1
|
Premadasa UI, Doughty B, Custelcean R, Ma YZ. Towards Energy-Efficient Direct Air Capture with Photochemically-Driven CO 2 Release and Solvent Regeneration. Chempluschem 2024; 89:e202300713. [PMID: 38456801 DOI: 10.1002/cplu.202300713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/09/2024]
Abstract
The intensive energy demands associated with solvent regeneration and CO2 release in current direct air capture (DAC) technologies makes their deployment at the massive scales (GtCO2/year) required to positively impact the climate economically unfeasible. This challenge underscores the critical need to develop new DAC processes with significantly reduced energy costs. Recently, we developed a new approach to photochemically drive efficient release of CO2 through an intermolecular proton transfer reaction by exploiting the unique properties of an indazole metastable-state photoacid (mPAH), opening a new avenue towards energy efficient on-demand CO2 release and solvent regeneration using abundant solar energy instead of heat. In this Concept Article, we will describe the principle of our photochemically-driven CO2 release approach for solvent-based DAC systems, discuss the essential prerequisites and conditions to realize this cyclable CO2 release chemistry under ambient conditions. We outline the key findings of our approach, discuss the latest developments from other research laboratories, detail approaches used to monitor DAC systems in situ, and highlight experimental procedures for validating its feasibility. We conclude with a summary and outlook into the immediate challenges that must be addressed in order to fully exploit this novel photochemically-driven approach to DAC solvent regeneration.
Collapse
Affiliation(s)
- Uvinduni I Premadasa
- Chemical Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, 37831, Oak Ridge, TN, USA
| | - Benjamin Doughty
- Chemical Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, 37831, Oak Ridge, TN, USA
| | - Radu Custelcean
- Chemical Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, 37831, Oak Ridge, TN, USA
| | - Ying-Zhong Ma
- Chemical Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, 37831, Oak Ridge, TN, USA
| |
Collapse
|
2
|
Antalicz B, Bakker HJ. Temperature Effects and Activation Barriers in Aqueous Proton-Uptake Reactions. JACS AU 2024; 4:2995-3006. [PMID: 39211613 PMCID: PMC11350741 DOI: 10.1021/jacsau.4c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 09/04/2024]
Abstract
Aqueous proton transfer reactions are fundamental in biology and chemistry, yet kinetics and mechanisms of strong base-weak acid reactions are not well understood. In this work, we present a temperature-dependent reaction kinetic study of the water-soluble photobase actinoquinol, in the presence and absence of succinimide, a weak acid reaction partner. We study the temperature dependence of the reaction and connect the observed dynamics to the reaction's thermodynamics. We find that actinoquinol reacts in associated complexes with water/succinimide, creating an intermediate complex that can undergo either dissociation to create products, or reverse proton transfer within the complex to recreate the initial reactants. We find that the intermediates' formation is energetically unfavorable with both reaction partners, which impacts the net reaction rates. We also find that the net reaction rate is additionally strongly influenced by the competition between the dissociation of the intermediates and their reverse reaction.
Collapse
Affiliation(s)
- Balázs Antalicz
- AMOLF, Ultrafast Spectroscopy, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Huib J. Bakker
- AMOLF, Ultrafast Spectroscopy, Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
3
|
Su H, Yang Q, Jiang MH, Peng YJ, Gao J, Liu YH, Zhu C. Fluorescence quenching of deprotonated phenylurea through twisting motion induced by an electron-donating substituent group. Phys Chem Chem Phys 2024; 26:21155-21162. [PMID: 39072416 DOI: 10.1039/d4cp02077d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The excited-state proton transfer (ESPT) reaction between anthracen-2-yl-3-phenylurea (PUA) derivatives and tetrabutylammonium acetate (TBAAc) in dimethyl sulfoxide (DMSO) solvent was theoretically investigated using time-dependent density functional theory. The electron-donating methoxy group (OMe) and electron-withdrawing trifluoromethyl group (CF3) were bonded to 2PUA to form OMe-2PUA and CF3-2PUA, respectively. Two hydrogen bonds formed in the 1 : 1 hydrogen-bonded complexes between the 2PUA derivative and acetate ion (AcO-), namely N1-H1⋯O1 and N2-H2⋯O2. Strong charge transfer (CT) due to the electron-donating OMe group led to H1 transfer in the S1 state for the OMe-2PUA:AcO- hydrogen-bonded complex. On the contrary, weak CT due to the electron-withdrawing CF3 group led to H2 transfer in the S1 state for CF3-2PUA. After the ESPT reaction, the binding energies of the hydrogen-bonded complexes strongly decreased in both cases, and this promoted the separation of contact-ion pairs (CIPs*) and formed different types of anionic species. CF3-2PUA- could keep its nearly planar structure in the S1 state and emit "abnormal" fluorescence. On the other hand, the anionic OMe-2PUA- underwent a twisting motion to form a twisted structure in the S1 state with very low energy, and this led to a rapid internal conversion (IC) to quench long-wave fluorescence in the emission spectra.
Collapse
Affiliation(s)
- Hang Su
- Key College of Mathematical Science, Bohai University, Jinzhou 121013, P. R. China
| | - Qian Yang
- College of Physical Science and Technology, Bohai University, Jinzhou 121013, P. R. China.
| | - Meng-Huan Jiang
- College of Physical Science and Technology, Bohai University, Jinzhou 121013, P. R. China.
| | - Ya-Jing Peng
- College of Physical Science and Technology, Bohai University, Jinzhou 121013, P. R. China.
| | - Jun Gao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Yu-Hui Liu
- College of Physical Science and Technology, Bohai University, Jinzhou 121013, P. R. China.
| | - Chaoyuan Zhu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, P. R. China
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao-Tung University, Hsinchu 30010, Taiwan.
| |
Collapse
|
4
|
Hunt JR, Hecht J, Goolsby C, Hagihara J, Loza M, del Pozo S. Excited State Proton Transfer from Acidic Alcohols to a Quinoline Photobase Can Be Solvated by Non-Acidic Alcohol Solvents. J Phys Chem A 2024; 128:6199-6207. [PMID: 39034730 PMCID: PMC11299183 DOI: 10.1021/acs.jpca.4c02907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/25/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Photobases are a type of molecule that become more basic upon photoexcitation and can therefore be used to control proton transfer reactions with light. The solvation requirements for excited state proton transfer (ESPT) in photobase systems is poorly understood, which limits their applicability. Here, we investigate the solvation of the ESPT reaction using 5-methoxyquinoline (MeOQ), a well-studied photobase with an excited state pKa (pKa*) of approximately 15.1, as a model system. Previous studies have shown that, in addition to the acidic donor that donates a proton to the photoexcited MeOQ, an additional "auxiliary donor" is necessary to solvate the resulting alkoxide. We investigate whether a nonacidic hydrogen bond donor (an alcohol solvent that MeOQ cannot deprotonate in bulk) can act as the auxiliary donor for the MeOQ ESPT reaction. First, we use steady state spectroscopy, TCSPC, and electronic structure calculations to show that MeOQ can deprotonate the acidic donor 2,2,2-trifluoroethanol (TFE, pKa = 12.5) using ethanol as the auxiliary donor. We show that the degree of ESPT is largely predicted by the degree of ground state hydrogen bonding between the photobase and the acidic donor. Next, we study the deprotonation of the acidic donors TFE and 1,1,1,3,3,3-hexafluoroisopropanol (HFIP, pKa = 9.3) with MeOQ in a variety of nonacidic alcohol solvents of varying chain length and branching. MeOQ ESPT occurs to varying extents in all solvents, suggesting that all studied nonacidic alcohols can function as auxiliary donors. We show that the concentration of the acidic donor is strongly correlated with the degree of ESPT. These results are necessary fundamental steps toward the understanding of the photobase ESPT reaction and its wide application in a variety of chemical systems.
Collapse
Affiliation(s)
- Jonathan Ryan Hunt
- Loyola Marymount University, Los Angeles, California 90045, United States
| | - Joseph Hecht
- Loyola Marymount University, Los Angeles, California 90045, United States
| | - Clara Goolsby
- Loyola Marymount University, Los Angeles, California 90045, United States
| | - Jade Hagihara
- Loyola Marymount University, Los Angeles, California 90045, United States
| | - Monique Loza
- Loyola Marymount University, Los Angeles, California 90045, United States
| | - Samantha del Pozo
- Loyola Marymount University, Los Angeles, California 90045, United States
| |
Collapse
|
5
|
Chettri A, Kaberov LI, Klosterhalfen N, Perera S, Jamshied M, Schacher FH, Dietzek-Ivanšić B. Poly(2-Oxazoline) Amphiphilicity Tunes the Excited-State Proton Transfer of Pyrenol-Based Polyphotoacids. Chemistry 2024; 30:e202401047. [PMID: 38699878 DOI: 10.1002/chem.202401047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
The ability of light to change the properties of light-responsive polymers opens avenues for targeted release of cargo with a high degree of spatial and temporal control. Recently, we established photoacid polymers as light-switchable macromolecular amphiphiles. In these systems, light-induced excited-state proton transfer (ESPT) causes changes in amphilicity. However, as the intermolecular process itself critically depends on the local environment of the photoacid unit within the polymer, the overall amphiphilicity directly influences ESPT. Thus, understanding the impact of the local environment on the photophysics of photoacidic side chains is key to material design. In this contribution we address both thermodynamic and kinetic aspects of ESPT in oxazoline-based amphiphilic polymers with pyrenol-based photoacid side chains. We will compare the effect of polymer design, i. e. statistical and block arrangements, i. e. in poly[(2-ethyl-2-oxazoline)-co-(1-(6/8-hydroxyperene)sulphonylaziridine)] and poly(2-ethyl-2-oxazoline)-block-poly[(2-ethyl-2-oxazoline)-co-(2-(3-(6-hydroxypyrene)sulphonamide)propyl-2-oxazoline), on the intermolecular proton transfer reaction by combining steady-state and time-resolved absorption and emission spectroscopy. ESPT appears more prominent in the statistical copolymer compared to a block copolymer with overall similar pyrenol loading. We hypothesize that the difference is due to different local chain arrangements adopted by the polymers in the two cases.
Collapse
Affiliation(s)
- Avinash Chettri
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Research Department Functional Interfaces, Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Leonid I Kaberov
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
- Jena Center for Soft Matter, Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Niklas Klosterhalfen
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Research Department Functional Interfaces, Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Sandunika Perera
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
- Jena Center for Soft Matter, Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Mohammed Jamshied
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
- Jena Center for Soft Matter, Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
- Jena Center for Soft Matter, Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Benjamin Dietzek-Ivanšić
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Research Department Functional Interfaces, Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745, Jena, Germany
| |
Collapse
|
6
|
Bhide R, Phun GS, Ardo S. Elementary Reaction Steps That Precede or Follow a Unimolecular Reaction Step Can Obfuscate Interpretation of the Driving-Force Dependence to Its Rate Constant. J Phys Chem A 2024; 128:4177-4188. [PMID: 38752741 DOI: 10.1021/acs.jpca.3c08228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Assessing the validity of a driving-force-dependent kinetic theory for a unimolecular elementary reaction step is difficult when the observed reaction rate is strongly influenced by properties of the preceding or following elementary reaction step. A well-known example occurs for bimolecular reactions with weak orbital overlap, such as outer-sphere electron transfer, where bimolecular collisional encounters that precede a fast unimolecular electron-transfer step can limit the observed rate. A lesser-appreciated example occurs for bimolecular reactions with stronger orbital overlap, including many proton-transfer reactions, where equilibration of an endergonic unimolecular proton-transfer step results in a relatively small concentration of reaction products, thus slowing the rate of the following step such that it becomes rate limiting. Incomplete consideration of these points has led to discrepancies in interpretation of data from the literature. Our reanalysis of these data suggests that proton-transfer elementary reaction steps have a nonzero intrinsic free energy barrier, implying, in the parlance of Marcus theory, that there is non-negligible nuclear reorganization. Outcomes from our analyses are generalizable to inner-sphere electron-transfer reactions such as those involved in (photo)electrochemical fuel-forming reactions.
Collapse
Affiliation(s)
- Rohit Bhide
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Gabriel S Phun
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Shane Ardo
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
- Department of Chemical & Biomolecular Engineering, University of California Irvine, Irvine, California 92697, United States
- Department of Materials Science & Engineering, University of California Irvine, Irvine, California 92697, United States
| |
Collapse
|
7
|
Jradi FM, English BP, Brown TA, Aaron J, Khuon S, Galbraith JA, Galbraith CG, Lavis LD. Coumarin as a general switching auxiliary to prepare photochromic and spontaneously blinking fluorophores. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.12.593749. [PMID: 38766036 PMCID: PMC11100827 DOI: 10.1101/2024.05.12.593749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Single-molecule localization microscopy (SMLM) uses activatable or switchable fluorophores to create non-diffraction limited maps of molecular location in biological samples. Despite the utility of this imaging technique, the portfolio of appropriate labels for SMLM remains limited. Here, we describe a general strategy for the construction of "glitter bomb" labels by simply combining rhodamine and coumarin dyes though an amide bond. Condensation of the ortho-carboxyl group on the pendant phenyl ring of rhodamine dyes with a 7-aminocoumarin yields photochromic or spontaneously blinking fluorophores depending on the parent rhodamine structure. We apply this strategy to prepare labels useful super-resolution experiments in fixed cells using different attachment techniques. This general glitter bomb strategy should lead to improved labels for SMLM, ultimately enabling the creation of detailed molecular maps in biological samples.
Collapse
Affiliation(s)
- Fadi M. Jradi
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
| | - Brian P. English
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
| | - Timothy A. Brown
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
| | - Jesse Aaron
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
| | - Satya Khuon
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
| | - James A. Galbraith
- Department of Biomedical Engineering and Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Catherine G. Galbraith
- Department of Biomedical Engineering and Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Luke D. Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
| |
Collapse
|
8
|
Bhakta V, Pramanik A, Guchhait N. Dual-Channel Imine-Amine Photoisomerization in a Benzoimidazole and Benzothiazole Coupled System: Photophysics and Applications. J Phys Chem A 2024; 128:3062-3077. [PMID: 38608179 DOI: 10.1021/acs.jpca.3c08021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
A molecule, namely 2-(1H-benzo[d]imidazol-2-yl)-6-(benzo[d]thiazol-2-yl)-4-bromophenol (BIBTB), having a two-way proton transfer unit of thiazole and imidazole moieties was synthesized and characterized by NMR, electrospray ionization mass spectrometry (ESI-MS), and single-crystal diffraction studies. Steady state and time-resolved spectral studies of BIBTB support excited state intramolecular proton transfer (ESIPT), causing imine-amine tautomerization through a two-way 6-membered H-bonded ring, where the N atoms of benzothiazole and the benzoimidazole unit are involved as proton acceptor sites. Interestingly, in a nonpolar and moderately polar solvent, photoisomerization in BIBTB is found to be favored toward the thiazole ring, whereas in a highly polar solvent, it is favored toward the imidazole ring. A spectral comparison of BIBTB with judicially designed molecules 2-(benzo[d]thiazol-2-yl)-4-bromophenol (HBT) and 2-(1H-benzo[d]imidazol-2-yl)-4-bromophenol (BIB) supports these inferences. Theoretical calculation using the Density Functional Theory (DFT) at CAM-B3LYP/6-311+G(d,p) level supports the existence of two low-energy 6-membered hydrogen-bonded planar conformers in the ground state in the gas phase and in solvents of different dielectrics. The potential energy curves (PECs) calculated along the proton transfer (PT) coordinate are found to have a high energy barrier in the ground state and to be barrierless or have a low energy barrier in the excited state for both the forms. The calculated vertical excitation and the emission energy from the relaxed excited and PT states show good correlation with the experimental spectral data. Aggregation of BIBTB in water with red shifted emission was established from X-ray single-crystal structure analysis, solid state emission, and Dynamic Light Scattering (DLS) measurement. The molecule BIBTB also acts as a fluorescence probe for sensing the explosive picric acid in the subnano scale and can be used to determine the proportion of water in dimethyl sulfoxide (DMSO) solvent.
Collapse
Affiliation(s)
- Viki Bhakta
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Anup Pramanik
- Department of Chemistry, Sidho-Kanho-Birsha University, Purulia 723104, India
| | - Nikhil Guchhait
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| |
Collapse
|
9
|
Jang T, Lee S, Pang Y. Anomalous proton transfer of a photoacid HPTS in nonaqueous reverse micelles. Phys Chem Chem Phys 2024; 26:11283-11294. [PMID: 38456549 DOI: 10.1039/d3cp05710k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
The proton transfer reaction is one of the fundamental chemical reactions where the reaction dynamics strongly depend on solvent properties such as acidity or basicity. A photoacid 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) shows a sharp decrease of pKa (7.7 → 0.5) upon photoexcitation, and the excited-state proton transfer (ESPT) occurs with ultrafast time constants of 2.5 and 89 ps in bulk aqueous solution. However, the two-step proton transfers via the contact ion pair formation and the proton diffusion are strongly limited inside the nanopools of reverse micelles (RMs). The confinement in small RMs strongly impeded the proton transfer reactions. In this work, we report the ESPT of HPTS confined in methanol-in-oil RMs by steady-state and time-resolved electronic spectroscopy. Interestingly, HPTS shows substantial deprotonation in the excited state only in small RMs, while the ESPT of HPTS does not occur in bulk methanol solution due to the low basicity of aliphatic alcohols. The kinetic analysis of time-resolved fluorescence and transient absorption measurements will compare the proton transfer dynamics of HPTS in the water-in-oil and methanol-in-oil RMs. The ESPT of photoacids, especially in the nonaqueous RMs, can be crucial in understanding many important chemical reactions involving proton transfer in the confined environments of cells and membranes.
Collapse
Affiliation(s)
- Taehyung Jang
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Sebok Lee
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Yoonsoo Pang
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| |
Collapse
|
10
|
Ferrino G, De Rosa M, Della Sala P, Gaeta C, Talotta C, Soriente A, Cao Z, Maity B, Cavallo L, Neri P. The Resorcinarene Hexameric Capsule as a Supramolecular Photoacid to Trigger Olefin Hydroarylation in Confined Space. Chemistry 2024; 30:e202303678. [PMID: 38373184 DOI: 10.1002/chem.202303678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 02/21/2024]
Abstract
The self-assembled resorcinarene capsule C6 shows remarkable photoacidity upon light irradiation, which is here exploited to catalyze olefin hydroarylation reactions in confined space. An experimental pKa* value range of -3.3--2.8 was estimated for the photo-excited hexameric capsule C6*, and consequently an increase in acidity of 8.8 log units was observed with respect to its ground state (pKa=5.5-6.0). This makes the hexameric capsule the first example of a self-assembled supramolecular photoacid. The photoacid C6* can catalyze hydroarylation reaction of olefins with aromatic substrates inside its cavity, while no reaction occurred between them in the absence of irradiation and/or capsule. DFT calculations corroborated a mechanism in which the photoacidity of C6* plays a crucial role in the protonation step of the aromatic substrate. A further proton transfer to olefin with a concomitant C-C bond formation and a final deprotonation step lead to product releasing.
Collapse
Affiliation(s)
- Giuseppina Ferrino
- Laboratory of Supramolecular Chemistry Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II 132, I-84084, Fisciano (Salerno), Italy
| | - Margherita De Rosa
- Laboratory of Supramolecular Chemistry Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II 132, I-84084, Fisciano (Salerno), Italy
| | - Paolo Della Sala
- Laboratory of Supramolecular Chemistry Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II 132, I-84084, Fisciano (Salerno), Italy
| | - Carmine Gaeta
- Laboratory of Supramolecular Chemistry Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II 132, I-84084, Fisciano (Salerno), Italy
| | - Carmen Talotta
- Laboratory of Supramolecular Chemistry Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II 132, I-84084, Fisciano (Salerno), Italy
| | - Annunziata Soriente
- Laboratory of Supramolecular Chemistry Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II 132, I-84084, Fisciano (Salerno), Italy
| | - Zhen Cao
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center, (KCC), Physical Sciences and Engineering Division, Tuwal, 23955-6900, Saudi Arabia
| | - Bholanath Maity
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center, (KCC), Physical Sciences and Engineering Division, Tuwal, 23955-6900, Saudi Arabia
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center, (KCC), Physical Sciences and Engineering Division, Tuwal, 23955-6900, Saudi Arabia
| | - Placido Neri
- Laboratory of Supramolecular Chemistry Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II 132, I-84084, Fisciano (Salerno), Italy
| |
Collapse
|
11
|
Sun P, Li Z, Zhang X, Liao Y, Liao S. Visible Light-Regulated Ring-Opening Polymerization of Lactones by Employing Indigo as a Photoacid Catalyst. Macromol Rapid Commun 2024:e2400054. [PMID: 38471494 DOI: 10.1002/marc.202400054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/26/2024] [Indexed: 03/14/2024]
Abstract
The development of visible light-regulated polymerizations for precision synthesis of polymers has drawn considerable attention in the past years. In this study, an ancient dye, indigo, is successfully identified as a new and efficient photoacid catalyst, which can readily promote the ring-opening polymerization of lactones under visible light irradiation in a well-controlled manner, affording the desired polyester products with predictable molecular weights and narrow dispersity. The enhanced acidity of indigos by excitation is crucial to the H-bonding activation of the lactone monomers. Chain extension and block copolymer synthesis are also demonstrated with this method.
Collapse
Affiliation(s)
- Pan Sun
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Zixuan Li
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xun Zhang
- Department State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry Chinese Academy of Sciences, Lingling Lu, Shanghai, 200032, China
| | - Yun Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
12
|
de Vries A, Goloviznina K, Reiter M, Salanne M, Lukatskaya MR. Solvation-Tuned Photoacid as a Stable Light-Driven pH Switch for CO 2 Capture and Release. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:1308-1317. [PMID: 38385123 PMCID: PMC10877570 DOI: 10.1021/acs.chemmater.3c02435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 02/23/2024]
Abstract
Photoacids are organic molecules that release protons under illumination, providing spatiotemporal control of the pH. Such light-driven pH switches offer the ability to cyclically alter the pH of the medium and are highly attractive for a wide variety of applications, including CO2 capture. Although photoacids such as protonated merocyanine can enable fully reversible pH cycling in water, they have a limited chemical stability against hydrolysis (<24 h). Moreover, these photoacids have low solubility, which limits the pH-switching ability in a buffered solution such as dissolved CO2. In this work, we introduce a simple pathway to dramatically increase stability and solubility of photoacids by tuning their solvation environment in binary solvent mixtures. We show that a preferential solvation of merocyanine by aprotic solvent molecules results in a 60% increase in pH modulation magnitude when compared to the behavior in pure water and can withstand stable cycling for >350 h. Our results suggest that a very high stability of merocyanine photoacids can be achieved in the right solvent mixtures, offering a way to bypass complex structural modifications of photoacid molecules and serving as the key milestone toward their application in a photodriven CO2 capture process.
Collapse
Affiliation(s)
- Anna de Vries
- Electrochemical
Energy Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Kateryna Goloviznina
- Sorbonne
Université, CNRS, Physico-Chimie des Électrolytes et
Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| | - Manuel Reiter
- Electrochemical
Energy Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Mathieu Salanne
- Sorbonne
Université, CNRS, Physico-Chimie des Électrolytes et
Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
- Institut
Universitaire de France (IUF), 75231 Paris, France
| | - Maria R. Lukatskaya
- Electrochemical
Energy Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
13
|
Jain A, De S, Haloi P, Barman P. The solvent-regulated excited state reaction mechanism of 2-(2'-hydroxyphenyl)benzothiazole aggregates. Photochem Photobiol Sci 2024; 23:65-78. [PMID: 38006523 DOI: 10.1007/s43630-023-00499-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/20/2023] [Indexed: 11/27/2023]
Abstract
The excited state relaxation dynamics of 2-(2'-hydroxyphenyl)benzothiazole (HBT) in the gas phase and the solvents have been explored experimentally and theoretically. However, the fundamental mechanism of its emission in aggregates is still unexplored. In this article, we have presented a detail investigation of solvent-regulated excited state (ES) reactions for HBT aggregates with the aid of several experimental and theoretical research. The careful investigation of solvatochromic and electrochemical behavior elucidates that the emission around 460 nm of HBT in DMSO and DMSO-water fraction correspond to the excited state internal charge transfer (ESICT). The quantum chemical analysis further supports this observation. The concentration-dependent 1H NMR and emission studies of HBT in DMSO revealed the formation of aggregates at higher concentrations that facilitate the charge transfer. The emission pattern of HBT in the AcN-water fraction demonstrates that the sequential internal charge transfer-proton transfer (ESICT-ESIPT) occurs in HBT aggregates. The pH studies show that HBT aggregates are potential ratiometric sensors for near-physiological pH ranges. Moreover, a ground-state zwitterionic conformation of HBT is observed in the basic medium formed by ground-state internal proton transfer (GSIPT). Overall, this study provides a better understanding of solvent-regulated ES reaction mechanism in the case of HBT aggregates and other substituted HBT compound aggregates published previously.
Collapse
Affiliation(s)
- Abhinav Jain
- Department of Chemistry, National Institute of Technology, Silchar, Assam, 788010, India
| | - Soumik De
- Department of Chemistry, National Institute of Technology, Silchar, Assam, 788010, India
| | - Pankaj Haloi
- Department of Chemistry, National Institute of Technology, Silchar, Assam, 788010, India
| | - Pranjit Barman
- Department of Chemistry, National Institute of Technology, Silchar, Assam, 788010, India.
| |
Collapse
|
14
|
Xie J, Nealon RE, Egan ZT, Takematsu K. Effect of cyano-addition on the photoacidity switch in 5-cyano-8-amino-2-naphthol. Phys Chem Chem Phys 2023. [PMID: 38050989 DOI: 10.1039/d3cp04845d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Cyano- or CN-additions are often utilized in the design of photoacids to enhance and/or enable excited state proton transfer (ESPT) from the protic site to aqueous and nonaqueous solvents. In diprotic photoacid 8-amino-2-naphthol (8N2OH), the protonation state of the amino group (NH3+/NH2) acts as an on-off switch for ESPT at the OH site in water. This study investigated whether the addition of CN in 5-cyano-8-amino-2-naphthol (5CN8) could override this switch and promote new ESPT pathways. Analysis of the steady-state and time-resolved emission data showed that in the presence of protonated NH3+, CN enhances OH photoacidity (vs. in 8N2OH) and activates the ESPT pathway at NH3+. Both protic sites, OH and NH3+, can also donate a proton to methanol upon excitation. In contrast, in the presence of deprotonated NH2, despite the addition of CN, ESPT is still not observed at the OH site for 5CN8. Thus, the addition of CN cannot override or negate the inhibiting effect of NH2 on OH photoacidity. Potential causes for this inhibition are discussed, including electronic and antiaromaticity effects of CN and NH2 substitution.
Collapse
Affiliation(s)
- Jialin Xie
- Department of Chemistry, Bowdoin College, Brunswick, ME 04011, USA.
| | - Rachel E Nealon
- Department of Chemistry, Bowdoin College, Brunswick, ME 04011, USA.
| | - Zelia T Egan
- Department of Chemistry, Bowdoin College, Brunswick, ME 04011, USA.
| | - Kana Takematsu
- Department of Chemistry, Bowdoin College, Brunswick, ME 04011, USA.
| |
Collapse
|
15
|
Jagushte KU, Sadhukhan N, Upadhyaya HP, Dutta Choudhury S. Dual Excited State Proton Transfer Pathways in the Bifunctional Photoacid 6-Amino-2-naphtol. J Phys Chem B 2023; 127:9788-9801. [PMID: 37924296 DOI: 10.1021/acs.jpcb.3c05519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
This study investigates the photoacidity and excited state proton transfer (ESPT) pathways of a bifunctional molecule, 6-amino-2-naphthol (6N2OH), using absorption, steady-state fluorescence, time-resolved fluorescence, and theoretical calculations. 6N2OH attains four different prototropic forms in the excited state (cation, neutral, anion, or zwitterion) depending on pH of the solution. Interestingly, ESPT at the OH site of the molecule can be controlled by the protonation state of the amino substituent. Conversion of the electron donating NH2 group to the electron withdrawing NH3+ group brings about a reduction of more than 7 pKa units for the deprotonation of OH in the excited state. Further, the position of the NH2 substituent on the naphthalene framework is found to play an important role in dictating the ESPT pathways of aminonaphthols. Unlike most aminonaphthol derivatives that undergo ESPT only at the OH site, akin to substituted naphthols, 6N2OH undergoes ESPT at both OH and NH3+ sites, indicating its similarity to substituted naphthols and substituted naphthylamines. ESPT at the NH3+ site resulting in cation ↔ neutral equilibrium of 6N2OH in the excited state is well-corroborated by comparative studies with another reference photoacid, 6-amino-2-methoxynaphthalene (6N2M). Correlation of the acidity constants of 6N2OH with the σp parameters according to the Hammett model reveals that while 6N2OH can be treated either as naphthol or as naphthylamine in the ground state, the structure-function correlation cannot be extrapolated directly in the excited state, thus highlighting the rich and complex photophysics of bifunctional photoacids.
Collapse
Affiliation(s)
- Kaustubh U Jagushte
- Department of Speciality Chemicals Technology, Institute of Chemical Technology, Matunga (E), Mumbai 400019, India
| | - Nabanita Sadhukhan
- Department of Speciality Chemicals Technology, Institute of Chemical Technology, Matunga (E), Mumbai 400019, India
| | - Hari P Upadhyaya
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Sharmistha Dutta Choudhury
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
16
|
Dalton AB, Fishman DA, Nizkorodov SA. Ultrafast Excited-State Proton Transfer in 4-Nitrocatechol: Implications for the Photochemistry of Nitrophenols. J Phys Chem A 2023; 127:8307-8315. [PMID: 37773630 DOI: 10.1021/acs.jpca.3c04322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Nitrophenols are a class of environmental contaminants that exhibit strong absorption at atmospherically relevant wavelengths, prompting many studies of their photochemical degradation rates and mechanisms. Despite the importance of photochemical reactions of nitrophenols in the environment, the ultrafast processes in electronically excited nitrophenols are not well understood. Here, we present an experimental study of ultrafast electron dynamics in 4-nitrocatechol (4NC), a common product of biomass burning and fossil fuel combustion. The experiments are accompanied by time-dependent quantum mechanical calculations to help assign the observed transitions in static and transient absorption spectra and to estimate the rates of singlet-to-triplet intersystem crossing. Our results suggest that electronic triplet states are not efficiently populated upon 340 nm excitation, as efficient proton transfer occurs in the excited state on a time scale of a few picoseconds in water and tens of picoseconds in 2-propanol. This suggests that triplet states do not play a significant role in the photochemical reactions of 4NC in the environment and, by extension, in nitrophenols in general. Instead, consideration should be given to the idea that this class of molecules may serve as strong photoacids.
Collapse
Affiliation(s)
- Avery B Dalton
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Dmitry A Fishman
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Sergey A Nizkorodov
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
17
|
Han GR, Lim E, Kang J, Hwang D, Heo J, Kim SK, Lee JW. Alcoholic Solvent-Mediated Excited-State Proton Transfer Dynamics of a Novel Dihydroxynaphthalene Dye. J Phys Chem A 2023; 127:7884-7891. [PMID: 37723599 DOI: 10.1021/acs.jpca.3c03170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
The excited-state proton transfer (ESPT) reaction is an important primary photochemical process because it is closely related to photophysical properties. Although ESPT research in aqueous solutions is predominant, alcoholic solvent-mediated ESPT studies are also significant in terms of photoacid-based reactions. Especially, the research for dihydroxynaphthalenes (DHNs) has been largely neglected due to the challenging data interpretation of two hydroxyl groups. A novel fluorescent dye, resveratrone, synthesized by light irradiation of resveratrol, which is famous for its antioxidant properties, can be regarded as a type of DHN, and it has distinctive optical properties, including high quantum yield, a large two-photon absorption coefficient, a large Stokes shift, and very high biocompatibility. In this study, we investigate the overall kinetics of the optical properties of resveratrone and find evidence for alcoholic solvent-mediated ESPT involvement in the radiative properties of resveratrone with a large Stokes shift. Our investigation provides an opportunity to revisit the overlooked photophysical properties of intriguing photoacid behavior and the large Stokes shift of the dihydroxynaphthalene dye.
Collapse
Affiliation(s)
- Gi Rim Han
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Eunhak Lim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jooyeon Kang
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Doyk Hwang
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jiyoung Heo
- Department of Green Chemical Engineering, Sangmyung University, Chungnam 31066, Republic of Korea
| | - Seong Keun Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jong Woo Lee
- Department of Applied Chemistry, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea
| |
Collapse
|
18
|
Peng L, Gineste S, Coudret C, Ciuculescu-Pradines D, Benoît-Marquié F, Mingotaud C, Marty JD. Iron-based hybrid polyionic complexes as chemical reservoirs for the pH-triggered synthesis of Prussian blue nanoparticles. J Colloid Interface Sci 2023; 649:900-908. [PMID: 37390537 DOI: 10.1016/j.jcis.2023.06.136] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/01/2023] [Accepted: 06/19/2023] [Indexed: 07/02/2023]
Abstract
HYPOTHESIS Hybrid polyion complexes (HPICs) obtained from the complexation in aqueous solution of a double hydrophilic block copolymer and metal ions can act as efficient precursors for the controlled synthesis of nanoparticles. In particular, the possibility to control the availability of metal ions by playing on the pH conditions is of special interest to obtain nanoparticles with controlled size and composition. EXPERIMENTS HPICs based on Fe3+ ions were used to initiate the formation of Prussian blue (PB) nanoparticles in presence of potassium ferrocyanide in reaction media with varying pH values. FINDINGS Complexed Fe3+ ions within HPICs can be easily released by adjusting the pH value either through the addition of a base/acid or by using a merocyanine photoacid. This allows to modulate the reactivity of Fe3+ ions with potassium ferrocyanide present in solution. As a result, PB nanoparticles with different structures (core, core-shell), composition and controlled size are obtained.
Collapse
Affiliation(s)
- Liming Peng
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier 118, route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Stéphane Gineste
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier 118, route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Christophe Coudret
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier 118, route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Diana Ciuculescu-Pradines
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier 118, route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Florence Benoît-Marquié
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier 118, route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Christophe Mingotaud
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier 118, route de Narbonne, 31062 Toulouse Cedex 9, France.
| | - Jean-Daniel Marty
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier 118, route de Narbonne, 31062 Toulouse Cedex 9, France.
| |
Collapse
|
19
|
Gómez Fernández MA, Hoffmann N. Photocatalytic Transformation of Biomass and Biomass Derived Compounds-Application to Organic Synthesis. Molecules 2023; 28:4746. [PMID: 37375301 PMCID: PMC10301391 DOI: 10.3390/molecules28124746] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Biomass and biomass-derived compounds have become an important alternative feedstock for chemical industry. They may replace fossil feedstocks such as mineral oil and related platform chemicals. These compounds may also be transformed conveniently into new innovative products for the medicinal or the agrochemical domain. The production of cosmetics or surfactants as well as materials for different applications are examples for other domains where new platform chemicals obtained from biomass can be used. Photochemical and especially photocatalytic reactions have recently been recognized as being important tools of organic chemistry as they make compounds or compound families available that cannot be or are difficultly synthesized with conventional methods of organic synthesis. The present review gives a short overview with selected examples on photocatalytic reactions of biopolymers, carbohydrates, fatty acids and some biomass-derived platform chemicals such as furans or levoglucosenone. In this article, the focus is on application to organic synthesis.
Collapse
Affiliation(s)
| | - Norbert Hoffmann
- CNRS, Université de Reims Champagne-Ardenne, ICMR, Equipe de Photochimie, UFR Sciences, B.P. 1039, 51687 Reims, France
| |
Collapse
|
20
|
Tange A, Kishikawa N, Sakamoto Y, El-Maghrabey M, Wada M, Kuroda N. A Turn-On Quinazolinone-Based Fluorescence Probe for Selective Detection of Carbon Monoxide. Molecules 2023; 28:molecules28093654. [PMID: 37175064 PMCID: PMC10180483 DOI: 10.3390/molecules28093654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/16/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Carbon monoxide (CO) is a toxic, hazardous gas that has a colorless and odorless nature. On the other hand, CO possesses some physiological roles as a signaling molecule that regulates neurotransmitters in addition to its hazardous effects. Because of the dual nature of CO, there is a need to develop a sensitive, selective, and rapid method for its detection. Herein, we designed and synthesized a turn-on fluorescence probe, 2-(2'-nitrophenyl)-4(3H)-quinazolinone (NPQ), for the detection of CO. NPQ provided a turn-on fluorescence response to CO and the fluorescence intensity at 500 nm was increased with increasing the concentration of CO. This fluorescence enhancement could be attributed to the conversion of the nitro group of NPQ to an amino group by the reducing ability of CO. The fluorescence assay for CO using NPQ as a reagent was confirmed to have a good linear relationship in the range of 1.0 to 50 µM with an excellent correlation coefficient (r) of 0.997 and good sensitivity down to a limit of detection at 0.73 µM (20 ppb) defined as mean blank+3SD. Finally, we successfully applied NPQ to the preparation of a test paper that can detect CO generated from charcoal combustion.
Collapse
Affiliation(s)
- Akari Tange
- Graduate School of Biomedical Sciences, Course of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Naoya Kishikawa
- Graduate School of Biomedical Sciences, Course of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Yusuke Sakamoto
- School of Pharmaceutical Science, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Mahmoud El-Maghrabey
- Graduate School of Biomedical Sciences, Course of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mitsuhiro Wada
- Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, 1-1-1 Daigakudori, Yamaguchi 756-0884, Japan
| | - Naotaka Kuroda
- Graduate School of Biomedical Sciences, Course of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
21
|
Demchenko AP. Proton transfer reactions: from photochemistry to biochemistry and bioenergetics. BBA ADVANCES 2023. [DOI: 10.1016/j.bbadva.2023.100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
|
22
|
Matsubara Y, Ishitani O. Photochemical formation of hydride using transition metal complexes and its application to photocatalytic reduction of the coenzyme NAD(P)+ and its model compounds. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Yi SZ, Li BN, Fu PY, Pan M, Su CY. Interplay of Dual-Proton Transfer Relay to Achieve Full-Color Panel Luminescence in Excited-State Intramolecular Proton Transfer (ESIPT) Fluorophores. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3172-3181. [PMID: 36621007 DOI: 10.1021/acsami.2c20129] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A new design was applied for the facile synthesis of pure organic photoluminescent molecules with dual excited-state intramolecular proton transfer (ESIPT) sites. In this novel class of emitters, full-color panel emission from blue, green, and yellow to red, including white light, can be achieved in different solvents as modulated by the enol-keto(1st)-keto(2nd) tautomer emissions. A comprehensive transient photophysical study verifies that keto(1st) and keto(2nd) have a precursor (<0.8 ps)-successor (∼20 ps)-relayed absorbance relationship, and then a fast equilibrium between the two is established, resulting in dual emissions in the nanosecond scale (∼1900 ps). Through the research on copper ions' selective PL response, the dual-ESIPT mechanism was further verified; in addition, the study of solid-state PL changes upon the stimulus of organic vapor manifests the potential application sensitivity of the molecules as dual-ESIPT sensors. Theoretical results including reaction potential energy surface analyses manifest the fact that dual-proton transfer goes along a sequential route with a smaller energy barrier, firmly supporting the experimental results. An intrinsic system that undergoes intramolecular double proton relayed transfer is thus established for the achievement of much broadened optical responses and full-color display, providing reference for the design and application of advanced dual-ESIPT optical materials.
Collapse
Affiliation(s)
- Shao-Zhe Yi
- Lehn Institute of Functional Materials, MOE Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, 132 East Waihuan Road, Panyu District, Guangzhou 510006, P. R. China
| | - Bao-Ning Li
- School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, P. R. China
| | - Peng-Yan Fu
- Lehn Institute of Functional Materials, MOE Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, 132 East Waihuan Road, Panyu District, Guangzhou 510006, P. R. China
| | - Mei Pan
- Lehn Institute of Functional Materials, MOE Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, 132 East Waihuan Road, Panyu District, Guangzhou 510006, P. R. China
| | - Cheng-Yong Su
- Lehn Institute of Functional Materials, MOE Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, 132 East Waihuan Road, Panyu District, Guangzhou 510006, P. R. China
| |
Collapse
|
24
|
Knorr J, Sülzner N, Geissler B, Spies C, Grandjean A, Kutta RJ, Jung G, Nuernberger P. Ultrafast transient absorption and solvation of a super-photoacid in acetoneous environments. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2022; 21:2179-2192. [PMID: 36178669 DOI: 10.1007/s43630-022-00287-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/08/2022] [Indexed: 12/13/2022]
Abstract
The phenomenon of photoacidity, i.e., an increase in acidity by several orders of magnitude upon electronic excitation, is frequently encountered in aromatic alcohols capable of transferring a proton to a suitable acceptor. A promising new class of neutral super-photoacids based on pyranine derivatives has been shown to exhibit pronounced solvatochromic effects. To disclose the underlying mechanisms contributing to excited-state proton transfer (ESPT) and the temporal characteristics of solvation and ESPT, we scrutinize the associated ultrafast dynamics of the strongest photoacid of this class, namely tris(1,1,1,3,3,3-hexafluoropropan-2-yl)8-hydroxypyrene-1,3,6-trisulfonate, in acetoneous environment, thereby finding experimental evidence for ESPT even under these adverse conditions for proton transfer. Juxtaposing results from time-correlated single-photon counting and femtosecond transient absorption measurements combined with a complete decomposition of all signal components, i.e., absorption of ground and excited states as well as stimulated emission, we disclose dynamics of solvation, rotational diffusion, and radiative relaxation processes in acetone and identify the relevant steps of ESPT along with the associated time scales.
Collapse
Affiliation(s)
- Johannes Knorr
- Physikalische Chemie II, Ruhr-Universität Bochum, 44780, Bochum, Germany.,Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Paul-Gordan-Straße 6, 91052, Erlangen, Germany
| | - Niklas Sülzner
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780, Bochum, Germany.,Physikalische Chemie II, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Bastian Geissler
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstraße 31, 95053, Regensburg, Germany.,Physikalische Chemie II, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Christian Spies
- Biophysikalische Chemie, Universität des Saarlandes, 66123, Saarbrücken, Germany.,Physikalische Chemie II, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Alexander Grandjean
- Biophysikalische Chemie, Universität des Saarlandes, 66123, Saarbrücken, Germany
| | - Roger Jan Kutta
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstraße 31, 95053, Regensburg, Germany
| | - Gregor Jung
- Biophysikalische Chemie, Universität des Saarlandes, 66123, Saarbrücken, Germany
| | - Patrick Nuernberger
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstraße 31, 95053, Regensburg, Germany. .,Physikalische Chemie II, Ruhr-Universität Bochum, 44780, Bochum, Germany.
| |
Collapse
|
25
|
Ayare PJ, Watson N, Helton MR, Warner MJ, Dilbeck T, Hanson K, Vannucci AK. Molecular Z-Scheme for Solar Fuel Production via Dual Photocatalytic Cycles. J Am Chem Soc 2022; 144:21568-21575. [DOI: 10.1021/jacs.2c08462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Pooja J. Ayare
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina29208, United States
| | - Noelle Watson
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida32306, United States
| | - Maizie R. Helton
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina29208, United States
| | - Matthew J. Warner
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina29208, United States
| | - Tristan Dilbeck
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida32306, United States
| | - Kenneth Hanson
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida32306, United States
| | - Aaron K. Vannucci
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina29208, United States
| |
Collapse
|
26
|
The photoprotection mechanism in the black-brown pigment eumelanin. Proc Natl Acad Sci U S A 2022; 119:e2212343119. [PMID: 36227945 PMCID: PMC9618045 DOI: 10.1073/pnas.2212343119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The natural black-brown pigment eumelanin protects humans from high-energy UV photons by absorbing and rapidly dissipating their energy before proteins and DNA are damaged. The extremely weak fluorescence of eumelanin points toward nonradiative relaxation on the timescale of picoseconds or shorter. However, the extreme chemical and physical complexity of eumelanin masks its photoprotection mechanism. We sought to determine the electronic and structural relaxation pathways in eumelanin using three complementary ultrafast optical spectroscopy methods: fluorescence, transient absorption, and stimulated Raman spectroscopies. We show that photoexcitation of chromophores across the UV-visible spectrum rapidly generates a distribution of visible excitation energies via ultrafast internal conversion among neighboring coupled chromophores, and then all these excitations relax on a timescale of ∼4 ps without transferring their energy to other chromophores. Moreover, these picosecond dynamics are shared by the monomeric building block, 5,6-dihydroxyindole-2-carboxylic acid. Through a series of solvent and pH-dependent measurements complemented by quantum chemical modeling, we show that these ultrafast dynamics are consistent with the partial excited-state proton transfer from the catechol hydroxy groups to the solvent. The use of this multispectroscopic approach allows the minimal functional unit in eumelanin and the role of exciton coupling and excited-state proton transfer to be determined, and ultimately reveals the mechanism of photoprotection in eumelanin. This knowledge has potential for use in the design of new soft optical components and organic sunscreens.
Collapse
|
27
|
Joung JF, Jeong M, Park S. Reliable experimental method for determination of photoacidity revealed by quantum chemical calculations. Phys Chem Chem Phys 2022; 24:21714-21721. [PMID: 36074805 DOI: 10.1039/d2cp03308a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoacids are aromatic acids that exhibit significantly different acidities when they are electronically excited. Three experimental methods have been extensively used to determine the photoacidity, : fluorescence titration, the Förster cycle, and time-resolved experiments. However, the photoacidities determined by these experimental methods are not consistent. In this work, we used a theoretical method to evaluate the reliability of experimentally determined values. In particular, density functional theory (DFT) and time-dependent DFT calculations were used to obtain the changes in Gibbs free energy for acid dissociation reactions which are directly related to values. The Förster cycle, which is frequently used to experimentally determine the photoacidity due to its simplicity, yielded inconsistent results depending on how the transition energy was defined. We evaluated six empirical parameters extracted from the absorption and emission spectra of acidic and basic species of photoacids to adequately define the transition energy in the Förster cycle. And we found that the values obtained using the optical bandgap as the transition energy in the Förster cycle were in the best agreement with the results of quantum chemical calculations.
Collapse
Affiliation(s)
- Joonyoung F Joung
- Department of Chemistry and Research Institute for Natural Science, Korea University, Seoul, 02841, Korea.
| | - Minseok Jeong
- Department of Chemistry and Research Institute for Natural Science, Korea University, Seoul, 02841, Korea.
| | - Sungnam Park
- Department of Chemistry and Research Institute for Natural Science, Korea University, Seoul, 02841, Korea.
| |
Collapse
|
28
|
Nandi R, Amdursky N. The Dual Use of the Pyranine (HPTS) Fluorescent Probe: A Ground-State pH Indicator and an Excited-State Proton Transfer Probe. Acc Chem Res 2022; 55:2728-2739. [PMID: 36053265 PMCID: PMC9494743 DOI: 10.1021/acs.accounts.2c00458] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Indexed: 01/19/2023]
Abstract
Molecular fluorescent probes are an essential experimental tool in many fields, ranging from biology to chemistry and materials science, to study the localization and other environmental properties surrounding the fluorescent probe. Thousands of different molecular fluorescent probes can be grouped into different families according to their photophysical properties. This Account focuses on a unique class of fluorescent probes that distinguishes itself from all other probes. This class is termed photoacids, which are molecules exhibiting a change in their acid-base transition between the ground and excited states, resulting in a large change in their pKa values between these two states, which is thermodynamically described using the Förster cycle. While there are many different photoacids, we focus only on pyranine, which is the most used photoacid, with pKa values of ∼7.4 and ∼0.4 for its ground and excited states, respectively. Such a difference between the pKa values is the basis for the dual use of the pyranine fluorescent probe. Furthermore, the protonated and deprotonated states of pyranine absorb and emit at different wavelengths, making it easy to focus on a specific state. Pyranine has been used for decades as a fluorescent pH indicator for physiological pH values, which is based on its acid-base equilibrium in the ground state. While the unique excited-state proton transfer (ESPT) properties of photoacids have been explored for more than a half-century, it is only recently that photoacids and especially pyranine have been used as fluorescent probes for the local environment of the probe, especially the hydration layer surrounding it and related proton diffusion properties. Such use of photoacids is based on their capability for ESPT from the photoacid to a nearby proton acceptor, which is usually, but not necessarily, water. In this Account, we detail the photophysical properties of pyranine, distinguishing between the processes in the ground state and the ones in the excited state. We further review the different utilization of pyranine for probing different properties of the environment. Our main perspective is on the emerging use of the ESPT process for deciphering the hydration layer around the probe and other parameters related to proton diffusion taking place while the molecule is in the excited state, focusing primarily on bio-related materials. Special attention is given to how to perform the experiments and, most importantly, how to interpret their results. We also briefly discuss the breadth of possibilities in making pyranine derivatives and the use of pyranine for controlling dynamic reactions.
Collapse
Affiliation(s)
- Ramesh Nandi
- Schulich Faculty of Chemistry, Technion − Israel Institute of Technology, Haifa 3200003, Israel
| | - Nadav Amdursky
- Schulich Faculty of Chemistry, Technion − Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
29
|
Wu J, Chen X, Xia SH, Cui G, Zhang Y. Excited-state photochemistry dynamics of 2-(1-naphthyl) phenol: electronic structure calculations and non-adiabatic dynamics simulations. Phys Chem Chem Phys 2022; 24:21358-21366. [PMID: 36043575 DOI: 10.1039/d2cp03283j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The excited-state proton transfer processes and the formation mechanism of quinone methide of (1-naphthyl)phenol were investigated by combining static electronic structure calculations and non-adiabatic dynamics simulations in vacuum. The results indicated the existence of two minimum energy structures (S0-ENOL-1 and S0-ENOL-2) in the ground and excited states, which correspond to two ESIPT pathways. Upon excitation of S0-ENOL-1 to the bright S1 state, the system relaxes to the S1 minimum quickly in the enol region, for which two decay pathways have been described. The first is a barrierless ESIPT-1 process that generates keto species. Afterwards, the system encounters a keto conical intersection, which funnels the system to the ground state. The generated keto species, in the S0 state, either regenerated the starting material via ground-state proton transfer or yielded the keto product at the end of the simulations. In the other pathway, the system de-excites from the S1 state to the S0 state via one enol-type conical intersection. The dynamics simulations showed that 58.8% of trajectories experience keto-type conical intersection and the rest undergo enol-type conical intersection. Besides the ESIPT-1 process, a new-type ESIPT (ESIPT-2), which was not observed experimentally, was found with the irradiation of S0-ENOL-2. The ESIPT-2 process occurs after overcoming a small barrier (0.9 kcal mol-1) and yields a distinct quinone methide. Our simulation results also showed that the S1 lifetime of S0-ENOL-1 (S0-ENOL-2) would be 437 (617) fs in the gas phase. These results provide detailed and important mechanistic insights into the systems in which ESPT to carbon atoms occurs.
Collapse
Affiliation(s)
- Jiahui Wu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Xiaohang Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Shu-Hua Xia
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yan Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| |
Collapse
|
30
|
Sülzner N, Hättig C. Theoretical Study on the Photoacidity of Hydroxypyrene Derivatives in DMSO Using ADC(2) and CC2. J Phys Chem A 2022; 126:5911-5923. [PMID: 36037028 DOI: 10.1021/acs.jpca.2c04436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This work applies the thermodynamic Förster cycle to theoretically investigate the pKa*, i.e., excited-state pKa values of pyranine-derived superphotoacids developed by Jung and co-workers. The latter photoacids are strong enough to transfer a proton to the aprotic solvent dimethyl sulfoxide (DMSO). The Förster cycle provides access to pKa* via the ground-state pKa and the electronic excitation energies. We use the conductor-like screening model for real solvents (COSMO-RS) to compute the ground-state pKa and the correlated wavefunction-based methods ADC(2) and CC2 with the continuum solvation model COSMO to calculate the pKa change upon excitation. A comparison of the calculated UV/Vis absorption and fluorescence emission energies to the experimental results leads us to infer that this approach allows for a proper description of the electronic excitations. In particular, implicit solvation by means of the COSMO model appears to be sufficient for the treatment of these photoacids in DMSO. The calculations confirm the presumption that a charge redistribution from the hydroxy group to the aromatic ring and the electron-withdrawing substituents is the origin of photoacidity for these photoacids. Moreover, the calculations with the continuum solvation model predict that the pKa jump upon excitation decreases with increasing solvent polarity, as rationalized based on the Förster cycle.
Collapse
Affiliation(s)
- Niklas Sülzner
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Christof Hättig
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
31
|
Yucknovsky A, Rich BB, Gutkin S, Ramanthrikkovil Variyam A, Shabat D, Pokroy B, Amdursky N. Application of Super Photoacids in Controlling Dynamic Processes: Light-Triggering the Self-Propulsion of Oil Droplets. J Phys Chem B 2022; 126:6331-6337. [PMID: 35959566 DOI: 10.1021/acs.jpcb.2c04020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The dynamic control of pH-responsive systems is at the heart of many natural and artificial processes. Here, we use photoacids, molecules that dissociate only in their excited state and transfer their proton to nearby proton acceptors, for the dynamic control of processes. A problem arises when there is a need to protonate highly acidic acceptors. We solve this problem using super photoacids that have an excited-state pKa of -8, thus enabling them to protonate very weak proton acceptors. The process that we target is the light-triggered self-propulsion of droplets, initiated by an excited-state proton transfer (ESPT) from a super photoacid donor to a surfactant acceptor situated on the surface of the droplet with a pKa of ∼0. We first confirm using steady-state and time-resolved spectroscopy that a super photoacid can undergo ESPT to the acidic surfactant, whereas a "regular" photoacid cannot. Next, we show self-propulsion of the droplet upon irradiating the solvated super photoacid. We further confirm the protonation of the surfactant on the surface of the droplet using transient surface tension measurements. Our system is the first example of the application of super photoacids to control dynamic processes and opens new possibilities in the field of light-triggered dynamic systems.
Collapse
Affiliation(s)
- Anna Yucknovsky
- Schulich Faculty of Chemistry, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Benjamin B Rich
- Department of Materials Science & Engineering, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Sara Gutkin
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| | | | - Doron Shabat
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Boaz Pokroy
- Department of Materials Science & Engineering, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Nadav Amdursky
- Schulich Faculty of Chemistry, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
32
|
Yang Q, Peng Y, Liu Y. The invalidity of intermolecular proton transfer triggered twisted intramolecular charge transfer in excited state for 2‐(4′‐diethylamino‐2′‐hydroxyphenyl)‐1
H
‐imidazo‐[4,5‐b]pyridine. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qian Yang
- Department of Physics, College of Physical Science and Technology Bohai University Jinzhou China
| | - Ya‐Jing Peng
- Department of Physics, College of Physical Science and Technology Bohai University Jinzhou China
| | - Yu‐Hui Liu
- Department of Physics, College of Physical Science and Technology Bohai University Jinzhou China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian China
| |
Collapse
|
33
|
Bhide R, Feltenberger CN, Phun GS, Barton G, Fishman D, Ardo S. Quantification of Excited-State Brønsted-Lowry Acidity of Weak Photoacids Using Steady-State Photoluminescence Spectroscopy and a Driving-Force-Dependent Kinetic Theory. J Am Chem Soc 2022; 144:14477-14488. [PMID: 35917469 DOI: 10.1021/jacs.2c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photoacids and photobases constitute a class of molecules that upon absorption of light undergoes a reversible change in acidity, i.e. pKa. Knowledge of the excited-state pKa value, pKa*, is critical for predicting excited-state proton-transfer behavior. A reasonable approximation of pKa* is possible using the Förster cycle analysis, but only when the ground-state pKa is known. This poses a challenge for the study of weak photoacids (photobases) with less acidic (basic) excited states (pKa* (pKb*) > 7), because ground-state pKa (pKb) values are >14, making it difficult to quantify them accurately in water. Another method to determine pKa* relies on acid-base titrations with photoluminescence detection and Henderson-Hasselbalch analysis. This method requires that the acid dissociation reaction involving the thermally equilibrated electronic excited state reaches chemical quasi-equilibrium, which does not occur for weak photoacids (photobases) due to slow rates of excited-state proton transfer. Herein, we report a method to overcome these limitations. We demonstrate that liquid water and aqueous hydroxide are unique proton-accepting quenchers of excited-state photoacids. We determine that Stern-Volmer quenching analysis is appropriate to extract rate constants for excited-state proton transfer in aqueous solutions from a weak photoacid, 5-aminonaphthalene-1-sulfonate, to a series of proton-accepting quenchers. Analysis of these data by Marcus-Cohen bond-energy-bond-order theory yields an accurate value for pKa* of 5-aminonaphthalene-1-sulfonate. Our method is broadly accessible because it only requires readily available steady-state photoluminescence spectroscopy. Moreover, our results for weak photoacids are consistent with those from previous studies of strong photoacids, each showing the applicability of kinetic theories to interpret driving-force-dependent rate constants for proton-transfer reactions.
Collapse
Affiliation(s)
- Rohit Bhide
- Department of Chemistry, University of California─Irvine, Irvine, California 92697, United States
| | - Cassidy N Feltenberger
- Department of Chemistry, University of California─Irvine, Irvine, California 92697, United States
| | - Gabriel S Phun
- Department of Chemistry, University of California─Irvine, Irvine, California 92697, United States
| | - Grant Barton
- Department of Chemistry, University of California─Irvine, Irvine, California 92697, United States
| | - Dmitry Fishman
- Department of Chemistry, University of California─Irvine, Irvine, California 92697, United States.,Laser Spectroscopy Laboratories, University of California─Irvine, Irvine, California 92697, United States
| | - Shane Ardo
- Department of Chemistry, University of California─Irvine, Irvine, California 92697, United States.,Department of Chemical & Biomolecular Engineering, University of California─Irvine, Irvine, California 92697, United States.,Department of Materials Science & Engineering, University of California─Irvine, Irvine, California 92697, United States
| |
Collapse
|
34
|
Di Terlizzi L, Martinelli A, Merli D, Protti S, Fagnoni M. Arylazo Sulfones as Nonionic Visible-Light Photoacid Generators. J Org Chem 2022; 88:6313-6321. [PMID: 35866712 DOI: 10.1021/acs.joc.2c01248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The selective visible-light-driven generation of a weak acid (sulfinic acid, in nitrogen-purged solutions) or a strong acid (sulfonic acid, in oxygen-purged solutions) by using shelf-stable arylazo sulfones was developed. These sulfones were then used for the green, smooth, and efficient photochemical catalytic protection of several (substituted) alcohols (and phenols) as tetrahydropyranyl ethers or acetals.
Collapse
Affiliation(s)
- Lorenzo Di Terlizzi
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Angelo Martinelli
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Daniele Merli
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
35
|
Wu J, Chen X, Peng LY, Cui G, Xia SH. Excited-State Deactivation Mechanism of 3,5-bis(2-hydroxyphenyl)-1 H-1,2,4-triazole: Electronic Structure Calculations and Nonadiabatic Dynamics Simulations. J Phys Chem A 2022; 126:4002-4012. [PMID: 35730538 DOI: 10.1021/acs.jpca.2c02080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
3,5-bis(2-Hydroxyphenyl)-1H-1,2,4-triazole (bis-HPTA) has attracted wide attention due to the important application in the detection of microorganisms and insecticidal activity. However, the mechanisms of excited-state intramolecular proton transfer (ESIPT) process and decay pathways are still a matter of debate. In this work, we have comprehensively investigated the photodynamics of bis-HPTA by executing combined electronic structure calculations and nonadiabatic surface-hopping dynamics simulations. Based on the computed electronic structure and dynamics information, we propose two nonadiabatic deactivation channels that efficiently populate the ground state from the Franck-Condon region. In the first one, after being excited to the bright S1 state, bis-HPTA molecule undergoes an ultrafast and barrierless ESIPT-1 process. Then, the system encounters with an energetically accessible S1/S0 conical intersection (CI), which funnels the system to the ground state speedily. Afterward, the keto species either arrives at the keto product or return to its enol species via a ground-state proton transfer in the S0 state. In the other excited-state decay channel, the S1 system hops to the ground state through a different CI, which involves the ESIPT-2 process. In our dynamics simulations, about 79.6% of the trajectories decay to the S0 state via the first CI, while the remaining ones employ the second conical intersection. The results of dynamics simulations also demonstrated that the lifetime of the S1 state is estimated as 315 fs. The present work will give elaborating mechanistic information of similar compounds in various environments.
Collapse
Affiliation(s)
- Jiahui Wu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Xiaohang Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Ling-Ya Peng
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Shu-Hua Xia
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| |
Collapse
|
36
|
Shimizu N, Shigemitsu H, Kida T, Bach T, Mori T. Visible Light-Induced Regio- and Enantiodifferentiating [2 + 2] Photocycloaddition of 1,4-Naphthoquinones Mediated by Oppositely Coordinating 1,3,2-Oxazaborolidine Chiral Lewis Acid. J Org Chem 2022; 87:8071-8083. [PMID: 35652135 DOI: 10.1021/acs.joc.2c00730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A range of asymmetric photochemical transformations using visible light have recently become considerably attractive. Among the various approaches, chiral Lewis acid association to enones for [2 + 2] and ortho photocycloadditions and oxadi-π-methane rearrangements have shown to be very promising. Naturally, chiral Lewis acid coordination protects one of the prochiral faces of the C═C double bond, which enables an effective enantiodifferentiation in the following bond-forming process(es). Here, we studied regio- and enantiodifferentiating [2 + 2] photocycloaddition reactions of naphthoquinone derivatives mediated by chiral oxazaborolidines. A stereochemical control was quite challenging for the 2-ene-1,4-dione substrate, as a double coordination of Lewis acid essentially cancels out the face selectivity, and a mono-coordination to each carbonyl group leads to an opposite stereochemical outcome. Furthermore, a stepwise coordination in the ground state of Lewis acid in a 1:1 fashion was practically inaccessible. We found that the excited-state decomplexation is a key to accomplish high regio- and enantioselectivities in the photocycloaddition of an ene-dione.
Collapse
Affiliation(s)
- Nao Shimizu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hajime Shigemitsu
- Integrated Frontier Research for Medical Science Division Institute for OTRI, Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Toshiyuki Kida
- Integrated Frontier Research for Medical Science Division Institute for OTRI, Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Thorsten Bach
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstrasse 4, Garching 85747, Germany
| | - Tadashi Mori
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
37
|
Bin Mohd Yusof MS, Song H, Debnath T, Lowe B, Yang M, Loh ZH. Ultrafast proton transfer of the aqueous phenol radical cation. Phys Chem Chem Phys 2022; 24:12236-12248. [PMID: 35579397 DOI: 10.1039/d2cp00505k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Proton transfer (PT) reactions are fundamental to numerous chemical and biological processes. While sub-picosecond PT involving electronically excited states has been extensively studied, little is known about ultrafast PT triggered by photoionization. Here, we employ femtosecond optical pump-probe spectroscopy and quantum dynamics calculations to investigate the ultrafast proton transfer dynamics of the aqueous phenol radical cation (PhOH˙+). Analysis of the vibrational wave packet dynamics reveals unusually short dephasing times of 0.18 ± 0.02 ps and 0.16 ± 0.02 ps for the PhOH˙+ O-H wag and bend frequencies, respectively, suggestive of ultrafast PT occurring on the ∼0.1 ps timescale. The reduced potential energy surface obtained from ab initio calculations shows that PT is barrierless when it is coupled to the intermolecular hindered translation between PhOH˙+ and the proton-acceptor water molecule. Quantum dynamics calculations yield a lifetime of 193 fs for PhOH˙+, in good agreement with the experimental results and consistent with the PT reaction being mediated by the intermolecular O⋯O stretch. These results suggest that photoionization can be harnessed to produce photoacids that undergo ultrafast PT. In addition, they also show that PT can serve as an ultrafast deactivation channel for limiting the oxidative damage potential of radical cations.
Collapse
Affiliation(s)
- Muhammad Shafiq Bin Mohd Yusof
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| | - Hongwei Song
- State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Tushar Debnath
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| | - Bethany Lowe
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| | - Minghui Yang
- State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.,Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China
| | - Zhi-Heng Loh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| |
Collapse
|
38
|
Photoacid-induced aqueous acid-base reactions probed by femtosecond infrared spectroscopy. Photochem Photobiol Sci 2022; 21:1419-1431. [PMID: 35526216 DOI: 10.1007/s43630-022-00232-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/13/2022] [Indexed: 10/18/2022]
Abstract
Acid-base reactions involving an excited photoacid have typically been investigated at high base concentrations, but the mechanisms at low base concentrations require clarification. Herein, the dynamics of acid-base reactions induced by an excited photoacid, pyranine (DA), were investigated in the presence of azide ion (N3-) in D2O solution using femtosecond infrared spectroscopy. Specifically, the spectral characteristics of four species (DA, electronically excited DA (DA*), the conjugate base of DA* (A*-), and the conjugate base of DA (A-)) were probed in the spectral region of 1400-1670 cm-1 in the time range of 1 ps-1 μs. This broad timescale encompassed all the acid-base reactions initiated by photoexcitation at 400 nm; thus, reactions related to both DA* and A- could be probed. Furthermore, changes in the populations of N3- and DN3 were monitored using the absorption bands at 2042 and 2133 cm-1, respectively. Following excitation, approximately half of DA* relaxed to DA with a time constant of 0.44 ± 0.04 ns. The remainder underwent an acid-base reaction to produce A*-, which relaxed to A- with a time constant of 3.9 ± 0.3 ns. The acid-base reaction proceeded via two paths, namely, proton exchange with the added base or simple deuteron release to D2O (protolysis). Notably, all the acid-base reactions were well described by the rate constant at the steady-state limit. Thus, although the acid-base reactions at low base concentrations (< 0.1 M) were diffusion controlled, they could be described using a simple rate equation.
Collapse
|
39
|
Arpa EM, Durbeej B. Transient changes in aromaticity and their effect on excited-state proton transfer reactions. Phys Chem Chem Phys 2022; 24:11496-11500. [PMID: 35507952 DOI: 10.1039/d2cp00494a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The common approach to investigate the impact of aromaticity on excited-state proton transfer by probing the (anti)aromatic character of reactants and products alone is scrutinized by modelling such reactions involving 2-pyridone. Thereby, it is found that energy barriers can be strongly influenced by transient changes in aromaticity unaccounted for by this approach, particularly when the photoexcited state interacts with a second excited state. Overall, the modelling identifies a pronounced effect overlooked by most studies on this topic.
Collapse
Affiliation(s)
- Enrique M Arpa
- Division of Theoretical Chemistry, IFM, Linköping University, SE-581 83, Linköping, Sweden.
| | - Bo Durbeej
- Division of Theoretical Chemistry, IFM, Linköping University, SE-581 83, Linköping, Sweden.
| |
Collapse
|
40
|
Salikov RF, Belyy AY, Trainov KP, Velmiskina JA, Medvedev MG, Korshunov VM, Taydakov IV, Platonov DN, Tomilov YV. Superphotoacidic properties and pH-switched Stokes shifts in electron-deficient 5-hydroxyisoquinolone derivatives. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
41
|
Sülzner N, Geissler B, Grandjean A, Jung G, Nuernberger P. Excited‐state Proton Transfer Dynamics of a Super‐Photoacid in Acetone‐Water Mixtures. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Niklas Sülzner
- Ruhr-Universitat Bochum Lehrstuhl für Theoretische Chemie GERMANY
| | - Bastian Geissler
- Universitat Regensburg Institut für Physikalische und Theoretische Chemie GERMANY
| | | | - Gregor Jung
- Universitat des Saarlandes Biophysikalische Chemie GERMANY
| | - Patrick Nuernberger
- Universitat Regensburg Institut für Physikalische und Theoretische Chemie Universitätsstraße 31 93053 Regensburg GERMANY
| |
Collapse
|
42
|
Dimitriev OP. Dynamics of Excitons in Conjugated Molecules and Organic Semiconductor Systems. Chem Rev 2022; 122:8487-8593. [PMID: 35298145 DOI: 10.1021/acs.chemrev.1c00648] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The exciton, an excited electron-hole pair bound by Coulomb attraction, plays a key role in photophysics of organic molecules and drives practically important phenomena such as photoinduced mechanical motions of a molecule, photochemical conversions, energy transfer, generation of free charge carriers, etc. Its behavior in extended π-conjugated molecules and disordered organic films is very different and very rich compared with exciton behavior in inorganic semiconductor crystals. Due to the high degree of variability of organic systems themselves, the exciton not only exerts changes on molecules that carry it but undergoes its own changes during all phases of its lifetime, that is, birth, conversion and transport, and decay. The goal of this review is to give a systematic and comprehensive view on exciton behavior in π-conjugated molecules and molecular assemblies at all phases of exciton evolution with emphasis on rates typical for this dynamic picture and various consequences of the above dynamics. To uncover the rich variety of exciton behavior, details of exciton formation, exciton transport, exciton energy conversion, direct and reverse intersystem crossing, and radiative and nonradiative decay are considered in different systems, where these processes lead to or are influenced by static and dynamic disorder, charge distribution symmetry breaking, photoinduced reactions, electron and proton transfer, structural rearrangements, exciton coupling with vibrations and intermediate particles, and exciton dissociation and annihilation as well.
Collapse
Affiliation(s)
- Oleg P Dimitriev
- V. Lashkaryov Institute of Semiconductor Physics NAS of Ukraine, pr. Nauki 41, Kyiv 03028, Ukraine
| |
Collapse
|
43
|
Abstract
Spatial, temporal, and remote control of proton chemistry can be achieved by using photoacids, which are molecules that transform from weak to strong acids under light. Most of proton chemistry is driven by a high concentration of protons ([H+]), which is difficult to obtain using excited-state photoacids. Metastable-stable state photoacids (mPAHs) can reversibly generate a high [H+] under visible light with a moderate intensity. It has been widely applied in different fields, e.g. fueling dissipative assemblies, driving molecular machines, controlling organic reactions, powering nanoreactors, curing diseases, manipulating DNA and proteins, developing smart materials, capturing carbon dioxide in air etc. This article compares mPAH with excited-state photoacid as well as common acids e.g. HCl to explain its advantages. Recent studies on the thermal dynamics, kinetics, and photoreaction of mPAHs are reported. The advantages and disadvantages of the three types of mPAHs, i.e. merocyanine, indazole, and TCF mPAHs, are compared with regard to photo-induced [H+], switching rate, and other properties. The mechanisms of controlling or driving functional systems, which involve acid-base reactions, acid catalyzed reactions, ionic bonding, coordination bonding, hydrogen bonding, ion exchange, cation-π interaction, solubility, swellability, permeability, and pH change in biosystems, are described. Applications of mPAHs in the chemical, material, energy, biotechnology and biomedical fields published in the past 5 years are reviewed. Prospects in the development and application of mPAHs are discussed.
Collapse
Affiliation(s)
- Yi Liao
- Florida Institute of Technology, 150 W University Blvd, Melbourne, Florida, USA.
| |
Collapse
|
44
|
Goia S, Turner MAP, Woolley JM, Horbury MD, Borrill AJ, Tully JJ, Cobb SJ, Staniforth M, Hine NDM, Burriss A, Macpherson JV, Robinson BR, Stavros VG. Ultrafast transient absorption spectroelectrochemistry: femtosecond to nanosecond excited-state relaxation dynamics of the individual components of an anthraquinone redox couple. Chem Sci 2022; 13:486-496. [PMID: 35126981 PMCID: PMC8730129 DOI: 10.1039/d1sc04993c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/08/2021] [Indexed: 11/21/2022] Open
Abstract
Many photoactivated processes involve a change in oxidation state during the reaction pathway and formation of highly reactive photoactivated species. Isolating these reactive species and studying their early-stage femtosecond to nanosecond (fs-ns) photodynamics can be challenging. Here we introduce a combined ultrafast transient absorption-spectroelectrochemistry (TA-SEC) approach using freestanding boron doped diamond (BDD) mesh electrodes, which also extends the time domain of conventional spectrochemical measurements. The BDD electrodes offer a wide solvent window, low background currents, and a tuneable mesh size which minimises light scattering from the electrode itself. Importantly, reactive intermediates are generated electrochemically, via oxidation/reduction of the starting stable species, enabling their dynamic interrogation using ultrafast TA-SEC, through which the early stages of the photoinduced relaxation mechanisms are elucidated. As a model system, we investigate the ultrafast spectroscopy of both anthraquinone-2-sulfonate (AQS) and its less stable counterpart, anthrahydroquinone-2-sulfonate (AH2QS). This is achieved by generating AH2QS in situ from AQS via electrochemical means, whilst simultaneously probing the associated early-stage photoinduced dynamical processes. Using this approach we unravel the relaxation mechanisms occurring in the first 2.5 ns, following absorption of ultraviolet radiation; for AQS as an extension to previous studies, and for the first time for AH2QS. AQS relaxation occurs via formation of triplet states, with some of these states interacting with the buffered solution to form a transient species within approximately 600 ps. In contrast, all AH2QS undergoes excited-state single proton transfer with the buffered solution, resulting in formation of ground state AHQS- within approximately 150 ps.
Collapse
Affiliation(s)
- Sofia Goia
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
- Molecular Analytical Science CDT, Senate House, University of Warwick Coventry CV4 7AL UK
| | - Matthew A P Turner
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
- Molecular Analytical Science CDT, Senate House, University of Warwick Coventry CV4 7AL UK
- Department of Physics, University of Warwick Coventry CV4 7AL UK
| | - Jack M Woolley
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Michael D Horbury
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
- School of Electronic and Electrical Engineering, University of Leeds LS2 9JT UK
| | - Alexandra J Borrill
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
- Diamond Science and Technology CDT, University of Warwick Coventry CV4 7AL UK
| | - Joshua J Tully
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
- Diamond Science and Technology CDT, University of Warwick Coventry CV4 7AL UK
| | - Samuel J Cobb
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
- Diamond Science and Technology CDT, University of Warwick Coventry CV4 7AL UK
- Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | | | | | | | | | | | | |
Collapse
|
45
|
Choudhury R, Paudel P, Sharma AK, Webb S, Ware M. Evaluating the Merit of a Syringol Derived Fluorophore as a Charge Transfer Probe for Detection of Serum Albumins. J Photochem Photobiol A Chem 2022; 422:113563. [PMID: 34720541 PMCID: PMC8553016 DOI: 10.1016/j.jphotochem.2021.113563] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this article a syringol-π-benz[e]indolium based donor-acceptor fluorophore has been reported. The fluorophore shows a solvent polarity dependent change in the absorption and emission spectra in solution. A combined spectroscopic and time dependent density functional theory (TDDFT) studies reveal higher dipole moment of the fluorophore in the excited state, resulting positive solvatochromism. In physiological pH, the phenol group in the fluorophore is easily deprotonated owing to the electron pulling effect of the substituents. Consequently, the phenolate (PhO-) becomes a strong active donor in the new donor-acceptor pair. In aqueous solution, the new phenolate fluorochrome shows negligible fluorescence due to energy loss via non-radiative pathways from the low-lying polar excited states. The fluorochrome can detect human and bovine serum albumins in physiological buffer solution with high selectivity. The underlying mechanism of human serum albumin (HSA) detection was estimated to be strong (1.46 × 105 M-1, ΔG = -7.05 kcal/mol) supramolecular complexation between the fluorophore and albumin in hydrophobic binding site III-B. The linear relationship between fluorescence intensity and HSA concentration extends from 40 mg/L to an impressive upper limit (540 mg/L), thereby opening an opportunity for albumin detection in a broad range of health conditions. The practical applicability of the fluorophore was tested in spiked urine samples and a good correlation was observed between fluorescence intensity and the concentration of human serum albumin in neutral aqueous samples.
Collapse
Affiliation(s)
- Rajib Choudhury
- Department of Physical Sciences, Arkansas Tech University, Russellville, Arkansas, 72801, United States
| | - Pratikshya Paudel
- Department of Physical Sciences, Arkansas Tech University, Russellville, Arkansas, 72801, United States
| | - Arun K. Sharma
- Department of Physical Sciences, Wagner College, Staten Island, New York, 10301, United States
| | - Sydney Webb
- Department of Physical Sciences, Arkansas Tech University, Russellville, Arkansas, 72801, United States
| | - Morgan Ware
- Department of Physical Sciences, Arkansas Tech University, Russellville, Arkansas, 72801, United States
| |
Collapse
|
46
|
Okada M, Nishimura Y. Electronic state of a fluoranthene–urea compound and the kinetics of its emissive tautomer state in the presence of acetate anions. NEW J CHEM 2022. [DOI: 10.1039/d1nj05270e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The fluorescence spectrum of 3FU–Ac around 600 nm agrees well with that of 3FU–DBU, indicating that the electronic state of tautomer has a proton-abstracted structure.
Collapse
Affiliation(s)
- Mahiro Okada
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| | - Yoshinobu Nishimura
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
47
|
Guo Y, Li X, Ma J, Phillips DL. Reaction Mechanisms of Photoinduced Quinone Methide Intermediates Formed via Excited-State Intramolecular Proton Transfer or Water-Assisted Excited-State Proton Transfer of 4-(2-Hydroxyphenyl)pyridine. J Phys Chem Lett 2021; 12:11666-11672. [PMID: 34825824 DOI: 10.1021/acs.jpclett.1c03600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Femtosecond and nanosecond transient absorption spectroscopies combined with theoretical calculations were performed to investigate the formation mechanisms of quinone methides (QMs) from 4-(2-hydroxyphenyl)pyridine (1). In acetonitrile (ACN), the singlet excited state of 1 (1(S1)) with the cis-form underwent a thermodynamically favorable and ultrafast ESIPT to produce the singlet excited state QM, which could either relax first into highly vibrational states of its ground state followed by hydrogen transfer to return to the starting compound or alternatively may undergo a dehydrogenation to produce a radical species (1-R). In ACN-H2O, 1(S1) interacted with water molecules to form a solvated species, which induced water-assisted ESPT to the pyridine nitrogen to generate the singlet excited state QM in a concerted asynchronous manner that was initiated by deprotonation of the phenolic OH. These results provide deeper insights into the formation mechanisms of QMs in different solvent environments, which is important in the application of QMs in biological and chemical systems as well as in the design of molecules for efficient QM formation.
Collapse
Affiliation(s)
- Yan Guo
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Xuyang Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Jiani Ma
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - David Lee Phillips
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P. R. China
| |
Collapse
|
48
|
Zhao G, Li J, Wang T. Visible-light-induced photoacid catalysis: application in glycosylation with O-glycosyl trichloroacetimidates. Chem Commun (Camb) 2021; 57:12659-12662. [PMID: 34768281 DOI: 10.1039/d1cc04887b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The development of visible-light-induced photoacid catalyzed glycosylation is reported. The eosin Y and PhSSPh catalyst system is applied to realize glycosylation with different glycosyl donors upon light irradiation. The reaction shows a broad substrate scope, including both glycosyl donors and acceptors, and highlights the mild nature of the reaction conditions.
Collapse
Affiliation(s)
- Gaoyuan Zhao
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, USA.
| | - Juncheng Li
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, USA.
| | - Ting Wang
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, USA.
| |
Collapse
|
49
|
Walker AR, Wu B, Meisner J, Fayer MD, Martínez TJ. Proton Transfer from a Photoacid to a Water Wire: First Principles Simulations and Fast Fluorescence Spectroscopy. J Phys Chem B 2021; 125:12539-12551. [PMID: 34743512 DOI: 10.1021/acs.jpcb.1c07254] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proton transfer reactions are ubiquitous in chemistry, especially in aqueous solutions. We investigate photoinduced proton transfer between the photoacid 8-hydroxypyrene-1,3,6-trisulfonate (HPTS) and water using fast fluorescence spectroscopy and ab initio molecular dynamics simulations. Photoexcitation causes rapid proton release from the HPTS hydroxyl. Previous experiments on HPTS/water described the progress from photoexcitation to proton diffusion using kinetic equations with two time constants. The shortest time constant has been interpreted as protonated and photoexcited HPTS evolving into an "associated" state, where the proton is "shared" between the HPTS hydroxyl and an originally hydrogen bonded water. The longer time constant has been interpreted as indicating evolution to a "solvent separated" state where the shared proton undergoes long distance diffusion. In this work, we refine the previous experimental results using very pure HPTS. We then use excited state ab initio molecular dynamics to elucidate the detailed molecular mechanism of aqueous excited state proton transfer in HPTS. We find that the initial excitation results in rapid rearrangement of water, forming a strong hydrogen bonded network (a "water wire") around HPTS. HPTS then deprotonates in ≤3 ps, resulting in a proton that migrates back and forth along the wire before localizing on a single water molecule. We find a near linear relationship between the emission wavelength and proton-HPTS distance over the simulated time scale, suggesting that the emission wavelength can be used as a ruler for the proton distance. Our simulations reveal that the "associated" state corresponds to a water wire with a mobile proton and that the diffusion of the proton away from this water wire (to a generalized "solvent-separated" state) corresponds to the longest experimental time constant.
Collapse
Affiliation(s)
- Alice R Walker
- Department of Chemistry, Stanford University, Stanford, California 94305, United States.,The PULSE Institute, Stanford University, Stanford, California 94305, United States.,SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Boning Wu
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jan Meisner
- Department of Chemistry, Stanford University, Stanford, California 94305, United States.,The PULSE Institute, Stanford University, Stanford, California 94305, United States.,SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Michael D Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Todd J Martínez
- Department of Chemistry, Stanford University, Stanford, California 94305, United States.,The PULSE Institute, Stanford University, Stanford, California 94305, United States.,SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
50
|
Capistran BA, Yuwono SH, Moemeni M, Maity S, Vahdani A, Borhan B, Jackson JE, Piecuch P, Dantus M, Blanchard GJ. Intramolecular Relaxation Dynamics Mediated by Solvent-Solute Interactions of Substituted Fluorene Derivatives. Solute Structural Dependence. J Phys Chem B 2021; 125:12486-12499. [PMID: 34752096 DOI: 10.1021/acs.jpcb.1c06475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Several fluorene derivatives exhibit excited-state reactivity and relaxation dynamics that remain to be understood fully. We report here the spectral relaxation dynamics of two fluorene derivatives to evaluate the role of structural modification in the intramolecular relaxation dynamics and intermolecular interactions that characterize this family of chromophores. We have examined the time-resolved spectral relaxation dynamics of two compounds, NCy-FR0 and MK-FR0, in protic and aprotic solvents using steady-state and time-resolved emission spectroscopy and quantum chemical computations. Both compounds exhibit spectral relaxation characteristics similar to those seen in FR0, indicating that hydrogen bonding interactions between the chromophore and solvent protons play a significant role in determining the relaxation pathways available to three excited electronic states.
Collapse
Affiliation(s)
- Briana A Capistran
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Stephen H Yuwono
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Mehdi Moemeni
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Soham Maity
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Aria Vahdani
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Babak Borhan
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - James E Jackson
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Piotr Piecuch
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States.,Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| | - Marcos Dantus
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States.,Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| | - G J Blanchard
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|