1
|
Huang XL, Chen JL, Li XL, Zhao L, Cui YD, Liu JY, Morris-Natschke SL, Masuo G, Cheng YY, Lee KH, Chen DF, Zhang J. Synthesis and in vitro anticancer activities of biotinylated derivatives of glaucocalyxin A and oridonin. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2021; 23:703-711. [PMID: 32441118 DOI: 10.1080/10286020.2020.1760851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Fourteen glaucocalyxin A biotinylated derivatives, one glaucocalyxin C biotinylated derivative, and two oridonin biotinylated derivatives were designed and synthesized. Their structures were confirmed from 1H NMR, 13C NMR and HRMS data. The derivatives were evaluated for cytotoxic activities against lung (A549), cervical cancer cell line HeLa derivative (KB), multidrug-resistant KB subline (KB-VIN), triple-negative breast (MDA-MB-231), and estrogen receptor-positive breast (MCF-7) cancer cell lines.[Formula: see text].
Collapse
Affiliation(s)
- Xiao-Lei Huang
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | - Jing-Lei Chen
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | - Xian-Lun Li
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | - Lei Zhao
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | - Ya-Dong Cui
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | - Jiang-Yun Liu
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | - Susan L Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Goto Masuo
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Yung-Yi Cheng
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung 20277, Taiwan
| | - Dao-Feng Chen
- Department of Pharmacognosy, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jian Zhang
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
2
|
Räuchle M, Leveau G, Richert C. Synthesis of Peptido RNAs from Unprotected Peptides and Oligoribonucleotides via Coupling in Aqueous Solution. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Maximilian Räuchle
- Institute of Organic Chemistry University of Stuttgart 70569 Stuttgart Germany
| | - Gabrielle Leveau
- Institute of Organic Chemistry University of Stuttgart 70569 Stuttgart Germany
| | - Clemens Richert
- Institute of Organic Chemistry University of Stuttgart 70569 Stuttgart Germany
| |
Collapse
|
3
|
Wang TP, Su YC, Chen Y, Severance S, Hwang CC, Liou YM, Lu CH, Lin KL, Zhu RJ, Wang EC. Corroboration of Zn( ii)–Mg( ii)-tertiary structure interplays essential for the optimal catalysis of a phosphorothiolate thiolesterase ribozyme. RSC Adv 2018; 8:32775-32793. [PMID: 35547718 PMCID: PMC9086351 DOI: 10.1039/c8ra05083j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/06/2018] [Indexed: 11/21/2022] Open
Abstract
The TW17 ribozyme, a catalytic RNA selected from a pool of artificial RNA, is specific for the Zn2+-dependent hydrolysis of a phosphorothiolate thiolester bond. Here, we describe the organic synthesis of both guanosine α-thio-monophosphate and the substrates required for selecting and characterizing the TW17 ribozyme, and for deciphering the catalytic mechanism of the ribozyme. By successively substituting the substrate originally conjugated to the RNA pool with structurally modified substrates, we demonstrated that the TW17 ribozyme specifically catalyzes phosphorothiolate thiolester hydrolysis. Metal titration studies of TW17 ribozyme catalysis in the presence of Zn2+ alone, Zn2+ and Mg2+, and Zn2+ and [Co(NH3)6]3+ supported our findings that Zn2+ is absolutely required for ribozyme catalysis, and indicated that optimal ribozyme catalysis involves the presence of outer-sphere and one inner-sphere Mg2+. A survey of the TW17 ribozyme activity at various pHs revealed that the activity of the ribozyme critically depends on the alkaline conditions. Moreover, a GNRA tetraloop-containing ribozyme constructed with active catalysis in trans provided catalysis and multiple substrate turnover efficiencies significantly higher than ribozymes lacking a GNRA tetraloop. This research supports the essential roles of Zn2+, Mg2+, and a GNRA tetraloop in modulating the TW17 ribozyme structure for optimal ribozyme catalysis, leading also to the formulation of a proposed reaction mechanism for TW17 ribozyme catalysis. Zn(ii) and Mg(ii) and GAGA tetraloop in the ion atmosphere of the TW17 ribozyme is critical to optimal ribozyme catalysis at alkaline pH.![]()
Collapse
Affiliation(s)
- Tzu-Pin Wang
- Department of Medicinal and Applied Chemistry
- Kaohsiung Medical University
- Kaohsiung
- Taiwan
- Kaohsiung Medical University Hospital
| | - Yu-Chih Su
- Department of Medicinal and Applied Chemistry
- Kaohsiung Medical University
- Kaohsiung
- Taiwan
| | - Yi Chen
- Department of Medicinal and Applied Chemistry
- Kaohsiung Medical University
- Kaohsiung
- Taiwan
| | - Scott Severance
- Department of Molecular and Cellular Sciences
- Liberty University College of Osteopathic Medicine
- Lynchburg
- USA
| | - Chi-Ching Hwang
- Department of Biochemistry
- Kaohsiung Medical University
- Kaohsiung
- Taiwan
| | - Yi-Ming Liou
- Department of Medicinal and Applied Chemistry
- Kaohsiung Medical University
- Kaohsiung
- Taiwan
| | - Chia-Hui Lu
- Department of Medicinal and Applied Chemistry
- Kaohsiung Medical University
- Kaohsiung
- Taiwan
| | - Kun-Liang Lin
- Department of Medicinal and Applied Chemistry
- Kaohsiung Medical University
- Kaohsiung
- Taiwan
| | - Rui Jing Zhu
- Department of Medicinal and Applied Chemistry
- Kaohsiung Medical University
- Kaohsiung
- Taiwan
| | - Eng-Chi Wang
- Department of Medicinal and Applied Chemistry
- Kaohsiung Medical University
- Kaohsiung
- Taiwan
| |
Collapse
|
4
|
Yamawaki M, Okita Y, Yamamoto T, Morita T, Yoshimi Y. Photoinduced electron transfer-promoted debenzylation of phenylalanine and tyrosine derivatives using dicyanoarene. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.11.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Gooding M, Malhotra M, Evans JC, Darcy R, O'Driscoll CM. Oligonucleotide conjugates - Candidates for gene silencing therapeutics. Eur J Pharm Biopharm 2016; 107:321-40. [PMID: 27521696 DOI: 10.1016/j.ejpb.2016.07.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/24/2016] [Accepted: 07/25/2016] [Indexed: 11/18/2022]
Abstract
The potential therapeutic and diagnostic applications of oligonucleotides (ONs) have attracted great attention in recent years. The capability of ONs to selectively inhibit target genes through antisense and RNA interference mechanisms, without causing un-intended sideeffects has led them to be investigated for various biomedical applications, especially for the treatment of viral diseases and cancer. In recent years, many researchers have focused on enhancing the stability and target specificity of ONs by encapsulating/complexing them with polymers or lipid chains to formulate nanoparticles/nanocomplexes/micelles. Also, chemical modification of nucleic acids has emerged as an alternative to impart stability to ONs against nucleases and other degrading enzymes and proteins found in blood. In addition to chemically modifying the nucleic acids directly, another strategy that has emerged, involves conjugating polymers/peptide/aptamers/antibodies/proteins, preferably to the sense strand (3'end) of siRNAs. Conjugation to the siRNA not only enhances the stability and targeting specificity of the siRNA, but also allows for the development of self-administering siRNA formulations, with a much smaller size than what is usually observed for nanoparticle (∼200nm). This review concentrates mainly on approaches and studies involving ON-conjugates for biomedical applications.
Collapse
Affiliation(s)
- Matt Gooding
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - Meenakshi Malhotra
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - James C Evans
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - Raphael Darcy
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | | |
Collapse
|
6
|
Su YC, Lo YL, Hwang CC, Wang LF, Wu MH, Wang EC, Wang YM, Wang TP. Azide-alkyne cycloaddition for universal post-synthetic modifications of nucleic acids and effective synthesis of bioactive nucleic acid conjugates. Org Biomol Chem 2015; 12:6624-33. [PMID: 25007778 DOI: 10.1039/c4ob01132e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The regioselective post-synthetic modifications of nucleic acids are essential to studies of these molecules for science and applications. Here we report a facile universal approach by harnessing versatile phosphoramidation reactions to regioselectively incorporate alkynyl/azido groups into post-synthetic nucleic acids primed with phosphate at the 5' termini. With and without the presence of copper, the modified nucleic acids were subjected to azide-alkyne cycloaddition to afford various nucleic acid conjugates including a peptide-oligonucleotide conjugate (POC) with high yield. The POC was inoculated with human A549 cells and demonstrated excellent cell-penetrating ability despite cell deformation caused by a small amount of residual copper chelated to the POC. The combination of phosphoramidation and azide-alkyne cycloaddition reactions thus provides a universal regioselective strategy to post-synthetically modify nucleic acids. This study also explicated the toxicity of residual copper in synthesized bioconjugates destined for biological systems.
Collapse
Affiliation(s)
- Yu-Chih Su
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Stromal cells positively and negatively modulate the growth of cancer cells: stimulation via the PGE2-TNFα-IL-6 pathway and inhibition via secreted GAPDH-E-cadherin interaction. PLoS One 2015; 10:e0119415. [PMID: 25785838 PMCID: PMC4364666 DOI: 10.1371/journal.pone.0119415] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/13/2015] [Indexed: 02/04/2023] Open
Abstract
Fibroblast-like stromal cells modulate cancer cells through secreted factors and adhesion, but those factors are not fully understood. Here, we have identified critical stromal factors that modulate cancer growth positively and negatively. Using a cell co-culture system, we found that gastric stromal cells secreted IL-6 as a growth and survival factor for gastric cancer cells. Moreover, gastric cancer cells secreted PGE2 and TNFα that stimulated IL-6 secretion by the stromal cells. Furthermore, we found that stromal cells secreted glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Extracellular GAPDH, or its N-terminal domain, inhibited gastric cancer cell growth, a finding confirmed in other cell systems. GAPDH bound to E-cadherin and downregulated the mTOR-p70S6 kinase pathway. These results demonstrate that stromal cells could regulate cancer cell growth through the balance of these secreted factors. We propose that negative regulation of cancer growth using GAPDH could be a new anti-cancer strategy.
Collapse
|
8
|
Su YC, Chen HY, Ko NC, Hwang CC, Wu MH, Wang LF, Wang YM, Chang SN, Wang EC, Wang TP. Effective and site-specific phosphoramidation reaction for universally labeling nucleic acids. Anal Biochem 2014; 449:118-28. [DOI: 10.1016/j.ab.2013.12.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/03/2013] [Accepted: 12/15/2013] [Indexed: 02/03/2023]
|
9
|
Alam MR, Ming X, Nakagawa O, Jin J, Juliano RL. Covalent conjugation of oligonucleotides with cell-targeting ligands. Bioorg Med Chem 2013; 21:6217-23. [PMID: 23777829 DOI: 10.1016/j.bmc.2013.05.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/30/2013] [Accepted: 05/17/2013] [Indexed: 12/16/2022]
Abstract
A continuing problem in the area of oligonucleotide-based therapeutics is the poor access of these molecules to their sites of action in the nucleus or cytosol. A number of approaches to this problem have emerged. One of the most interesting is the use of ligand-oligonucleotide conjugates to promote receptor mediated cell uptake and delivery. Here we provide an overview of recent developments regarding targeted conjugates, including use of peptides, carbohydrates and small molecules as ligands. Additionally we discuss our own experience with this approach and point out both advantages and limitations.
Collapse
Affiliation(s)
- Md Rowshon Alam
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, United States; NITTO DENKO Avecia, 8560 Reading Road, Cincinnati, OH 45215, United States
| | | | | | | | | |
Collapse
|
10
|
Wang TP, Ko NC, Su YC, Wang EC, Severance S, Hwang CC, Shih YT, Wu MH, Chen YH. Advanced aqueous-phase phosphoramidation reactions for effectively synthesizing peptide-oligonucleotide conjugates trafficked into a human cell line. Bioconjug Chem 2012. [PMID: 23199224 DOI: 10.1021/bc300444y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Peptide-oligonucleotide conjugates (POCs) have held promise as effective therapeutic agents in treating microbial infections and human genetic diseases including cancers. In clinical applications, POCs are especially useful to circumvent cellular delivery and specificity problems of oligonucleotides. We previously reported that nucleic acid phosphoramidation reactions performed in aqueous solutions have the potential for facile POC synthesis. Here, we carried out further studies to significantly improve aqueous-phase two-step phosphoramidation reaction yield. Optimized reactions were employed to effectively synthesize POCs for delivery into human A549 cells. We achieved optimization of aqueous-phase two-step phosphoramidation reaction and improved reaction yield by (1) determining appropriate co-solutes and co-solute concentrations to acquire higher reaction yields, (2) exploring a different nucleophilicity of imidazole and its derivatives to stabilize essential nucleic acid phosphorimidazolide intermediates prior to POC formation, and (3) enhancing POC synthesis by increasing reactant nucleophilicity. The advanced two-step phosphoramidation reaction was exploited to effectively conjugate a well-studied cell penetrating peptide, the Tat(48-57) peptide, with oligonucleotides, bridged by either no linkers or a disulfide-containing linker, to have the corresponding POC yields of 47-75%. Phosphoramidation-synthesized POCs showed no cytotoxicity to human A549 cells at studied POC concentrations after 24 h inoculation and were successfully trafficked into the human A549 cell line as demonstrated by flow cytometry, fluorescent microscopy, and confocal laser scanning microscopy study. The current report provides insight into aqueous-phase phosphoramidation reactions, the knowledge of which was used to develop effective strategies for synthesizing POCs with crucial applications including therapeutic agents for medicine.
Collapse
Affiliation(s)
- Tzu-Pin Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Juliano RL, Ming X, Nakagawa O. The chemistry and biology of oligonucleotide conjugates. Acc Chem Res 2012; 45:1067-76. [PMID: 22353142 DOI: 10.1021/ar2002123] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Short DNA or RNA oligonucleotides have tremendous potential as therapeutic agents. Because of their ability to engage in Watson-Crick base pairing, they can interact with mRNA or pre-mRNA targets with high selectivity. As a result, they could precisely manipulate gene expression. This possibility has engendered extensive efforts to develop oligonucleotides as drugs, and many candidates are already in clinical trials. However, a major impediment to the maturation of this field of oligonucleotide-based therapeutics remains: these relatively large and often highly charged molecules don't easily cross cellular membranes, making it difficult for them to reach their sites of action in the cytosol or nucleus. In this Account, we summarize some basic features of the biology of antisense and siRNA oligonucleotides. We then discuss chemical conjugation as an approach to improving the intracellular delivery and therapeutic potential of these agents. Instead of focusing on the details of conjugation chemistry, we emphasize the pharmacological ramifications of oligonucleotide conjugates. In one important approach to improving delivery and efficacy, researchers have conjugated oligonucleotides with ligands designed to bind to particular receptors and thus provide specific interactions with cells. In another strategy, researchers have coupled antisense or siRNA with agents such as cell penetrating peptides that are designed to provoke escape of the conjugate from intracellular vesicular compartments. Although both of these strategies have had some success, further research is needed before oligonucleotide conjugates can find an important place in human therapeutics.
Collapse
Affiliation(s)
- R. L. Juliano
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Xin Ming
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Osamu Nakagawa
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
12
|
Akter F, Mie M, Grimm S, Nygren PÅ, Kobatake E. Detection of antigens using a protein-DNA chimera developed by enzymatic covalent bonding with phiX gene A*. Anal Chem 2012; 84:5040-6. [PMID: 22571843 DOI: 10.1021/ac300708r] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The chemical reactions used to make antibody-DNA conjugates in many immunoassays diminish antigen-binding activity and yield heterogeneous products. Here, we address these issues by developing an antibody-based rolling circle amplification (RCA) strategy using a fusion of φX174 gene A* protein and Z(mab25) (A*-Zmab). The φX174 gene A* protein is an enzyme that can covalently link with DNA, while the Z(mab25) protein moiety can bind to specific species of antibodies. The DNA in an A*-Zmab conjugate was attached to the A* protein at a site chosen to not interfere with protein function, as determined by enzyme-linked immunosorbent assay (ELISA) and gel mobility shift analysis. The novel A*-Zmab-DNA conjugate retained its binding capabilities to a specific class of murine immunoglobulin γ1 (IgG1) but not to rabbit IgG. This indicates the generality of the A*-Zmab-based immuno-RCA assay that can be used in-sandwich ELISA format. Moreover, the enzymatic covalent method dramatically increased the yields of A*-Zmab-DNA conjugates up to 80% after a 15 min reaction. Finally, sensitive detection of human interferon-γ (IFN-γ) was achieved by immuno-RCA using our fusion protein in sandwich ELISA format. This new approach of the use of site-specific enzymatic DNA conjugation to proteins should be applicable to fabrication of novel immunoassays for biosensing.
Collapse
Affiliation(s)
- Farhima Akter
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | |
Collapse
|
13
|
Loakes D. Nucleotides and nucleic acids; oligo- and polynucleotides. ORGANOPHOSPHORUS CHEMISTRY 2012. [DOI: 10.1039/9781849734875-00169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- David Loakes
- Medical Research Council Laboratory of Molecular Biology, Hills Road Cambridge CB2 2QH UK
| |
Collapse
|
14
|
Wang TP, Su YC, Chen Y, Liou YM, Lin KL, Wang EC, Hwang LC, Wang YM, Chen YH. In vitro selection and characterization of a novel Zn(II)-dependent phosphorothiolate thiolesterase ribozyme. Biochemistry 2011; 51:496-510. [PMID: 22175782 DOI: 10.1021/bi201585d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here we present the in vitro selection of a novel ribozyme specific for Zn2+-dependent catalysis on hydrolysis of a phosphorothiolate thiolester bond. The ribozyme, called the TW17 ribozyme, was evolved and selected from an artificial RNA pool covalently linked to a biotin-containing substrate through the phosphorothiolate thiolester bond. The secondary structure for the evolved ribozyme consisted of three major helices and three loops. Biochemical and chemical studies of ribozyme-catalyzed reaction products provided evidence that the ribozyme specifically catalyzes hydrolysis of the phosphorothiolate thiolester linkage. A successful ribozyme construct with active catalysis in trans further supported the determined ribozyme structure and indicated the potential of the ribozyme for multiple-substrate turnover. The ribozyme also requires Zn2+ and Mg2+ for maximal catalysis. The TW17 ribozyme, in the presence of Zn2+ and Mg2+, conferred a rate enhancement of at least 5 orders of magnitude when compared to the estimated rate of the uncatalyzed reaction. The ribozyme completely lost catalytic activity in the absence of Zn2+, like Zn2+-dependent protein hydrolases. The discovery and characterization of the TW17 ribozyme suggest additional roles for Zn2+ in ribozyme catalysts.
Collapse
Affiliation(s)
- Tzu-Pin Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | | | | | | | | | | | | | | | | |
Collapse
|