1
|
Palma E, Içhedef C, Fernandes C, Belchior A, Raposinho P, Gano L, Miranda A, Moreira D, Lourenço P, Cruz C, Pires AS, Botelho MF, Paulo A. Targeting of G-quadruplex DNA with 99mTc(I)/Re(I) Tricarbonyl Complexes Carrying Pyridostatin Derivatives. Chemistry 2024; 30:e202400285. [PMID: 38386665 DOI: 10.1002/chem.202400285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
The main goal of this work was to elucidate the potential relevance of (radio)metal chelates of 99mTc and Re targeting G-quadruplex structures for the design of new tools for cancer theranostics. 99mTc provides the complexes with the ability to perform single-photon-emission computed tomography imaging studies, while the Re complexes should act as anticancer agents upon interaction with specific G4 DNA or RNA structures present in tumor tissues. Towards this goal, we have developed isostructural 99mTc(I) and Re(I) tricarbonyl complexes anchored by a pyrazolyl-diamine (Pz) chelator carrying a pendant pyridostatin (PDS) fragment as the G4-binding motif. The interaction of the PDF-Pz-Re (8) complex with different G4-forming oligonucleotides was studied by circular dichroism, fluorescence spectroscopy and FRET-melting assays. The results showed that the Re complex retained the ability to bind and stabilize G4-structures from different DNA or RNA sequences, namely those present on the SRC proto-oncogene and telomeric RNA (TERRA sequence). PDF-Pz-Re (8) showed low to moderate cytotoxicity in PC3 and MCF-7 cancer cell lines, as typically observed for G4-binders. Biodistribution studies of the congener PDF-Pz-99mTc (12) in normal mice showed that the complex undergoes a fast blood clearance with a predominant hepatobiliary excretion, pointing also for a high in vitro stability.
Collapse
Affiliation(s)
- Elisa Palma
- C2TN-Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
| | - Cigdem Içhedef
- Ege University, Institute of Nuclear Sciences, 35100, Izmir, Turkey
| | - Célia Fernandes
- C2TN-Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
- DECN-Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
| | - Ana Belchior
- C2TN-Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
- DECN-Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
| | - Paula Raposinho
- C2TN-Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
- DECN-Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
| | - Lurdes Gano
- C2TN-Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
- DECN-Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
| | - André Miranda
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - David Moreira
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Pedro Lourenço
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Carla Cruz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
- Departamento de Química, Universidade da Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001, Covilhã, Portugal
| | - Ana Salomé Pires
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548, Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-061, Coimbra, Portugal
| | - Maria Filomena Botelho
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548, Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-061, Coimbra, Portugal
| | - António Paulo
- C2TN-Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
- DECN-Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
| |
Collapse
|
2
|
Huynh M, Vinck R, Gibert B, Gasser G. Strategies for the Nuclear Delivery of Metal Complexes to Cancer Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311437. [PMID: 38174785 DOI: 10.1002/adma.202311437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/20/2023] [Indexed: 01/05/2024]
Abstract
The nucleus is an essential organelle for the function of cells. It holds most of the genetic material and plays a crucial role in the regulation of cell growth and proliferation. Since many antitumoral therapies target nucleic acids to induce cell death, tumor-specific nuclear drug delivery could potentiate therapeutic effects and prevent potential off-target side effects on healthy tissue. Due to their great structural variety, good biocompatibility, and unique physico-chemical properties, organometallic complexes and other metal-based compounds have sparked great interest as promising anticancer agents. In this review, strategies for specific nuclear delivery of metal complexes are summarized and discussed to highlight crucial parameters to consider for the design of new metal complexes as anticancer drug candidates. Moreover, the existing opportunities and challenges of tumor-specific, nucleus-targeting metal complexes are emphasized to outline some new perspectives and help in the design of new cancer treatments.
Collapse
Affiliation(s)
- Marie Huynh
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry of Life and Health Sciences, Laboratory for Inorganic Chemistry, Paris, F-75005, France
- Gastroenterology and technologies for Health, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS5286, Université Lyon 1, Lyon, 69008, France
| | - Robin Vinck
- Orano, 125 avenue de Paris, Châtillon, 92320, France
| | - Benjamin Gibert
- Gastroenterology and technologies for Health, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS5286, Université Lyon 1, Lyon, 69008, France
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry of Life and Health Sciences, Laboratory for Inorganic Chemistry, Paris, F-75005, France
| |
Collapse
|
3
|
Palma E, Santos JF, Fernandes C, Paulo A. DNA-Targeted Complexes of Tc and Re for Biomedical Applications. Chemistry 2024; 30:e202303591. [PMID: 38038361 DOI: 10.1002/chem.202303591] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/02/2023]
Abstract
Due to their favorable chemical features, Re and Tc complexes have been widely used for the development of new therapeutic agents and imaging probes to solve problems of biomedical relevance. This review provides an update of the most relevant research efforts towards the development of novel cancer theranostic agents using Re and Tc-based compounds interacting with specific DNA structures. This includes a variety of homometallic complexes, namely those containing M(CO)3 (M=Re, Tc) moieties, that exhibit different modes of interaction with DNA, such as covalent binding, intercalation, groove binding or G-quadruplex DNA binding. Additionally, heterometallic complexes, designed to potentiate synergistic effects of different metal centers to improve DNA-targeting, cytotoxicity and fluorescence properties, are also reviewed. Particular attention is also given to 99m Tc- and 188 Re-labeled oligonucleotides that have been widely explored to develop imaging and therapeutic radiopharmaceuticals through the in vivo hybridization with a specific complementary DNA or RNA target sequence to provide useful molecular tools in precision medicine for cancer diagnosis and treatment. Finally, the need for further improvement of DNA-targeted Re and Tc-based compounds as potential therapeutic and diagnostic agents is highlighted, and future directions are discussed.
Collapse
Affiliation(s)
- Elisa Palma
- C2TN - Centro de Ciências e Tecnologias, Nucleares Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | - Joana F Santos
- C2TN - Centro de Ciências e Tecnologias, Nucleares Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | - Célia Fernandes
- C2TN - Centro de Ciências e Tecnologias, Nucleares Instituto Superior Técnico, Universidade de Lisboa, Portugal
- DECN - Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | - António Paulo
- C2TN - Centro de Ciências e Tecnologias, Nucleares Instituto Superior Técnico, Universidade de Lisboa, Portugal
- DECN - Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Portugal
| |
Collapse
|
4
|
Sidorenko GV, Miroslavov AE, Tyupina MY. Technetium(I) carbonyl complexes for nuclear medicine: Coordination-chemical aspect. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Cisplatin-Resistant CD44+ Lung Cancer Cells Are Sensitive to Auger Electrons. Int J Mol Sci 2022; 23:ijms23137131. [PMID: 35806135 PMCID: PMC9266901 DOI: 10.3390/ijms23137131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer stem cells (CSCs) are resistant to conventional therapy and present a major clinical challenge since they are responsible for the relapse of many cancers, including non-small cell lung cancer (NSCLC). Hence, future successful therapy should also eradicate CSCs. Auger electrons have demonstrated promising therapeutic potential and can induce DNA damage while sparing surrounding cells. Here, we sort primary patient-derived NSCLC cells based on their expression of the CSC-marker CD44 and investigate the effects of cisplatin and a thymidine analog (deoxyuridine) labeled with an Auger electron emitter (125I). We show that the CD44+ populations are more resistant to cisplatin than the CD44− populations. Interestingly, incubation with the thymidine analog 5-[125I]iodo-2′-deoxyuridine ([125I]I-UdR) induces equal DNA damage, G2/M cell cycle arrest, and apoptosis in the CD44− and CD44+ populations. Our results suggest that Auger electron emitters can also eradicate resistant lung cancer CD44+ populations.
Collapse
|
6
|
Principles and Applications of Auger-Electron Radionuclide Therapy. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00040-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
7
|
Shegani A, Ischyropoulou M, Roupa I, Kiritsis C, Makrypidi K, Papasavva A, Raptopoulou C, Psycharis V, Hennkens HM, Pelecanou M, Papadopoulos MS, Pirmettis I. Synthesis and evaluation of new mixed "2 + 1" Re, 99mTc and 186Re tricarbonyl dithiocarbamate complexes with different monodentate ligands. Bioorg Med Chem 2021; 47:116373. [PMID: 34467870 DOI: 10.1016/j.bmc.2021.116373] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 11/24/2022]
Abstract
A series of "2 + 1" mixed ligand tricarbonyl complexes of the general formula fac-[Re/99mTc/186Re(CO)3(DDTC)(L)] containing diethyldithiocarbamate (DDTC) as a monoanionic bidentate ligand and a series of monodentate ligands L was synthesized, characterized and evaluated. The impact of ligand L on the radiochemical yield (RCY) and biodistribution of the final compounds was also investigated. DDTC and the appropriate L ligand [cyclohexyl isocyanide (cisc), tert-butyl isocyanide (tbi), triphenylphosphine (PPh3), methyldiphenylphosphine (PPh2Me), triphenylarsine (AsPh3), imidazole (im), and 4-aminopyridine (4AP)] readily reacted in equimolar amounts with the [Et4N]2[Re(CO)3Br3] precursor to afford fac-[Re(CO)3(DDTC)(cisc)], Re1, fac-[Re(CO)3(DDTC)(tbi)], Re2, fac-[Re(CO)3(DDTC)(PPh3)], Re3, fac-[Re(CO)3(DDTC)(PPh2Me)], Re4, fac-[Re(CO)3(DDTC)(AsPh3)], Re5, fac-[Re(CO)3(DDTC)(im)], Re6 and fac-[Re(CO)3(DDTC)(4AP)], Re7, complexes in high yields (>80%). All Re complexes were fully characterized by IR, NMR, and in addition Re4, Re5, and Re7 with X-ray crystallography. Analogous reactions as performed with Re were subsequently explored on the 99mTc and 186Re-tracer levels using the corresponding fac-[99mTc/186Re(CO)3(H2O)3]+ precursor. Complexes 99mTc1 - 99mTc5, 186Re1 and 186Re3 were obtained in high radiochemical yield (>91%), while the complexes 99mTc6, 99mTc7 and 186Re7 formed with radiochemical yields of 55%, 28%, and 75%, respectively. The 99mTc and 186Re-complexes were characterized by comparative HPLC analysis using the analogous Re complexes. During histidine and cysteine challenge experiments at 37 °C through 6 h, complexes 99mTc1 - 99mTc5 remained > 92% stable, while complexes 99mTc6 and 99mTc7 remained only 8% stable through 3 h. Similar studies for 186Re-complexes showed that 186Re1 and 186Re3 remained > 95% stable for up to 48 h, while 186Re7 had decreased to 7% after 3 h. LogD7.4 data of 99mTc1 - 99mTc5, 186Re1, and 186Re3 complexes, which ranged from 2.59 to 3.39, suggested high lipophilicity. Biodistribution studies in healthy Swiss albino mice showed hepatobiliary excretion for 99mTc1, 99mTc2, and 99mTc4, fast blood clearance for 99mTc4, while high liver uptake and retention for 99mTc3 and 99mTc5 were measured. Moreover, 99mTc2 showed high accumulation in the lungs with sustained retention (52.80% ID/g at 4 h p.i.) and significant brain uptake at 2 min p.i. (1.89% ID/g). The study showed the great influence of monodentate ligand in the synthesis and biodistribution of the mixed ligand complexes.
Collapse
Affiliation(s)
- Antonio Shegani
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research "Demokritos", 15310 Athens, Greece; Research Reactor Center, University of Missouri, Columbia, MO 65211, United States
| | - Myrto Ischyropoulou
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research "Demokritos", 15310 Athens, Greece
| | - Ioanna Roupa
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research "Demokritos", 15310 Athens, Greece
| | - Christos Kiritsis
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research "Demokritos", 15310 Athens, Greece
| | - Konstantina Makrypidi
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research "Demokritos", 15310 Athens, Greece
| | - Afroditi Papasavva
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research "Demokritos", 15310 Athens, Greece
| | - Catherine Raptopoulou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", 15310 Athens, Greece
| | - Vassilis Psycharis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", 15310 Athens, Greece
| | - Heather M Hennkens
- Research Reactor Center, University of Missouri, Columbia, MO 65211, United States; Department of Chemistry, University of Missouri, Columbia, MO 65211, United States
| | - Maria Pelecanou
- Institute of Biosciences & Applications, National Center for Scientific Research "Demokritos", 15310 Athens, Greece
| | - Minas S Papadopoulos
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research "Demokritos", 15310 Athens, Greece
| | - Ioannis Pirmettis
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research "Demokritos", 15310 Athens, Greece.
| |
Collapse
|
8
|
Palma E, Carvalho J, Cruz C, Paulo A. Metal-Based G-Quadruplex Binders for Cancer Theranostics. Pharmaceuticals (Basel) 2021; 14:605. [PMID: 34201682 PMCID: PMC8308583 DOI: 10.3390/ph14070605] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 12/11/2022] Open
Abstract
The ability of fluorescent small molecules, such as metal complexes, to selectively recognize G-quadruplex (G4) structures has opened a route to develop new probes for the visualization of these DNA structures in cells. The main goal of this review is to update the most recent research efforts towards the development of novel cancer theranostic agents using this type of metal-based probes that specifically recognize G4 structures. This encompassed a comprehensive overview of the most significant progress in the field, namely based on complexes with Cu, Pt, and Ru that are among the most studied metals to obtain this class of molecules. It is also discussed the potential interest of obtaining G4-binders with medical radiometals (e.g., 99mTc, 111In, 64Cu, 195mPt) suitable for diagnostic and/or therapeutic applications within nuclear medicine modalities, in order to enable their theranostic potential.
Collapse
Affiliation(s)
- Elisa Palma
- C2TN-Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal;
| | - Josué Carvalho
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.C.); (C.C.)
| | - Carla Cruz
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.C.); (C.C.)
| | - António Paulo
- C2TN-Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal;
- DECN-Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| |
Collapse
|
9
|
Howell RW. Advancements in the use of Auger electrons in science and medicine during the period 2015-2019. Int J Radiat Biol 2020; 99:2-27. [PMID: 33021416 PMCID: PMC8062591 DOI: 10.1080/09553002.2020.1831706] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/01/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Auger electrons can be highly radiotoxic when they are used to irradiate specific molecular sites. This has spurred basic science investigations of their radiobiological effects and clinical investigations of their potential for therapy. Focused symposia on the biophysical aspects of Auger processes have been held quadrennially. This 9th International Symposium on Physical, Molecular, Cellular, and Medical Aspects of Auger Processes at Oxford University brought together scientists from many different fields to review past findings, discuss the latest studies, and plot the future work to be done. This review article examines the research in this field that was published during the years 2015-2019 which corresponds to the period since the last meeting in Japan. In addition, this article points to future work yet to be done. There have been a plethora of advancements in our understanding of Auger processes. These advancements range from basic atomic and molecular physics to new ways to implement Auger electron emitters in radiopharmaceutical therapy. The highly localized doses of radiation that are deposited within a 10 nm of the decay site make them precision tools for discovery across the physical, chemical, biological, and medical sciences.
Collapse
Affiliation(s)
- Roger W Howell
- Division of Radiation Research, Department of Radiology, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| |
Collapse
|
10
|
Gill MR, Walker MG, Able S, Tietz O, Lakshminarayanan A, Anderson R, Chalk R, El-Sagheer AH, Brown T, Thomas JA, Vallis KA. An 111In-labelled bis-ruthenium(ii) dipyridophenazine theranostic complex: mismatch DNA binding and selective radiotoxicity towards MMR-deficient cancer cells. Chem Sci 2020; 11:8936-8944. [PMID: 33815738 PMCID: PMC7989384 DOI: 10.1039/d0sc02825h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/04/2020] [Indexed: 12/23/2022] Open
Abstract
Theranostic radionuclides that emit Auger electrons (AE) can generate highly localised DNA damage and the accompanying gamma ray emission can be used for single-photon emission computed tomography (SPECT) imaging. Mismatched DNA base pairs (mismatches) are DNA lesions that are abundant in cells deficient in MMR (mismatch mediated repair) proteins. This form of genetic instability is prevalent in the MMR-deficient subset of colorectal cancers and is a potential target for AE radiotherapeutics. Herein we report the synthesis of a mismatch DNA binding bis-ruthenium(ii) dipyridophenazine (dppz) complex that can be radiolabelled with the Auger electron emitting radionuclide indium-111 (111In). Greater stabilisation accompanied by enhanced MLCT (metal to ligand charge-transfer) luminescence of both the bis-Ru(dppz) chelator and non-radioactive indium-loaded complex was observed in the presence of a TT mismatch-containing duplex compared to matched DNA. The radioactive construct [111In]In-bisRu(dppz) ([111In][In-2]4+) targets cell nuclei and is radiotoxic towards MMR-deficient human colorectal cancer cells showing substantially less detrimental effects in a paired cell line with restored MMR function. Additional cell line studies revealed that [111In][In-2]4+ is preferentially radiotoxic towards MMR-deficient colorectal cancer cells accompanied by increased DNA damage due to 111In decay. The biodistribution of [111In][In-2]4+ in live mice was demonstrated using SPECT. These results illustrate how a Ru(ii) polypyridyl complex can incorporate mismatch DNA binding and radiometal chelation in a single molecule, generating a DNA-targeting AE radiopharmaceutical that displays selective radiotoxicity towards MMR-deficient cancer cells and is compatible with whole organism SPECT imaging.
Collapse
Affiliation(s)
- Martin R Gill
- Oxford Institute for Radiation Oncology , Department of Oncology , University of Oxford , Oxford , UK .
- Department of Chemistry , Swansea University , Swansea , Wales , UK .
| | - Michael G Walker
- Department of Chemistry , University of Sheffield , Sheffield , UK
| | - Sarah Able
- Oxford Institute for Radiation Oncology , Department of Oncology , University of Oxford , Oxford , UK .
| | - Ole Tietz
- Oxford Institute for Radiation Oncology , Department of Oncology , University of Oxford , Oxford , UK .
| | - Abirami Lakshminarayanan
- Oxford Institute for Radiation Oncology , Department of Oncology , University of Oxford , Oxford , UK .
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK
| | - Rachel Anderson
- Oxford Institute for Radiation Oncology , Department of Oncology , University of Oxford , Oxford , UK .
| | - Rod Chalk
- Structural Genomics Consortium , University of Oxford , Oxford , UK
| | - Afaf H El-Sagheer
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK
- Chemistry Branch , Department of Science and Mathematics , Faculty of Petroleum and Mining Engineering , Suez University , Suez 43721 , Egypt
| | - Tom Brown
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK
| | - Jim A Thomas
- Department of Chemistry , University of Sheffield , Sheffield , UK
| | - Katherine A Vallis
- Oxford Institute for Radiation Oncology , Department of Oncology , University of Oxford , Oxford , UK .
| |
Collapse
|
11
|
Belchior A, Di Maria S, Fernandes C, Vaz P, Paulo A, Raposinho P. Radiobiological and dosimetric assessment of DNA-intercalated 99mTc-complexes bearing acridine orange derivatives. EJNMMI Res 2020; 10:79. [PMID: 32661612 PMCID: PMC7359215 DOI: 10.1186/s13550-020-00663-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/25/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Recently, a new family of 99mTc(I)-tricarbonyl complexes bearing an acridine orange (AO) DNA targeting unit and different linkers between the Auger emitter (99mTc) and the AO moiety was evaluated for Auger therapy. Among them, 99mTc-C3 places the corresponding radionuclide at a shortest distance to DNA and produces important double strand breaks (DSB) yields in plasmid DNA providing the first evidence that 99mTc can efficiently induce DNA damage when well positioned to the double helix. Here in, we have extended the studies to human prostate cancer PC3 cells using the 99mTc-C3 and 99mTc-C5 complexes, aiming to assess how the distance to DNA influences the radiation-induced biological effects in this tumoral cell line, namely, in which concerns early and late damage effects. RESULTS Our results highlight the limited biological effectiveness of Auger electrons, as short path length radiation, with increasing distances to DNA. The evaluation of the radiation-induced biological effects was complemented with a comparative microdosimetric study based on intracellular dose values. The comparative study, between MIRD and Monte Carlo (MC) methods used to assess the cellular doses, revealed that efforts should be made in order to standardize the bioeffects modeling for DNA-incorporated Auger electron emitters. CONCLUSIONS 99mTc might not be the ideal radionuclide for Auger therapy but can be useful to validate the design of new classes of Auger-electron emitting radioconjugates. In this context, our results highlight the crucial importance of the distance of Auger electron emitters to the target DNA and encourage the development of strategies for the fine tuning of the distance to DNA for other medical radionuclides (e.g., 111In or 161Tb) in order to enhance their radiotherapeutic effects within the Auger therapy of cancer.
Collapse
Affiliation(s)
- Ana Belchior
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066, Bobadela LRS, Portugal.
| | - Salvatore Di Maria
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066, Bobadela LRS, Portugal
| | - Célia Fernandes
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066, Bobadela LRS, Portugal
| | - Pedro Vaz
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066, Bobadela LRS, Portugal
| | - António Paulo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066, Bobadela LRS, Portugal
| | - Paula Raposinho
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066, Bobadela LRS, Portugal.
| |
Collapse
|
12
|
Day AH, Domarkas J, Nigam S, Renard I, Cawthorne C, Burke BP, Bahra GS, Oyston PCF, Fallis IA, Archibald SJ, Pope SJA. Towards dual SPECT/optical bioimaging with a mitochondrial targeting, 99mTc(i) radiolabelled 1,8-naphthalimide conjugate. Dalton Trans 2020; 49:511-523. [PMID: 31844857 DOI: 10.1039/c9dt04024b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A series of six different 1,8-naphthalimide conjugated dipicolylamine ligands (L1-6) have been synthesised and characterised. The ligands possess a range of different linker units between the napthalimide fluorophore and dipcolylamine chelator which allow the overall lipophilicity to be tuned. A corresponding series of Re(i) complexes have been synthesised of the form fac-[Re(CO)3(L1-6)]BF4. The absorption and luminescence properties of the ligands and Re(i) complexes were dominated by the intramolecular charge transfer character of the substituted fluorophore (typically absorption ca. 425 nm and emission ca. 520 nm). Photophysical assessments show that some of the variants are moderately bright. Radiolabelling experiments using a water soluble ligand variant (L5) were successfully undertaken and optimised with fac-[99mTc(CO)3(H2O)3]+. Confocal fluorescence microscopy showed that fac-[Re(CO)3(L5)]+ localises in the mitochondria of MCF-7 cells. SPECT/CT imaging experiments on naïve mice showed that fac-[99mTc(CO)3(L5)]+ has a relatively high stability in vivo but did not show any cardiac uptake, demonstrating rapid clearance, predominantly via the biliary system along with a moderate amount cleared renally.
Collapse
Affiliation(s)
- Adam H Day
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Cymru/Wales, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Delivery systems exploiting natural cell transport processes of macromolecules for intracellular targeting of Auger electron emitters. Nucl Med Biol 2019; 80-81:45-56. [PMID: 31810828 DOI: 10.1016/j.nucmedbio.2019.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/24/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022]
Abstract
The presence of Auger electrons (AE) among the decay products of a number of radionuclides makes these radionuclides an attractive means for treating cancer because these short-range electrons can cause significant damage in the immediate vicinity of the decomposition site. Moreover, the extreme locality of the effect provides a potential for selective eradication of cancer cells with minimal damage to adjacent normal cells provided that the delivery of the AE emitter to the most vulnerable parts of the cell can be achieved. Few cellular compartments have been regarded as the desired target site for AE emitters, with the cell nucleus generally recognized as the preferred site for AE decay due to the extreme sensitivity of nuclear DNA to direct damage by radiation of high linear energy transfer. Thus, the advantages of AE emitters for cancer therapy are most likely to be realized by their selective delivery into the nucleus of the malignant cells. To achieve this goal, delivery systems must combine a challenging complex of properties that not only provide cancer cell preferential recognition but also cell entry followed by transport into the cell nucleus. A promising strategy for achieving this is the recruitment of natural cell transport processes of macromolecules, involved in each of the aforementioned steps. To date, a number of constructs exploiting intracellular transport systems have been proposed for AE emitter delivery to the nucleus of a targeted cell. An example of such a multifunctional vehicle that provides smart step-by-step delivery is the so-called modular nanotransporter, which accomplishes selective recognition, binding, internalization, and endosomal escape followed by nuclear import of the delivered radionuclide. The current review will focus on delivery systems utilizing various intracellular transport pathways and their combinations in order to provide efficient targeting of AE to the cancer cell nucleus.
Collapse
|
14
|
Ku A, Facca VJ, Cai Z, Reilly RM. Auger electrons for cancer therapy - a review. EJNMMI Radiopharm Chem 2019; 4:27. [PMID: 31659527 PMCID: PMC6800417 DOI: 10.1186/s41181-019-0075-2] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/28/2019] [Indexed: 12/23/2022] Open
Abstract
Background Auger electrons (AEs) are very low energy electrons that are emitted by radionuclides that decay by electron capture (e.g. 111In, 67Ga, 99mTc, 195mPt, 125I and 123I). This energy is deposited over nanometre-micrometre distances, resulting in high linear energy transfer (LET) that is potent for causing lethal damage in cancer cells. Thus, AE-emitting radiotherapeutic agents have great potential for treatment of cancer. In this review, we describe the radiobiological properties of AEs, their radiation dosimetry, radiolabelling methods, and preclinical and clinical studies that have been performed to investigate AEs for cancer treatment. Results AEs are most lethal to cancer cells when emitted near the cell nucleus and especially when incorporated into DNA (e.g. 125I-IUdR). AEs cause DNA damage both directly and indirectly via water radiolysis. AEs can also kill targeted cancer cells by damaging the cell membrane, and kill non-targeted cells through a cross-dose or bystander effect. The radiation dosimetry of AEs considers both organ doses and cellular doses. The Medical Internal Radiation Dose (MIRD) schema may be applied. Radiolabelling methods for complexing AE-emitters to biomolecules (antibodies and peptides) and nanoparticles include radioiodination (125I and 123I) or radiometal chelation (111In, 67Ga, 99mTc). Cancer cells exposed in vitro to AE-emitting radiotherapeutic agents exhibit decreased clonogenic survival correlated at least in part with unrepaired DNA double-strand breaks (DSBs) detected by immunofluorescence for γH2AX, and chromosomal aberrations. Preclinical studies of AE-emitting radiotherapeutic agents have shown strong tumour growth inhibition in vivo in tumour xenograft mouse models. Minimal normal tissue toxicity was found due to the restricted toxicity of AEs mostly on tumour cells targeted by the radiotherapeutic agents. Clinical studies of AEs for cancer treatment have been limited but some encouraging results were obtained in early studies using 111In-DTPA-octreotide and 125I-IUdR, in which tumour remissions were achieved in several patients at administered amounts that caused low normal tissue toxicity, as well as promising improvements in the survival of glioblastoma patients with 125I-mAb 425, with minimal normal tissue toxicity. Conclusions Proof-of-principle for AE radiotherapy of cancer has been shown preclinically, and clinically in a limited number of studies. The recent introduction of many biologically-targeted therapies for cancer creates new opportunities to design novel AE-emitting agents for cancer treatment. Pierre Auger did not conceive of the application of AEs for targeted cancer treatment, but this is a tremendously exciting future that we and many other scientists in this field envision.
Collapse
Affiliation(s)
- Anthony Ku
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Valerie J Facca
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Zhongli Cai
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Raymond M Reilly
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada. .,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada. .,Joint Department of Medical Imaging and Toronto General Research Institute, University Health Network, Toronto, ON, Canada. .,Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, ON, M5S 3M2, Canada.
| |
Collapse
|
15
|
Mathieu E, Sipos A, Demeyere E, Phipps D, Sakaveli D, Borbas KE. Lanthanide-based tools for the investigation of cellular environments. Chem Commun (Camb) 2018; 54:10021-10035. [PMID: 30101249 DOI: 10.1039/c8cc05271a] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Biological probes constructed from lanthanides can provide a variety of readout signals, such as the luminescence of Eu(iii), Tb(iii), Yb(iii), Sm(iii) and Dy(iii), and the proton relaxation enhancement of Gd(iii) and Eu(ii). For numerous applications the intracellular delivery of the lanthanide probe is essential. Here, we review the methods for the intracellular delivery of non-targeted complexes (i.e. where the overall complex structure enhances cellular uptake), as well as complexes attached to a targeting unit (i.e. to a peptide or a small molecule) that facilitates delivery. The cellular applications of lanthanide-based supramolecules (dendrimers, metal organic frameworks) are covered briefly. Throughout, we emphasize the techniques that can confirm the intracellular localization of the lanthanides and those that enable the determination of the fate of the probes once inside the cell. Finally, we highlight methods that have not yet been applied in the context of lanthanide-based probes, but have been successful in the intracellular delivery of other metal-based probes.
Collapse
Affiliation(s)
- Emilie Mathieu
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120, Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
16
|
Bavelaar BM, Lee BQ, Gill MR, Falzone N, Vallis KA. Subcellular Targeting of Theranostic Radionuclides. Front Pharmacol 2018; 9:996. [PMID: 30233374 PMCID: PMC6131480 DOI: 10.3389/fphar.2018.00996] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/13/2018] [Indexed: 12/16/2022] Open
Abstract
The last decade has seen rapid growth in the use of theranostic radionuclides for the treatment and imaging of a wide range of cancers. Radionuclide therapy and imaging rely on a radiolabeled vector to specifically target cancer cells. Radionuclides that emit β particles have thus far dominated the field of targeted radionuclide therapy (TRT), mainly because the longer range (μm-mm track length) of these particles offsets the heterogeneous expression of the molecular target. Shorter range (nm-μm track length) α- and Auger electron (AE)-emitting radionuclides on the other hand provide high ionization densities at the site of decay which could overcome much of the toxicity associated with β-emitters. Given that there is a growing body of evidence that other sensitive sites besides the DNA, such as the cell membrane and mitochondria, could be critical targets in TRT, improved techniques in detecting the subcellular distribution of these radionuclides are necessary, especially since many β-emitting radionuclides also emit AE. The successful development of TRT agents capable of homing to targets with subcellular precision demands the parallel development of quantitative assays for evaluation of spatial distribution of radionuclides in the nm-μm range. In this review, the status of research directed at subcellular targeting of radionuclide theranostics and the methods for imaging and quantification of radionuclide localization at the nanoscale are described.
Collapse
Affiliation(s)
| | | | | | | | - Katherine A. Vallis
- CR-UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
17
|
Wendisch M, Freudenberg R, Runge R, Oehme L, Meyer G, Kunz-Schughart LA, Wunderlich G, Kotzerke J. Sodium-iodide symporter positive cells after intracellular uptake of 99mTc versus α-emitter 211At. Nuklearmedizin 2018; 51:170-8. [DOI: 10.3413/nukmed-0506-12-05] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 08/30/2012] [Indexed: 11/20/2022]
Abstract
SummaryPurpose: We evaluated the DNA damaging potential of Auger electrons emitted in the decay of 99mTc compared to α-particles of 211At. Material and methods: The impact of 99mTc and 211At was monitored in a NIS-expressing rat thyroid cell model PC Cl3 with varying, yet defined intra- and extracellular radionuclide distribution (using ± perchlorate). The radiotoxicity of 99mTc and 211At was studied by the comet assay under neutral and alkaline conditions and colony formation. Results: In the presence of perchlorate, the radioactivity yielding 37 % cellular survival, A37, was estimated to be (0.27 ± 0.02) MBq/ml and (450 ± 30) MBq/ml for 211At and 99mTc, respectively. In absence of perchlorate, cellular radiotracer uptake was similar for both radionuclides (2.2 %, 2.7 %), yet the A37 was reduced by 82% for the α-emitter and by 95 % for 99mTc. Cellular dose increased by a factor of 5 (211At) and 38 (99mTc). Comet assays revealed an increased DNA damage after intracellular uptake of both radiotracers. Conclusions: The data indicate damage to the cell to occur from absorbed dose without recognizable contribution from intracellular heterogeneity of radionuclide distribution. Comet assay under alkaline and neutral conditions did not reveal any shift to more complex DNA damage after radionuclide uptake. Cellular uptake of 99mTc and 211At increased cellular dose and reduced clonogenic survival.
Collapse
|
18
|
Shegani A, Triantis C, Nock BA, Maina T, Kiritsis C, Psycharis V, Raptopoulou C, Pirmettis I, Tisato F, Papadopoulos MS. Rhenium(I) Tricarbonyl Complexes with (2-Hydroxyphenyl)diphenylphosphine as PO Bidentate Ligand. Inorg Chem 2017; 56:8175-8186. [PMID: 28657295 DOI: 10.1021/acs.inorgchem.7b00894] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | | | | | | | | | | | | | | | - Francesco Tisato
- Istituto di Chimica della Materia Condensata
e di Tecnologie per l’Energia, Consiglio Nazionale delle Ricerche, 35127 Padova, Italy
| | | |
Collapse
|
19
|
Rezaee M, Hill RP, Jaffray DA. The Exploitation of Low-Energy Electrons in Cancer Treatment. Radiat Res 2017; 188:123-143. [PMID: 28557630 DOI: 10.1667/rr14727.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Given the distinct characteristics of low-energy electrons (LEEs), particularly at energies less than 30 eV, they can be applied to a wide range of therapeutic modalities to improve cancer treatment. LEEs have been shown to efficiently produce complex molecular damage resulting in substantial cellular toxicities. Since LEEs are produced in copious amounts from high-energy radiation beam, including photons, protons and ions; the control of LEE distribution can potentially enhance the therapeutic radio of such beams. LEEs can play a substantial role in the synergistic effect between radiation and chemotherapy, particularly halogenated and platinum-based anticancer drugs. Radiosensitizing entities containing atoms of high atomic number such as gold nanoparticles can be a source of LEE production if high-energy radiation interacts with them. This can provide a high local density of LEEs in a cell and produce cellular toxicity. Auger-electron-emitting radionuclides also create a high number of LEEs in each decay, which can induce lethal damage in a cell. Exploitation of LEEs in cancer treatment, however, faces a few challenges, such as dosimetry of LEEs and selective delivery of radiosensitizing and chemotherapeutic molecules close to cellular targets. This review first discusses the rationale for utilizing LEEs in cancer treatment by explaining their mechanism of action, describes theoretical and experimental studies at the molecular and cellular levels, then discusses strategies for achieving modification of the distribution and effectiveness of LEEs in cancerous tissue and their associated clinical benefit.
Collapse
Affiliation(s)
- Mohammad Rezaee
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Ontario Cancer Institute and Campbell Family Institute for Cancer Research and Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Richard P Hill
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Ontario Cancer Institute and Campbell Family Institute for Cancer Research and Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - David A Jaffray
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Ontario Cancer Institute and Campbell Family Institute for Cancer Research and Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Pereira E, do Quental L, Palma E, Oliveira MC, Mendes F, Raposinho P, Correia I, Lavrado J, Di Maria S, Belchior A, Vaz P, Santos I, Paulo A. Evaluation of Acridine Orange Derivatives as DNA-Targeted Radiopharmaceuticals for Auger Therapy: Influence of the Radionuclide and Distance to DNA. Sci Rep 2017; 7:42544. [PMID: 28211920 PMCID: PMC5304164 DOI: 10.1038/srep42544] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/09/2017] [Indexed: 01/01/2023] Open
Abstract
A new family of 99mTc(I)- tricarbonyl complexes and 125I-heteroaromatic compounds bearing an acridine orange (AO) DNA targeting unit was evaluated for Auger therapy. Characterization of the DNA interaction, performed with the non-radioactive Re and 127I congeners, confirmed that all compounds act as DNA intercalators. Both classes of compounds induce double strand breaks (DSB) in plasmid DNA but the extent of DNA damage is strongly dependent on the linker between the Auger emitter (99mTc or 125I) and the AO moiety. The in vitro evaluation was complemented with molecular docking studies and Monte Carlo simulations of the energy deposited at the nanometric scale, which corroborated the experimental data. Two of the tested compounds, 125I-C5 and 99mTc-C3, place the corresponding radionuclide at similar distances to DNA and produce comparable DSB yields in plasmid and cellular DNA. These results provide the first evidence that 99mTc can induce DNA damage with similar efficiency to that of 125I, when both are positioned at comparable distances to the double helix. Furthermore, the high nuclear retention of 99mTc-C3 in tumoral cells suggests that 99mTc-labelled AO derivatives are more promising for the design of Auger-emitting radiopharmaceuticals than the 125I-labelled congeners.
Collapse
Affiliation(s)
- Edgar Pereira
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - Letícia do Quental
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - Elisa Palma
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal.,Centro Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1049-001 Lisboa, Portugal
| | - Maria Cristina Oliveira
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - Filipa Mendes
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - Paula Raposinho
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - Isabel Correia
- Centro Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1049-001 Lisboa, Portugal
| | - João Lavrado
- iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Salvatore Di Maria
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - Ana Belchior
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - Pedro Vaz
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - Isabel Santos
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - António Paulo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| |
Collapse
|
21
|
Langdon-Jones EE, Jones AB, Williams CF, Hayes AJ, Lloyd D, Mottram HJ, Pope SJA. Anticancer, Azonafide-Inspired Fluorescent Ligands and Their Rhenium(I) Complexes for Cellular Imaging. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201601271] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Ariana B. Jones
- School of Chemistry; Cardiff University; CF10 3AT Cardiff UK
| | - Catrin F. Williams
- School of Engineering; Cardiff University; CF24 3AA Cardiff UK
- School of Biosciences; Cardiff University; CF10 3AT Cardiff UK
| | | | - David Lloyd
- School of Biosciences; Cardiff University; CF10 3AT Cardiff UK
| | - Huw J. Mottram
- School of Pharmacy; Cardiff University; CF10 3NB Cardiff UK
| | | |
Collapse
|
22
|
Meola G, Braband H, Jordi S, Fox T, Blacque O, Spingler B, Alberto R. Structure and reactivities of rhenium and technetium bis-arene sandwich complexes [M(η6-arene)2]+. Dalton Trans 2017; 46:14631-14637. [DOI: 10.1039/c7dt02072d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rhenium and 99Tc bis-arene complexes for a molecule-based theranostic approach are presented. Conjugation of biovectors to benzene or substitution of naphthalene allows integration of {Re(η6-C6H6)}+ in pharmaceutical lead structures.
Collapse
Affiliation(s)
- Giuseppe Meola
- University of Zurich
- Department of Chemistry
- CH-8057 Zurich
- Switzerland
| | - Henrik Braband
- University of Zurich
- Department of Chemistry
- CH-8057 Zurich
- Switzerland
| | - Sara Jordi
- University of Zurich
- Department of Chemistry
- CH-8057 Zurich
- Switzerland
| | - Thomas Fox
- University of Zurich
- Department of Chemistry
- CH-8057 Zurich
- Switzerland
| | - Olivier Blacque
- University of Zurich
- Department of Chemistry
- CH-8057 Zurich
- Switzerland
| | - Bernhard Spingler
- University of Zurich
- Department of Chemistry
- CH-8057 Zurich
- Switzerland
| | - Roger Alberto
- University of Zurich
- Department of Chemistry
- CH-8057 Zurich
- Switzerland
| |
Collapse
|
23
|
Reissig F, Mamat C, Steinbach J, Pietzsch HJ, Freudenberg R, Navarro-Retamal C, Caballero J, Kotzerke J, Wunderlich G. Direct and Auger Electron-Induced, Single- and Double-Strand Breaks on Plasmid DNA Caused by 99mTc-Labeled Pyrene Derivatives and the Effect of Bonding Distance. PLoS One 2016; 11:e0161973. [PMID: 27583677 PMCID: PMC5008623 DOI: 10.1371/journal.pone.0161973] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 08/15/2016] [Indexed: 11/29/2022] Open
Abstract
It is evident that 99mTc causes radical-mediated DNA damage due to Auger electrons, which were emitted simultaneously with the known γ-emission of 99mTc. We have synthesized a series of new 99mTc-labeled pyrene derivatives with varied distances between the pyrene moiety and the radionuclide. The pyrene motif is a common DNA intercalator and allowed us to test the influence of the radionuclide distance on damages of the DNA helix. In general, pUC 19 plasmid DNA enables the investigation of the unprotected interactions between the radiotracers and DNA that results in single-strand breaks (SSB) or double-strand breaks (DSB). The resulting DNA fragments were separated by gel electrophoresis and quantified by fluorescent staining. Direct DNA damage and radical-induced indirect DNA damage by radiolysis products of water were evaluated in the presence or absence of the radical scavenger DMSO. We demonstrated that Auger electrons directly induced both SSB and DSB in high efficiency when 99mTc was tightly bound to the plasmid DNA and this damage could not be completely prevented by DMSO, a free radical scavenger. For the first time, we were able to minimize this effect by increasing the carbon chain lengths between the pyrene moiety and the 99mTc nuclide. However, a critical distance between the 99mTc atom and the DNA helix could not be determined due to the significantly lowered DSB generation resulting from the interaction which is dependent on the type of the 99mTc binding motif. The effect of variable DNA damage caused by the different chain length between the pyrene residue and the Tc-core as well as the possible conformations of the applied Tc-complexes was supplemented with molecular dynamics (MD) calculations. The effectiveness of the DNA-binding 99mTc-labeled pyrene derivatives was demonstrated by comparison to non-DNA-binding 99mTcO4–, since nearly all DNA damage caused by 99mTcO4– was prevented by incubating with DMSO.
Collapse
Affiliation(s)
- Falco Reissig
- University Hospital/ Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Department of Nuclear Medicine, Dresden, Germany
- * E-mail: (GW); (FR)
| | - Constantin Mamat
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Joerg Steinbach
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Hans-Juergen Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Robert Freudenberg
- University Hospital/ Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Department of Nuclear Medicine, Dresden, Germany
| | - Carlos Navarro-Retamal
- Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, 2 Norte 685, Casilla 721, Talca, Chile
| | - Julio Caballero
- Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, 2 Norte 685, Casilla 721, Talca, Chile
| | - Joerg Kotzerke
- University Hospital/ Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Department of Nuclear Medicine, Dresden, Germany
| | - Gerd Wunderlich
- University Hospital/ Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Department of Nuclear Medicine, Dresden, Germany
- * E-mail: (GW); (FR)
| |
Collapse
|
24
|
Maucksch U, Runge R, Wunderlich G, Freudenberg R, Naumann A, Kotzerke J. Comparison of the radiotoxicity of the 99mTc-labeled compounds 99mTc-pertechnetate, 99mTc-HMPAO and 99mTc-MIBI. Int J Radiat Biol 2016; 92:698-706. [DOI: 10.3109/09553002.2016.1168533] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ute Maucksch
- University Hospital/Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Department of Nuclear Medicine, Dresden, Germany
| | - Roswitha Runge
- University Hospital/Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Department of Nuclear Medicine, Dresden, Germany
| | - Gerd Wunderlich
- University Hospital/Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Department of Nuclear Medicine, Dresden, Germany
| | - Robert Freudenberg
- University Hospital/Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Department of Nuclear Medicine, Dresden, Germany
| | - Anne Naumann
- University Hospital/Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Department of Nuclear Medicine, Dresden, Germany
| | - Jörg Kotzerke
- University Hospital/Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Department of Nuclear Medicine, Dresden, Germany
| |
Collapse
|
25
|
Lobachevsky P, Clark GR, Pytel PD, Leung B, Skene C, Andrau L, White JM, Karagiannis T, Cullinane C, Lee BQ, Stuchbery A, Kibedi T, Hicks RJ, Martin RF. Strand breakage by decay of DNA-bound 124I provides a basis for combined PET imaging and Auger endoradiotherapy. Int J Radiat Biol 2016; 92:686-697. [PMID: 26902391 DOI: 10.3109/09553002.2015.1136852] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Purpose DNA ligands labelled with 125I induce cytotoxic DNA double-strand breaks (DSB), suggesting a potential for Auger endoradiotherapy. Since the 60-day half-life of 125I is suboptimal for therapy, we have investigated another Auger-emitter 124I, with shorter half-life (4.18 days), and the additional feature of positron-emission, enabling positron emission tomography (PET) imaging. The purpose of this study was to compare the two radionuclides on the basis of DNA DSB per decay. Materials and methods Using a 124I- (or 125I)-labelled minor groove binding DNA ligand, we investigated DNA breakage using the plasmid DNA assay. Biodistribution of the conjugate of the labelled ligand with transferrin was investigated in nude mice bearing a K562 human lymphoma xenograft. Results The probability of DSB per decay was 0.58 and 0.85 for 124I and 125I, respectively, confirming the therapeutic potential of the former. The crystal structure of the ligand DNA complex shows the iodine atom deep within the minor groove, consistent with the high efficiency of induced damage. Biodistribution studies, including PET imaging, showed distinctive results for the conjugate, compared to the free ligand and transferrin, consistent with receptor-mediated delivery of the ligand. Conclusions Conjugation of 124I-labelled DNA ligands to tumor targeting peptides provides a feasible strategy for Auger endoradiotherapy, with the advantage of monitoring tumor targeting by PET imaging.
Collapse
Affiliation(s)
- Pavel Lobachevsky
- a Molecular Radiation Biology Laboratory , Peter MacCallum Cancer Centre , Melbourne.,b The Sir Peter MacCallum Department of Oncology , The University of Melbourne , Melbourne , Australia
| | - George R Clark
- c School of Chemical Sciences , The University of Auckland , New Zealand
| | - Patrycja D Pytel
- c School of Chemical Sciences , The University of Auckland , New Zealand
| | - Brenda Leung
- d School of Chemistry and Bio-21 Molecular Science and Biotechnology Institute , University of Melbourne , Australia
| | - Colin Skene
- d School of Chemistry and Bio-21 Molecular Science and Biotechnology Institute , University of Melbourne , Australia
| | - Laura Andrau
- d School of Chemistry and Bio-21 Molecular Science and Biotechnology Institute , University of Melbourne , Australia
| | - Jonathan M White
- d School of Chemistry and Bio-21 Molecular Science and Biotechnology Institute , University of Melbourne , Australia
| | - Tom Karagiannis
- a Molecular Radiation Biology Laboratory , Peter MacCallum Cancer Centre , Melbourne
| | - Carleen Cullinane
- b The Sir Peter MacCallum Department of Oncology , The University of Melbourne , Melbourne , Australia.,e Cancer Research Division , Peter MacCallum Cancer Centre , Melbourne
| | - Boon Q Lee
- f Department of Nuclear Physics, Research School of Physics and Engineering , Australian National University , Canberra
| | - Andrew Stuchbery
- f Department of Nuclear Physics, Research School of Physics and Engineering , Australian National University , Canberra
| | - Tibor Kibedi
- f Department of Nuclear Physics, Research School of Physics and Engineering , Australian National University , Canberra
| | - Rodney J Hicks
- b The Sir Peter MacCallum Department of Oncology , The University of Melbourne , Melbourne , Australia.,g Centre for Molecular Imaging, Peter MacCallum Cancer Centre , Melbourne , VIC , Australia
| | - Roger F Martin
- a Molecular Radiation Biology Laboratory , Peter MacCallum Cancer Centre , Melbourne.,b The Sir Peter MacCallum Department of Oncology , The University of Melbourne , Melbourne , Australia.,d School of Chemistry and Bio-21 Molecular Science and Biotechnology Institute , University of Melbourne , Australia
| |
Collapse
|
26
|
Synthesis, characterization and biological evaluation of (99m)Tc/Re-tricarbonyl quinolone complexes. J Inorg Biochem 2015; 160:94-105. [PMID: 26795497 DOI: 10.1016/j.jinorgbio.2015.12.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/26/2015] [Accepted: 12/16/2015] [Indexed: 11/24/2022]
Abstract
New rhenium(I) tricarbonyl complexes with the quinolone antimicrobial agents oxolinic acid (Hoxo) and enrofloxacin (Herx) and containing methanol, triphenylphosphine (PPh3) or imidazole (im) as unidentate co-ligands, were synthesized and characterized. The crystal structure of complex [Re(CO)3(oxo)(PPh3)]∙0.5MeOH was determined by X-ray crystallography. The deprotonated quinolone ligands are bound bidentately to rhenium(I) ion through the pyridone oxygen and a carboxylate oxygen. The binding of the rhenium complexes to calf-thymus DNA (CT DNA) was monitored by UV spectroscopy, viscosity measurements and competitive studies with ethidium bromide; intercalation was suggested as the most possible mode and the DNA-binding constants of the complexes were calculated. The rhenium complex [Re(CO)3(erx)(im)] was assayed for its topoisomerase IIα inhibition activity and was found to be active at 100μM concentration. The interaction of the rhenium complexes with human or bovine serum albumin was investigated by fluorescence emission spectroscopy (through the tryptophan quenching) and the corresponding binding constants were determined. The tracer complex [(99m)Tc(CO)3(erx)(im)] was synthesized and identified by comparative HPLC analysis with the rhenium analog. The (99m)Tc complex was found to be stable in solution. Upon injection in healthy mice, fast tissue clearance of the (99m)Tc complex was observed, while both renal and hepatobiliary excretion took place. Preliminary studies in human K-562 erythroleukemia cells showed cellular uptake of the (99m)Tc tracer with distribution primarily in the cytoplasm and the mitochondria and less in the nucleus. These preliminary results indicate that the quinolone (99m)Tc/Re complexes show promise to be further evaluated as imaging or therapeutic agents.
Collapse
|
27
|
Imstepf S, Pierroz V, Raposinho P, Bauwens M, Felber M, Fox T, Shapiro AB, Freudenberg R, Fernandes C, Gama S, Gasser G, Motthagy F, Santos IR, Alberto R. Nuclear Targeting with an Auger Electron Emitter Potentiates the Action of a Widely Used Antineoplastic Drug. Bioconjug Chem 2015; 26:2397-407. [PMID: 26473388 DOI: 10.1021/acs.bioconjchem.5b00466] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We present the combination of the clinically well-proven chemotherapeutic agent, Doxorubicin, and (99m)Tc, an Auger and internal conversion electron emitter, into a dual-action agent for therapy. Chemical conjugation of Doxorubicin to (99m)Tc afforded a construct which autonomously ferries a radioactive payload into the cell nucleus. At this site, damage is exerted by dose deposition from Auger radiation. The (99m)Tc-conjugate exhibited a dose-dependent inhibition of survival in a selected panel of cancer cells and an in vivo study in healthy mice evidenced a biodistribution which is comparable to that of the parent drug. The homologous Rhenium conjugate was found to effectively bind to DNA, inhibited human Topoisomerase II, and exhibited cytotoxicity in vitro. The collective in vitro and in vivo data demonstrate that the presented metallo-conjugates closely mimic native Doxorubicin.
Collapse
Affiliation(s)
| | | | - Paula Raposinho
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa , Estrada Nacional 10 km 139.7, PT-2695-066 Bobadela LRS, Portugal
| | - Matthias Bauwens
- Department of Nuclear Medicine, MUMC+ , P. Debeyelaan 25, NL-6229 Maastricht, Netherlands
| | | | | | - Adam B Shapiro
- Bioscience Department, Infection Innovative Medicines, AstraZeneca R&D Boston , Waltham, Massachusetts 02451, United States
| | - Robert Freudenberg
- Universitätsklinikum Carl Gustav Carus Dresden , Fetscherstrasse 74, D-01307 Dresden, Germany
| | - Célia Fernandes
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa , Estrada Nacional 10 km 139.7, PT-2695-066 Bobadela LRS, Portugal
| | - Sofia Gama
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa , Estrada Nacional 10 km 139.7, PT-2695-066 Bobadela LRS, Portugal
| | | | - Felix Motthagy
- Department of Nuclear Medicine, MUMC+ , P. Debeyelaan 25, NL-6229 Maastricht, Netherlands
| | - Isabel R Santos
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa , Estrada Nacional 10 km 139.7, PT-2695-066 Bobadela LRS, Portugal
| | | |
Collapse
|
28
|
Khabbal J, Kerkelä E, Mitkari B, Raki M, Nystedt J, Mikkonen V, Bergström K, Laitinen S, Korhonen M, Jolkkonen J. Differential Clearance of Rat and Human Bone Marrow-Derived Mesenchymal Stem Cells from the Brain after Intra-arterial Infusion in Rats. Cell Transplant 2015; 24:819-28. [DOI: 10.3727/096368914x679336] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Intra-arterial (IA) delivery of bone marrow-derived mesenchymal stem cells (BM-MSCs) has shown potential as a minimally invasive therapeutic approach for stroke. The aim of the present study was to determine the whole-body biodistribution and clearance of technetium-99m (99mTc)-labeled rat and human BM-MSCs after IA delivery in a rat model of transient middle cerebral artery occlusion (MCAO) using single-photon emission computed tomography (SPECT). Our hypothesis was that xenotransplantation has a major impact on the behavior of cells. Male RccHan: Wistar rats were subjected to sham operation or MCAO. Twenty-four hours after surgery, BM-MSCs (2×106 cells/animal) labeled with 99mTc were infused into the external carotid artery. Whole-body SPECT images were acquired 20 min, 3 h, and 6 h postinjection, after which rats were sacrificed, and organs were collected and weighed for measurement of radioactivity. The results showed that the majority of the cells were located in the brain and especially in the ipsilateral hemisphere immediately after cell infusion both in sham-operated and MCAO rats. This was followed by fast disappearance, particularly in the case of human cells. At the same time, the radioactivity signal increased in the spleen, kidney, and liver, the organs responsible for destroying cells. Further studies are needed to demonstrate whether differential cell behavior has any functional impact.
Collapse
Affiliation(s)
- Joonas Khabbal
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Erja Kerkelä
- Finnish Red Cross Blood Service, Advanced Therapies and Product Development, Helsinki, Finland
| | - Bhimashankar Mitkari
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Mari Raki
- Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Johanna Nystedt
- Finnish Red Cross Blood Service, Advanced Therapies and Product Development, Helsinki, Finland
| | - Ville Mikkonen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Kim Bergström
- Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- HUS Medical Imaging Centre, Helsinki University Central Hospital, Helsinki, Finland
| | - Saara Laitinen
- Finnish Red Cross Blood Service, Advanced Therapies and Product Development, Helsinki, Finland
| | - Matti Korhonen
- Finnish Red Cross Blood Service, Advanced Therapies and Product Development, Helsinki, Finland
| | - Jukka Jolkkonen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
29
|
Ferl S, Wunderlich G, Smits R, Hoepping A, Naumann A, Kotzerke J. Synthesis of a new HYNIC-DAPI derivative for labelling with 99mTechnetium and its in vitro evaluation in an FRTL5 cell line. MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00574k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A new multifunctional compound that includes the fluorescent dye 4′,6-diamidine-2-phenylindole (DAPI) and the chelator 6-hydrazinonicotinic acid (HYNIC) was developed and radiolabelled with 99mTc for in vitro evaluation in an FRTL5 cell line.
Collapse
Affiliation(s)
- Sandra Ferl
- Technische Universität Dresden
- Faculty of Medicine Carl Gustav Carus
- Department of Nuclear Medicine
- 01307 Dresden
- Germany
| | - Gerd Wunderlich
- Technische Universität Dresden
- Faculty of Medicine Carl Gustav Carus
- Department of Nuclear Medicine
- 01307 Dresden
- Germany
| | - René Smits
- ABX advanced biochemical compounds GmbH
- 01454 Radeberg
- Germany
| | | | - Anne Naumann
- Technische Universität Dresden
- Faculty of Medicine Carl Gustav Carus
- Department of Nuclear Medicine
- 01307 Dresden
- Germany
| | - Jörg Kotzerke
- Technische Universität Dresden
- Faculty of Medicine Carl Gustav Carus
- Department of Nuclear Medicine
- 01307 Dresden
- Germany
| |
Collapse
|
30
|
Clède S, Policar C. Metal-carbonyl units for vibrational and luminescence imaging: towards multimodality. Chemistry 2014; 21:942-58. [PMID: 25376740 DOI: 10.1002/chem.201404600] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metal-carbonyl complexes are attractive structures for bio-imaging. In addition to unique vibrational properties due to the CO moieties enabling IR and Raman cell imaging, the appropriate choice of ancillary ligands opens up the opportunity for luminescence detection. Through a classification by techniques, past and recent developments in the application of metal-carbonyl complexes for vibrational and luminescence bio-imaging are reviewed. Finally, their potential as bimodal IR and luminescent probes is addressed.
Collapse
Affiliation(s)
- Sylvain Clède
- Ecole Normale Supérieure, PSL Research University, Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06, CNRS-ENS-UPMC, Laboratoire des Biomolécules, UMR7203, 24, rue Lhomond, 75005 Paris (France), Fax: (+33) 1-4432-3389
| | | |
Collapse
|
31
|
Chung WJ, Cui Y, Huang FYJ, Tu TH, Yang TS, Lo JM, Chiang CS, Hsu IC. ⁹⁹mTc pyrene derivative complex causes double-strand breaks in dsDNA mainly through cluster-mediated indirect effect in aqueous solution. PLoS One 2014; 9:e108162. [PMID: 25244160 PMCID: PMC4171534 DOI: 10.1371/journal.pone.0108162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 08/25/2014] [Indexed: 11/18/2022] Open
Abstract
Radiation therapy for cancer patients works by ionizing damage to nuclear DNA, primarily by creating double-strand breaks (DSB). A major shortcoming of traditional radiation therapy is the set of side effect associated with its long-range interaction with nearby tissues. Low-energy Auger electrons have the advantage of an extremely short effective range, minimizing damage to healthy tissue. Consequently, the isotope 99mTc, an Auger electron source, is currently being studied for its beneficial potential in cancer treatment. We examined the dose effect of a pyrene derivative 99mTc complex on plasmid DNA by using gel electrophoresis in both aqueous and methanol solutions. In aqueous solutions, the average yield per decay for double-strand breaks is 0.011±0.005 at low dose range, decreasing to 0.0005±0.0003 in the presence of 1 M dimethyl sulfoxide (DMSO). The apparent yield per decay for single-strand breaks (SSB) is 0.04±0.02, decreasing to approximately a fifth with 1 M DMSO. In methanol, the average yield per decay of DSB is 0.54±0.06 and drops to undetectable levels in 2 M DMSO. The SSB yield per decay is 7.2±0.2, changing to 0.4±0.2 in the presence of 2 M DMSO. The 95% decrease in the yield of DSB in DMSO indicates that the main mechanism for DSB formation is through indirect effect, possibly by cooperative binding or clustering of intercalators. In the presence of non-radioactive ligands at a near saturation concentration, where radioactive Tc compounds do not form large clusters, the yield of SSB stays the same while the yield of DSB decreases to the value in DMSO. DSBs generated by 99mTc conjugated to intercalators are primarily caused by indirect effects through clustering.
Collapse
Affiliation(s)
- Wei-Ju Chung
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Yujia Cui
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
- * E-mail: (YC); (ICH)
| | - Feng-Yun J. Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Tzu-Hui Tu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Tzu-Sen Yang
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jem-Mau Lo
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chi-Shiun Chiang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Ian C. Hsu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
- * E-mail: (YC); (ICH)
| |
Collapse
|
32
|
Cornelissen B. Imaging the inside of a tumour: a review of radionuclide imaging and theranostics targeting intracellular epitopes. J Labelled Comp Radiopharm 2014; 57:310-6. [PMID: 24395330 DOI: 10.1002/jlcr.3152] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 10/29/2013] [Indexed: 12/31/2022]
Abstract
Molecular imaging of tumour tissue focusses mainly on extracellular epitopes such as tumour angiogenesis or signal transduction receptors expressed on the cell membrane. However, most biological processes that define tumour phenotype occur within the cell. In this mini-review, an overview is given of the various techniques to interrogate intracellular events using molecular imaging with radiolabelled compounds. Additionally, similar targeting techniques can be employed for radionuclide therapy using Auger electron emitters, and recent advances in Auger electron therapy are discussed.
Collapse
Affiliation(s)
- Bart Cornelissen
- MRC/CRUK Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, UK
| |
Collapse
|
33
|
Morais M, Paulo A, Gano L, Santos I, Correia JD. Target-specific Tc(CO)3-complexes for in vivo imaging. J Organomet Chem 2013. [DOI: 10.1016/j.jorganchem.2013.05.050] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Pandya H, Debinski W. Toward intracellular targeted delivery of cancer therapeutics: progress and clinical outlook for brain tumor therapy. BioDrugs 2012; 26:235-44. [PMID: 22671766 DOI: 10.2165/11631600-000000000-00000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A number of anti-cancer drugs have their targets localized to particular intracellular compartments. These drugs reach the targets mainly through diffusion, dependent on biophysical and biochemical forces that allow cell penetration. This means that both cancer cells and normal cells will be subjected to such diffusion; hence many of these drugs, like chemotherapeutics, are potentially toxic and the concentration achieved at the site of their action is often suboptimal. The same relates to radiation that indiscriminately affects normal and diseased cells. However, nature-designed systems enable compounds present in the extracellular environment to end up inside the cell and even travel to more specific intracellular compartments. For example, viruses and bacterial toxins can more or less specifically recognize eukaryotic cells, enter these cells, and direct some protein portions to designated intracellular areas. These phenomena have led to creative thinking, such as employing viruses or bacterial toxins for cargo delivery to cells and, more specifically, to cancer cells. Proteins can be genetically engineered in order to not only mimic what viruses and bacterial toxins can do, but also to add new functions, extending or changing the intracellular routes. It is possible to make conjugates or, more preferably, single-chain proteins that recognize cancer cells and deliver cargo inside the cells, even to the desired subcellular compartment. These findings offer new opportunities to deliver drugs/labels only to cancer cells and only to their site of action within the cells. The development of such dual-specificity vectors for targeting cancer cells is an attractive and potentially safer and more efficacious way of delivering drugs. We provide examples of this approach for delivering brain cancer therapeutics, using a specific biomarker on glioblastoma tumor cells.
Collapse
Affiliation(s)
- Hetal Pandya
- The Brain Tumor Center of Excellence, Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | |
Collapse
|
35
|
|
36
|
Freudenberg R, Wendisch M, Runge R, Wunderlich G, Kotzerke J. Reduction in clonogenic survival of sodium-iodide symporter (NIS)-positive cells following intracellular uptake of99mTc versus188Re. Int J Radiat Biol 2012; 88:991-7. [DOI: 10.3109/09553002.2012.728303] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
37
|
Morais GR, Paulo A, Santos I. Organometallic Complexes for SPECT Imaging and/or Radionuclide Therapy. Organometallics 2012. [DOI: 10.1021/om300501d] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Goreti Ribeiro Morais
- Unidade de Ciências
Quı́micas e Radiofarmacêuticas, Instituto
Tecnológico e Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, Estrada Nacional
10, 2686-953, Sacavém, Portugal
| | - António Paulo
- Unidade de Ciências
Quı́micas e Radiofarmacêuticas, Instituto
Tecnológico e Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, Estrada Nacional
10, 2686-953, Sacavém, Portugal
| | - Isabel Santos
- Unidade de Ciências
Quı́micas e Radiofarmacêuticas, Instituto
Tecnológico e Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, Estrada Nacional
10, 2686-953, Sacavém, Portugal
| |
Collapse
|
38
|
Abstract
Technetium and Rhenium are the two lower elements in the manganese triad. Whereas rhenium is known as an important part of high resistance alloys, technetium is mostly known as a cumbersome product of nuclear fission. It is less known that its metastable isotope 99mTc is of utmost importance in nuclear medicine diagnosis. The technical application of elemental rhenium is currently complemented by investigations of its isotope 188Re , which could play a central role in the future for internal, targeted radiotherapy. This article will briefly describe the basic principles behind diagnostic methods with radionuclides for molecular imaging, review the 99mTc -based radiopharmaceuticals currently in clinical routine and focus on the chemical challenges and current developments towards improved, radiolabeled compounds for diagnosis and therapy in nuclear medicine.
Collapse
Affiliation(s)
- ROGER ALBERTO
- University of Zürich, Institute of Inorganic Chemistry, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
39
|
Zelenka K, Borsig L, Alberto R. Metal complex mediated conjugation of peptides to nucleus targeting acridine orange: a modular concept for dual-modality imaging agents. Bioconjug Chem 2011; 22:958-67. [PMID: 21480670 DOI: 10.1021/bc2000269] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To target the nucleus of specific cells, trifunctional radiopharmaceuticals are required. We have synthesized acridine orange derivatives which comprise an imidazole-2-carbaldehyde function for coordination to the [Re(CO)₃](+) or [(99m)Tc(CO)₃](+) core. Upon coordination, this aldehyde is activated and rapidly forms imines with amines from biological molecules. This metal-mediated imine formation allows for the conjugation of a nuclear targeting portion with a specific cell receptor binding function directly on the metal. With this concept, we have conjugated the acridine orange part to a bombesin peptide directly on the (99m)Tc core and in one step. In addition, a linker containing an integrated disulfide has been coupled to bombesin. LC/MS study showed that the disulfide was reductively cleaved with a 60 min half-life time. This concept enables the combination of a nucleus targeting agent with a specific cell receptor molecule directly on the metal without the need of separate conjugation prior to labeling, thus, a modular approach. High uptake of the BBN conjugate into PC-3 cells was detected by fluorescence microscopy, whereas uptake into B16BL6 cells was negligible.
Collapse
Affiliation(s)
- Karel Zelenka
- Institute of Inorganic Chemistry, University of Zürich, Winterthurerstrasse 190, Zürich, Switzerland
| | | | | |
Collapse
|
40
|
Illán-Cabeza NA, García-García AR, Moreno-Carretero MN. Complexes with 6-amino-5-nitroso-2-thiouracil and violuric acid derivatives containing the fac-ReI(CO)3 core: Synthesis, XRD structural and photoluminescence characterization. Inorganica Chim Acta 2011. [DOI: 10.1016/j.ica.2010.11.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
41
|
Jones JE, Kariuki BM, Ward BD, Pope SJA. Amino-anthraquinone chromophores functionalised with 3-picolyl units: structures, luminescence, DFT and their coordination chemistry with cationic Re(i) di-imine complexes. Dalton Trans 2011; 40:3498-509. [DOI: 10.1039/c0dt01383h] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
42
|
(99m)Tc Auger electrons--analysis on the effects of low absorbed doses by computational methods. Appl Radiat Isot 2010; 69:607-8. [PMID: 21185732 DOI: 10.1016/j.apradiso.2010.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Accepted: 12/03/2010] [Indexed: 11/20/2022]
Abstract
We describe here the use of computational methods for evaluation of the low dose effects on human fibroblasts after irradiation with Technetium-99m ((99m)Tc) Auger electrons. The results suggest a parabolic relationship between the irradiation of fibroblasts with (99m)Tc Auger electrons and the total absorbed dose. Additionally, the results on very low absorbed doses may be explained by the bystander effect, which has been implicated on the cell's effects at low doses. Further in vitro evaluation will be worthwhile to clarify these findings.
Collapse
|
43
|
Zelenka K, Borsig L, Alberto R. Trifunctional 99mTc based radiopharmaceuticals: metal-mediated conjugation of a peptide with a nucleus targeting intercalator. Org Biomol Chem 2010; 9:1071-8. [PMID: 21186394 DOI: 10.1039/c0ob00504e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of molecular imaging agents with multiple functions has become a major trend in radiopharmaceutical chemistry. We present herein the syntheses of trifunctional compounds, combining an acridine orange (AO) based intercalator with a GRP receptor specific bombesin like peptide (BBN). Metal-mediated conjugation of these two functions via the [2 + 1] approach to the third function, the [M(CO)(3)](+) (M = (99m)Tc, Re) moiety, yielded the final trifunctional molecules. The strongly fluorescent acridine orange, a nuclear targeting agent, has been derivatised with 4-imidazolecarboxylate as a bidentate ligand and bombesin with an isonitrile group as a monodentate ligand. For cell and nuclear uptake studies, [Re(L(1)-BBN)(L(2)-Ical)(CO)(3)] type complexes were synthesized and characterized. For radiopharmaceutical purposes, the (99m)Tc analogues have been prepared in a stepwise synthesis. Fluorescence microscopy studies on PC-3 cells, bearing the BBN receptor, showed high and rapid uptake into the cytoplasm. For the bifunctional molecule, lacking the BBN peptide, no internalization was observed.
Collapse
Affiliation(s)
- Karel Zelenka
- Institute of Inorganic Chemistry, University of Zürich, Winterthurerstr. 190, 8057, Zürich, Switzerland
| | | | | |
Collapse
|
44
|
Bousis C, Emfietzoglou D, Hadjidoukas P, Nikjoo H. Monte Carlo single-cell dosimetry of Auger-electron emitting radionuclides. Phys Med Biol 2010; 55:2555-72. [DOI: 10.1088/0031-9155/55/9/009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
45
|
Tubert P, Rodríguez M, Ribó M, Benito A, Vilanova M. The nuclear transport capacity of a human-pancreatic ribonuclease variant is critical for its cytotoxicity. Invest New Drugs 2010; 29:811-7. [PMID: 20352290 DOI: 10.1007/s10637-010-9426-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 03/17/2010] [Indexed: 10/19/2022]
Abstract
We have previously described a human pancreatic-ribonuclease variant, named PE5, which carries a non-contiguous extended bipartite nuclear localization signal. This signal comprises residues from at least three regions of the protein. We postulated that the introduction of this signal in the ribonuclease provides it with cytotoxic activity because although the variant poorly evades the ribonuclease inhibitor in vitro, it is routed to the nucleus, which is devoid of the inhibitor. In this work, we have investigated the relationship between the cytotoxicity produced by PE5 and its ability to reach the nucleus. First, we show that this enzyme, when incubated with HeLa cells, specifically cleaves nuclear RNA while it leaves cytoplasmic RNA unaffected. On the other hand, we have created new variants in which the residues of the nuclear localization signal that are important for the nuclear transport have been replaced. As expected, the individual changes produce a significant decrease in the cytotoxicity of the resulting variants. We conclude that the nuclear transport of PE5 is critical for its cytotoxicity. Therefore, routing a ribonuclease to the nucleus is an alternative strategy to endow it with cytotoxic activity.
Collapse
Affiliation(s)
- Pere Tubert
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, 17071 Girona, Spain
| | | | | | | | | |
Collapse
|
46
|
Tavares AAS, Tavares JMRS. 99mTc Auger electrons for targeted tumour therapy: A review. Int J Radiat Biol 2010; 86:261-70. [DOI: 10.3109/09553000903564083] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
47
|
Abstract
Transition metal complexes offer great potential as diagnostic and therapeutic agents, and a growing number of biological applications have been explored. To be effective, these complexes must reach their intended target inside the cell. Here we review the cellular accumulation of metal complexes, including their uptake, localization, and efflux. Metal complexes are taken up inside cells through various mechanisms, including passive diffusion and entry through organic and metal transporters. Emphasis is placed on the methods used to examine cellular accumulation, to identify the mechanism(s) of uptake, and to monitor possible efflux. Conjugation strategies that have been employed to improve the cellular uptake characteristics of metal complexes are also described.
Collapse
Affiliation(s)
- Cindy A. Puckett
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Russell J. Ernst
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Jacqueline K. Barton
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
48
|
Vitor RF, Esteves T, Marques F, Raposinho P, Paulo A, Rodrigues S, Rueff J, Casimiro S, Costa L, Santos I. (99m)Tc-tricarbonyl complexes functionalized with anthracenyl fragments: synthesis, characterization, and evaluation of their radiotoxic effects in murine melanoma cells. Cancer Biother Radiopharm 2010; 24:551-63. [PMID: 19877885 DOI: 10.1089/cbr.2009.0647] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Different pyrazolyl-diamine ligands bearing anthracenyl or anthrapyrazole functionalities as DNA-binding groups, at different positions of the chelator framework, were labeled with the fac-[(99m)Tc(CO)(3)](+) core. The resulting complexes, 1-4, are highly stable in vitro under physiologic conditions; all of them have been identified by high-performance liquid chromatography comparison with the Re congeners, with the exception of 3, that is anchored by an anthrapyrazole diamine ligand. Aiming to assess the ability of these complexes to target the cell nucleus and to induce enhanced cell death by effect of the Auger electrons emitted by (99m)Tc, the intracellular distribution and radiotoxicity of 1-4 were evaluated by using B16F1 murine melanoma cells. The radiotoxic effects depend very much on the position used to introduce the DNA-binding group and are well correlated with the nuclear uptake of the compounds. Complex 2, having the anthracenyl substituent at the 4-position of the pyrazolyl ring, rapidly entered the cells and accumulated inside the nucleus, exhibiting the highest radiotoxic effects. This compound induced an apoptotic cellular outcome, and its enhanced radiotoxic effects were certainly due to the Auger electrons emitted by the radiometal in close proximity to DNA.
Collapse
Affiliation(s)
- Rute F Vitor
- Unidade de Ciências Químicas e Radiofarmacêuticas, Instituto Tecnológico e Nuclear, Sacavém 2686-953, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Chan C, Cai Z, Su R, Reilly RM. 111In- or 99mTc-labeled recombinant VEGF bioconjugates: in vitro evaluation of their cytotoxicity on porcine aortic endothelial cells overexpressing Flt-1 receptors. Nucl Med Biol 2009; 37:105-15. [PMID: 20152709 DOI: 10.1016/j.nucmedbio.2009.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 09/06/2009] [Accepted: 10/02/2009] [Indexed: 11/17/2022]
Abstract
INTRODUCTION The aims of this study were to (a) synthesize and characterize a novel vascular endothelial growth factor (VEGF-2K) recombinant protein expressed in Pichia pastoris and (b) compare its cytotoxicity when labeled with the Auger electron emitter (111)In or (99m)Tc, both of which are in the nanometer-micrometer range, toward porcine aortic endothelial (PAE) cells transfected with the flt-1 gene to overexpress Flt-1 receptors (PAE-Flt-1). METHODS The gene for the VEGF(165) isoform was fused to a sequence encoding an extended flexible peptide (KGGGGSK) with two accessible lysines for preferential derivatization with diethylenetriaminepentaacetic acid (DTPA) for complexing (111)In and a sequence for a His(6) affinity tag that bound the [(99m)Tc(CO)(3)(H(2)O)(3)](+) tricarbonyl complex. P. pastoris strain KM71H was transfected with the recombinant gene, the VEGF-2K protein expressed with methanol induction, and then purified by metal-affinity chromatography. VEGF-2K was modified with 13-mer peptides [CGYGPKKKRKVGG] containing the nuclear localization sequence (NLS) of SV-40 large T-antigen (underlined) to promote nuclear uptake following its receptor-mediated internalization. RESULTS (99m)Tc-DTPA-VEGF-2K bound strongly and preferentially to PAE-Flt-1 cells compared with non-transfected PAE cells, but NLS modification diminished the ratio of PAE-Flt-1 to PAE binding to 2.3-fold. Nuclear accumulation of (99m)Tc-labeled DTPA-VEGF-2K was not enhanced by NLS modification but was enhanced by 1.5-fold for (111)In-DTPA-VEGF-2K-NLS. However, confocal microscopy revealed intranuclear distribution of DTPA-VEGF-2K-NLS, whereas DTPA-VEGF-2K distribution was mainly perinuclear. (111)In-DTPA-VEGF-2K-NLS was the most cytotoxic to PAE-Flt-1 cells, reducing their clonogenic survival by 4-fold. (111)In-DTPA-VEGF-2K, (99m)Tc-DTPA-VEGF-2K or (99m)Tc-DTPA-VEGF-2K-NLS had less effect on the clonogenic survival of PAE-Flt-1 or PAE cells. The strong cytotoxicity of (111)In-DTPA-VEGF-2K-NLS toward PAE-Flt-1 cells was associated with a 27-fold increase in nuclear foci of immunofluorescence for phosphorylated histone-2AX corresponding to sites of unrepaired DNA double-strand breaks. Monte Carlo modeling revealed that radionuclide decay in the nucleus would provide a 5-fold higher radiation absorbed dose for (111)In than for (99m)Tc, explaining their differential cytotoxicity, and intranuclear localization would amplify the radiation dose delivered by (111)In by 3-fold, explaining the greater potency of (111)In-DTPA-VEGF-2K-NLS compared with (111)In-DTPA-VEGF-2K. CONCLUSIONS We conclude that targeted Auger electron radiotherapy aimed at Flt-1 receptors is a promising strategy that should be explored further for treatment of tumors in which this angiogenic pathway is up-regulated. (111)In is a more cytotoxic radionuclide than (99m)Tc, unless DNA delivery can be achieved, due to the short range of the electrons emitted.
Collapse
Affiliation(s)
- Conrad Chan
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
50
|
Alberto R, N’Dongo HP, Clericuzio M, Bonetti S, Gabano E, Cassino C, Ravera M, Osella D. Functionalized thymidine derivatives as carriers for the γ-emitter technetium tricarbonyl moiety. Inorganica Chim Acta 2009. [DOI: 10.1016/j.ica.2009.06.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|