1
|
Paulus J, Sewald N. Small molecule- and peptide-drug conjugates addressing integrins: A story of targeted cancer treatment. J Pept Sci 2024; 30:e3561. [PMID: 38382900 DOI: 10.1002/psc.3561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 02/23/2024]
Abstract
Targeted cancer treatment should avoid side effects and damage to healthy cells commonly encountered during traditional chemotherapy. By combining small molecule or peptidic ligands as homing devices with cytotoxic drugs connected by a cleavable or non-cleavable linker in peptide-drug conjugates (PDCs) or small molecule-drug conjugates (SMDCs), cancer cells and tumours can be selectively targeted. The development of highly affine, selective peptides and small molecules in recent years has allowed PDCs and SMDCs to increasingly compete with antibody-drug conjugates (ADCs). Integrins represent an excellent target for conjugates because they are overexpressed by most cancer cells and because of the broad knowledge about native binding partners as well as the multitude of small-molecule and peptidic ligands that have been developed over the last 30 years. In particular, integrin αVβ3 has been addressed using a variety of different PDCs and SMDCs over the last two decades, following various strategies. This review summarises and describes integrin-addressing PDCs and SMDCs while highlighting points of great interest.
Collapse
Affiliation(s)
- Jannik Paulus
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
2
|
Cossu J, Thoreau F, Boturyn D. Multimeric RGD-Based Strategies for Selective Drug Delivery to Tumor Tissues. Pharmaceutics 2023; 15:pharmaceutics15020525. [PMID: 36839846 PMCID: PMC9961187 DOI: 10.3390/pharmaceutics15020525] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
RGD peptides have received a lot of attention over the two last decades, in particular to improve tumor therapy through the targeting of the αVβ3 integrin receptor. This review focuses on the molecular design of multimeric RGD compounds, as well as the design of suitable linkers for drug delivery. Many examples of RGD-drug conjugates have been developed, and we show the importance of RGD constructs to enhance binding affinity to tumor cells, as well as their drug uptake. Further, we also highlight the use of RGD peptides as theranostic systems, promising tools offering dual modality, such as tumor diagnosis and therapy. In conclusion, we address the challenging issues, as well as ongoing and future development, in comparison with large molecules, such as monoclonal antibodies.
Collapse
Affiliation(s)
- Jordan Cossu
- University Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France
| | - Fabien Thoreau
- University Poitiers, Inst Chim Milieux & Mat Poitiers IC2MP, UMR CNRS 7285, F-86073 Poitiers, France
| | - Didier Boturyn
- University Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France
- Correspondence:
| |
Collapse
|
3
|
Small Molecule-Based Prodrug Targeting Prostate Specific Membrane Antigen for the Treatment of Prostate Cancer. Cancers (Basel) 2021; 13:cancers13030417. [PMID: 33499427 PMCID: PMC7865627 DOI: 10.3390/cancers13030417] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 11/16/2022] Open
Abstract
Metastatic castration-resistant prostate cancer poses a serious clinical problem with poor outcomes and remains a deadly disease. New targeted treatment options are urgently needed. PSMA is highly expressed in prostate cancer and has been an attractive biomarker for the treatment of prostate cancer. In this study, we explored the feasibility of targeted delivery of an antimitotic drug, monomethyl auristatin E (MMAE), to tumor tissue using a small-molecule based PSMA lig-and. With the aid of Cy5.5, we found that a cleavable linker is vital for the antitumor activity of the ligand-drug conjugate and have developed a new PSMA-targeting prodrug, PSMA-1-VcMMAE. In in vitro studies, PSMA-1-VcMMAE was 48-fold more potent in killing PSMA-positive PC3pip cells than killing PSMA-negative PC3flu cells. In in vivo studies, PSMA-1-VcMMAE significantly inhibited tumor growth leading to prolonged animal survival in different animal models, including metastatic prostate cancer models. Compared to anti-PSMA antibody-MMAE conjugate (PSMA-ADC) and MMAE, PSMA-1-VcMMAE had over a 10-fold improved maximum tolerated dose, resulting in improved therapeutic index. The small molecule-drug conjugates reported here can be easily synthesized and are more cost efficient than anti-body-drug conjugates. The therapeutic profile of the PSMA-1-VcMMAE encourages further clin-ical development for the treatment of advanced prostate cancer.
Collapse
|
4
|
Lee E, Park J, Youn YS, Oh KT, Kim D, Lee ES. Alendronate/cRGD-Decorated Ultrafine Hyaluronate Dot Targeting Bone Metastasis. Biomedicines 2020; 8:E492. [PMID: 33187133 PMCID: PMC7696888 DOI: 10.3390/biomedicines8110492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 12/28/2022] Open
Abstract
In this study, we report the hyaluronate dot (dHA) with multiligand targeting ability and a photosensitizing antitumor model drug for treating metastatic bone tumors. Here, the dHA was chemically conjugated with alendronate (ALN, as a specific ligand to bone), cyclic arginine-glycine-aspartic acid (cRGD, as a specific ligand to tumor integrin αvβ3), and photosensitizing chlorin e6 (Ce6, for photodynamic tumor therapy), denoted as (ALN/cRGD)@dHA-Ce6. These dots thus prepared (≈10 nm in diameter) enabled extensive cellular interactions such as hyaluronate (HA)-mediated CD44 receptor binding, ALN-mediated bone targeting, and cRGD-mediated tumor integrin αvβ3 binding, thus improving their tumor targeting efficiency, especially for metastasized MDA-MB-231 tumors. As a result, these dots improved the tumor targeting efficiency and tumor cell permeability in a metastatic in vivo tumor model. Indeed, we demonstrated that (ALN/cRGD)@dHA-Ce6 considerably increased photodynamic tumor ablation, the extent of which is superior to that of the tumor ablation of dot systems with single or double ligands. These results indicate that dHA with multiligand can provide an effective treatment strategy for metastatic bone tumors.
Collapse
Affiliation(s)
- Eunsol Lee
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Korea; (E.L.); (J.P.)
| | - Jaeduk Park
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Korea; (E.L.); (J.P.)
| | - Yu Seok Youn
- School of Pharmacy, SungKyunKwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea;
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea;
| | - Dongin Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N Stonewall Ave, Oklahoma City, OK 73117, USA;
| | - Eun Seong Lee
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Korea; (E.L.); (J.P.)
- Department of Biomedical Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Korea
| |
Collapse
|
5
|
He R, Pan J, Mayer JP, Liu F. The Chemical Methods of Disulfide Bond Formation and Their Applications to Drug Conjugates. CURR ORG CHEM 2020. [DOI: 10.2174/1385272823666191202111723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
The disulfide bond possesses unique chemical and biophysical properties which
distinguish it as one of the key structural elements of bioactive proteins and peptides, important
drugs and other materials. The chemo-selective synthesis of these structures and
the exploration of their function have been of longstanding interest to the chemistry community.
The past decades have witnessed significant progress in both areas. This review
will summarize the historically established and recently developed chemical methods in
disulfide bond formation. The discussion will also be extended to the use of the disulfide
linkers in small molecules, and peptide- and protein-drug conjugates. It is hoped that the
combined overview of the fundamental chemistries and applications to drug discovery
will inspire creative thinking and stimulate future novel uses of these versatile chemistries.
Collapse
Affiliation(s)
- Rongjun He
- Novo Nordisk Research Center Indianapolis, 5225 Exploration Drive, Indianapolis, IN 46241, United States
| | - Jia Pan
- Novo Nordisk Research Centre China, 20 Life Science Road, Beijing, China
| | - John P. Mayer
- Department of Molecular, Developmental & Cell Biology, University of Colorado, Boulder, CO 80309, United States
| | - Fa Liu
- Novo Nordisk Research Center, 530 Fairview Avenue North, Seattle, WA 98109, United States
| |
Collapse
|
6
|
Delahousse J, Skarbek C, Paci A. Prodrugs as drug delivery system in oncology. Cancer Chemother Pharmacol 2019; 84:937-958. [DOI: 10.1007/s00280-019-03906-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/05/2019] [Indexed: 02/07/2023]
|
7
|
Huang YQ, Yuan JD, Ding HF, Song YS, Qian G, Wang JL, Ji M, Zhang Y. Design, synthesis and pharmacological evaluation of a novel PEG-cRGD-conjugated irinotecan derivative as potential antitumor agent. Eur J Med Chem 2018; 158:82-90. [DOI: 10.1016/j.ejmech.2018.08.091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/21/2018] [Accepted: 08/29/2018] [Indexed: 10/28/2022]
|
8
|
Majumder P. Integrin-Mediated Delivery of Drugs and Nucleic Acids for Anti-Angiogenic Cancer Therapy: Current Landscape and Remaining Challenges. Bioengineering (Basel) 2018; 5:bioengineering5040076. [PMID: 30241287 PMCID: PMC6315429 DOI: 10.3390/bioengineering5040076] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/12/2018] [Accepted: 09/16/2018] [Indexed: 01/19/2023] Open
Abstract
Angiogenesis, sprouting of new blood vessels from pre-existing vasculatures, plays a critical role in regulating tumor growth. Binding interactions between integrin, a heterodimeric transmembrane glycoprotein receptor, and its extracellular matrix (ECM) protein ligands govern the angiogenic potential of tumor endothelial cells. Integrin receptors are attractive targets in cancer therapy due to their overexpression on tumor endothelial cells, but not on quiescent blood vessels. These receptors are finding increasing applications in anti-angiogenic therapy via targeted delivery of chemotherapeutic drugs and nucleic acids to tumor vasculatures. The current article attempts to provide a retrospective account of the past developments, highlight important contemporary contributions and unresolved set-backs of this emerging field.
Collapse
Affiliation(s)
- Poulami Majumder
- Division of Lipid Science and Technology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India.
- Chemical Biology Laboratory, National Cancer Institute, 376 Boyles St, Frederick, MD 21702, USA.
| |
Collapse
|
9
|
Abstract
There is a growing interest for the discovery of new cancer-targeted delivery systems for drug delivery and diagnosis. A synopsis of the bibliographic data will be presented on bombesin, neurotensin, octreotide, Arg-Gly-Asp, luteinizing hormone-releasing hormone and other peptides. Many of them have reached the clinics for therapeutic or diagnostic purposes, and have been utilized as carriers of known cytotoxic agents such as doxorubicin, paclitaxel, cisplatin, methotrexate or dyes and radioisotopes. In our article, recent advances in the development of peptides as carriers of cytotoxic drugs or radiometals will be analyzed.
Collapse
|
10
|
Zeng D, Deng S, Sang C, Zhao J, Chen T. Rational Design of Cancer-Targeted Selenadiazole Derivative as Efficient Radiosensitizer for Precise Cancer Therapy. Bioconjug Chem 2018; 29:2039-2049. [PMID: 29771500 DOI: 10.1021/acs.bioconjchem.8b00247] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Delong Zeng
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Shulin Deng
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Chengcheng Sang
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Jianfu Zhao
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Tianfeng Chen
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| |
Collapse
|
11
|
Raposo Moreira Dias A, Pina A, Dal Corso A, Arosio D, Belvisi L, Pignataro L, Caruso M, Gennari C. Multivalency Increases the Binding Strength of RGD Peptidomimetic-Paclitaxel Conjugates to Integrin α V β 3. Chemistry 2017; 23:14410-14415. [PMID: 28816404 PMCID: PMC5656903 DOI: 10.1002/chem.201703093] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Indexed: 11/29/2022]
Abstract
This work reports the synthesis of three multimeric RGD peptidomimetic‐paclitaxel conjugates featuring a number of αVβ3 integrin ligands ranging from 2 to 4. These constructs were assembled by conjugation of the integrin αVβ3 ligand cyclo[DKP‐RGD]‐CH2NH2 with paclitaxel via a 2′‐carbamate with a self‐immolative spacer, the lysosomally cleavable Val‐Ala dipeptide linker, a multimeric scaffold, a triazole linkage, and finally a PEG spacer. Two monomeric conjugates were also synthesized as reference compounds. Remarkably, the new multimeric conjugates showed a binding affinity for the purified integrin αVβ3 receptor that increased with the number of integrin ligands (reaching a minimum IC50 value of 1.2 nm for the trimeric), thus demonstrating that multivalency is an effective strategy to strengthen the ligand–target interactions.
Collapse
Affiliation(s)
- André Raposo Moreira Dias
- Università degli Studi di Milano, Dipartimento di Chimica, Via C. Golgi 19, 20133, Milan, Italy), Fax: (+39) 02-5031-4072
| | - Arianna Pina
- Università degli Studi di Milano, Dipartimento di Chimica, Via C. Golgi 19, 20133, Milan, Italy), Fax: (+39) 02-5031-4072
| | - Alberto Dal Corso
- Università degli Studi di Milano, Dipartimento di Chimica, Via C. Golgi 19, 20133, Milan, Italy), Fax: (+39) 02-5031-4072
| | - Daniela Arosio
- CNR, Istituto di Scienze e Tecnologie Molecolari (ISTM), Via C. Golgi, 19, 20133, Milan, Italy
| | - Laura Belvisi
- Università degli Studi di Milano, Dipartimento di Chimica, Via C. Golgi 19, 20133, Milan, Italy), Fax: (+39) 02-5031-4072.,CNR, Istituto di Scienze e Tecnologie Molecolari (ISTM), Via C. Golgi, 19, 20133, Milan, Italy
| | - Luca Pignataro
- Università degli Studi di Milano, Dipartimento di Chimica, Via C. Golgi 19, 20133, Milan, Italy), Fax: (+39) 02-5031-4072
| | - Michele Caruso
- Nerviano Medical Sciences, Viale Pasteur, 10, 20014, Nerviano, Italy
| | - Cesare Gennari
- Università degli Studi di Milano, Dipartimento di Chimica, Via C. Golgi 19, 20133, Milan, Italy), Fax: (+39) 02-5031-4072.,CNR, Istituto di Scienze e Tecnologie Molecolari (ISTM), Via C. Golgi, 19, 20133, Milan, Italy
| |
Collapse
|
12
|
Abstract
Conjugates of cytotoxic agents with RGD peptides (Arg-Gly-Asp) addressed to ανβ3, α5β1 and ανβ6 integrin receptors overexpressed by cancer cells, have recently gained attention as potential selective anticancer chemotherapeutics. In this review, the design and the development of RGD conjugates coupled to different small molecules including known cytotoxic drugs and natural products will be discussed.
Collapse
|
13
|
Wang Y, Cheetham AG, Angacian G, Su H, Xie L, Cui H. Peptide-drug conjugates as effective prodrug strategies for targeted delivery. Adv Drug Deliv Rev 2017; 110-111:112-126. [PMID: 27370248 PMCID: PMC5199637 DOI: 10.1016/j.addr.2016.06.015] [Citation(s) in RCA: 338] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/16/2016] [Accepted: 06/21/2016] [Indexed: 12/11/2022]
Abstract
Peptide-drug conjugates (PDCs) represent an important class of therapeutic agents that combine one or more drug molecules with a short peptide through a biodegradable linker. This prodrug strategy uniquely and specifically exploits the biological activities and self-assembling potential of small-molecule peptides to improve the treatment efficacy of medicinal compounds. We review here the recent progress in the design and synthesis of peptide-drug conjugates in the context of targeted drug delivery and cancer chemotherapy. We analyze carefully the key design features in choosing the peptide sequence and linker chemistry for the drug of interest, as well as the strategies to optimize the conjugate design. We highlight the recent progress in the design and synthesis of self-assembling peptide-drug amphiphiles to construct supramolecular nanomedicine and nanofiber hydrogels for both systemic and topical delivery of active pharmaceutical ingredients.
Collapse
Affiliation(s)
- Yin Wang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| | - Andrew G Cheetham
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| | - Garren Angacian
- Department of Biomedical Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| | - Hao Su
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| | - Lisi Xie
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, MD 21231, USA
| |
Collapse
|
14
|
Cazzamalli S, Corso AD, Neri D. Linker stability influences the anti-tumor activity of acetazolamide-drug conjugates for the therapy of renal cell carcinoma. J Control Release 2016; 246:39-45. [PMID: 27890855 DOI: 10.1016/j.jconrel.2016.11.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/26/2016] [Accepted: 11/17/2016] [Indexed: 10/20/2022]
Abstract
Small molecule-drug conjugates (SMDCs) are increasingly being considered as an alternative to antibody-drug conjugates (ADCs) for the selective delivery of anticancer agents to the tumor site, sparing normal tissues. Carbonic anhydrase IX (CAIX) is a membrane-bound enzyme, which is over-expressed in the majority of renal cell carcinomas and which can be efficiently targeted in vivo, using charged derivatives of acetazolamide, a small heteroaromatic sulfonamide. Here, we show that SMDC products, obtained by the coupling of acetazolamide with monomethyl auristatin E (MMAE) using dipeptide linkers, display a potent anti-tumoral activity in mice bearing xenografted SKRC-52 renal cell carcinomas. A comparative evaluation of four dipeptides revealed that SMDCs featuring valine-citrulline and valine-alanine linkers exhibited greater serum stability and superior therapeutic activity, compared to the counterparts with valine-lysine or valine-arginine linkers. The most active products substantially inhibited tumor growth over a prolonged period of time, in a tumor model for which sunitinib and sorafenib do not display therapeutic activity. However, complete tumor eradication was not possible even after ten intravenous injection. Macroscopic near-infrared imaging procedures confirmed that ligands had not lost the ability to selectively localize at the tumor site at the end of therapy and that the neoplastic masses continued to express CAIX. The findings are of mechanistic and of therapeutic significance, since CAIX is a non-internalizing membrane-associated antigen, which can be considered for targeted drug delivery applications in kidney cancer patients.
Collapse
Affiliation(s)
- Samuele Cazzamalli
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zürich (Switzerland)
| | - Alberto Dal Corso
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zürich (Switzerland)
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zürich (Switzerland)
| |
Collapse
|
15
|
Kue CS, Kamkaew A, Burgess K, Kiew LV, Chung LY, Lee HB. Small Molecules for Active Targeting in Cancer. Med Res Rev 2016; 36:494-575. [PMID: 26992114 DOI: 10.1002/med.21387] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 12/29/2022]
Abstract
For the purpose of this review, active targeting in cancer research encompasses strategies wherein a ligand for a cell surface receptor expressed on tumor cells is used to deliver a cytotoxic or imaging cargo. This area of research is more than two decades old, but in those 20 and more years, how many receptors have been studied extensively? What kinds of the ligands are used for active targeting? Are they mostly naturally occurring molecules such as folic acid, or synthetic substances developed in campaigns for medicinal chemistry efforts? This review outlines the most important receptor or ligand combinations that have been used in active targeting to answer these questions, and therefore to address the most important one of all: is research in active targeting affording diminishing returns, or is this an area for which the potential far exceeds progress made so far?
Collapse
Affiliation(s)
- Chin S Kue
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Anyanee Kamkaew
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX, 77842
| | - Kevin Burgess
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX, 77842
| | - Lik V Kiew
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Lip Y Chung
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Hong B Lee
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
16
|
Arosio D, Casagrande C. Advancement in integrin facilitated drug delivery. Adv Drug Deliv Rev 2016; 97:111-43. [PMID: 26686830 DOI: 10.1016/j.addr.2015.12.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/27/2015] [Accepted: 12/03/2015] [Indexed: 02/06/2023]
Abstract
The research of integrin-targeted anticancer agents has recorded important advancements in ingenious design of delivery systems, based either on the prodrug approach, or on nanoparticle carriers, but for now, none of these has reached a clinical stage of development. Past work in this area has been extensively reviewed by us and others. Thus, the purpose and scope of the present review is to survey the advancement reported in the last 3years, with focus on innovative delivery systems that appear to afford openings for future developments. These systems exploit the labelling with conventional and novel integrin ligands for targeting the interface of cancer cells and of endothelial cells involved in cancer angiogenesis, with the proteins of the extracellular matrix, in the circulation, in tissues, and in tumour stroma, as the site of progression and metastatic evolution of the disease. Furthermore, these systems implement the expertise in the development of nanomedicines to the purpose of achieving preferential biodistribution and uptake in cancer tissues, internalisation in cancer cells, and release of the transported drugs at intracellular sites. The assessment of the value of controlling these factors, and their combination, for future developments requires support of biological testing in appropriate mechanistic models, but also imperatively demand confirmation in therapeutically relevant in vivo models for biodistribution, efficacy, and lack of off-target effects. Thus, among many studies, we have tried to point out the results supported by relevant in vivo studies, and we have emphasised in specific sections those addressing the medical needs of drug delivery to brain tumours, as well as the delivery of oligonucleotides modulating gene-dependent pathological mechanism. The latter could constitute the basis of a promising third branch in the therapeutic armamentarium against cancer, in addition to antibody-based agents and to cytotoxic agents.
Collapse
Affiliation(s)
- Daniela Arosio
- Istituto di Scienze e Tecnologie Molecolari (ISTM), CNR, Via C. Golgi 19, I-20133 Milan, Italy.
| | - Cesare Casagrande
- Università degli Studi di Milano, Dipartimento di Chimica, Via C. Golgi 19, I-20133 Milan, Italy.
| |
Collapse
|
17
|
Massaguer A, González-Cantó A, Escribano E, Barrabés S, Artigas G, Moreno V, Marchán V. Integrin-targeted delivery into cancer cells of a Pt(IV) pro-drug through conjugation to RGD-containing peptides. Dalton Trans 2015; 44:202-12. [PMID: 25369773 DOI: 10.1039/c4dt02710h] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conjugates of a Pt(IV) derivative of picoplatin with monomeric (Pt-c(RGDfK), 5) and tetrameric (Pt-RAFT-{c(RGDfK)}4, 6) RGD-containing peptides were synthesized with the aim of exploiting their selectivity and high affinity for αVβ3 and αVβ5 integrins for targeted delivery of this anticancer metallodrug to tumor cells overexpressing these receptors. Solid- and solution-phase approaches in combination with click chemistry were used for the preparation of the conjugates, which were characterized by high resolution ESI MS and NMR. αVβ3 and αVβ5 integrin expression was evaluated in a broad panel of human cancer and non-malignant cells. SK-MEL-28 melanoma cells were selected based on the high expression levels of both integrins, while CAPAN-1 pancreatic cancer cells and 1BR3G fibroblasts were selected as the negative control. Internalization experiments revealed a good correlation between integrin expression and the cellular uptake of the corresponding fluorescein-labeled peptides and that the internalization capacity of the tetrameric RGD-containing peptide was considerably higher than that of the monomeric one. Cytotoxic experiments indicated that the antitumor activity of picoplatin in melanoma cells was increased by 2.6-fold when its Pt(IV) derivative was conjugated to c(RGDfK) (IC50 = 12.8 ± 2.1 μM) and by 20-fold when conjugated to RAFT-{c(RGDfK)}4 (IC50 = 1.7 ± 0.6 μM). In contrast, the cytotoxicity of the conjugates was inhibited in control cells lacking αVβ3 and αVβ5 integrin expression. Finally, cellular uptake studies by ICP-MS confirmed a good correlation between the levels of expression of integrins, intracellular platinum accumulation and antitumor activity. Indeed, accumulation and cytotoxicity were much higher in SK-MEL-28 cells than in CAPAN-1, being particularly higher in the case of the tetrameric conjugate. The overall results highlight that the great ability of RAFT-{c(RGDfK)}4 to bind to and to be internalized by integrins overexpressed in SK-MEL-28 cells results in higher accumulation of the Pt(IV) complex, leading to a high antitumor activity. These studies provide new insights into the potential of targeting αVβ3 and αVβ5 integrins with Pt(IV) anticancer pro-drugs conjugated to tumor-targeting devices based on RGD-containing peptides, particularly on how multivalency can improve both the selectivity and potency of such metallodrugs by increasing cellular accumulation in tumor tissues.
Collapse
Affiliation(s)
- Anna Massaguer
- Departament de Biologia, Universitat de Girona, Campus Montilivi, E-17071 Girona, Spain.
| | | | | | | | | | | | | |
Collapse
|
18
|
Zhao L, May JP, Blanc A, Dietrich DJ, Loonchanta A, Matinkhoo K, Pryyma A, Perrin DM. Synthesis of a Cytotoxic Amanitin for Biorthogonal Conjugation. Chembiochem 2015; 16:1420-5. [DOI: 10.1002/cbic.201500226] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Indexed: 11/10/2022]
|
19
|
Titov DV, Gening ML, Tsvetkov YE, Nifantiev NE. Conjugates of cyclooligosaccharide scaffolds and carbohydrate ligands: Methods for synthesis and the interaction with lectins. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2013; 39:509-46. [DOI: 10.1134/s1068162013050142] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Syntheses and in vitro antitumor activities of ferrocene-conjugated Arg-Gly-Asp peptides. J Inorg Biochem 2012; 116:19-25. [DOI: 10.1016/j.jinorgbio.2012.06.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 06/11/2012] [Accepted: 06/25/2012] [Indexed: 11/24/2022]
|
21
|
Pilkington-Miksa M, Arosio D, Battistini L, Belvisi L, De Matteo M, Vasile F, Burreddu P, Carta P, Rassu G, Perego P, Carenini N, Zunino F, De Cesare M, Castiglioni V, Scanziani E, Scolastico C, Casiraghi G, Zanardi F, Manzoni L. Design, Synthesis, and Biological Evaluation of Novel cRGD–Paclitaxel Conjugates for Integrin-Assisted Drug Delivery. Bioconjug Chem 2012; 23:1610-22. [DOI: 10.1021/bc300164t] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michael Pilkington-Miksa
- Centro Interdipartimentale
Studi Biomolecolari e Applicazioni Industriali, Università degli Studi di Milano, Via Fantoli
16/15, I-20138 Milano, Italy
| | - Daniela Arosio
- Istituto di Scienze
e Tecnologie Molecolari, Consiglio Nazionale delle Ricerche, Via Golgi 19, I-20133 Milano, Italy
| | - Lucia Battistini
- Dipartimento Farmaceutico, Università degli Studi di Parma, Parco Area
delle Scienze 27A, I-43124 Parma, Italy
| | - Laura Belvisi
- Dipartimento di Chimica
Organica e Industriale, Università degli Studi di Milano, Via Venezian 21, I-20133 Milano,
Italy
| | - Marilenia De Matteo
- Centro Interdipartimentale
Studi Biomolecolari e Applicazioni Industriali, Università degli Studi di Milano, Via Fantoli
16/15, I-20138 Milano, Italy
| | - Francesca Vasile
- Centro Interdipartimentale
Studi Biomolecolari e Applicazioni Industriali, Università degli Studi di Milano, Via Fantoli
16/15, I-20138 Milano, Italy
| | - Paola Burreddu
- Istituto
di Chimica
Biomolecolare, Consiglio Nazionale delle Ricerche, Traversa La Crucca 3, I-07100 Li Punti, Sassari,
Italy
| | - Paola Carta
- Porto Conte Ricerche Srl, I-07041 Tramariglio Alghero, Sassari, Italy
| | - Gloria Rassu
- Istituto
di Chimica
Biomolecolare, Consiglio Nazionale delle Ricerche, Traversa La Crucca 3, I-07100 Li Punti, Sassari,
Italy
| | - Paola Perego
- Dipartimento di Oncologia Sperimentale
e Medicina Molecolare, Fondazione IRCCS Istituto Nazionale Tumori, Via Amadeo 42, I-20133 Milano, Italy
| | - Nives Carenini
- Dipartimento di Oncologia Sperimentale
e Medicina Molecolare, Fondazione IRCCS Istituto Nazionale Tumori, Via Amadeo 42, I-20133 Milano, Italy
| | - Franco Zunino
- Dipartimento di Oncologia Sperimentale
e Medicina Molecolare, Fondazione IRCCS Istituto Nazionale Tumori, Via Amadeo 42, I-20133 Milano, Italy
| | - Michelandrea De Cesare
- Dipartimento di Oncologia Sperimentale
e Medicina Molecolare, Fondazione IRCCS Istituto Nazionale Tumori, Via Amadeo 42, I-20133 Milano, Italy
| | - Vittoria Castiglioni
- Dipartimento di
Patologia Animale, Igiene e Sanità Pubblica Veterinaria
(DIPAV), Facoltà di Medicina Veterinaria, Università degli Studi di Milano, Via Celoria 10, I-20133 Milano,
Italy
- Mouse and Animal Pathology
Laboratory, Fondazione Filarete, Viale
Ortles 22/4, I-20139 Milano,
Italy
| | - Eugenio Scanziani
- Dipartimento di
Patologia Animale, Igiene e Sanità Pubblica Veterinaria
(DIPAV), Facoltà di Medicina Veterinaria, Università degli Studi di Milano, Via Celoria 10, I-20133 Milano,
Italy
- Mouse and Animal Pathology
Laboratory, Fondazione Filarete, Viale
Ortles 22/4, I-20139 Milano,
Italy
| | - Carlo Scolastico
- Centro Interdipartimentale
Studi Biomolecolari e Applicazioni Industriali, Università degli Studi di Milano, Via Fantoli
16/15, I-20138 Milano, Italy
| | - Giovanni Casiraghi
- Dipartimento Farmaceutico, Università degli Studi di Parma, Parco Area
delle Scienze 27A, I-43124 Parma, Italy
| | - Franca Zanardi
- Dipartimento Farmaceutico, Università degli Studi di Parma, Parco Area
delle Scienze 27A, I-43124 Parma, Italy
| | - Leonardo Manzoni
- Istituto di Scienze
e Tecnologie Molecolari, Consiglio Nazionale delle Ricerche, Via Golgi 19, I-20133 Milano, Italy
| |
Collapse
|
22
|
Lee MH, Kim JY, Han JH, Bhuniya S, Sessler JL, Kang C, Kim JS. Direct Fluorescence Monitoring of the Delivery and Cellular Uptake of a Cancer-Targeted RGD Peptide-Appended Naphthalimide Theragnostic Prodrug. J Am Chem Soc 2012; 134:12668-74. [DOI: 10.1021/ja303998y] [Citation(s) in RCA: 245] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Min Hee Lee
- Department of Chemistry, Korea University, Seoul, 136-701, Korea
| | - Jin Young Kim
- The School of East-West Medical
Science, Kyung Hee University, Yongin,
446-701, Korea
| | - Ji Hye Han
- The School of East-West Medical
Science, Kyung Hee University, Yongin,
446-701, Korea
| | | | - Jonathan L. Sessler
- Department
of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712-0165,
United States
- Department
of Chemistry, Yonsei University, 262 Seonsanno
Sinchon-dong, Seodaemun-gu,
Seoul 120-749, Korea
| | - Chulhun Kang
- The School of East-West Medical
Science, Kyung Hee University, Yongin,
446-701, Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 136-701, Korea
| |
Collapse
|
23
|
Pedersen SL, Tofteng AP, Malik L, Jensen KJ. Microwave heating in solid-phase peptide synthesis. Chem Soc Rev 2012; 41:1826-44. [DOI: 10.1039/c1cs15214a] [Citation(s) in RCA: 214] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Zhang W, Song J, Zhang B, Liu L, Wang K, Wang R. Design of Acid-Activated Cell Penetrating Peptide for Delivery of Active Molecules into Cancer Cells. Bioconjug Chem 2011; 22:1410-5. [DOI: 10.1021/bc200138d] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Wei Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, China
| | - Jingjing Song
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, China
| | - Bangzhi Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, China
| | - Liwei Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, China
| | - Kairong Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, China
- State Key Laboratory of Chiroscience, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|