1
|
Zhang D, Jiang L, Liu C. A convergent synthetic platform for polymeric nanoparticle for the treatment of combination colorectal cancer therapy. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1835-1848. [PMID: 34121628 DOI: 10.1080/09205063.2021.1941556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In biomaterials and drug delivery, the development of polymeric therapies capable of the synchronized release of several therapeutic agents remains an important challenge. In this article, we describe the development of polymeric nanoparticles (PNPs) with precise molar ratios of Curcumin (CUR) and Methotrexate (MEX). The highly symmetric synthetic approach allows for the development of novel NPs-based combination therapeutic strategies for colorectal cancer. The fabricated CUR/MEX@PNPs were confirmed by transmission microscopy (TEM) and the size and polydispersity index were assessed through the dynamic light scattering (DLS). CUR and MEX were released slowly from the drug delivery without any burst impact. Furthermore, CUR/MEX@PNPs exhibited dose-responsive cytotoxic effects in CL40 and SW1417 cells, with a greater cell death ratio than that of free drugs. The drugs-loaded polymeric nanomaterials were more easily taken up by cancer cells in vitro, according to the cellular uptake analysis. The apoptotic features were confirmed by various fluorescence staining assay. The results of the fluorescent assay reveal that the nanomaterials remarkably induce apoptosis in colorectal cancer cells. Further, the apoptosis cell death mechanism was displayed that these nanomaterials significantly induce apoptosis in the targeted cancer cells. Overall, the current investigation confirmed that CUR/MEX@PNPs could be used to successfully combat colorectal cancers in the immediate future.HighlightsWe have developed the Curcumin (CUR) and Methotrexate (MEX) encapsulated polymeric nanoparticles (CUR/MEX@PNPs).CUR/MEX@PNPs confirmed by the various analytical methods.CUR/MEX@PNPs enhanced the in vitro proliferation against the colorectal cancer cells.Biochemical analysis results reveals that CUR/MEX@PNPs induce apoptosis.The apoptosis was confirmed by Annexin-V-FITC and PI for flow cytometry.
Collapse
Affiliation(s)
- Donghui Zhang
- Department of Anorectal, Xi'an Central Hospital, Xi'an, Shaanxi Province, P.R.China
| | - Ling Jiang
- Medical Clinical Laboratory, Rongcheng People's Hospital, Weihai, Shandong Province, P.R.China
| | - Chao Liu
- Department of Spleen and Stomach Diseases, Xi'an Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi Province, P.R.China
| |
Collapse
|
2
|
Lin WW, Cheng YA, Li CC, Ho KW, Chen HJ, Chen IJU, Huang BC, Liu HJ, Lu YC, Cheng CM, Huang MY, Lai HW, Cheng TL. Enhancement of tumor tropism of mPEGylated nanoparticles by anti-mPEG bispecific antibody for ovarian cancer therapy. Sci Rep 2021; 11:7598. [PMID: 33828191 PMCID: PMC8027450 DOI: 10.1038/s41598-021-87271-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 03/22/2021] [Indexed: 12/16/2022] Open
Abstract
Ovarian cancer is highly metastatic, with a high frequency of relapse, and is the most fatal gynecologic malignancy in women worldwide. It is important to elevate the drug susceptibility and cytotoxicity of ovarian cancer cells, thereby eliminating resident cancer cells for more effective therapeutic efficacy. Here, we developed a bispecific antibody (BsAb; mPEG × HER2) that can easily provide HER2+ tumor tropism to mPEGylated liposomal doxorubicin (PLD) and further increase the drug accumulation in cancer cells via receptor-mediated endocytosis, and improve the cytotoxicity and therapeutic efficacy of HER2+ ovarian tumors. The mPEG × HER2 can simultaneously bind to mPEG molecules on the surface of PLD and HER2 antigen on the surface of ovarian cancer cells. Simply mixing the mPEG × HER2 with PLD was able to confer HER2 specificity of PLD to HER2+ ovarian cancer cells and efficiently trigger endocytosis and enhance cytotoxicity by 5.4-fold as compared to non-targeted PLD. mPEG × HER2-modified PLD was able to significantly increase the targeting and accumulation of HER2+ ovarian tumor by 220% as compared with non-targeted PLD. It could also significantly improve the anti-tumor activity of PLD (P < 0.05) with minimal obvious toxicity in a tumor-bearing mouse model. We believe that the mPEG × HER2 can significantly improve the therapeutic efficacy, potentially reduce the relapse freqency and thereby achieve good prognosis in ovarian cancer patients.
Collapse
Affiliation(s)
- Wen-Wei Lin
- Department of Laboratory Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Laboratory Medicine, Post Baccalaureat Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-An Cheng
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan
| | - Chia-Ching Li
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan
| | - Kai-Wen Ho
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Huei-Jen Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - I-J U Chen
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan
| | - Bo-Cheng Huang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Hui-Ju Liu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yun-Chi Lu
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan
| | - Chiu-Min Cheng
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Ming-Yii Huang
- Department of Radiation Oncology, Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hung-Wen Lai
- Endoscopic and Oncoplastic Breast Surgery Center, Comprehensive Breast Cancer Center, Changhua Christian Hospital, 135 Nanxiao Street, Changhua, 500, Taiwan. .,Division of General Surgery, Changhua Christian Hospital, Changhua, Taiwan. .,Comprehensive Breast Cancer Center, Changhua Christian Hospital, Changhua, Taiwan. .,Minimal Invasive Surgery Research Center, Changhua Christian Hospital, Changhua, Taiwan.
| | - Tian-Lu Cheng
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan. .,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
3
|
Ho KW, Chen IJU, Cheng YA, Liao TY, Liu ES, Chen HJ, Lu YC, Su YC, Roffler SR, Huang BC, Liu HJ, Huang MY, Chen CY, Cheng TL. Double attack strategy for leukemia using a pre-targeting bispecific antibody (CD20 Ab-mPEG scFv) and actively attracting PEGylated liposomal doxorubicin to enhance anti-tumor activity. J Nanobiotechnology 2021; 19:16. [PMID: 33422061 PMCID: PMC7796588 DOI: 10.1186/s12951-020-00752-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Tumor-targeted nanoparticles hold great promise as new tools for therapy of liquid cancers. Furthermore, the therapeutic efficacy of nanoparticles can be improved by enhancing the cancer cellular internalization. METHODS In this study, we developed a humanized bispecific antibody (BsAbs: CD20 Ab-mPEG scFv) which retains the clinical anti-CD20 whole antibody (Ofatumumab) and is fused with an anti-mPEG single chain antibody (scFv) that can target the systemic liquid tumor cells. This combination achieves the therapeutic function and simultaneously "grabs" Lipo-Dox® (PEGylated liposomal doxorubicin, PLD) to enhance the cellular internalization and anticancer activity of PLD. RESULTS We successfully constructed the CD20 Ab-mPEG scFv and proved that CD20 Ab-mPEG scFv can target CD20-expressing Raji cells and simultaneously grab PEGylated liposomal DiD increasing the internalization ability up to 60% in 24 h. We further showed that the combination of CD20 Ab-mPEG scFv and PLD successfully led to a ninefold increase in tumor cytotoxicity (LC50: 0.38 nM) compared to the CD20 Ab-DNS scFv and PLD (lC50: 3.45 nM) in vitro. Importantly, a combination of CD20 Ab-mPEG scFv and PLD had greater anti-liquid tumor efficacy (P = 0.0005) in Raji-bearing mice than CD20 Ab-DNS scFv and PLD. CONCLUSION Our results indicate that this "double-attack" strategy using CD20 Ab-mPEG scFv and PLD can retain the tumor targeting (first attack) and confer PLD tumor-selectivity (second attack) to enhance PLD internalization and improve therapeutic efficacy in liquid tumors.
Collapse
Affiliation(s)
- Kai-Wen Ho
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No. 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - I-J U Chen
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No. 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-An Cheng
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No. 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tzu-Yi Liao
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - En-Shuo Liu
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No. 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Huei-Jen Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yun-Chi Lu
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No. 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Cheng Su
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Molecular Medicine and Bioengineering, Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan
| | - Steve R Roffler
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Bo-Cheng Huang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Hui-Ju Liu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Yii Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chiao-Yun Chen
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Medical Imaging, Kaohsiung Medical University Hospital, Sanmin Dist, No.100, Tzyou 1st Rd, Kaohsiung, Taiwan.
| | - Tian-Lu Cheng
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No. 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan. .,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan. .,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
4
|
Chen IJ, Cheng YA, Ho KW, Lin WW, Cheng KW, Lu YC, Hsieh YC, Huang CC, Chuang CH, Chen FM, Su YC, Roffler SR, Cheng TL. Bispecific antibody (HER2 × mPEG) enhances anti-cancer effects by precise targeting and accumulation of mPEGylated liposomes. Acta Biomater 2020; 111:386-397. [PMID: 32417267 DOI: 10.1016/j.actbio.2020.04.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/17/2022]
Abstract
Targeted antibodies and methoxy-PEGylated nanocarriers have gradually become a mainstream of cancer therapy. To increase the anti-cancer effects of targeted antibodies combined with mPEGylated liposomes (mPEG-liposomes), we describe a bispecific antibody in which an anti-methoxy-polyethylene glycol scFv (αmPEG scFv) was fused to the C-terminus of an anti-HER2 (αHER2) antibody to generate a HER2 × mPEG BsAb that retained the original efficacy of a targeted antibody while actively attracting mPEG-liposomes to accumulate at tumor sites. HER2 ×mPEG BsAb can simultaneously bind to HER2-high expressing MCF7/HER2 tumor cells and mPEG molecules on mPEG-liposomal doxorubicin (Lipo-Dox). Pre-incubation of HER2 × mPEG BsAb with cells increased the endocytosis of Lipo-DiD and enhanced the cytotoxicity of Lipo-Dox to MCF7/HER2 tumor cells. Furthermore, pre-treatment of HER2 × mPEG BsAb enhanced the tumor accumulation and retention of Lipo-DiR 2.2-fold in HER2-high expressing MCF7/HER2 tumors as compared to HER2-low expressing MCF7/neo1 tumors. Importantly, HER2 × mPEG BsAb plus Lipo-Dox significantly suppressed tumor growth as compared to control BsAb plus Lipo-Dox in MCF7/HER2 tumor-bearing mice. These results indicate that HER2 × mPEG BsAb can enhance tumor accumulation of mPEG-liposomes to improve the therapeutic efficacy of combination treatment. Anti-mPEG scFv can be fused to any kind of targeted antibody to generate BsAbs to actively attract mPEG-drugs and improve anti-cancer efficacy. STATEMENT OF SIGNIFICANCE: Antibody targeted therapy and PEGylated drugs have gradually become the mainstream of cancer therapy. To enhance the anti-cancer effects of targeted antibodies combined with PEGylated drugs is very important. To this aim, we fused an anti-PEG scFv to the C-terminal of HER2 targeted antibodies to generate a HER2×mPEG bispecific antibody (BsAb) to retain the original efficacy of targeted antibody whilst actively attract mPEG-liposomal drugs to accumulate at tumor sites. The present study demonstrates pre-treatment of HER2×mPEG BsAb can enhance tumor accumulation of mPEG-liposomal drugs to improve the therapeutic efficacy of combination treatment. Anti-mPEG scFv can be fused to any kind of targeted antibody to generate BsAbs to actively attract mPEG-drugs and improve anti-cancer efficacy.
Collapse
|
5
|
Cheng YA, Chen IJ, Su YC, Cheng KW, Lu YC, Lin WW, Hsieh YC, Kao CH, Chen FM, Roffler SR, Cheng TL. Enhanced drug internalization and therapeutic efficacy of PEGylated nanoparticles by one-step formulation with anti-mPEG bispecific antibody in intrinsic drug-resistant breast cancer. Biomater Sci 2019; 7:3404-3417. [DOI: 10.1039/c9bm00323a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
One-step formulation of BsAb with PLD is a simple method to enhance tumor specificity, internalization and the anti-cancer activity.
Collapse
|
6
|
Sharma SK, Bagshawe KD. Translating antibody directed enzyme prodrug therapy (ADEPT) and prospects for combination. Expert Opin Biol Ther 2016; 17:1-13. [DOI: 10.1080/14712598.2017.1247802] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Surinder K. Sharma
- Research Department of Oncology, UCL Cancer Institute, University College London, London, UK
| | | |
Collapse
|
7
|
Kao CH, Wang JY, Chuang KH, Chuang CH, Cheng TC, Hsieh YC, Tseng YL, Chen BM, Roffler SR, Cheng TL. One-step mixing with humanized anti-mPEG bispecific antibody enhances tumor accumulation and therapeutic efficacy of mPEGylated nanoparticles. Biomaterials 2014; 35:9930-9940. [DOI: 10.1016/j.biomaterials.2014.08.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 08/20/2014] [Indexed: 12/11/2022]
|
8
|
Chen KC, Wu SY, Leu YL, Prijovich ZM, Chen BM, Wang HE, Cheng TL, Roffler SR. A Humanized Immunoenzyme with Enhanced Activity for Glucuronide Prodrug Activation in the Tumor Microenvironment. Bioconjug Chem 2011; 22:938-48. [DOI: 10.1021/bc1005784] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kai-Chuan Chen
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shih-Yen Wu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Lin Leu
- Chia-Nan College of Pharmacy and Sciences, Tainan Hsien, Taiwan
| | | | - Bing-Mae Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsin-Ell Wang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Tian-Lu Cheng
- School of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Steve R. Roffler
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
9
|
Liu YK, Lin YL, Chen CH, Lin CM, Ma KL, Chou FH, Tsai JS, Lin HY, Chen FR, Cheng TL, Chang CC, Liao KW. A unique and potent protein binding nature of liposome containing polyethylenimine and polyethylene glycol: a nondisplaceable property. Biotechnol Bioeng 2011; 108:1318-27. [PMID: 21192002 DOI: 10.1002/bit.23048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 11/30/2010] [Accepted: 12/20/2010] [Indexed: 01/02/2023]
Abstract
Most of the currently available targeting vectors are produced via the linkage of targeting molecules. However, the coupling process is complicated, and the covalent linkage may attenuate the activity of certain targeting molecules. In this study, we have developed a cationic liposome complexed with polyethylenimine and polyethylene glycol polymers (LPPC) that can capture various proteins without covalent conjugation. Characterizations of prepared LPPC revealed that the maximal-binding capacity was about 170 µg of bovine serum albumin to 40 µg of sphere-shaped LPPC (180 nm). The proteins were essentially located at or near the surface when analyzed by atomic force or transmission electron microscopy. We demonstrate that polyethylenimine was an essential component to bind the proteins. Upon the saturation of captured proteins, a given protein could not be displaced by other additional proteins and still retained its biological activity. Using a variety of functional proteins, we show some typical examples of the utility of incorporated beta-glucuronidase and antibodies onto the LPPC. The beta-glucuronidase can be used for the study of antigen-antibody interactions, whereas in studies with the antibody complex, we used anti-CD3 as an agonist to stimulate the proliferation of peripheral blood mononuclear cells via a receptor-mediated mechanism and anti-VEGFR for cell staining. In conclusion, the prepared LPPC can provide a platform to capture biologically and biochemically functional proteins on its surface for various applications, such as cell signaling, cell profiling, noncovalent enzyme-linked immunoassays, and others not mentioned.
Collapse
Affiliation(s)
- Yen-Ku Liu
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsin-Chu, 30068, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
|
11
|
Tzou SC, Roffler S, Chuang KH, Yeh HP, Kao CH, Su YC, Cheng CM, Tseng WL, Shiea J, Harm IH, Cheng KW, Chen BM, Hwang JJ, Cheng TL, Wang HE. Micro-PET imaging of beta-glucuronidase activity by the hydrophobic conversion of a glucuronide probe. Radiology 2009; 252:754-62. [PMID: 19717754 DOI: 10.1148/radiol.2523082055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To develop a new glucuronide probe for micro-positron emission topography (PET) that can depict beta-glucuronidase (betaG)-expressing tumors in vivo. MATERIALS AND METHODS All animal experiments were preapproved by the Institutional Animal Care and Use Committee. A betaG-specific probe was generated by labeling phenolphthalein glucuronide (PTH-G) with iodine 131 ((131)I) or (124)I. To test the specificity of the probe in vitro, (124)I-PTH-G was added to CT26 and betaG-expressing CT26 (CT26/betaG) cells. Mice bearing CT26 and CT26/betaG tumors (n = 6) were injected with (124)I-PTH-G and subjected to micro-PET imaging. A betaG-specific inhibitor D-saccharic acid 1,4-lactone monohydrate was used in vitro and in vivo to ascertain the specificity of the glucuronide probes. Finally, the biodistributions of the probes were determined in selected organs after injection of (131)I-PTH-G to mice bearing CT26 and CT26/betaG tumors (n = 14). Differences in the radioactivity in CT26 and CT26/betaG tumors were analyzed with the Wilcoxon signed rank test. RESULTS (124)I-PTH-G was selectively converted to (124)I-PTH (phenolphthalein), which accumulated in CT26/betaG cells and tumors in vitro. The micro-PET images demonstrated enhanced activity in CT26/betaG tumors resulting from betaG-mediated conversion and trapping of the radioactive probes. Accumulation of radioactive signals was 3.6-, 3.4-, and 3.3-fold higher in the CT26/betaG tumors than in parental CT26 tumors at 1, 3, and 20 hours, respectively, after injection of the probe (for all the three time points, P < .05). CONCLUSION Hydrophilic-hydrophobic conversion of (124)I-PTH-G probe can aid in imaging of betaG-expressing tumors in vivo.
Collapse
Affiliation(s)
- Shey-Cherng Tzou
- Faculty of Biomedical Science and Environmental Biology, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 807, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Secreted and intracellular proteins including antibodies, cytokines, major histocompatibility complex molecules, antigens, and enzymes can be redirected to and anchored on the surface of mammalian cells to reveal novel functions and properties such as reducing systemic toxicity, altering the in vivo distribution of drugs and extending the range of useful drugs, creating novel, specific signaling receptors and reshaping protein immunogenicity. The present review highlights progress in designing vectors to target and retain chimeric proteins on the surface of mammalian cells. Comparison of chimeric proteins indicates that selection of the proper cytoplasmic domain and introduction of oligiosaccharides near the cell surface can dramatically enhance surface expression, especially for single-chain antibodies. We also describe progress and limitations of employing surface-tethered proteins for preferential activation of prodrugs at cancer cells, imaging gene expression in living animals, performing high-throughput screening, selectively activating immune cells in tumors, producing new adhesion molecules, creating local immune privileged sites, limiting the distribution of soluble factors such as cytokines, and enhancing polypeptide immunogenicity. Surface-anchored chimeric proteins represent a rich source for developing new techniques and creating novel therapeutics.
Collapse
Affiliation(s)
- Tian-Lu Cheng
- Faculty of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | |
Collapse
|
13
|
Hapten-derivatized nanoparticle targeting and imaging of gene expression by multimodality imaging systems. Cancer Gene Ther 2008; 16:83-90. [PMID: 18802451 DOI: 10.1038/cgt.2008.50] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Non-invasive gene monitoring is important for most gene therapy applications to ensure selective gene transfer to specific cells or tissues. We developed a non-invasive imaging system to assess the location and persistence of gene expression by anchoring an anti-dansyl (DNS) single-chain antibody (DNS receptor) on the cell surface to trap DNS-derivatized imaging probes. DNS hapten was covalently attached to cross-linked iron oxide (CLIO) to form a 39+/-0.5 nm DNS-CLIO nanoparticle imaging probe. DNS-CLIO specifically bound to DNS receptors but not to a control single-chain antibody receptor. DNS-CLIO (100 microM Fe) was non-toxic to both B16/DNS (DNS receptor positive) and B16/phOx (control receptor positive) cells. Magnetic resonance (MR) imaging could detect as few as 10% B16/DNS cells in a mixture in vitro. Importantly, DNS-CLIO specifically bound to a B16/DNS tumor, which markedly reduced signal intensity. Similar results were also shown with DNS quantum dots, which specifically targeted CT26/DNS cells but not control CT26/phOx cells both in vitro and in vivo. These results demonstrate that DNS nanoparticles can systemically monitor the expression of DNS receptor in vivo by feasible imaging systems. This targeting strategy may provide a valuable tool to estimate the efficacy and specificity of different gene delivery systems and optimize gene therapy protocols in the clinic.
Collapse
|