolphenol
thermosets: A
structure–property
study. J Appl Polym Sci 2022. [DOI: 10.1002/app.51944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shreya Roy Choudhury
- Department of Applied Physical Sciences University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | | | | | - Theo J. Dingemans
- Department of Applied Physical Sciences University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| |
Collapse
|
43
|
Purdy TN, Moore BS, Lukowski AL. Harnessing ortho-Quinone Methides in Natural Product Biosynthesis and Biocatalysis. JOURNAL OF NATURAL PRODUCTS 2022; 85:688-701. [PMID: 35108487 PMCID: PMC9006567 DOI: 10.1021/acs.jnatprod.1c01026] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The implementation of ortho-quinone methide (o-QM) intermediates in complex molecule assembly represents a remarkably efficient strategy designed by Nature and utilized by synthetic chemists. o-QMs have been taken advantage of in biomimetic syntheses for decades, yet relatively few examples of o-QM-generating enzymes in natural product biosynthetic pathways have been reported. The biosynthetic enzymes that have been discovered thus far exhibit tremendous potential for biocatalytic applications, enabling the selective production of desirable compounds that are otherwise intractable or inherently difficult to achieve by traditional synthetic methods. Characterization of this biosynthetic machinery has the potential to shine a light on new enzymes capable of similar chemistry on diverse substrates, thus expanding our knowledge of Nature's catalytic repertoire. The presently known o-QM-generating enzymes include flavin-dependent oxidases, hetero-Diels-Alderases, S-adenosyl-l-methionine-dependent pericyclases, and α-ketoglutarate-dependent nonheme iron enzymes. In this review, we discuss their diverse enzymatic mechanisms and potential as biocatalysts in constructing natural product molecules such as cannabinoids.
Collapse
Affiliation(s)
- Trevor N Purdy
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, La Jolla, California 92093, United States
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, La Jolla, California 92093, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92093, United States
| | - April L Lukowski
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, La Jolla, California 92093, United States
| |
Collapse
|
44
|
Jang J, Kim DY. Synthesis of trifluoromethylated 4H‐1‐benzopyran derivatives via photocatalytic trifluoromethylation/oxidation/conjugate addition, and cyclization sequences of vinyl phenols. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jihoon Jang
- Soonchunhyang University Department of Chemistry and Department of ICT Environmental Health System KOREA, REPUBLIC OF
| | - Dae Young Kim
- Soonchunhyang University Department of Chemistry and Department of ICT Environmental Health Syntem Asan 336745 Chungnam KOREA, REPUBLIC OF
| |
Collapse
|
45
|
Forjan M, Zgrablić G, Vdović S, Šekutor M, Basarić N, Kabacinski P, Nazari Haghighi Pashaki M, Frey HM, Cannizzo A, Cerullo G. Photogeneration of quinone methide from adamantylphenol in an ultrafast non-adiabatic dehydration reaction. Phys Chem Chem Phys 2022; 24:4384-4393. [PMID: 35112685 PMCID: PMC8849006 DOI: 10.1039/d1cp05690e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/24/2022] [Indexed: 01/23/2023]
Abstract
The ultrafast photochemical reaction of quinone methide (QM) formation from adamantylphenol was monitored in real time using femtosecond transient absorption spectroscopy and fluorescence upconversion in solution at room temperature. Experiments were complemented by theoretical studies simulating the reaction pathway and elucidating its mechanism. Excitation with sub-20 fs UV pulses and broadband probing revealed ultrafast formation of the long-lived QM intermediate directly in the ground state, occurring with a time constant of around 100 fs. UV-vis transient absorption data covering temporal dynamics from femtoseconds to hundreds of milliseconds revealed persistence of the absorption band assigned to QM and partially overlapped with other contributions tentatively assigned to triplet excited states of the adamantyl derivative and the phenoxyl radical that are clearly distinguished by their evolution on different time scales. Our data, together with the computations, provide evidence of a non-adiabatic photodehydration reaction, which leads to the formation of QM in the ground state via a conical intersection, circumventing the generation of a transient QM excited state.
Collapse
Affiliation(s)
- Mateo Forjan
- Institute of Physics, Bijenička cesta 46, 10 000 Zagreb, Croatia.
| | - Goran Zgrablić
- Institute of Physics, Bijenička cesta 46, 10 000 Zagreb, Croatia.
| | - Silvije Vdović
- Institute of Physics, Bijenička cesta 46, 10 000 Zagreb, Croatia.
| | - Marina Šekutor
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Nikola Basarić
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Piotr Kabacinski
- IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| | | | - Hans-Martin Frey
- Institute of Applied Physics, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - Andrea Cannizzo
- Institute of Applied Physics, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - Giulio Cerullo
- IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| |
Collapse
|
46
|
Martins MTM, Dias FRF, de Moraes RSM, da Silva MFV, Lucio KR, D'Oliveira Góes K, do Nascimento PA, da Silva ASS, Ferreira VF, Cunha AC. Multicomponent Reactions (MCRs) with o-Quinone Methides. CHEM REC 2022; 22:e202100251. [PMID: 35112473 DOI: 10.1002/tcr.202100251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/19/2021] [Indexed: 12/13/2022]
Abstract
This article presents a comprehensive overview of multicomponent reactions (MCRs) that proceed via ortho-quinone methide intermediates (o-QM) generated in the reaction medium. Examples of applications involving these highly reactive intermediates in organic synthesis and biological processes (e. g., biosynthetic pathways, prodrug cleavage and electrophilic capture of biological nucleophiles) are also described. QMs are often generated by eliminative processes of phenol derivatives or by photochemical reactions, including reversible generation in photochromic substances. This class of compounds can undergo various reaction types, including nucleophilic attack at the methide carbon, with subsequent rearomatization, and react with electron-rich dienophiles in inverse-electron demand hetero-Diels-Alder reactions. Its versatile reactivity has been explored in the context of cascade reactions for the construction of several classes of substances, including complex natural products.
Collapse
Affiliation(s)
- Maria Tereza M Martins
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, Programa de Pós-Graduação em Química, 24020-141, Niterói, Rio de Janeiro, Brazil
| | - Flaviana Rodrigues F Dias
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, Programa de Pós-Graduação em Química, 24020-141, Niterói, Rio de Janeiro, Brazil
| | - Raphael Silva M de Moraes
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, Programa de Pós-Graduação em Química, 24020-141, Niterói, Rio de Janeiro, Brazil
| | - Marcos Felipe V da Silva
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, Programa de Pós-Graduação em Química, 24020-141, Niterói, Rio de Janeiro, Brazil
| | - Kaio R Lucio
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, Programa de Pós-Graduação em Química, 24020-141, Niterói, Rio de Janeiro, Brazil
| | - Karina D'Oliveira Góes
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, Programa de Pós-Graduação em Química, 24020-141, Niterói, Rio de Janeiro, Brazil
| | - Patrick A do Nascimento
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, Programa de Pós-Graduação em Química, 24020-141, Niterói, Rio de Janeiro, Brazil
| | - André S S da Silva
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, Programa de Pós-Graduação em Química, 24020-141, Niterói, Rio de Janeiro, Brazil
| | - Vitor F Ferreira
- Universidade Federal Fluminense, Faculdade de Farmácia, Departamento de Tecnologia Farmacêutica, CEP, 24241-000, Niterói, Rio de Janeiro, Brazil
| | - Anna C Cunha
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, Programa de Pós-Graduação em Química, 24020-141, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
47
|
Chinta BS, Arora S, Hoye TR. Trapping Reactions of Benzynes Initiated by Intramolecular Nucleophilic Addition of a Carbonyl Oxygen to the Electrophilic Aryne. Org Lett 2022; 24:425-429. [PMID: 34958573 PMCID: PMC8848297 DOI: 10.1021/acs.orglett.1c04110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We describe here reactions in which a carbonyl oxygen atom initiates cascade reactions by nucleophilic attack on a covalently attached benzyne. The benzynes are produced by thermal cyclization of triynes via hexadehydro-Diels-Alder reaction. The initially produced oxocarbenium/aryl carbanionic zwitterion is protonated in situ by an external protic nucleophile (NuH) of appropriate acidity. The resulting ion pair (oxocarbenium+/Nu-) collapses through several different mechanistic manifolds, adding to the diversity of structural classes that can be generated.
Collapse
Affiliation(s)
- Bhavani Shankar Chinta
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455
| | - Sahil Arora
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455
| | - Thomas R. Hoye
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455.,Corresponding Author:
| |
Collapse
|
48
|
Tang Q, Yuan M, Duan J, Xu K, Li R, Xie M, Kong S, He X, Shang Y. Metal‐Free Cascade Annulation Approach for Modular Assembly of Alkynyl/Benzoyl Functionalized Quinolines. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qiang Tang
- Key Laboratory of Functional Molecular Solids Ministry of Education Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base) College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 P. R. China
| | - Meng Yuan
- Key Laboratory of Functional Molecular Solids Ministry of Education Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base) College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 P. R. China
| | - Jiahui Duan
- Key Laboratory of Functional Molecular Solids Ministry of Education Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base) College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 P. R. China
| | - Keke Xu
- Key Laboratory of Functional Molecular Solids Ministry of Education Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base) College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 P. R. China
| | - Ruxue Li
- Key Laboratory of Functional Molecular Solids Ministry of Education Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base) College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 P. R. China
| | - Mengqing Xie
- Key Laboratory of Functional Molecular Solids Ministry of Education Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base) College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 P. R. China
| | - Shuwen Kong
- Key Laboratory of Functional Molecular Solids Ministry of Education Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base) College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 P. R. China
| | - Xinwei He
- Key Laboratory of Functional Molecular Solids Ministry of Education Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base) College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 P. R. China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province Hunan Normal University Changsha 410081 P. R. China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids Ministry of Education Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base) College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 P. R. China
| |
Collapse
|
49
|
Tanaka K, Asada Y, Hoshino Y. A new cycloaddition profile for ortho-quinone methides: photoredox-catalyzed [6+4] cycloadditions for synthesis of benzo[ b]cyclopenta[ e]oxepines. Chem Commun (Camb) 2022; 58:2476-2479. [PMID: 35014637 DOI: 10.1039/d1cc06332d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Visible-light-induced [6+4] cycloaddition reactions of ortho-quinone methides have been developed. The reaction of ortho-quinone methides with pentafulvenes in the presence of a thioxanthylium photoredox catalyst afforded benzo[b]cyclopenta[e]oxepines. The present reaction represents a promising tool for the synthesis of natural products and bioactive compounds that contain a benzoxepine structure.
Collapse
Affiliation(s)
- Kenta Tanaka
- Graduate School of Environment and Information Sciences, Yokohama National University, Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan.
| | - Yosuke Asada
- Graduate School of Environment and Information Sciences, Yokohama National University, Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan.
| | - Yujiro Hoshino
- Graduate School of Environment and Information Sciences, Yokohama National University, Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan.
| |
Collapse
|
50
|
Wang L, Li S, Xiao X, Xu W, Zhang P, Ma Y. A Synthetic Protocol for the Construction of Chroman‐Spiroquinazolin(thi)one Framework via a Metal‐Free, Three‐Component, Domino, Double Annulations. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101324] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lingfeng Wang
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering Taizhou University, Jiaojiang Zhejiang 318000 People's Republic of China
- College of Material Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou 310036 People's Republic of China
| | - Song Li
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering Taizhou University, Jiaojiang Zhejiang 318000 People's Republic of China
| | - Xuqiong Xiao
- College of Material Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou 310036 People's Republic of China
| | - Weiming Xu
- College of Material Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou 310036 People's Republic of China
| | - Pengfei Zhang
- College of Material Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou 310036 People's Republic of China
| | - Yongmin Ma
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering Taizhou University, Jiaojiang Zhejiang 318000 People's Republic of China
| |
Collapse
|