1
|
Potts J, Jain A, Amabilino DB, Rawson FJ, Pérez-García L. Molecular Surface Quantification of Multifunctionalized Gold Nanoparticles Using UV-Visible Absorption Spectroscopy Deconvolution. Anal Chem 2023; 95:12998-13002. [PMID: 37621249 PMCID: PMC10483462 DOI: 10.1021/acs.analchem.3c01649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023]
Abstract
Multifunctional gold nanoparticles (AuNPs) are of great interest, owing to their vast potential for use in many areas including sensing, imaging, delivery, and medicine. A key factor in determining the biological activity of multifunctional AuNPs is the quantification of surface conjugated molecules. There has been a lack of accurate methods to determine this for multifunctionalized AuNPs. We address this limitation by using a new method based on the deconvolution and Levenberg-Marquardt algorithm fitting of UV-visible absorption spectrum to calculate the precise concentration and number of cytochrome C (Cyt C) and zinc porphyrin (Zn Porph) bound to each multifunctional AuNP. Dynamic light scattering (DLS) and zeta potential measurements were used to confirm the functionalization of AuNPs with Cyt C and Zn Porph. Transmission electron microscopy (TEM) was used in conjunction with UV-visible absorption spectroscopy and DLS to identify the AuNP size and confirm that no aggregation had taken place after functionalization. Despite the overlapping absorption bands of Cyt C and Zn Porph, this method was able to reveal a precise concentration and number of Cyt C and Zn Porph molecules attached per AuNP. Furthermore, using this method, we were able to identify unconjugated molecules, suggesting the need for further purification of the sample. This guide provides a simple and effective method to quickly quantify molecules bound to AuNPs, giving users valuable information, especially for applications in drug delivery and biosensors.
Collapse
Affiliation(s)
- Jordan
C. Potts
- Division
of Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Akhil Jain
- Bioelectronics
Laboratory, Division of Regenerative Medicine and Cellular Therapies,
School of Pharmacy, University of Nottingham,
Biodiscovery Institute, Nottingham NG7 2RD, U.K.
| | - David B. Amabilino
- Institut
de Ciència de Materials de Barcelona (ICMAB), CSIC, Carrer dels Til·lers, Campus Universitari, 08193 Cerdanyola
del Vallès, Catalunya, Spain
| | - Frankie J. Rawson
- Bioelectronics
Laboratory, Division of Regenerative Medicine and Cellular Therapies,
School of Pharmacy, University of Nottingham,
Biodiscovery Institute, Nottingham NG7 2RD, U.K.
| | - Lluïsa Pérez-García
- Division
of Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
- Departament
de Farmacologia, Toxicologia i Química Terapèutica,
Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
- Institut
de Nanociència i Nanotecnologia UB (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
2
|
Liu X, Domingues NP, Oveisi E, Coll-Satue C, Jansman MMT, Smit B, Hosta-Rigau L. Metal-organic framework-based oxygen carriers with antioxidant activity resulting from the incorporation of gold nanozymes. Biomater Sci 2023; 11:2551-2565. [PMID: 36786283 DOI: 10.1039/d2bm01405j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Blood transfusions are a life-saving procedure since they can preserve the body's oxygen levels in patients suffering from acute trauma, undergoing surgery, receiving chemotherapy or affected by severe blood disorders. Due to the central role of hemoglobin (Hb) in oxygen transport, so-called Hb-based oxygen carriers (HBOCs) are currently being developed for situations where donor blood is not available. In this context, an important challenge that needs to be addressed is the oxidation of Hb into methemoglobin (metHb), which is unable to bind and release oxygen. While several research groups have considered the incorporation of antioxidant enzymes to create HBOCs with minimal metHb conversion, the use of biological enzymes has important limitations related to their high cost, potential immunogenicity or low stability in vivo. Thus, nanomaterials with enzyme-like properties (i.e., nanozymes (NZs)) have emerged as a promising alternative. Amongst the different NZs, gold (Au)-based metallic nanoparticles are widely used for biomedical applications due to their biocompatibility and multi-enzyme mimicking abilities. Thus, in this work, we incorporate Au-based NZs into a type of HBOC previously reported by our group (i.e., Hb-loaded metal-organic framework (MOF)-based nanocarriers (NCs)) and investigate their antioxidant properties. Specifically, we prepare MOF-NCs loaded with Au-based NZs and demonstrate their ability to catalytically deplete over multiple rounds of two prominent reactive oxygen species (ROS) that exacerbate Hb's autoxidation (i.e., hydrogen peroxide and the superoxide radical). Importantly, following loading with Hb, we show how these ROS-scavenging properties translate into a decrease in metHb content. All in all, these results highlight the potential of NZs to create novel HBOCs with antioxidant protection which may find applications as a blood substitute in the future.
Collapse
Affiliation(s)
- Xiaoli Liu
- DTU Health Tech, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kgs. Lyngby, Denmark.
| | - Nency Patricio Domingues
- Laboratory of Molecular Simulation (LSMO), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL)-Valais, CH-1950 Sion, Switzerland
| | - Emad Oveisi
- Interdisciplinary Centre for Electron Microscopy (CIME), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Clara Coll-Satue
- DTU Health Tech, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kgs. Lyngby, Denmark.
| | - Michelle Maria Theresia Jansman
- DTU Health Tech, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kgs. Lyngby, Denmark.
| | - Berend Smit
- Laboratory of Molecular Simulation (LSMO), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL)-Valais, CH-1950 Sion, Switzerland
| | - Leticia Hosta-Rigau
- DTU Health Tech, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
3
|
Nanostrategies for Therapeutic and Diagnostic Targeting of Gastrin-Releasing Peptide Receptor. Int J Mol Sci 2023; 24:ijms24043455. [PMID: 36834867 PMCID: PMC9958678 DOI: 10.3390/ijms24043455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/04/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Advances in nanomedicine bring the attention of researchers to the molecular targets that can play a major role in the development of novel therapeutic and diagnostic modalities for cancer management. The choice of a proper molecular target can decide the efficacy of the treatment and endorse the personalized medicine approach. Gastrin-releasing peptide receptor (GRPR) is a G-protein-coupled membrane receptor, well known to be overexpressed in numerous malignancies including pancreatic, prostate, breast, lung, colon, cervical, and gastrointestinal cancers. Therefore, many research groups express a deep interest in targeting GRPR with their nanoformulations. A broad spectrum of the GRPR ligands has been described in the literature, which allows tuning of the properties of the final formulation, particularly in the field of the ligand affinity to the receptor and internalization possibilities. Hereby, the recent advances in the field of applications of various nanoplatforms that are able to reach the GRPR-expressing cells are reviewed.
Collapse
|
4
|
Dolat Khan, Rahman AU, Kumam P, Watthayu W, Sitthithakerngkiet K, Galal AM. Thermal analysis of different shape nanoparticles on hyperthermia therapy on breast cancer in a porous medium: A fractional model. Heliyon 2022; 8:e10170. [PMID: 36039134 PMCID: PMC9418218 DOI: 10.1016/j.heliyon.2022.e10170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/13/2022] [Accepted: 07/29/2022] [Indexed: 11/30/2022] Open
Abstract
Cancer is clearly a major cause of disease and fatality around the world, yet little is known about how it starts and spreads. In this study, a model in mathematical form of breast cancer guided by a system of (ODE'S) ordinary differential equations is studied in depth to examine the thermal effects of various shape nanoparticles on breast cancer hyperthermia therapy in the existence of a porous media with fractional derivative connection, when utilizing microwave radiative heating. The unsteady state is determined precisely using the Laplace transform approach to crop a more decisive examination of temperature dissemination of blood temperature inside the breast tissues. Durbin's and Zakian's techniques are used to find Laplace inversion. Mild temperature hyperthermia is used in the treatment, which promotes cell death by increasing cell nervousness to radiation therapy and flow of blood in tumor. In the graphical findings, we can witness the distinct behavior of hyperthermia therapy on tumor cells by applying various metabolic heat generation rates across various time intervals to attain the optimal therapeutic temperature point. Particularly, we used graphs to visualize the behavior of different Nanoparticles with different shaped during hypothermia therapy. In comparison to other nanoparticles and shapes, it demonstrates that gold nanoparticles with a platelet shape are the best option for improving heat transmission. Which assess of heat transfer up to 16.412%.
Collapse
Affiliation(s)
- Dolat Khan
- Fixed Point Research Laboratory, Fixed Point Theory and Applications Research Group, Center of Excellence in Theoretical and Computational Science (TaCS-CoE), Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok, 10140, Thailand
- Center of Excellence in Theoretical and Computational Science (TaCS-CoE), Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok, 10140, Thailand
| | - Ata ur Rahman
- Department of Mathematics, City University of Science & Information Technology, Peshawar, KPK, Pakistan
| | - Poom Kumam
- Fixed Point Research Laboratory, Fixed Point Theory and Applications Research Group, Center of Excellence in Theoretical and Computational Science (TaCS-CoE), Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok, 10140, Thailand
- Center of Excellence in Theoretical and Computational Science (TaCS-CoE), Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok, 10140, Thailand
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan
| | - Wiboonsak Watthayu
- Center of Excellence in Theoretical and Computational Science (TaCS-CoE), Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok, 10140, Thailand
| | - Kanokwan Sitthithakerngkiet
- Intelligent and Nonlinear Dynamic Innovations Research Center, Department of Mathematics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok (KMUTNB), 1518, Wongsawang, Bangsue, Bangkok, 10800, Thailand
| | - Ahmed M. Galal
- Department of Mechanical Engineering, College of Engineering in Wadi Alddawasir, Prince Sattam Bin Abdulaziz University, Saudi Arabia
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Mansoura University, P. O. 35516, Mansoura, Egypt
| |
Collapse
|
5
|
Xu X, Liu Y, Yang Y, Wu J, Cao M, Sun L. One-pot synthesis of functional peptide-modified gold nanoparticles for gene delivery. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Dash BS, Lu YJ, Chen HA, Chuang CC, Chen JP. Magnetic and GRPR-targeted reduced graphene oxide/doxorubicin nanocomposite for dual-targeted chemo-photothermal cancer therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112311. [PMID: 34474862 DOI: 10.1016/j.msec.2021.112311] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/17/2021] [Accepted: 07/04/2021] [Indexed: 02/06/2023]
Abstract
Herein, we design a rGO-based magnetic nanocomposite by decorating rGO with citrate-coated magnetic nanoparticles (CMNP). The magnetic rGO (mrGO) was modified by phospholipid-polyethylene glycol to prepare PEGylated mrGO, for conjugating with gastrin-releasing peptide receptor (GRPR)-binding peptide (mrGOG). The anticancer drug doxorubicin (DOX) was bound to mrGO (mrGOG) by π-π stacking for drug delivery triggered by the low pH value in the endosome. The mrGOG showed enhanced photothermal effect under NIR irradiation, endorsing its role for dual targeted DOX delivery. With efficient DOX release in the endosomal environment and heat generation from light absorption in the NIR range, mrGOG/DOX could be used for combination chemo-photothermal therapy after intracellular uptake by cancer cells. We characterized the physico-chemical as well as biological properties of the synthesized nanocomposites. The mrGOG is stable in biological buffer solution, showing high biocompatibility and minimum hemolytic properties. Using U87 glioblastoma cells, we confirmed the magnetic drug targeting effect in vitro for selective cancer cell killing. The peptide ligand-mediated targeted delivery increases the efficiency of intracellular uptake of both nanocomposite and DOX up to ~3 times due to the over-expressed GRPR on U87 surface, leading to higher cytotoxicity. The increased cytotoxicity using mrGOG over mrGO was shown from a decreased IC50 value (0.70 to 0.48 μg/mL) and an increased cell apoptosis rate (19.8% to 47.1%). The IC50 and apoptosis rate changed further to 0.19 μg/mL and 76.8% in combination with NIR laser irradiation, with the photothermal effect supported from upregulation of heat shock protein HSP70 expression. Using U87 tumor xenograft model created in nude mice, we demonstrated that magnetic guidance after intravenous delivery of mrGOG/DOX could significantly reduce tumor size and prolong animal survival over free DOX and non-magnetic guided groups. Augmented with NIR laser treatment for 5 min, the anti-cancer efficacy significantly improves with elevated cell apoptosis and reduced cell proliferation. Together with safety profiles from hematological as well as major organ histological analysis of treated animals, the mrGOG nanocomposite is an effective nanomaterial for combination chemo-photothermal cancer therapy.
Collapse
Affiliation(s)
- Banendu Sunder Dash
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Yu-Jen Lu
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan; College of Medicine, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Huai-An Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Chi-Cheng Chuang
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan; College of Medicine, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan; Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan; Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan.
| |
Collapse
|
7
|
Shahdeo D, Chandra AB, Gandhi S. Urokinase Plasminogen Activator Receptor-Mediated Targeting of a Stable Nanocomplex Coupled with Specific Peptides for Imaging of Cancer. Anal Chem 2021; 93:11868-11877. [PMID: 34410104 DOI: 10.1021/acs.analchem.1c02697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Targeting peptides are a promising tool for early diagnosis and therapy of cancer. Overexpression of urokinase plasminogen activator receptor (uPAR) leads to the progression of tumors including prostate, colorectal, ovarian, and breast cancers. To improve the diagnosis and imaging efficiency, herein we report a stable nanocomplex comprising methoxy-PEG-hydrazide (mPEG-H-M)-modified gold nanoparticles (AuNPs) conjugated to uPAR (urokinase plasminogen activator receptor)-targeting peptides GFD (growth factor domain-G) and SMB (somatomedian B-S) for efficient imaging of uPAR-overexpressing cancer cells. Fluorescently labeled targeting peptides were covalently linked to mPEG-H coated AuNPs, characterized, and analyzed by UV-vis spectroscopy, diffraction light scattering (DLS), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and fluorescence spectroscopy. In vitro evaluation was assessed with a fluorescence-activated cell sorter (FACS), cell adhesion, and fluorescence microscopy. The peptide-functionalized nanocomplex showed a higher uptake of AuNPs@MGS in comparison with AuNPs@G or AuNPs@S alone in uPAR-overexpressing cells and exhibits no toxicity when analyzed with MTT assay. Our results demonstrated that the developed nanocomplex can be used as a platform for imaging and diagnosis of metastatic tumors.
Collapse
Affiliation(s)
- Deepshikha Shahdeo
- DBT-National Institute of Animal Biotechnology, Hyderabad-500032, Telangana, India
| | - Akshay B Chandra
- DBT-National Institute of Animal Biotechnology, Hyderabad-500032, Telangana, India
| | - Sonu Gandhi
- DBT-National Institute of Animal Biotechnology, Hyderabad-500032, Telangana, India.,Amity Institute of Biotechnology, Amity University, Noida-201301, Uttar Pradesh, India
| |
Collapse
|
8
|
Fuentes-Baile M, Pérez-Valenciano E, García-Morales P, de Juan Romero C, Bello-Gil D, Barberá VM, Rodríguez-Lescure Á, Sanz JM, Alenda C, Saceda M. CLytA-DAAO Chimeric Enzyme Bound to Magnetic Nanoparticles. A New Therapeutical Approach for Cancer Patients? Int J Mol Sci 2021; 22:1477. [PMID: 33540681 PMCID: PMC7867295 DOI: 10.3390/ijms22031477] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 02/01/2023] Open
Abstract
D-amino acid oxidase (DAAO) is an enzyme that catalyzes the oxidation of D-amino acids generating H2O2. The enzymatic chimera formed by DAAO bound to the choline-binding domain of N-acetylmuramoyl-L-alanine amidase (CLytA) induces cytotoxicity in several pancreatic and colorectal carcinoma and glioblastoma cell models. In the current work, we determined whether the effect of CLytA-DAAO immobilized in magnetic nanoparticles, gold nanoparticles, and alginate capsules offered some advantages as compared to the free CLytA-DAAO. Results indicate that the immobilization of CLytA-DAAO in magnetic nanoparticles increases the stability of the enzyme, extending its time of action. Besides, we compared the effect induced by CLytA-DAAO with the direct addition of hydrogen peroxide, demonstrating that the progressive generation of reactive oxygen species by CLytA-DAAO is more effective in inducing cytotoxicity than the direct addition of H2O2. Furthermore, a pilot study has been initiated in biopsies obtained from pancreatic and colorectal carcinoma and glioblastoma patients to evaluate the expression of the main genes involved in resistance to CLytA-DAAO cytotoxicity. Based on our findings, we propose that CLytA-DAAO immobilized in magnetic nanoparticles could be effective in a high percentage of patients and, therefore, be used as an anti-cancer therapy for pancreatic and colorectal carcinoma and glioblastoma.
Collapse
Affiliation(s)
- María Fuentes-Baile
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l’Almazara 11, Elche, 03203 Alicante, Spain; (M.F.-B.); (C.d.J.R.); (V.M.B.)
| | - Elizabeth Pérez-Valenciano
- Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda, Universidad s/n, Ed. Torregaitán, Elche, 03202 Alicante, Spain; (E.P.-V.); (P.G.-M.); (D.B.-G.)
| | - Pilar García-Morales
- Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda, Universidad s/n, Ed. Torregaitán, Elche, 03202 Alicante, Spain; (E.P.-V.); (P.G.-M.); (D.B.-G.)
| | - Camino de Juan Romero
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l’Almazara 11, Elche, 03203 Alicante, Spain; (M.F.-B.); (C.d.J.R.); (V.M.B.)
- Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda, Universidad s/n, Ed. Torregaitán, Elche, 03202 Alicante, Spain; (E.P.-V.); (P.G.-M.); (D.B.-G.)
| | - Daniel Bello-Gil
- Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda, Universidad s/n, Ed. Torregaitán, Elche, 03202 Alicante, Spain; (E.P.-V.); (P.G.-M.); (D.B.-G.)
| | - Víctor M. Barberá
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l’Almazara 11, Elche, 03203 Alicante, Spain; (M.F.-B.); (C.d.J.R.); (V.M.B.)
- Unidad de Genética Molecular, Hospital General Universitario de Elche, Camí de l’Almazara 11, Elche, 03203 Alicante, Spain
| | | | - Jesús M. Sanz
- Centro de Investigaciones Biológicas Margarita Salas (Consejo Superior de Investigaciones Científicas) and Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), C/Ramiro de Maeztu, 9, 28040 Madrid, Spain;
| | - Cristina Alenda
- Unidad de Investigación, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Hospital General Universitario de Alicante, C/Maestro Alonso, 10, 03010 Alicante, Spain;
| | - Miguel Saceda
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l’Almazara 11, Elche, 03203 Alicante, Spain; (M.F.-B.); (C.d.J.R.); (V.M.B.)
- Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda, Universidad s/n, Ed. Torregaitán, Elche, 03202 Alicante, Spain; (E.P.-V.); (P.G.-M.); (D.B.-G.)
| |
Collapse
|
9
|
Abstract
Currently, peptide-nanoparticle (NP) conjugates have been demonstrated to be efficient and powerful tools for the treatment and the diagnosis of various diseases as well as in the bioimaging application. Several bioconjugation strategies have been adopted to formulate the peptide-NP conjugates. In this review, we discuss the exciting applications of peptide-gold (Au) NP conjugates in the area of drug delivery, targeting, cancer therapy, brain diseases, vaccines, immune modulation, biosensor, colorimetric detection of heavy metals, and bio-labeling in vitro and in vivo models. Within this framework, various approaches such as radiotherapy, photothermal therapy, photodynamic therapy and chemo-photothermal therapy have been demonstrated for the treatment of several diseases. Moreover, we highlight how the morphology, size, density of peptide and the protein corona influence the biological activity, biodistribution and biological fate of peptide-AuNP conjugates. In the end, we discuss the future outlook and the challenges being faced in the clinical translation of the peptide-AuNP conjugates. Overall, this review emphasizes that the peptide-AuNP conjugates might be used as potential theranostic agents for the treatment of life-threatening diseases in an economical fashion in the future.
Collapse
Affiliation(s)
- Akhilesh Rai
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Lino Ferreira
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
10
|
Kim MS, Ma S, Chelariu-Raicu A, Leuschner C, Alila HW, Lee S, Coleman RL, Sood AK. Enhanced Immunotherapy with LHRH-R Targeted Lytic Peptide in Ovarian Cancer. Mol Cancer Ther 2020; 19:2396-2406. [PMID: 32943548 DOI: 10.1158/1535-7163.mct-20-0030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/08/2020] [Accepted: 08/26/2020] [Indexed: 11/16/2022]
Abstract
Here, we examined the role of EP-100 [luteinizing hormone-releasing hormone (LHRH) ligand joined to a lytic peptide], improving the efficacy of immune checkpoint blockade. LHRH-R-positive murine ovarian cancer cells (ID8, IG10, IF5, and 2C12) were sensitive to EP-100 and were specifically killed at low micromolar levels through LHRH-R. EP-100 increased PD-L1 levels on murine ovarian cancer cells. In vivo syngeneic mouse models (ID8 and IG10) demonstrated that single-agent EP-100 reduced tumor volume, tumor weight, and ascites volume. The greatest reductions in tumor and ascites volume were observed with the combination of EP-100 with an anti-PD-L1 antibody. Immune profiling analysis showed that the population of CD8+ T cells, natural killer cells, dendritic cells, and macrophages were significantly increased in tumor and ascitic fluid samples treated with anti-PD-L1, EP-100, and the combination. However, monocytic myeloid suppressor cells, B cells, and regulatory T cells were decreased in tumors treated with anti-PD-L1, EP-100, or the combination. In vitro cytokine arrays revealed that EP-100 induced IL1α, IL33, CCL20, VEGF, and Low-density lipoprotein receptor (LDLR) secretion. Of these, we validated increasing IL33 levels following EP-100 treatment in vitro and in vivo; we determined the specific biological role of CD8+ T-cell activation with IL33 gene silencing using siRNA and Cas9-CRISPR approaches. In addition, we found that CD8+ T cells expressed very low level of LHRH-R and were not affected by EP-100. Taken together, EP-100 treatment had a substantial antitumor efficacy, particularly in combination with an anti-PD-L1 antibody. These results warrant further clinical development of this combination.
Collapse
Affiliation(s)
- Mark Seungwook Kim
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Shaolin Ma
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Reproductive Medicine Research Center, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Anca Chelariu-Raicu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Obstetrics and Gynecology, University of Hospital, LMU Munich, Germany
| | | | | | - Sanghoon Lee
- Department of System Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert L Coleman
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
11
|
Liu X, Zhang Q, Knoll W, Liedberg B, Wang Y. Rational Design of Functional Peptide-Gold Hybrid Nanomaterials for Molecular Interactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000866. [PMID: 32743897 DOI: 10.1002/adma.202000866] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/21/2020] [Indexed: 05/12/2023]
Abstract
Gold nanoparticles (AuNPs) have been extensively used for decades in biosensing-related development due to outstanding optical properties. Peptides, as newly realized functional biomolecules, are promising candidates of replacing antibodies, receptors, and substrates for specific molecular interactions. Both peptides and AuNPs are robust and easily synthesized at relatively low cost. Hence, peptide-AuNP-based bio-nano-technological approaches have drawn increasing interest, especially in the field of molecular targeting, cell imaging, drug delivery, and therapy. Many excellent works in these areas have been reported: demonstrating novel ideas, exploring new targets, and facilitating advanced diagnostic and therapeutic technologies. Importantly, some of them also have been employed to address real practical problems, especially in remote and less privileged areas. This contribution focuses on the application of peptide-gold hybrid nanomaterials for various molecular interactions, especially in biosensing/diagnostics and cell targeting/imaging, as well as for the development of highly active antimicrobial/antifouling coating strategies. Rationally designed peptide-gold nanomaterials with functional properties are discussed along with future challenges and opportunities.
Collapse
Affiliation(s)
- Xiaohu Liu
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Xinsan Road 16, Wenzhou, 325001, China
| | - Qingwen Zhang
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Xinsan Road 16, Wenzhou, 325001, China
| | - Wolfgang Knoll
- Austrian Institute of Technology, Giefinggasse 4, Vienna, 1210, Austria
| | - Bo Liedberg
- Centre for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yi Wang
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Xinsan Road 16, Wenzhou, 325001, China
| |
Collapse
|
12
|
Silva F, Paulo A, Pallier A, Même S, Tóth É, Gano L, Marques F, Geraldes CF, Castro MMC, Cardoso AM, Jurado AS, López-Larrubia P, Lacerda S, Cabral Campello MP. Dual Imaging Gold Nanoplatforms for Targeted Radiotheranostics. MATERIALS 2020; 13:ma13030513. [PMID: 31978954 PMCID: PMC7040626 DOI: 10.3390/ma13030513] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/08/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023]
Abstract
Gold nanoparticles (AuNPs) are interesting for the design of new cancer theranostic tools, mainly due to their biocompatibility, easy molecular vectorization, and good biological half-life. Herein, we report a gold nanoparticle platform as a bimodal imaging probe, capable of coordinating Gd3+ for Magnetic Resonance Imaging (MRI) and 67Ga3+ for Single Photon Emission Computed Tomography (SPECT) imaging. Our AuNPs carry a bombesin analogue with affinity towards the gastrin releasing peptide receptor (GRPr), overexpressed in a variety of human cancer cells, namely PC3 prostate cancer cells. The potential of these multimodal imaging nanoconstructs was thoroughly investigated by the assessment of their magnetic properties, in vitro cellular uptake, biodistribution, and radiosensitisation assays. The relaxometric properties predict a potential T1- and T2- MRI application. The promising in vitro cellular uptake of 67Ga/Gd-based bombesin containing particles was confirmed through biodistribution studies in tumor bearing mice, indicating their integrity and ability to target the GRPr. Radiosensitization studies revealed the therapeutic potential of the nanoparticles. Moreover, the DOTA chelating unit moiety versatility gives a high theranostic potential through the coordination of other therapeutically interesting radiometals. Altogether, our nanoparticles are interesting nanomaterial for theranostic application and as bimodal T1- and T2- MRI / SPECT imaging probes.
Collapse
Affiliation(s)
- Francisco Silva
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (F.S.); (A.P.); (L.G.); (F.M.)
- Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - António Paulo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (F.S.); (A.P.); (L.G.); (F.M.)
- Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - Agnès Pallier
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Université d’Orléans, Rue Charles Sadron, 45071 Orléans CEDEX 2, France; (A.P.); (S.M.)
| | - Sandra Même
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Université d’Orléans, Rue Charles Sadron, 45071 Orléans CEDEX 2, France; (A.P.); (S.M.)
| | - Éva Tóth
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Université d’Orléans, Rue Charles Sadron, 45071 Orléans CEDEX 2, France; (A.P.); (S.M.)
| | - Lurdes Gano
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (F.S.); (A.P.); (L.G.); (F.M.)
- Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (F.S.); (A.P.); (L.G.); (F.M.)
- Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - Carlos F.G.C. Geraldes
- Department of Life Sciences, Faculty of Science and TechnologyUniversity of Coimbra, Calçada Martim de Freitas, 3000-393 Coimbra, Portugal (A.S.J.)
- Coimbra Chemistry Center, University of Coimbra, 3004-535 Coimbra, Portugal
- CIBIT/ICNAS Instituto de Ciências Nucleares Aplicadas à Saúde. Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - M. Margarida C.A. Castro
- Department of Life Sciences, Faculty of Science and TechnologyUniversity of Coimbra, Calçada Martim de Freitas, 3000-393 Coimbra, Portugal (A.S.J.)
- Coimbra Chemistry Center, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Ana M. Cardoso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal;
- Institute for Interdisciplinary Research of the University of Coimbra, 3030-789 Coimbra, Portugal
| | - Amália S. Jurado
- Department of Life Sciences, Faculty of Science and TechnologyUniversity of Coimbra, Calçada Martim de Freitas, 3000-393 Coimbra, Portugal (A.S.J.)
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal;
| | - Pilar López-Larrubia
- Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC/UAM, c/ Arturo Duperier 4, 28029 Madrid, Spain;
| | - Sara Lacerda
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Université d’Orléans, Rue Charles Sadron, 45071 Orléans CEDEX 2, France; (A.P.); (S.M.)
- Correspondence: (M.P.C.C.); (S.L.)
| | - Maria Paula Cabral Campello
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (F.S.); (A.P.); (L.G.); (F.M.)
- Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
- Correspondence: (M.P.C.C.); (S.L.)
| |
Collapse
|
13
|
Retout M, Brunetti E, Valkenier H, Bruylants G. Limits of thiol chemistry revealed by quantitative analysis of mixed layers of thiolated-PEG ligands grafted onto gold nanoparticles. J Colloid Interface Sci 2019; 557:807-815. [DOI: 10.1016/j.jcis.2019.09.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/20/2022]
|
14
|
Pooja D, Gunukula A, Gupta N, Adams DJ, Kulhari H. Bombesin receptors as potential targets for anticancer drug delivery and imaging. Int J Biochem Cell Biol 2019; 114:105567. [DOI: 10.1016/j.biocel.2019.105567] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/02/2019] [Accepted: 07/05/2019] [Indexed: 12/24/2022]
|
15
|
Dağlıoğlu Y, Özkan Yılmaz H, Yılmaz O. Memeli Tümör ve Normal Hücre Hatlarında Nanopartikül Uygulamaları. ARŞIV KAYNAK TARAMA DERGISI 2018. [DOI: 10.17827/aktd.346216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Ojea-Jiménez I, Capomaccio R, Osório I, Mehn D, Ceccone G, Hussain R, Siligardi G, Colpo P, Rossi F, Gilliland D, Calzolai L. Rational design of multi-functional gold nanoparticles with controlled biomolecule adsorption: a multi-method approach for in-depth characterization. NANOSCALE 2018; 10:10173-10181. [PMID: 29786727 DOI: 10.1039/c8nr00973b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Multi-functionalized nanoparticles are of great interest in biotechnology and biomedicine, especially for diagnostic and therapeutic purposes. However, at the moment the characterization of complex, multi-functional nanoparticles is still challenging and this hampers the development of advanced nanomaterials for biological applications. In this work, we have designed a model system consisting of gold nanoparticles functionalized with two differentially-terminated poly(ethylene oxide) ligands, providing both "stealth" properties and protein-binding capabilities to the nanoparticles. We use a combination of techniques (Centrifugal Liquid Sedimentation, Dynamic Light Scattering, Flow Field Flow Fractionation, Transmission Electron Microscopy, and Circular Dichroism) to: (i) monitor and quantify the ratios of ligand molecules per nanoparticle; (ii) determine the effect of coating density on non-specific protein adsorption; (iii) to assess the number and structure of the covalently-bound proteins. This article aims at comparing the complementary outcomes from typical and orthogonal techniques used in nanoparticle characterization by employing a versatile nanoparticle-ligands-biomolecule model system.
Collapse
Affiliation(s)
- Isaac Ojea-Jiménez
- European Commission, DG-Joint Research Centre, Via E. Fermi 2749, 21027 Ispra, VA, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ruff J, Hassan N, Morales-Zavala F, Steitz J, Araya E, Kogan MJ, Simon U. CLPFFD-PEG functionalized NIR-absorbing hollow gold nanospheres and gold nanorods inhibit β-amyloid aggregation. J Mater Chem B 2018; 6:2432-2443. [PMID: 32254460 DOI: 10.1039/c8tb00655e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Gold nanoparticles with specific optical properties in combination with the CLPFFD peptide that exhibits selectivity for β-amyloid (Aβ) aggregates are promising photothermal absorbers for application in Alzheimer's disease therapy. We report on hollow gold nanospheres (HAuNS) and gold nanorods (AuNR), which exhibit strong plasmonic near infrared (NIR) absorbance in the optical window of biological tissue and which are functionalized with CLPFFD in two different ways. Therefore the peptide was either directly bound to the particle surface or indirectly to a particle-protecting polyethylene glycol (PEG) ligand shell, thereby reducing the CLPFFD density on the surfaces of both types of particles. Fully PEGylated particles were used for comparison. The effects on cell viability and the fundamental suitability of the HAuNS and AuNR conjugates as photothermal absorbers to inhibit Aβ-fibrillation are analysed in vitro. The positive influence of the use of PEG ligands on the reduced cytotoxicity of the conjugates and on the Aβ-disaggregation is discussed.
Collapse
Affiliation(s)
- J Ruff
- Institute of Inorganic Chemistry, RWTH Aachen University, Aachen, Germany.
| | | | | | | | | | | | | |
Collapse
|
18
|
Zong J, Cobb SL, Cameron NR. Peptide-functionalized gold nanoparticles: versatile biomaterials for diagnostic and therapeutic applications. Biomater Sci 2018; 5:872-886. [PMID: 28304023 DOI: 10.1039/c7bm00006e] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Colloidal gold solutions have been used for centuries in a wide variety of applications including staining glass and in the colouring of ceramics. More recently, gold nanoparticles (GNPs) have been studied extensively due to their interesting size-dependent electronic and optical properties. GNPs can be functionalized easily with biomolecules that contain thiols, amines, or even phosphine moieties. For example, the reaction of thiol-containing peptides with GNPs has been used extensively to prepare novel hybrid materials for biomedical applications. A range of different types of peptides can be used to access biomaterials that are designed to perform a specific role such as cancer cell targeting. In addition, specific peptide sequences that are responsive to external stimuli (e.g. temperature or pH) can be used to stabilise/destabilise the aggregation of colloidal GNPs. Such systems have exciting potential applications in the field of colorimetric sensing (including bio-sensing) and in targeted drug delivery platforms. In this review, we will give an overview of the current methods used for preparing peptide functionalized GNPs, and we will discuss their key properties outlining the various applications of this class of biomaterial. In particular, the potential applications of peptide functionalized GNPs in areas of sensing and targeted drug delivery will be discussed.
Collapse
Affiliation(s)
- Jingyi Zong
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK
| | | | | |
Collapse
|
19
|
Simpson EJ, Gobbo P, Bononi FC, Murrell E, Workentin MS, Luyt LG. Bombesin-functionalized water-soluble gold nanoparticles for targeting prostate cancer. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/jin2.33] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Emily J. Simpson
- Western University Chemistry; 1151 Richmond Street London Ontario N6A 5B7 Canada
| | - Pierangelo Gobbo
- Western University Chemistry; 1151 Richmond Street London Ontario N6A 5B7 Canada
| | - Fernanda C. Bononi
- Western University Chemistry; 1151 Richmond Street London Ontario N6A 5B7 Canada
| | - Emily Murrell
- Western University Chemistry; 1151 Richmond Street London Ontario N6A 5B7 Canada
| | - Mark S. Workentin
- Western University Chemistry; 1151 Richmond Street London Ontario N6A 5B7 Canada
| | - Leonard G. Luyt
- Western University Chemistry; 1151 Richmond Street London Ontario N6A 5B7 Canada
- London Regional Cancer Program; Western University Oncology; 790 Commissioners Rd. E London Ontario N6A 4L6 Canada
| |
Collapse
|
20
|
Da Silva CG, Peters GJ, Ossendorp F, Cruz LJ. The potential of multi-compound nanoparticles to bypass drug resistance in cancer. Cancer Chemother Pharmacol 2017; 80:881-894. [PMID: 28887666 PMCID: PMC5676819 DOI: 10.1007/s00280-017-3427-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/29/2017] [Indexed: 01/28/2023]
Abstract
PURPOSE The therapeutic efficacy of conventional chemotherapy against several solid tumors is generally limited and this is often due to the development of resistance or poor delivery of the drugs to the tumor. Mechanisms of resistance may vary between cancer types. However, with current development of genetic analyses, imaging, and novel delivery systems, we may be able to characterize and bypass resistance, e.g., by inhibition of the right target at the tumor site. Therefore, combined drug treatments, where one drug will revert or obstruct the development of resistance and the other will concurrently kill the cancer cell, are rational solutions. However, drug exposure of one drug will defer greatly from the other due to their physicochemical properties. In this sense, multi-compound nanoparticles are an excellent modality to equalize drug exposure, i.e., one common physicochemical profile. In this review, we will discuss novel approaches that employ nanoparticle technology that addresses specific mechanisms of resistance in cancer. METHODS The PubMed literature was consulted and reviewed. RESULTS Nanoparticle technology is emerging as a dexterous solution that may address several forms of resistance in cancer. For instance, we discuss advances that address mechanisms of resistance with multi-compound nanoparticles which co-deliver chemotherapeutics with an anti-resistance agent. Promising anti-resistance agents are (1) targeted in vivo gene silencing methods aimed to disrupt key resistance gene expression or (2) protein kinase inhibitors to disrupt key resistance pathways or (3) efflux pumps inhibitors to limit drug cellular efflux.
Collapse
Affiliation(s)
- C G Da Silva
- Translational Nanobiomaterials and Imaging, Department of Radiology, Bldg.1, C2-187h, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Godefridus J Peters
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Ferry Ossendorp
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, Leiden, The Netherlands
| | - Luis J Cruz
- Translational Nanobiomaterials and Imaging, Department of Radiology, Bldg.1, C2-187h, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
21
|
Dykman LA, Khlebtsov NG. Biomedical Applications of Multifunctional Gold-Based Nanocomposites. BIOCHEMISTRY (MOSCOW) 2017; 81:1771-1789. [PMID: 28260496 DOI: 10.1134/s0006297916130125] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Active application of gold nanoparticles for various diagnostic and therapeutic purposes started in recent decades due to the emergence of new data on their unique optical and physicochemical properties. In addition to colloidal gold conjugates, growth in the number of publications devoted to the synthesis and application of multifunctional nanocomposites has occurred in recent years. This review considers the application in biomedicine of multifunctional nanoparticles that can be produced in three different ways. The first method involves design of composite nanostructures with various components intended for either diagnostic or therapeutic functions. The second approach uses new bioconjugation techniques that allow functionalization of gold nanoparticles with various molecules, thus combining diagnostic and therapeutic functions in one medical procedure. Finally, the third method for production of multifunctional nanoparticles combines the first two approaches, in which a composite nanoparticle is additionally functionalized by molecules having different properties.
Collapse
Affiliation(s)
- L A Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, 410049, Russia
| | | |
Collapse
|
22
|
Kim SR, Kim EH. Gold nanoparticles as dose-enhancement agent for kilovoltage X-ray therapy of melanoma. Int J Radiat Biol 2017; 93:517-526. [PMID: 28044470 DOI: 10.1080/09553002.2017.1276309] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Melanoma is mainly treated by surgery and rarely with radiation because of the high radioresistance of this tumor. Nevertheless, radiotherapy is the preferred treatment modality for unresectable lesions and avoiding cosmetic disfigurement caused by surgical excision. This study investigated the therapeutic advantage of gold nanoparticles (AuNPs) for kilovoltage X-ray treatment of melanoma. MATERIALS AND METHODS Commercial AuNPs were evaluated for cytotoxicity and cellular internalization. The sensitivity of human skin melanoma cells to 150 and 450 kVp X-ray exposure was assessed in terms of clonogenicity with or without spherical AuNP treatment. RESULTS AuNP treatment elicited dose enhancement effect on melanoma cells exposed to kilovoltage X-rays. Treatment with 320 μM 50 nm AuNPs before exposure to 150 kVp X-rays at 2 Gy resulted in clonogenic cell death equivalent to that caused by 4.3 Gy X-rays without AuNP treatment. CONCLUSION AuNPs of 50 nm in size can regulate melanoma cells in kilovoltage X-ray treatment by functioning as dose-enhancement agent and thus improving radioresponse of the cells. Melanomas of stages T1-T3 gain therapeutic benefits from 150 kVp X-ray treatment.
Collapse
Affiliation(s)
- So-Ra Kim
- a Radiation Bioengineering Laboratory, Department of Nuclear Engineering , Seoul National University , Gwanak-gu, Seoul , Republic of Korea
| | - Eun-Hee Kim
- a Radiation Bioengineering Laboratory, Department of Nuclear Engineering , Seoul National University , Gwanak-gu, Seoul , Republic of Korea
| |
Collapse
|
23
|
Mion G, Mari C, Da Ros T, Rubbiani R, Gasser G, Gianferrara T. Towards the Synthesis of New Tumor Targeting Photosensitizers for Photodynamic Therapy and Imaging Applications. ChemistrySelect 2017. [DOI: 10.1002/slct.201601960] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Giuliana Mion
- Department of Chemical and Pharmaceutical Sciences; P.le Europa 1 34127 Trieste Italy
| | - Cristina Mari
- Department of Chemistry; University of Zurich; Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| | - Tatiana Da Ros
- Department of Chemical and Pharmaceutical Sciences; P.le Europa 1 34127 Trieste Italy
| | - Riccardo Rubbiani
- Department of Chemistry; University of Zurich; Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| | - Gilles Gasser
- Chimie ParisTech, PSL Research University; Laboratory for Inorganic Chemical Biology; F-75005 Paris France
| | - Teresa Gianferrara
- Department of Chemical and Pharmaceutical Sciences; P.le Europa 1 34127 Trieste Italy
| |
Collapse
|
24
|
Hamzehalipour Almaki J, Nasiri R, Idris A, Nasiri M, Abdul Majid FA, Losic D. Trastuzumab-decorated nanoparticles for in vitro and in vivo tumor-targeting hyperthermia of HER2+ breast cancer. J Mater Chem B 2017; 5:7369-7383. [DOI: 10.1039/c7tb01305a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In this study, a magnetic core–shell modified tumor-targeting nanocarrier (MNPs-PEG–TRA) was engineered and demonstrated for the efficientin vitroandin vivohyperthermia treatment of breast cancer.
Collapse
Affiliation(s)
- Javad Hamzehalipour Almaki
- Department of Bioprocess Engineering
- Faculty of Chemical Engineering c/o Institute of Bioproduct Development
- Universiti Teknologi Malaysia
- Johor Bahru
- Malaysia
| | - Rozita Nasiri
- Department of Bioprocess Engineering
- Faculty of Chemical Engineering c/o Institute of Bioproduct Development
- Universiti Teknologi Malaysia
- Johor Bahru
- Malaysia
| | - Ani Idris
- Department of Bioprocess Engineering
- Faculty of Chemical Engineering c/o Institute of Bioproduct Development
- Universiti Teknologi Malaysia
- Johor Bahru
- Malaysia
| | - Mahtab Nasiri
- Advanced Materials Research Centre
- Department of Materials Engineering
- Islamic Azad University
- Najafabad
- Iran
| | | | - Dusan Losic
- School of Chemical Engineering
- The University of Adelaide
- Adelaide
- Australia
| |
Collapse
|
25
|
Ge Y, Li Y, Zu B, Zhou C, Dou X. AM-DMC-AMPS Multi-Functionalized Magnetic Nanoparticles for Efficient Purification of Complex Multiphase Water System. NANOSCALE RESEARCH LETTERS 2016; 11:217. [PMID: 27102906 PMCID: PMC4840134 DOI: 10.1186/s11671-016-1434-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/13/2016] [Indexed: 05/24/2023]
Abstract
Complex multiphase waste system purification, as one of the major challenges in many industrial fields, urgently needs an efficient one-step purification method to remove several pollutants simultaneously and efficiently. Multi-functionalized magnetic nanoparticles, Fe3O4@SiO2-MPS-AM-DMC-AMPS, were facilely prepared via a one-pot in situ polymerization of three different functional monomers, AM, DMC, and AMPS, on a Fe3O4@SiO2-MPS core-shell structure. The multi-functionalized magnetic nanoparticles (MNPs) are proven to be a highly effective purification agent for oilfield wastewater, an ideal example of industrial complex multiphase waste system containing cations, anions, and organic pollutants. Excellent overall removal efficiencies for both cations, including K(+), Ca(2+), Na(+), and Mg(2+) of 80.68 %, and anions, namely Cl(-) and SO4 (2-), of 85.18 % along with oil of 97.4 % were shown. The high removal efficiencies are attributed to the effective binding of the functional groups from the selected monomers with cations, anions, and oil emulsions.
Collapse
Affiliation(s)
- Yuru Ge
- Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011 China
| | - Yushu Li
- Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011 China
| | - Baiyi Zu
- Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011 China
| | - Chaoyu Zhou
- Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011 China
| | - Xincun Dou
- Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011 China
| |
Collapse
|
26
|
Patathananone S, Thammasirirak S, Daduang J, Gung Chung J, Temsiripong Y, Daduang S. Inhibition of HeLa cells metastasis by bioactive compounds in crocodile (Crocodylus siamensis) white blood cells extract. ENVIRONMENTAL TOXICOLOGY 2016; 31:1329-1336. [PMID: 25855086 DOI: 10.1002/tox.22138] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 02/19/2015] [Accepted: 03/07/2015] [Indexed: 06/04/2023]
Abstract
Matrix metalloproteinases (MMPs) play a key role in cancer progression, including cell invasion, metastasis, cell growth, apoptosis, angiogenesis, and cell adhesion. Thus, suppression of the MMPs activities is crucial for inhibiting cancer cells metastasis. Herein, bioactive agents from crocodile (Crocodylus siamensis) leukocyte extracts (WBCex) showed the anticancer activity with HeLa cells and inhibited the migration and invasion process by reducing gelatinases (MMP-2, MMP-9) activity and their protein levels. This mechanism is regulated via interfering Ras and p38 signal transduction. Moreover, disrupting VEGF and integrin-signaling cascade by bioactive agents are the predictable mechanisms that cause the decreasing of MMP-2 and MMP-9 activity. Hence, bioactive substances in WBCex may play the mode of action similar with MMPs inhibitor due to HeLa cell metastasis being suppressed in vitro. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1329-1336, 2016.
Collapse
Affiliation(s)
- Supawadee Patathananone
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sompong Thammasirirak
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Jureerut Daduang
- Department of Clinical Chemistry, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Jing Gung Chung
- Department of Biological Science and Technology, College of Life Science, China Medical University, Taichung, 404, Taiwan
| | | | - Sakda Daduang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
27
|
Dykman LA, Khlebtsov NG. Multifunctional gold-based nanocomposites for theranostics. Biomaterials 2016; 108:13-34. [PMID: 27614818 DOI: 10.1016/j.biomaterials.2016.08.040] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/08/2016] [Accepted: 08/23/2016] [Indexed: 01/21/2023]
Abstract
Although Au-particle potential in nanobiotechnology has been recognized for the last 15 years, new insights into the unique properties of multifunctional nanostructures have just recently started to emerge. Multifunctional gold-based nanocomposites combine multiple modalities to improve the efficacy of the therapeutic and diagnostic treatment of cancer and other socially significant diseases. This review is focused on multifunctional gold-based theranostic nanocomposites, which can be fabricated by three main routes. The first route is to create composite (or hybrid) nanoparticles, whose components enable diagnostic and therapeutic functions. The second route is based on smart bioconjugation techniques to functionalize gold nanoparticles with a set of different molecules, enabling them to perform targeting, diagnostic, and therapeutic functions in a single treatment procedure. Finally, the third route for multifunctionalized composite nanoparticles is a combination of the first two and involves additional functionalization of hybrid nanoparticles with several molecules possessing different theranostic modalities. This last class of multifunctionalized composites also includes fluorescent atomic clusters with multiple functionalities.
Collapse
Affiliation(s)
- Lev A Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russia.
| | - Nikolai G Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russia; Saratov State University, 83 Ulitsa Astrakhanskaya, Saratov 410012, Russia
| |
Collapse
|
28
|
Patathananone S, Thammasirirak S, Daduang J, Chung JG, Temsiripong Y, Daduang S. Bioactive compounds from crocodile (Crocodylus siamensis) white blood cells induced apoptotic cell death in hela cells. ENVIRONMENTAL TOXICOLOGY 2016; 31:986-997. [PMID: 25691005 DOI: 10.1002/tox.22108] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 12/12/2014] [Accepted: 12/21/2014] [Indexed: 06/04/2023]
Abstract
Crocodile (Crocodylus siamensis) white blood cell extracts (WBCex) were examined for anticancer activity in HeLa cell lines using the MTT assay. The percentage viability of HeLa cells significantly deceased after treatment with WBCex in a dose- and time-dependent manner. The IC50 dose was suggested to be approximately 225 μg/mL protein. Apoptotic cell death occurred in a time-dependent manner based on investigation by flow cytometry using annexin V-FITC and PI staining. DAPI nucleic acid staining indicated increased chromatin condensation. Caspase-3, -8 and -9 activities also increased, suggesting the induction of the caspase-dependent apoptotic pathway. Furthermore, the mitochondrial membrane potential (ΔΨm ) of HeLa cells was lost as a result of increasing levels of Bax and reduced levels of Bcl-2, Bcl-XL, Bcl-Xs, and XIAP. The decreased ΔΨm led to the release of cytochrome c and the activation of caspase-9 and -3. Apoptosis-inducing factor translocated into the nuclei, and endonuclease G (Endo G) was released from the mitochondria. These results suggest that anticancer agents in WBCex can induce apoptosis in HeLa cells via both caspase-dependent and -independent pathways. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 986-997, 2016.
Collapse
Affiliation(s)
- Supawadee Patathananone
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sompong Thammasirirak
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Jureerut Daduang
- Department of Clinical Chemistry, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Jing Gung Chung
- Department of Biological Science and Technology, College of Life Science, China Medical University, No. 91, Hsueh-Shih Road, Taichung, 404, Taiwan
| | - Yosapong Temsiripong
- Sriracha Moda Co., Ltd. 383 Moo 4, Nongkham, Sriracha, Chonburi, 20110, Thailand
| | - Sakda Daduang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
29
|
Ng E, Chen K, Hang A, Syed A, Zhang JXJ. Multi-Dimensional Nanostructures for Microfluidic Screening of Biomarkers: From Molecular Separation to Cancer Cell Detection. Ann Biomed Eng 2016; 44:847-62. [PMID: 26692080 PMCID: PMC4828292 DOI: 10.1007/s10439-015-1521-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 11/20/2015] [Indexed: 12/21/2022]
Abstract
Rapid screening of biomarkers, with high specificity and accuracy, is critical for many point-of-care diagnostics. Microfluidics, the use of microscale channels to manipulate small liquid samples and carry reactions in parallel, offers tremendous opportunities to address fundamental questions in biology and provide a fast growing set of clinical tools for medicine. Emerging multi-dimensional nanostructures, when coupled with microfluidics, enable effective and efficient screening with high specificity and sensitivity, both of which are important aspects of biological detection systems. In this review, we provide an overview of current research and technologies that utilize nanostructures to facilitate biological separation in microfluidic channels. Various important physical parameters and theoretical equations that characterize and govern flow in nanostructure-integrated microfluidic channels will be introduced and discussed. The application of multi-dimensional nanostructures, including nanoparticles, nanopillars, and nanoporous layers, integrated with microfluidic channels in molecular and cellular separation will also be reviewed. Finally, we will close with insights on the future of nanostructure-integrated microfluidic platforms and their role in biological and biomedical applications.
Collapse
Affiliation(s)
- Elaine Ng
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.
| | - Kaina Chen
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Annie Hang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Abeer Syed
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - John X J Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
30
|
Moreno P, Ramos-Álvarez I, Moody TW, Jensen RT. Bombesin related peptides/receptors and their promising therapeutic roles in cancer imaging, targeting and treatment. Expert Opin Ther Targets 2016; 20:1055-73. [PMID: 26981612 DOI: 10.1517/14728222.2016.1164694] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Despite remarkable advances in tumor treatment, many patients still die from common tumors (breast, prostate, lung, CNS, colon, and pancreas), and thus, new approaches are needed. Many of these tumors synthesize bombesin (Bn)-related peptides and over-express their receptors (BnRs), hence functioning as autocrine-growth-factors. Recent studies support the conclusion that Bn-peptides/BnRs are well-positioned for numerous novel antitumor treatments, including interrupting autocrine-growth and the use of over-expressed receptors for imaging and targeting cytotoxic-compounds, either by direct-coupling or combined with nanoparticle-technology. AREAS COVERED The unique ability of common neoplasms to synthesize, secrete, and show a growth/proliferative/differentiating response due to BnR over-expression, is reviewed, both in general and with regard to the most frequently investigated neoplasms (breast, prostate, lung, and CNS). Particular attention is paid to advances in the recent years. Also considered are the possible therapeutic approaches to the growth/differentiation effect of Bn-peptides, as well as the therapeutic implication of the frequent BnR over-expression for tumor-imaging and/or targeted-delivery. EXPERT OPINION Given that Bn-related-peptides/BnRs are so frequently ectopically-expressed by common tumors, which are often malignant and become refractory to conventional treatments, therapeutic interventions using novel approaches to Bn-peptides and receptors are being explored. Of particular interest is the potential of reproducing with BnRs in common tumors the recent success of utilizing overexpression of somatostatin-receptors by neuroendocrine-tumors to provide the most sensitive imaging methods and targeted delivery of cytotoxic-compounds.
Collapse
Affiliation(s)
- Paola Moreno
- a Digestive Diseases Branch, Cell Biology Section, NIDDK , National Institutes of Health , Bethesda , MD , USA
| | - Irene Ramos-Álvarez
- a Digestive Diseases Branch, Cell Biology Section, NIDDK , National Institutes of Health , Bethesda , MD , USA
| | - Terry W Moody
- b Center for Cancer Research, Office of the Director , NCI, National Institutes of Health , Bethesda , MD , USA
| | - Robert T Jensen
- a Digestive Diseases Branch, Cell Biology Section, NIDDK , National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
31
|
Zarschler K, Rocks L, Licciardello N, Boselli L, Polo E, Garcia KP, De Cola L, Stephan H, Dawson KA. Ultrasmall inorganic nanoparticles: State-of-the-art and perspectives for biomedical applications. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1663-701. [PMID: 27013135 DOI: 10.1016/j.nano.2016.02.019] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/08/2016] [Accepted: 02/15/2016] [Indexed: 12/31/2022]
Abstract
Ultrasmall nanoparticulate materials with core sizes in the 1-3nm range bridge the gap between single molecules and classical, larger-sized nanomaterials, not only in terms of spatial dimension, but also as regards physicochemical and pharmacokinetic properties. Due to these unique properties, ultrasmall nanoparticles appear to be promising materials for nanomedicinal applications. This review overviews the different synthetic methods of inorganic ultrasmall nanoparticles as well as their properties, characterization, surface modification and toxicity. We moreover summarize the current state of knowledge regarding pharmacokinetics, biodistribution and targeting of nanoscale materials. Aside from addressing the issue of biomolecular corona formation and elaborating on the interactions of ultrasmall nanoparticles with individual cells, we discuss the potential diagnostic, therapeutic and theranostic applications of ultrasmall nanoparticles in the emerging field of nanomedicine in the final part of this review.
Collapse
Affiliation(s)
- Kristof Zarschler
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, Dresden, Germany.
| | - Louise Rocks
- Centre For BioNano Interactions (CBNI), School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Nadia Licciardello
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, Dresden, Germany; Laboratoire de Chimie et des Biomatériaux Supramoléculaires, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), 8 allée Gaspard Monge, Strasbourg, France; Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT) Campus North, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, Germany
| | - Luca Boselli
- Centre For BioNano Interactions (CBNI), School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ester Polo
- Centre For BioNano Interactions (CBNI), School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Karina Pombo Garcia
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, Dresden, Germany
| | - Luisa De Cola
- Laboratoire de Chimie et des Biomatériaux Supramoléculaires, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), 8 allée Gaspard Monge, Strasbourg, France; Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT) Campus North, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, Germany
| | - Holger Stephan
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, Dresden, Germany
| | - Kenneth A Dawson
- Centre For BioNano Interactions (CBNI), School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
32
|
Lee D, Zhao J, Yang H, Xu S, Kim H, Pacheco S, Keshavjee S, Liu M. Effective delivery of a rationally designed intracellular peptide drug with gold nanoparticle-peptide hybrids. NANOSCALE 2015; 7:12356-12360. [PMID: 26151444 DOI: 10.1039/c5nr02377g] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A novel gold nanoparticle-peptide hybrid strategy was developed to intracellularly deliver a potent PKCδ inhibitor peptide for the treatment of acute lung injury. The gold nanoparticle-peptide hybrids showed good stability with high uptake, and demonstrated in vitro and in vivo efficacy. Our formulation strategy shows great promise in intracellular delivery of peptides.
Collapse
Affiliation(s)
- Daiyoon Lee
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Mari C, Pierroz V, Leonidova A, Ferrari S, Gasser G. Towards Selective Light-Activated RuII-Based Prodrug Candidates. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500602] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
34
|
Guerrero AR, Hassan N, Escobar CA, Albericio F, Kogan MJ, Araya E. Gold nanoparticles for photothermally controlled drug release. Nanomedicine (Lond) 2015; 9:2023-39. [PMID: 25343351 DOI: 10.2217/nnm.14.126] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In this article, we describe how nanoparticles work in photothermally triggered drug delivery, starting with a description of the plasmon resonance and the photothermal effect, and how this is used to release a drug. Then, we describe the four major functionalization strategies and each of their different applications. Finally, we discuss the biodistribution and toxicity of these systems and the necessary requirements for the use of gold nanoparticles for spatially and temporally controlling drug release through the photothermal effect.
Collapse
Affiliation(s)
- Ariel R Guerrero
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile. Santos Dumont 964, Independencia, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
35
|
Heidari Z, Salouti M, Sariri R. Breast cancer photothermal therapy based on gold nanorods targeted by covalently-coupled bombesin peptide. NANOTECHNOLOGY 2015; 26:195101. [PMID: 25900323 DOI: 10.1088/0957-4484/26/19/195101] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Photothermal therapy, a minimally invasive treatment method for killing cancers cells, has generated a great deal of interest. In an effort to improve treatment efficacy and reduce side effects, better targeting of photoabsorbers to tumors has become a new concept in the battle against cancer. In this study, a bombesin (BBN) analog that can bind to all gastrin-releasing peptide (GRP) receptor subtypes was bound covalently with gold nanorods (GNRs) using Nanothinks acid as a link. The BBN analog was also coated with poly(ethylene glycol) to increase its stability and biocompatibility. The interactions were confirmed by ultraviolet-visible and Fourier transform infrared spectroscopy. A methylthiazol tetrazolium assay showed no cytotoxicity of the PEGylated GNR-BBN conjugate. The cell binding and internalization studies showed high specificity and uptake of the GNR-BBN-PEG conjugate toward breast cancer cells of the T47D cell line. The in vitro study revealed destruction of the T47D cells exposed to the new photothermal agent combined with continuous-wave near-infrared laser irradiation. The biodistribution study showed significant accumulation of the conjugate in the tumor tissue of mice with breast cancer. The in vivo photothermal therapy showed the complete disappearance of xenographted breast tumors in the mouse model.
Collapse
Affiliation(s)
- Zahra Heidari
- Department of Biology, University of Guilan, Rasht, Iran. Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana, USA
| | | | | |
Collapse
|
36
|
Landgraf L, Müller I, Ernst P, Schäfer M, Rosman C, Schick I, Köhler O, Oehring H, Breus VV, Basché T, Sönnichsen C, Tremel W, Hilger I. Comparative evaluation of the impact on endothelial cells induced by different nanoparticle structures and functionalization. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2015; 6:300-312. [PMID: 25821668 PMCID: PMC4362490 DOI: 10.3762/bjnano.6.28] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 12/17/2014] [Indexed: 05/29/2023]
Abstract
In the research field of nanoparticles, many studies demonstrated a high impact of the shape, size and surface charge, which is determined by the functionalization, of nanoparticles on cell viability and internalization into cells. This work focused on the comparison of three different nanoparticle types to give a better insight into general rules determining the biocompatibility of gold, Janus and semiconductor (quantum dot) nanoparticles. Endothelial cells were subject of this study, since blood is the first barrier after intravenous nanoparticle application. In particular, stronger effects on the viability of endothelial cells were found for nanoparticles with an elongated shape in comparison to spherical ones. Furthermore, a positively charged nanoparticle surface (NH2, CyA) leads to the strongest reduction in cell viability, whereas neutral and negatively charged nanoparticles are highly biocompatible to endothelial cells. These findings are attributed to a rapid internalization of the NH2-functionalized nanoparticles in combination with the damage of intracellular membranes. Interestingly, the endocytotic pathway seems to be a size-dependent process whereas nanoparticles with a size of 20 nm are internalized by caveolae-mediated endocytosis and nanoparticles with a size of 40 nm are taken up by clathrin-mediated internalization and macropinocytosis. Our results can be summarized to formulate five general rules, which are further specified in the text and which determine the biocompatibility of nanoparticles on endothelial cells. Our findings will help to design new nanoparticles with optimized properties concerning biocompatibility and uptake behavior with respect to the respective intended application.
Collapse
Affiliation(s)
- Lisa Landgraf
- Institut für Diagnostische und Interventionelle Radiologie des Klinikums der Friedrich-Schiller-Universität Jena, Bachstraße 18, D-07740 Jena, Germany
- Institut für Diagnostische und Interventionelle Radiologie des Klinikums der Friedrich-Schiller-Universität Jena, Forschungszentrum Lobeda, Erlanger Allee 111, D-07747 Jena, Germany
| | - Ines Müller
- Institut für Diagnostische und Interventionelle Radiologie des Klinikums der Friedrich-Schiller-Universität Jena, Bachstraße 18, D-07740 Jena, Germany
| | - Peter Ernst
- Institut für Diagnostische und Interventionelle Radiologie des Klinikums der Friedrich-Schiller-Universität Jena, Bachstraße 18, D-07740 Jena, Germany
| | - Miriam Schäfer
- Institut für Diagnostische und Interventionelle Radiologie des Klinikums der Friedrich-Schiller-Universität Jena, Bachstraße 18, D-07740 Jena, Germany
| | - Christina Rosman
- Institut für Physikalische Chemie, Johannes Gutenberg Universität Mainz, Duesbergweg 10–14, D-55128 Mainz, Germany
| | - Isabel Schick
- Johannes Gutenberg-Universität, Institut für Anorganische Chemie und Analytische Chemie, Duesbergweg 10–14, D-55128 Mainz, Germany
| | - Oskar Köhler
- Johannes Gutenberg-Universität, Institut für Anorganische Chemie und Analytische Chemie, Duesbergweg 10–14, D-55128 Mainz, Germany
| | - Hartmut Oehring
- Institut für Anatomie II, Universitätsklinikum Jena, Teichgraben 7, D-07743 Jena, Germany
| | - Vladimir V Breus
- Institut für Physikalische Chemie, Johannes Gutenberg Universität Mainz, Duesbergweg 10–14, D-55128 Mainz, Germany
| | - Thomas Basché
- Institut für Physikalische Chemie, Johannes Gutenberg Universität Mainz, Duesbergweg 10–14, D-55128 Mainz, Germany
| | - Carsten Sönnichsen
- Institut für Physikalische Chemie, Johannes Gutenberg Universität Mainz, Duesbergweg 10–14, D-55128 Mainz, Germany
| | - Wolfgang Tremel
- Johannes Gutenberg-Universität, Institut für Anorganische Chemie und Analytische Chemie, Duesbergweg 10–14, D-55128 Mainz, Germany
| | - Ingrid Hilger
- Institut für Diagnostische und Interventionelle Radiologie des Klinikums der Friedrich-Schiller-Universität Jena, Bachstraße 18, D-07740 Jena, Germany
- Institut für Diagnostische und Interventionelle Radiologie des Klinikums der Friedrich-Schiller-Universität Jena, Forschungszentrum Lobeda, Erlanger Allee 111, D-07747 Jena, Germany
| |
Collapse
|
37
|
Latorre A, Posch C, Garcimartín Y, Ortiz-Urda S, Somoza Á. Single-point mutation detection in RNA extracts using gold nanoparticles modified with hydrophobic molecular beacon-like structures. Chem Commun (Camb) 2014; 50:3018-20. [PMID: 24496380 DOI: 10.1039/c3cc47862a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gold nanoparticles functionalized with oligonucleotides that bear a cholesterol group are used as gene sensors. The hydrophobic molecule is buried inside the nanostructure but when the complementary RNA sequence is present the structure unfolds exposing the cholesterol group to the water molecules. This rearrangement leads to the aggregation of the nanostructures.
Collapse
Affiliation(s)
- Alfonso Latorre
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), & CNB-CSIC-IMDEA Nanociencia Associated Unit "Unidad de Nanobiotecnología" Cantoblanco, 28049 Madrid, Spain.
| | | | | | | | | |
Collapse
|
38
|
Avvakumova S, Galbiati E, Pandolfi L, Mazzucchelli S, Cassani M, Gori A, Longhi R, Prosperi D. Development of U11-Functionalized Gold Nanoparticles for Selective Targeting of Urokinase Plasminogen Activator Receptor-Positive Breast Cancer Cells. Bioconjug Chem 2014; 25:1381-6. [DOI: 10.1021/bc500202b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Svetlana Avvakumova
- NanoBioLab,
Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Elisabetta Galbiati
- NanoBioLab,
Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Laura Pandolfi
- NanoBioLab,
Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Serena Mazzucchelli
- Dipartimento
di Scienze Biomediche e Cliniche “Luigi Sacco”, Università di Milano, Via G. B. Grassi 74, 20157 Milano, Italy
| | - Marco Cassani
- NanoBioLab,
Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | | | | | - Davide Prosperi
- NanoBioLab,
Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| |
Collapse
|
39
|
Chakravarty R, Hong H, Cai W. Positron emission tomography image-guided drug delivery: current status and future perspectives. Mol Pharm 2014; 11:3777-97. [PMID: 24865108 PMCID: PMC4218872 DOI: 10.1021/mp500173s] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Positron
emission tomography (PET) is an important modality in
the field of molecular imaging, which is gradually impacting patient
care by providing safe, fast, and reliable techniques that help to
alter the course of patient care by revealing invasive, de facto procedures
to be unnecessary or rendering them obsolete. Also, PET provides a
key connection between the molecular mechanisms involved in the pathophysiology
of disease and the according targeted therapies. Recently, PET imaging
is also gaining ground in the field of drug delivery. Current drug
delivery research is focused on developing novel drug delivery systems
with emphasis on precise targeting, accurate dose delivery, and minimal
toxicity in order to achieve maximum therapeutic efficacy. At the
intersection between PET imaging and controlled drug delivery, interest
has grown in combining both these paradigms into clinically effective
formulations. PET image-guided drug delivery has great potential to
revolutionize patient care by in vivo assessment
of drug biodistribution and accumulation at the target site and real-time
monitoring of the therapeutic outcome. The expected end point of this
approach is to provide fundamental support for the optimization of
innovative diagnostic and therapeutic strategies that could contribute
to emerging concepts in the field of “personalized medicine”.
This review focuses on the recent developments in PET image-guided
drug delivery and discusses intriguing opportunities for future development.
The preclinical data reported to date are quite promising, and it
is evident that such strategies in cancer management hold promise
for clinically translatable advances that can positively impact the
overall diagnostic and therapeutic processes and result in enhanced
quality of life for cancer patients.
Collapse
Affiliation(s)
- Rubel Chakravarty
- Department of Radiology, University of Wisconsin-Madison , Madison, Wisconsin 53705-2275, United States
| | | | | |
Collapse
|
40
|
Salouti M, Heidari Z, Ahangari A, Zare S. Enhanced delivery of gentamicin to infection foci due to Staphylococcus aureus using gold nanorods. Drug Deliv 2014; 23:49-54. [DOI: 10.3109/10717544.2014.903533] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mojtaba Salouti
- Biology Research Center, Zanjan Branch, Islamic Azad University, Zanjan, Iran and
| | - Zahra Heidari
- Department of Microbiology, Faculty of Sciences, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Azam Ahangari
- Department of Microbiology, Faculty of Sciences, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Somayeh Zare
- Department of Microbiology, Faculty of Sciences, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| |
Collapse
|
41
|
Accardo A, Aloj L, Aurilio M, Morelli G, Tesauro D. Receptor binding peptides for target-selective delivery of nanoparticles encapsulated drugs. Int J Nanomedicine 2014; 9:1537-57. [PMID: 24741304 PMCID: PMC3970945 DOI: 10.2147/ijn.s53593] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Active targeting by means of drug encapsulated nanoparticles decorated with targeting bioactive moieties represents the next frontier in drug delivery; it reduces drug side effects and increases the therapeutic index. Peptides, based on their chemical and biological properties, could have a prevalent role to direct drug encapsulated nanoparticles, such as liposomes, micelles, or hard nanoparticles, toward the tumor tissues. A considerable number of molecular targets for peptides are either exclusively expressed or overexpressed on both cancer vasculature and cancer cells. They can be classified into three wide categories: integrins; growth factor receptors (GFRs); and G-protein coupled receptors (GPCRs). Therapeutic agents based on nanovectors decorated with peptides targeting membrane receptors belonging to the GPCR family overexpressed by cancer cells are reviewed in this article. The most studied targeting membrane receptors are considered: somatostatin receptors; cholecystokinin receptors; receptors associated with the Bombesin like peptides family; luteinizing hormone-releasing hormone receptors; and neurotensin receptors. Nanovectors of different sizes and shapes (micelles, liposomes, or hard nanoparticles) loaded with doxorubicin or other cytotoxic drugs and externally functionalized with natural or synthetic peptides are able to target the overexpressed receptors and are described based on their formulation and in vitro and in vivo behaviors.
Collapse
Affiliation(s)
- Antonella Accardo
- Centro interuniversitario di Ricerca sui Peptidi Bioattivi (CIRPeB), Department of Pharmacy and Istituto di Biostrutture e Bioimmagini -Consiglio Nazionale delle Ricerche (IBB CNR), University of Naples "Federico II", Napoli, Italy
| | - Luigi Aloj
- Department of Nuclear Medicine, Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione "G. Pascale", Napoli, Italy
| | - Michela Aurilio
- Department of Nuclear Medicine, Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione "G. Pascale", Napoli, Italy
| | - Giancarlo Morelli
- Centro interuniversitario di Ricerca sui Peptidi Bioattivi (CIRPeB), Department of Pharmacy and Istituto di Biostrutture e Bioimmagini -Consiglio Nazionale delle Ricerche (IBB CNR), University of Naples "Federico II", Napoli, Italy
| | - Diego Tesauro
- Centro interuniversitario di Ricerca sui Peptidi Bioattivi (CIRPeB), Department of Pharmacy and Istituto di Biostrutture e Bioimmagini -Consiglio Nazionale delle Ricerche (IBB CNR), University of Naples "Federico II", Napoli, Italy
| |
Collapse
|
42
|
Joshi T, Pierroz V, Ferrari S, Gasser G. Bis(dipyridophenazine)(2-(2'-pyridyl)pyrimidine-4-carboxylic acid)ruthenium(II) hexafluorophosphate: a lesson in stubbornness. ChemMedChem 2014; 9:1419-27. [PMID: 24591361 DOI: 10.1002/cmdc.201400029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Indexed: 01/10/2023]
Abstract
Ruthenium complexes are currently considered to be among the most promising alternatives to platinum anticancer drugs. In this work, thirteen structural analogues and organelle/receptor-targeting peptide bioconjugates of a cytotoxic bis(dppz)-Ru(II) complex [Ru(dppz)2 (CppH)](PF6 )2 (1) were prepared, characterized, and assessed for their cytotoxicity and cellular localization (CppH=2-(2'-pyridyl)pyrimidine-4-carboxylic acid; dppz=dipyrido[3,2-a:2',3'-c]phenazine). It was observed that structural modifications (lipophilicity, charge, and size-based) result in the cytotoxic potency of 1 being compromised. Confocal microscopy studies revealed that unlike 1, the screened complexes/bioconjugates do not have a preferential accumulation in mitochondria. The results of this important structure-activity relationship strongly support our initial hypothesis that accumulation in mitochondria is crucial for 1 to exert its cytotoxic action.
Collapse
Affiliation(s)
- Tanmaya Joshi
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland) http://www.gassergroup.com.
| | | | | | | |
Collapse
|
43
|
Heidari Z, Sariri R, Salouti M. Gold nanorods-bombesin conjugate as a potential targeted imaging agent for detection of breast cancer. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 130:40-6. [DOI: 10.1016/j.jphotobiol.2013.10.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 10/26/2013] [Accepted: 10/31/2013] [Indexed: 12/01/2022]
|
44
|
Dykman LA, Khlebtsov NG. Uptake of engineered gold nanoparticles into mammalian cells. Chem Rev 2013; 114:1258-88. [PMID: 24279480 DOI: 10.1021/cr300441a] [Citation(s) in RCA: 232] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Lev A Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov 410049, Russia
| | | |
Collapse
|
45
|
Ahangari A, Salouti M, Heidari Z, Kazemizadeh AR, Safari AA. Development of gentamicin-gold nanospheres for antimicrobial drug delivery to Staphylococcal infected foci. Drug Deliv 2013; 20:34-9. [PMID: 23311651 DOI: 10.3109/10717544.2012.746402] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Even though the therapeutic efficacy of numerous antimicrobial drugs has been well established, inefficient delivery can result in an inadequate therapeutic index. Gold nanoparticles have unique physicochemical properties such as large surface area to mass ratio and functionalizable structure. These properties can be applied to facilitate the administration of antimicrobial drugs, thereby overcoming some of the limitations in traditional antimicrobial therapeutics. In this study, gold nanospheres were used as a drug carrier system for gentamicin delivery to Staphylococcal infected foci. Conjugation of gentamicin with gold nanospheres was performed in HEPES buffer. The attachment of gentamicin to gold nanospheres was confirmed by UV/Vis spectroscopy. The HPLC and atomic absorption spectrometer analyses showed that 347 gentamicin molecules were attached to each gold nanosphere. Minimum inhibitory concentration and minimum bactericidal concentration studies showed the enhanced antibacterial effect of gentamicin-gold nanospheres complex in comparison with free gentamicin. The biodistribution study showed the localization of the complex at the site of Staphylococcal infection foci with high sensitivity in mouse model.
Collapse
Affiliation(s)
- Azam Ahangari
- Department of Microbiology, Faculty of Sciences, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | | | | | | | | |
Collapse
|
46
|
Tao W, Ziemer KS, Gill HS. Gold nanoparticle-M2e conjugate coformulated with CpG induces protective immunity against influenza A virus. Nanomedicine (Lond) 2013; 9:237-51. [PMID: 23829488 DOI: 10.2217/nnm.13.58] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIM This study aimed to develop a novel influenza A vaccine by conjugating the highly conserved extracellular region of the matrix 2 protein (M2e) of influenza A virus to gold nanoparticles (AuNPs) and to test the vaccine in a mouse influenza challenge model. MATERIALS & METHODS Citrate-reduced AuNPs (diameter: 12 nm) were synthesized, and characterized by transmission electron microscopy and dynamic light scattering. M2e was conjugated to AuNPs through thiol-gold interactions to form M2e-AuNP conjugates. Particle stability was confirmed by UV-visible spectra, and M2e conjugation was further characterized by x-ray photoelectron spectroscopy. Mice were immunized with M2e-AuNPs with or without CpG (cytosine-guanine rich oligonucleotide) as an adjuvant with appropriate control groups. Sera was collected and M2e-specific immunoglobulin (IgG) was measured, and immunized mice were challenged with PR8-H1N1 influenza virus. RESULTS M2e-capped AuNPs could be lyophilized and stably resuspended in water. Intranasal vaccination of mice with M2e-AuNP conjugates induced M2e-specific IgG serum antibodies, which significantly increased upon addition of soluble CpG as adjuvant. Upon challenge with lethal PR8, mice vaccinated with M2e-AuNP conjugates were only partially protected, while mice that received soluble CpG as adjuvant in addition to M2e-AuNP were fully protected. CONCLUSION Overall, this study demonstrates the potential of using the M2e-AuNP conjugates with CpG as an adjuvant as a platform for developing an influenza A vaccine.
Collapse
Affiliation(s)
- Wenqian Tao
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | | | | |
Collapse
|
47
|
Wang G, Norton AS, Pokharel D, Song Y, Hill RA. KDEL peptide gold nanoconstructs: promising nanoplatforms for drug delivery. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 9:366-74. [DOI: 10.1016/j.nano.2012.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 08/29/2012] [Accepted: 09/08/2012] [Indexed: 12/20/2022]
|
48
|
Accardo A, Mansi R, Salzano G, Morisco A, Aurilio M, Parisi A, Maione F, Cicala C, Ziaco B, Tesauro D, Aloj L, De Rosa G, Morelli G. Bombesin peptide antagonist for target-selective delivery of liposomal doxorubicin on cancer cells. J Drug Target 2012; 21:240-249. [PMID: 23167653 DOI: 10.3109/1061186x.2012.741138] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE This study addresses novel peptide modified liposomal doxorubicin to specifically target tissues overexpressing bombesin (BN) receptors. METHODS DOTA-(AEEA)2-peptides containing the [7-14]bombesin and the new BN-AA1 sequence have been synthesized to compare their binding properties and in serum stabilities. The amphiphilic peptide derivative (MonY-BN-AA1) containing BN-AA1, a hydrophobic moiety, polyethylenglycole (PEG), and diethylenetriaminepentaacetate (DTPA), has been synthesized. Liposomes have been obtained by mixing of MonY-BN-AA1 with 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC). RESULTS Both 111In labeled peptide derivatives present nanomolar Kd to PC-3 cells. 177Lu labeled peptide DOTA-(AEEA)2-BN-AA1 is very stable (half-life 414.1 h), while DOTA-(AEEA)2-BN, shows a half-life of 15.5 h. In vivo studies on the therapeutic efficacy of DSPC/MonY-BN-AA1/Dox in comparison to DSPC/MonY-BN/Dox, were performed in PC-3 xenograft bearing mice. Both formulations showed similar tumor growth inhibition (TGI) compared to control animals treated with non-targeted DSPC/Dox liposomes or saline solution. For DSPC/MonY-BN-AA1/Dox the maximum effect was observed 19 days after treatment. CONCLUSIONS DSPC/MonY-BN-AA1/Dox nanovectors confirm the ability to selectively target and provide therapeutic efficacy in mice. The lack of receptor activation and possible acute biological side effects provided by using the AA1 antagonist bombesin sequence should provide safe working conditions for further development of this class of drug delivery vehicles.
Collapse
Affiliation(s)
- Antonella Accardo
- a CIRPeB, Department of Biological Sciences & IBB CNR, University of Naples "Federico II" , Napoli, Italy.,b Invectors srl , Napoli, Italy
| | - Rosalba Mansi
- c Division of Radiological Chemistry, University Hospital Basel , Basel, Switzerland
| | - Giuseppina Salzano
- d Department of Pharmaceutical and Toxicological Chemistry, University of Naples "Federico II" , Napoli, Italy
| | - Anna Morisco
- e Department of Nuclear Medicine, Istituto Nazionale per lo Studio e la Cura dei Tumori , Fondazione "G. Pascale", Napoli, Italy
| | - Michela Aurilio
- e Department of Nuclear Medicine, Istituto Nazionale per lo Studio e la Cura dei Tumori , Fondazione "G. Pascale", Napoli, Italy
| | - Antonio Parisi
- f Department of Experimental Pharmacology, University of Naples "Federico II" , Napoli, Italy
| | - Francesco Maione
- f Department of Experimental Pharmacology, University of Naples "Federico II" , Napoli, Italy
| | - Carla Cicala
- f Department of Experimental Pharmacology, University of Naples "Federico II" , Napoli, Italy
| | | | - Diego Tesauro
- a CIRPeB, Department of Biological Sciences & IBB CNR, University of Naples "Federico II" , Napoli, Italy.,b Invectors srl , Napoli, Italy
| | - Luigi Aloj
- e Department of Nuclear Medicine, Istituto Nazionale per lo Studio e la Cura dei Tumori , Fondazione "G. Pascale", Napoli, Italy
| | - Giuseppe De Rosa
- d Department of Pharmaceutical and Toxicological Chemistry, University of Naples "Federico II" , Napoli, Italy
| | - Giancarlo Morelli
- a CIRPeB, Department of Biological Sciences & IBB CNR, University of Naples "Federico II" , Napoli, Italy.,b Invectors srl , Napoli, Italy
| |
Collapse
|
49
|
Abstract
A small rise in tumor temperature (hyperthermia) makes cancer cells more susceptible to radiation and chemotherapy. The means of achieving this is not trivial, and traditional methods have certain drawbacks. Loading tumors with systematically asministered energy-transducing nanoparticles can circumvent several of the obstacles to achieve tumor hyperthermia. However, nanoparticles also face unique challenges prior to clinical implementation. This article summarizes the state-of-the-art current technology and discusses the advantages and challenges of the three major nanoparticle formulations in focus: gold nanoshells and nanorods, superparamagnetic iron oxide particles and carbon nanotubes.
Collapse
|
50
|
Guerrero S, Herance JR, Rojas S, Mena JF, Gispert JD, Acosta GA, Albericio F, Kogan MJ. Synthesis and in vivo evaluation of the biodistribution of a 18F-labeled conjugate gold-nanoparticle-peptide with potential biomedical application. Bioconjug Chem 2012; 23:399-408. [PMID: 22284226 DOI: 10.1021/bc200362a] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Gold nanoparticles (AuNPs) have been extensively used in biological applications because of their biocompatibility, size, and ease of characterization, as well as an extensive knowledge of their surface chemistry. These features make AuNPs readily exploitable for biomedical applications, including drug delivery and novel diagnostic and therapeutic approaches. In a previous work, we studied ex vivo distribution of the conjugate C(AuNP)-LPFFD for its potential uses in the treatment of Alzheimer's disease. In this study, we covalently labeled the conjugate with [(18)F]-fluorobenzoate to study the in vivo distribution of the AuNP by positron emission tomography (PET). After intravenous administration in rat, the highest concentration of the radiolabeled conjugate was found in the bladder and urine with a lower proportion in the intestine, demonstrating progressive accumulation compatible with biliary excretion of the conjugate. The conjugate also accumulated in the liver and spleen. PET imaging allowed us to study the in vivo biodistribution of the AuNPs in a noninvasive and sensitive way using a reduced number of animals. Our results show that AuNPs can be covalently and radioactively labeled for PET biodistribution studies.
Collapse
Affiliation(s)
- Simon Guerrero
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|