1
|
Iglesias P, Penas C, Barral-Cagiao L, Pazos E, Costoya JA. A Bio-inspired Hypoxia Sensor using HIF1a-Oxygen-Dependent Degradation Domain. Sci Rep 2019; 9:7117. [PMID: 31068630 PMCID: PMC6506541 DOI: 10.1038/s41598-019-43618-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 04/24/2019] [Indexed: 12/31/2022] Open
Abstract
Functional imaging has become an important tool in oncology because it not only provides information about the size and localization of the tumour, but also about the pathophysiological features of the tumoural cells. One of the characteristic features of some tumour types is that their fast growth leads to deficient intratumoral vascularization, which results in low oxygen availability. To overcome this lack of oxygen, tumoural cells activate the neoangiogenic program by upregulating the transcription factor HIF-1α. Herein we report a non-invasive in vitro detection method of hypoxia using designed fluorescent peptide probes based on the oxygen-dependent degradation domain of HIF-1α. The fluorescent probe retains the oxygen-sensing capability of HIF-1α, so that it is stabilized under hypoxia and readily degraded by the proteasome under normoxia, thus providing direct information of the cellular oxygen availability.
Collapse
Affiliation(s)
- Pablo Iglesias
- Molecular Oncology Laboratory. Departamento de Fisioloxia, Facultade de Medicina and Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS). Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Cristina Penas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Laura Barral-Cagiao
- Molecular Oncology Laboratory. Departamento de Fisioloxia, Facultade de Medicina and Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS). Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Elena Pazos
- Departamento de Química, Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, 15071, A Coruña, Spain.
| | - Jose A Costoya
- Molecular Oncology Laboratory. Departamento de Fisioloxia, Facultade de Medicina and Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS). Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
2
|
Liu T, Dong G, Xu F, Han B, Fang H, Huang Y, Zhou Y, Du L, Li M. Discovery of Turn-On Fluorescent Probes for Detecting Bcl-2 Protein. Anal Chem 2019; 91:5722-5728. [DOI: 10.1021/acs.analchem.8b05853] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Tingting Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Gaopan Dong
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Feng Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Bo Han
- Department of Pathology, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Hao Fang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Yun Huang
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas 77030, United States
| | - Yubin Zhou
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas 77030, United States
| | - Lupei Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
3
|
Sasmal DK, Yadav R, Lu HP. Single-Molecule Patch-Clamp FRET Anisotropy Microscopy Studies of NMDA Receptor Ion Channel Activation and Deactivation under Agonist Ligand Binding in Living Cells. J Am Chem Soc 2016; 138:8789-801. [DOI: 10.1021/jacs.6b03496] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dibyendu Kumar Sasmal
- Center for Photochemical
Sciences, Department of Chemistry, Bowling Green State University, Bowling
Green, Ohio 43403, United States
| | - Rajeev Yadav
- Center for Photochemical
Sciences, Department of Chemistry, Bowling Green State University, Bowling
Green, Ohio 43403, United States
| | - H. Peter Lu
- Center for Photochemical
Sciences, Department of Chemistry, Bowling Green State University, Bowling
Green, Ohio 43403, United States
| |
Collapse
|
4
|
Priest M, Bezanilla F. Functional Site-Directed Fluorometry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 869:55-76. [PMID: 26381940 DOI: 10.1007/978-1-4939-2845-3_4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Initially developed in the mid-1990s to examine the conformational changes of the canonical Shaker voltage-gated potassium channel, functional site-directed fluorometry has since been expanded to numerous other voltage-gated and ligand-gated ion channels as well as transporters, pumps, and other integral membrane proteins. The power of functional site-directed fluorometry, also known as voltage-clamp fluorometry, lies in its ability to provide information on the conformational changes in a protein in response to changes in its environment with high temporal resolution while simultaneously monitoring the function of that protein. Over time, applications of site-directed fluorometry have expanded to examine the interactions of ion channels with modulators ranging from membrane potential to ligands to accessory protein subunits to lipids. In the future, the range of questions answerable by functional site-directed fluorometry and its interpretive power should continue to improve, making it an even more powerful technique for dissecting the conformational dynamics of ion channels and other membrane proteins.
Collapse
Affiliation(s)
- Michael Priest
- Department of Biochemistry and Molecular Biology and Committee on Neurobiology, University of Chicago, Gordon Center for Integrative Science W229M, 929 East 57th Street, 60637, Chicago, IL, USA.
| | - Francisco Bezanilla
- Department of Biochemistry and Molecular Biology and Committee on Neurobiology, University of Chicago, Gordon Center for Integrative Science W229M, 929 East 57th Street, 60637, Chicago, IL, USA.
| |
Collapse
|
5
|
Sasmal D, Lu HP. Single-molecule patch-clamp FRET microscopy studies of NMDA receptor ion channel dynamics in living cells: revealing the multiple conformational states associated with a channel at its electrical off state. J Am Chem Soc 2014; 136:12998-3005. [PMID: 25148304 PMCID: PMC4183623 DOI: 10.1021/ja506231j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Indexed: 01/10/2023]
Abstract
Conformational dynamics plays a critical role in the activation, deactivation, and open-close activities of ion channels in living cells. Such conformational dynamics is often inhomogeneous and extremely difficult to be directly characterized by ensemble-averaged spectroscopic imaging or only by single channel patch-clamp electric recording methods. We have developed a new and combined technical approach, single-molecule patch-clamp FRET microscopy, to probe ion channel conformational dynamics in living cell by simultaneous and correlated measurements of real-time single-molecule FRET spectroscopic imaging with single-channel electric current recording. Our approach is particularly capable of resolving ion channel conformational change rate process when the channel is at its electrically off states and before the ion channel is activated, the so-called "silent time" when the electric current signals are at zero or background. We have probed NMDA (N-methyl-D-aspartate) receptor ion channel in live HEK-293 cell, especially, the single ion channel open-close activity and its associated protein conformational changes simultaneously. Furthermore, we have revealed that the seemingly identical electrically off states are associated with multiple conformational states. On the basis of our experimental results, we have proposed a multistate clamshell model to interpret the NMDA receptor open-close dynamics.
Collapse
Affiliation(s)
- Dibyendu
Kumar Sasmal
- Department
of Chemistry and
Center for Photochemical Sciences, Bowling
Green State University, Bowling
Green, Ohio 43403, United States
| | - H. Peter Lu
- Department
of Chemistry and
Center for Photochemical Sciences, Bowling
Green State University, Bowling
Green, Ohio 43403, United States
| |
Collapse
|
6
|
Rajapaksha SP, Wang X, Lu HP. Suspended Lipid Bilayer for Optical and Electrical Measurements of Single Ion Channel Proteins. Anal Chem 2013; 85:8951-5. [DOI: 10.1021/ac401342u] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Suneth P. Rajapaksha
- Department of Chemistry and Center for Photochemical
Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Xuefei Wang
- Department of Chemistry and Center for Photochemical
Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - H. Peter Lu
- Department of Chemistry and Center for Photochemical
Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| |
Collapse
|
7
|
Electrostatically induced recruitment of membrane peptides into clusters requires ligand binding at both interfaces. PLoS One 2012; 7:e52839. [PMID: 23285199 PMCID: PMC3528705 DOI: 10.1371/journal.pone.0052839] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 11/23/2012] [Indexed: 02/01/2023] Open
Abstract
Protein recruitment to specific membrane locations may be governed or facilitated by electrostatic attraction, which originates from a multivalent ligand. Here we explored the energetics of a model system in which this simple electrostatic recruitment mechanism failed. That is, basic poly-L-lysine binding to one leaflet of a planar lipid bilayer did not recruit the triply-charged peptide (O-Pyromellitylgramicidin). Clustering was only observed in cases where PLL was bound to both channel ends. Clustering was indicated (i) by the decreased diffusional PLL mobility DPLL and (ii) by an increased lifetime τPLL of the clustered channels. In contrast, if PLL was bound to only one leaflet, neither DPLL nor τP changed. Simple calculations suggest that electrostatic repulsion of the unbound ends prevented neighboring OPg dimers from approaching each other. We believe that a similar mechanism may also operate in cell signaling and that it may e.g. contribute to the controversial results obtained for the ligand driven dimerization of G protein-coupled receptors.
Collapse
|
8
|
Combined single-molecule electrical recording and single-molecule spectroscopy studies of ion channel conformational dynamics. Methods Cell Biol 2009. [PMID: 19195561 DOI: 10.1016/s0091-679x(08)00819-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Stochastic and inhomogeneous conformational changes regulate the function and dynamics of ion channels. Such complexity makes it difficult, if not impossible, to characterize ion channel dynamics using conventional electrical recording alone since that the measurement does not specifically interrogate the associated conformational changes but rather the consequences of the conformational changes. Recently, new technology developments on single-molecule spectroscopy, and especially, the combined approaches of using single ion channel patch-clamp electrical recording and single-molecule fluorescence imaging have provided us the capability of probing ion channel conformational changes simultaneously with the electrical single channel recording. The function-regulating and site-specific conformational changes of ion channels are now measurable under physiological conditions in real-time, one molecule at a time. In this chapter, we will focus our discussion on the new development of real-time imaging of the dynamics of individual ion channels using a novel combination of single-molecule fluorescence spectroscopy and single-channel current recordings. We will then discuss a specific example of single-molecule gramicidin ion channel dynamics studied by the new approach and the future prospects.
Collapse
|
9
|
Mayer M, Semetey V, Gitlin I, Yang J, Whitesides GM. Using ion channel-forming peptides to quantify protein-ligand interactions. J Am Chem Soc 2008; 130:1453-65. [PMID: 18179217 DOI: 10.1021/ja077555f] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This paper proposes a method for sensing affinity interactions by triggering disruption of self-assembly of ion channel-forming peptides in planar lipid bilayers. It shows that the binding of a derivative of alamethicin carrying a covalently attached sulfonamide ligand to carbonic anhydrase II (CA II) resulted in the inhibition of ion channel conductance through the bilayer. We propose that the binding of the bulky CA II protein (MW approximately 30 kD) to the ion channel-forming peptides (MW approximately 2.5 kD) either reduced the tendency of these peptides to self-assemble into a pore or extracted them from the bilayer altogether. In both outcomes, the interactions between the protein and the ligand lead to a disruption of self-assembled pores. Addition of a competitive inhibitor, 4-carboxybenzenesulfonamide, to the solution released CA II from the alamethicin-sulfonamide conjugate and restored the current flow across the bilayer by allowing reassembly of the ion channels in the bilayer. Time-averaged recordings of the current over discrete time intervals made it possible to quantify this monovalent ligand binding interaction. This method gave a dissociation constant of approximately 2 microM for the binding of CA II to alamethicin-sulfonamide in the bilayer recording chamber: this value is consistent with a value obtained independently with CA II and a related sulfonamide derivative by isothermal titration calorimetry.
Collapse
Affiliation(s)
- Michael Mayer
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | | | | | | | |
Collapse
|
10
|
Stoilova TB, Dutseva EA, Pashkovskaya AA, Sychev SV, Koval’chuk SI, Sobko AA, Egorova NS, Kotova EA, Antonenko YN, Surovoi AY, Ivanov VT. Ion channels of various types induced in lipid membranes by gramicidin a derivatives carrying a cationic sequence at their C-termini. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2007; 33:511-9. [DOI: 10.1134/s1068162007050032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Kang E, Park JW, McClellan S, Kim JM, Holland D, Lee GU, Franses E, Park K, Thompson DH. Specific adsorption of histidine-tagged proteins on silica surfaces modified with Ni2+/NTA-derivatized poly(ethylene glycol). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:6281-8. [PMID: 17444666 PMCID: PMC2533260 DOI: 10.1021/la063719e] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Silica surfaces modified with nitrilotriacetic acid (NTA)-polyethylene glycol (PEG) derivatives were used to immobilize hexahistidine-tagged green fluorescent protein (His6-GFP), biotin/streptavidin-AlexaFluor555 (His6-biotin/SA-AF), and gramicidin A-containing vesicles (His6-gA). Three types of surface-reactive PEG derivatives-NTA-PEG3400-Si(OMe)3, NTA-PEG3400-vinylsulfone, and mPEG5000-Si(OMe)3 (control)-were grafted onto silica and tested for their ability to capture His6-tag species via His6/Ni2+/NTA chelation. The composition and thicknesses of the PEG-modified surfaces were characterized using X-ray photoelectron spectroscopy, contact angle, and ellipsometry. Protein capture efficiencies of the NTA-PEG-grafted surfaces were evaluated by measuring fluorescence intensities of these surfaces after exposure to His6-tag species. XPS and ellipsometry data indicate that surface adsorption occurs via specific interactions between the His6-tag and the Ni2+/NTA-PEG-grafted surface. Protein immobilization was most effective for NTA-PEG3400-Si(OMe)3-modified surfaces, with maximal areal densities achieved at 45 pmol/cm2 for His6-GFP and 95 fmol/cm2 for His6-biotin/SA-AF. Lipid vesicles containing His6-gA in a 1:375 gA/lipid ratio could also be immobilized on Ni2+/NTA-PEG3400-Si(OMe)3-modified surfaces at 0.5 mM total lipid. Our results suggest that NTA-PEG-Si(OMe)3 conjugates may be useful tools for immobilizing His6-tag proteins on solid surfaces to produce protein-functionalized surfaces.
Collapse
Affiliation(s)
- Eunah Kang
- School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
| | - Jin-won Park
- School of Chemical Engineering, Purdue University, West Lafayette, IN 47907
| | - Scott McClellan
- School of Chemical Engineering, Purdue University, West Lafayette, IN 47907
| | - Jong-Mok Kim
- Department of Chemistry, Purdue University, West Lafayette, IN 47907
| | - David Holland
- Department of Chemistry, Purdue University, West Lafayette, IN 47907
| | - Gil U. Lee
- School of Chemical Engineering, Purdue University, West Lafayette, IN 47907
| | - Elias Franses
- School of Chemical Engineering, Purdue University, West Lafayette, IN 47907
| | - Kinam Park
- School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
- Department of Pharmaceutics, Purdue University, West Lafayette, IN 47907
| | - David H. Thompson
- Department of Chemistry, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
12
|
Antonenko YN, Stoilova TB, Kovalchuk SI, Egorova NS, Pashkovskaya AA, Sobko AA, Kotova EA, Sychev SV, Surovoy AY. Large unselective pore in lipid bilayer membrane formed by positively charged peptides containing a sequence of gramicidin A. FEBS Lett 2005; 579:5247-52. [PMID: 16165129 DOI: 10.1016/j.febslet.2005.08.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 08/04/2005] [Accepted: 08/06/2005] [Indexed: 11/27/2022]
Abstract
Ion-channel activity of a series of gramicidin A analogues carrying charged amino-acid sequences on the C-terminus of the peptide was studied on planar bilayer lipid membranes and liposomes. It was found that the analogue with the positively charged sequence GSGRRRRSQS forms classical cationic pores at low concentrations and large unselective pores at high concentrations. The peptide was predominantly in the right-handed beta(6.3)-helical conformation in liposomes as shown by circular dichroism spectroscopy. The single-channel conductance of the large pore was estimated to be 320pS in 100mM choline chloride as judged from the fluctuation analysis of the multi-channel current. The analogue with the negatively charged sequence GSGEEEESQS exhibited solely classical cationic channel activity. The ability of a peptide to form different type of channels can be used in the search for broad-spectrum antibiotics.
Collapse
Affiliation(s)
- Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Davis RW, Patrick EL, Meyer LA, Ortiz TP, Marshall JA, Keller DJ, Brozik SM, Brozik JA. Thermodynamic Properties of Single Ion Channel Formation: Gramicidin. J Phys Chem B 2004. [DOI: 10.1021/jp049686y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ryan W. Davis
- Department of Chemistry, The University of New Mexico, Albuquerque, New Mexico 87131, and Microsensor Science and Technology, Sandia National Laboratories, Albuquerque, New Mexico 87185-0892
| | - Elizabeth L. Patrick
- Department of Chemistry, The University of New Mexico, Albuquerque, New Mexico 87131, and Microsensor Science and Technology, Sandia National Laboratories, Albuquerque, New Mexico 87185-0892
| | - Lauren A. Meyer
- Department of Chemistry, The University of New Mexico, Albuquerque, New Mexico 87131, and Microsensor Science and Technology, Sandia National Laboratories, Albuquerque, New Mexico 87185-0892
| | - Theodore P. Ortiz
- Department of Chemistry, The University of New Mexico, Albuquerque, New Mexico 87131, and Microsensor Science and Technology, Sandia National Laboratories, Albuquerque, New Mexico 87185-0892
| | - Jason A. Marshall
- Department of Chemistry, The University of New Mexico, Albuquerque, New Mexico 87131, and Microsensor Science and Technology, Sandia National Laboratories, Albuquerque, New Mexico 87185-0892
| | - David J. Keller
- Department of Chemistry, The University of New Mexico, Albuquerque, New Mexico 87131, and Microsensor Science and Technology, Sandia National Laboratories, Albuquerque, New Mexico 87185-0892
| | - Susan M. Brozik
- Department of Chemistry, The University of New Mexico, Albuquerque, New Mexico 87131, and Microsensor Science and Technology, Sandia National Laboratories, Albuquerque, New Mexico 87185-0892
| | - James A. Brozik
- Department of Chemistry, The University of New Mexico, Albuquerque, New Mexico 87131, and Microsensor Science and Technology, Sandia National Laboratories, Albuquerque, New Mexico 87185-0892
| |
Collapse
|
14
|
Clayton D, Shapovalov G, Maurer JA, Dougherty DA, Lester HA, Kochendoerfer GG. Total chemical synthesis and electrophysiological characterization of mechanosensitive channels from Escherichia coli and Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2004; 101:4764-9. [PMID: 15041744 PMCID: PMC387322 DOI: 10.1073/pnas.0305693101] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Total chemical protein synthesis was used to generate multimilligram quantities of the mechanosensitive channel of large conductance from Escherichia coli (Ec-MscL) and Mycobacterium tuberculosis (Tb-MscL). Cysteine residues introduced to allow chemical ligation were masked with cysteine-reactive molecules, resulting in side chain functional groups similar to those of the wild-type protein. Synthetic channel proteins were transferred to 2,2,2-trifluoroethanol and reconstituted into vesicle membranes. Fluorescent imaging of vesicles showed that channel proteins were membrane-localized. Single-channel recordings showed that reconstituted synthetic Ec-MscL has conductance, pressure dependence, and substate distribution similar to those of the recombinant channel. Reconstituted synthetic Tb-MscL also displayed conductance and pressure dependence similar to that of the recombinant protein. Possibilities for the incorporation of unnatural amino acids and biophysical probes, and applications of such synthetic ion channel analogs, are discussed.
Collapse
Affiliation(s)
- Daniel Clayton
- Gryphon Therapeutics, 600 Gateway Boulevard, South San Francisco, CA 94080, USA
| | | | | | | | | | | |
Collapse
|
15
|
Harms GS, Orr G, Montal M, Thrall BD, Colson SD, Lu HP. Probing conformational changes of gramicidin ion channels by single-molecule patch-clamp fluorescence microscopy. Biophys J 2003; 85:1826-38. [PMID: 12944296 PMCID: PMC1303355 DOI: 10.1016/s0006-3495(03)74611-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2003] [Accepted: 06/04/2003] [Indexed: 10/21/2022] Open
Abstract
Complex conformational changes influence and regulate the dynamics of ion channels. Such conformational changes are stochastic and often inhomogeneous, which makes it extremely difficult, if not impossible, to characterize them by ensemble-averaged experiments or by single-channel recordings of the electric current that report the open-closed events but do not specifically probe the associated conformational changes. Here, we report our studies on ion channel conformational changes using a new approach, patch-clamp fluorescence microscopy, which simultaneously combines single-molecule fluorescence spectroscopy and single-channel current recordings to probe the open-closed transitions and the conformational dynamics of individual ion channels. We demonstrate patch-clamp fluorescence microscopy by measuring gramicidin ion channel conformational changes in a lipid bilayer formed at a patch-clamp micropipette tip under a buffer solution. By measuring single-pair fluorescence resonance energy transfer and fluorescence self-quenching from dye-labeled gramicidin channels, we observed that the efficiency of single-pair fluorescence resonance energy transfer and self-quenching is widely distributed, which reflects a broad distribution of conformations. Our results strongly suggest a hitherto undetectable correlation between the multiple conformational states of the gramicidin channel and its closed and open states in a lipid bilayer.
Collapse
Affiliation(s)
- Greg S Harms
- Pacific Northwest National Laboratory, Fundamental Science Division, Richland, Washington 99352, USA
| | | | | | | | | | | |
Collapse
|
16
|
Borisenko V, Lougheed T, Hesse J, Füreder-Kitzmüller E, Fertig N, Behrends JC, Woolley GA, Schütz GJ. Simultaneous optical and electrical recording of single gramicidin channels. Biophys J 2003; 84:612-22. [PMID: 12524314 PMCID: PMC1302642 DOI: 10.1016/s0006-3495(03)74881-4] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We report here an approach for simultaneous fluorescence imaging and electrical recording of single ion channels in planar bilayer membranes. As a test case, fluorescently labeled (Cy3 and Cy5) gramicidin derivatives were imaged at the single-molecule level using far-field illumination and cooled CCD camera detection. Gramicidin monomers were observed to diffuse in the plane of the membrane with a diffusion coefficient of 3.3 x 10(-8) cm(2)s(-1). Simultaneous electrical recording detected gramicidin homodimer (Cy3/Cy3, Cy5/Cy5) and heterodimer (Cy3/Cy5) channels. Heterodimer formation was observed optically by the appearance of a fluorescence resonance energy transfer (FRET) signal (irradiation of Cy3, detection of Cy5). The number of FRET signals was significantly smaller than the number of Cy3 signals (Cy3 monomers plus Cy3 homodimers) as expected. The number of FRET signals increased with increasing channel activity. In numerous cases the appearance of a FRET signal was observed to correlate with a channel opening event detected electrically. The heterodimers also diffused in the plane of the membrane with a diffusion coefficient of 3.0 x 10(-8) cm(2)s(-1). These experiments demonstrate the feasibility of simultaneous optical and electrical detection of structural changes in single ion channels as well as suggesting strategies for improving the reliability of such measurements.
Collapse
Affiliation(s)
- V Borisenko
- Department of Chemistry, University of Toronto, Canada
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
The state of the art technology for the study of ion channels is the patch clamp technique. Ion channels mediate electrical current flow, have crucial roles in cellular physiology, and are important drug targets. The most popular (whole cell) variant of the technique detects the ensemble current over the entire cell membrane. Patch clamping is still a laborious process, requiring a skilled experimenter to micromanipulate a glass pipette under a microscope to record from one cell at a time. Here we report on a planar, microstructured quartz chip for whole cell patch clamp measurements without micromanipulation or visual control. A quartz substrate of 200 microm thickness is perforated by wet etching techniques resulting in apertures with diameters of approximately 1 microm. The apertures replace the tip of glass pipettes commonly used for patch clamp recording. Cells are positioned onto the apertures from suspension by application of suction. Whole cell recordings from different cell types (CHO, N1E-115 neuroblastoma) are performed with microstructured chips studying K(+) channels and voltage gated Ca(2+) channels.
Collapse
Affiliation(s)
- Niels Fertig
- Center for NanoScience and Sektion Physik, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539 Munich, Germany.
| | | | | |
Collapse
|
18
|
Borisenko V, Zhang Z, Woolley GA. Gramicidin derivatives as membrane-based pH sensors. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1558:26-33. [PMID: 11750261 DOI: 10.1016/s0005-2736(01)00415-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ion channels provide a means for sensitive pH measurement at membrane interfaces. Detailed knowledge of the structure and function of gramicidin channels permits the engineering of pH-sensitive derivatives. Two derivatives, gramicidin-ethylenediamine and gramicidin-histamine, are shown to exhibit pH-dependent single-channel behaviour over the pH ranges 9-11 and 6.5-8.5, respectively. Thermal isomerization of a carbamate group at the entrance of the channels leads to a pattern of steps in single-channel recordings. The size of the steps depends on the time-averaged degree of protonation of the appended group (ethylenediamine or histamine). Measurement of the size of the steps thus permits single-molecule pH sensing under symmetrical pH conditions or in the presence of a pH gradient.
Collapse
Affiliation(s)
- Vitali Borisenko
- Department of Chemistry, 80 St George Street, University of Toronto, M5S 3H6, Toronto, ON, Canada
| | | | | |
Collapse
|